Lines Matching full:2
42 * e = 2 e.
44 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
45 * in the basic range [-0.5 ln 2, 0.5 ln 2].
58 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
59 -.5 ln 2 < x < .5 ln 2
80 /* C1 + C2 = ln 2 */
84 /* ln (2^16384 * (1 - 2^-113)) */
86 /* ln 2^-114 */
130 /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ in expm1l()
131 xx = C1 + C2; /* ln 2. */ in expm1l()
134 /* remainder times ln 2 */ in expm1l()
138 /* Approximate exp(remainder ln 2). */ in expm1l()
150 /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). in expm1l()
152 We have qx = exp(remainder ln 2) - 1, so in expm1l()
153 exp(x) - 1 = 2^k (qx + 1) - 1 in expm1l()
154 = 2^k qx + 2^k - 1. */ in expm1l()