Lines Matching full:1

51  * of the approximation interval the logarithm equal 1/32
52 * and its relative error is about 1 lsb = 1.1e-19. Hence
70 * pow underflow x**y < 1/MAXNUM 0.0
82 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
83 * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
87 4.9000050881978028599627E-1L,
102 9.7857206208770013448287E-1L,
103 9.5760328069857364691013E-1L,
104 9.3708381705514995065011E-1L,
105 9.1700404320467123175367E-1L,
106 8.9735453750155359320742E-1L,
107 8.7812608018664974155474E-1L,
108 8.5930964906123895780165E-1L,
109 8.4089641525371454301892E-1L,
110 8.2287773907698242225554E-1L,
111 8.0524516597462715409607E-1L,
112 7.8799042255394324325455E-1L,
113 7.7110541270397041179298E-1L,
114 7.5458221379671136985669E-1L,
115 7.3841307296974965571198E-1L,
116 7.2259040348852331001267E-1L,
117 7.0710678118654752438189E-1L,
118 6.9195494098191597746178E-1L,
119 6.7712777346844636413344E-1L,
120 6.6261832157987064729696E-1L,
121 6.4841977732550483296079E-1L,
122 6.3452547859586661129850E-1L,
123 6.2092890603674202431705E-1L,
124 6.0762367999023443907803E-1L,
125 5.9460355750136053334378E-1L,
126 5.8186242938878875689693E-1L,
127 5.6939431737834582684856E-1L,
128 5.5719337129794626814472E-1L,
129 5.4525386633262882960438E-1L,
130 5.3357020033841180906486E-1L,
131 5.2213689121370692017331E-1L,
132 5.1094857432705833910408E-1L,
133 5.0000000000000000000000E-1L,
155 /* 2^x = 1 + x P(x),
156 * on the interval -1/32 <= x <= 0
164 2.4022650695910062854352E-1L,
165 6.9314718055994530931447E-1L,
173 /* log2(e) - 1 */
178 static const long double LOGE2L = 6.9314718055994530941723E-1L;
211 /* Set iyflg to 1 if y is an integer. */ in powl()
214 /* flag = 1 if x is negative */ in powl()
221 ya = ldexpl(y, -1); in powl()
237 if (fabsl(x) < 1) in powl()
241 if (fabsl(x) < 1) in powl()
247 /* y >= 2**80, infinity (x > 1) or zero (x < 1) */ in powl()
255 return __math_oflowl(1); in powl()
259 /* y <= -2**80, zero (x > 1) or infinity (x < 1) */ in powl()
346 i = 1; in powl()
355 if( x >= douba(1) ) in powl()
356 i = -1; in powl()
357 i += 1; in powl()
365 * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a in powl()
372 /* rational approximation for log(1+v): in powl()
374 * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) in powl()
378 w = w - ldexpl( z, -1 ); /* w - 0.5 * z */ in powl()
381 * multiply by log2(e) = 1 + LOG2EA in powl()
397 * and small part yb less than 1/NXT in powl()
429 e += 1; in powl()
438 z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */ in powl()
440 /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. in powl()
446 i = 1; in powl()
450 z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ in powl()
460 w = ldexpl( y, -1 ); in powl()
462 w = ldexpl( w, 1 ); in powl()
471 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
516 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
546 asign = -1; in powil()
555 sign = -1; in powil()
560 sign = 1; in powil()
569 e = (lx - 1)*n; in powil()
572 s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); in powil()
581 return __math_oflowl(asign < 0 && (nn & 1)); /* overflow */ in powil()
584 return __math_uflowl(asign < 0 && (nn & 1)); /* underflow */ in powil()
597 if( n & 1 ) in powil()
607 n >>= 1; in powil()
611 if( n & 1 ) /* if that bit is set, then include in product */ in powil()
613 n >>= 1; in powil()