Lines Matching full:n
14 * jn(n, x), yn(n, x)
16 * of order n
19 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
20 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
21 * Note 2. About jn(n,x), yn(n,x)
22 * For n=0, j0(x) is called,
23 * for n=1, j1(x) is called,
24 * for n<x, forward recursion us used starting
26 * for n>x, a continued fraction approximation to
27 * j(n,x)/j(n-1,x) is evaluated and then backward
29 * for j(n,x). The resulting value of j(0,x) is
31 * supposed value of j(n,x).
33 * yn(n,x) is similar in all respects, except
35 * values of n>1.
51 jn64(int n, __float64 x) in jn64() argument
63 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) in jn64()
64 * Thus, J(-n,x) = J(n,-x) in jn64()
69 if (n < 0) { in jn64()
70 n = -n; in jn64()
74 if (n == 0) in jn64()
76 if (n == 1) in jn64()
78 sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */ in jn64()
82 else if ((__float64)n <= x) { in jn64()
83 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ in jn64()
85 /* (x >> n**2) in jn64()
86 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) in jn64()
87 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) in jn64()
89 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then in jn64()
91 * n sin(xn)*sqt2 cos(xn)*sqt2 in jn64()
98 switch (n & 3) { in jn64()
117 for (i = 1; i < n; i++) { in jn64()
125 /* x is tiny, return the first Taylor expansion of J(n,x) in jn64()
126 * J(n,x) = 1/n!*(x/2)^n - ... in jn64()
128 if (n > 33) /* underflow */ in jn64()
133 for (a = one, i = 2; i <= n; i++) { in jn64()
134 a *= (__float64)i; /* a = n! */ in jn64()
135 b *= temp; /* b = (x/2)^n */ in jn64()
142 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... in jn64()
143 * 2n - 2(n+1) - 2(n+2) in jn64()
147 * 2n 2(n+1) 2(n+2) in jn64()
151 * Let w = 2n/x and h=2/x, then the above quotient in jn64()
172 w = (n + n) / (__float64)x; in jn64()
185 m = n + n; in jn64()
186 for (t = zero, i = 2 * (n + k); i >= m; i -= 2) in jn64()
190 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) in jn64()
191 * Hence, if n*(log(2n/x)) > ... in jn64()
198 tmp = n; in jn64()
202 for (i = n - 1, di = (__float64)(i + i); i > 0; i--) { in jn64()
210 for (i = n - 1, di = (__float64)(i + i); i > 0; i--) { in jn64()
236 yn64(int n, __float64 x) in _MATH_ALIAS_d_id()
244 /* if Y(n,NaN) is NaN */ in _MATH_ALIAS_d_id()
259 if (n < 0) { in _MATH_ALIAS_d_id()
260 n = -n; in _MATH_ALIAS_d_id()
261 sign = 1 - ((n & 1) << 1); in _MATH_ALIAS_d_id()
263 if (n == 0) in _MATH_ALIAS_d_id()
265 if (n == 1) in _MATH_ALIAS_d_id()
269 /* (x >> n**2) in _MATH_ALIAS_d_id()
270 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) in _MATH_ALIAS_d_id()
271 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) in _MATH_ALIAS_d_id()
273 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then in _MATH_ALIAS_d_id()
275 * n sin(xn)*sqt2 cos(xn)*sqt2 in _MATH_ALIAS_d_id()
282 switch (n & 3) { in _MATH_ALIAS_d_id()
304 for (i = 1; i < n && high != 0xfff00000; i++) { in _MATH_ALIAS_d_id()