Lines Matching refs:tensors
79 tensors = {}
110 tensors[name + "_weights"] = interpreter.get_tensor(detail["index"]).flatten()
124 tensors["output_gate_bias"] = interpreter.get_tensor(1 + time_major_offset).flatten()
125 tensors["cell_gate_bias"] = interpreter.get_tensor(2 + time_major_offset).flatten()
126 tensors["forget_gate_bias"] = interpreter.get_tensor(3 + time_major_offset).flatten()
127 tensors["input_gate_bias"] = interpreter.get_tensor(4 + time_major_offset).flatten()
134 return Lib.op_utils.Generated_data(generated_params, tensors, scales, effective_scales)
137 tensors = {}
173 …tensors["input_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weigh…
174 …tensors["forget_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weig…
175 …tensors["cell_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weight…
176 …tensors["output_gate_hidden_weights"] = np.random.randint(minval, maxval, size=shapes["hidden_weig…
177 …tensors["input_gate_input_weights"] = np.random.randint(minval, maxval, size=shapes["input_weights…
178 …tensors["forget_gate_input_weights"] = np.random.randint(minval, maxval, size=shapes["input_weight…
179 …tensors["cell_gate_input_weights"] = np.random.randint(minval, maxval, size=shapes["input_weights"…
180 …tensors["output_gate_input_weights"] = np.random.randint(minval, maxval, size=shapes["input_weight…
184 tensors["input_gate_bias"] = np.random.randint(minval, maxval, size=shapes["bias"])
185 tensors["forget_gate_bias"] = np.random.randint(minval, maxval, size=shapes["bias"])
186 tensors["cell_gate_bias"] = np.random.randint(minval, maxval, size=shapes["bias"])
187 tensors["output_gate_bias"] = np.random.randint(minval, maxval, size=shapes["bias"])
195 return Lib.op_utils.Generated_data(generated_params, tensors, scales, effective_scales)