Lines Matching full:1

41  * \param p Input value, typically within the [0, 1] range
52 * \param p Input value, typically within the [0, 1] range
61 * \param p Input value, typically within the [0, 1] range
68 // y = (1/2)((2x)^2) ; [0, 0.5)
69 // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
72 * \param p Input value, typically within the [0, 1] range
83 * \param p Input value, typically within the [0, 1] range
89 // Modeled after the cubic y = (x - 1)^3 + 1
92 * \param p Input value, typically within the [0, 1] range
99 // y = (1/2)((2x)^3) ; [0, 0.5)
100 // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
103 * \param p Input value, typically within the [0, 1] range
114 * \param p Input value, typically within the [0, 1] range
120 // Modeled after the quartic y = 1 - (x - 1)^4
123 * \param p Input value, typically within the [0, 1] range
130 // y = (1/2)((2x)^4) ; [0, 0.5)
131 // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
134 * \param p Input value, typically within the [0, 1] range
145 * \param p Input value, typically within the [0, 1] range
151 // Modeled after the quintic y = (x - 1)^5 + 1
154 * \param p Input value, typically within the [0, 1] range
161 // y = (1/2)((2x)^5) ; [0, 0.5)
162 // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
165 * \param p Input value, typically within the [0, 1] range
176 * \param p Input value, typically within the [0, 1] range
185 * \param p Input value, typically within the [0, 1] range
194 * \param p Input value, typically within the [0, 1] range
205 * \param p Input value, typically within the [0, 1] range
214 * \param p Input value, typically within the [0, 1] range
221 // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
222 // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
225 * \param p Input value, typically within the [0, 1] range
233 // Modeled after the exponential function y = 2^(10(x - 1))
236 * \param p Input value, typically within the [0, 1] range
242 // Modeled after the exponential function y = -2^(-10x) + 1
245 * \param p Input value, typically within the [0, 1] range
252 // y = (1/2)2^(10(2x - 1)) ; [0,0.5)
253 // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
256 * \param p Input value, typically within the [0, 1] range
263 // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
267 * \param p Input value, typically within the [0, 1] range
273 // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
276 * \param p Input value, typically within the [0, 1] range
283 // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
284 // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
287 * \param p Input value, typically within the [0, 1] range
298 * \param p Input value, typically within the [0, 1] range
304 // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
307 * \param p Input value, typically within the [0, 1] range
314 // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
315 // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
318 * \param p Input value, typically within the [0, 1] range
328 * \param p Input value, typically within the [0, 1] range
336 * \param p Input value, typically within the [0, 1] range
344 * \param p Input value, typically within the [0, 1] range
353 * \param A Initial value within range [0, 1]
354 * \param B Finale value within range [0, 1]