Lines Matching full:2
15 * floating point Bessel's function of the 1st and 2nd kind
21 * Note 2. About jn(n,x), yn(n,x)
83 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ in jn64()
84 if (ix >= 0x52D00000) { /* x > 2**302 */ in jn64()
85 /* (x >> n**2) in jn64()
86 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) in jn64()
87 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) in jn64()
89 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then in jn64()
95 * 2 -s+c -c-s in jn64()
106 case 2: in jn64()
124 if (ix < 0x3e100000) { /* x < 2**-29 */ in jn64()
126 * J(n,x) = 1/n!*(x/2)^n - ... in jn64()
133 for (a = one, i = 2; i <= n; i++) { in jn64()
135 b *= temp; /* b = (x/2)^n */ in jn64()
141 /* x x^2 x^2 in jn64()
143 * 2n - 2(n+1) - 2(n+2) in jn64()
147 * 2n 2(n+1) 2(n+2) in jn64()
151 * Let w = 2n/x and h=2/x, then the above quotient in jn64()
159 * w+2h - ... in jn64()
163 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), in jn64()
186 for (t = zero, i = 2 * (n + k); i >= m; i -= 2) in jn64()
190 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) in jn64()
191 * Hence, if n*(log(2n/x)) > ... in jn64()
268 if (ix >= 0x52D00000) { /* x > 2**302 */ in _MATH_ALIAS_d_id()
269 /* (x >> n**2) in _MATH_ALIAS_d_id()
270 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) in _MATH_ALIAS_d_id()
271 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) in _MATH_ALIAS_d_id()
273 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then in _MATH_ALIAS_d_id()
279 * 2 -s+c -c-s in _MATH_ALIAS_d_id()
290 case 2: in _MATH_ALIAS_d_id()