Lines Matching refs:params

28     def get_shapes(params):  argument
32 params["stride_x"] = 1 if "stride_x" not in params else params["stride_x"]
33 params["stride_y"] = 1 if "stride_y" not in params else params["stride_y"]
34 params["dilation_x"] = 1 if "dilation_x" not in params else params["dilation_x"]
35 params["dilation_y"] = 1 if "dilation_y" not in params else params["dilation_y"]
36 params["batch_size"] = 1 if "batch_size" not in params else params["batch_size"]
37 params["generate_bias"] = True if "generate_bias" not in params else params["generate_bias"]
38 if "out_activation_min" not in params:
39 params["out_activation_min"] = Lib.op_utils.get_dtype_min(params["input_data_type"])
40 if "out_activation_max" not in params:
41 params["out_activation_max"] = Lib.op_utils.get_dtype_max(params["input_data_type"])
42 if "bias_min" not in params:
43 params["bias_min"] = Lib.op_utils.get_dtype_min("int32_t")
44 if "bias_max" not in params:
45 params["bias_max"] = Lib.op_utils.get_dtype_max("int32_t")
46 if "weights_min" not in params:
47 params["weights_min"] = Lib.op_utils.get_dtype_min("int32_t")
48 if "weights_max" not in params:
49 params["weights_max"] = Lib.op_utils.get_dtype_max("int32_t")
51 in_ch = params["in_ch"]
52 out_ch = params["out_ch"]
53 groups = params["groups"]
61 shapes["input"] = (params["batch_size"], params["input_h"], params["input_w"], in_ch)
62 shapes["weight_shape"] = [params["filter_y"], params["filter_x"], filter_ch, out_ch]
64 if params["generate_bias"]:
69 …shapes["representational_dataset"] = (params["batch_size"], params["input_h"], params["input_w"], …
72 def generate_keras_model(shapes, params): argument
75 input_shape = (params["batch_size"], params["input_h"], params["input_w"], params["in_ch"])
76 … model.add(keras.layers.InputLayer(input_shape=input_shape[1:], batch_size=params["batch_size"]))
78 conv_layer = keras.layers.Conv2D(params["out_ch"],
79 kernel_size=(params["filter_y"], params["filter_x"]),
80 strides=(params["stride_y"], params["stride_x"]),
81 padding=params["padding"],
83 dilation_rate=(params["dilation_y"], params["dilation_x"]),
84 groups=params["groups"],
85 use_bias=params["generate_bias"])
89 shapes["weight_shape"], params["weights_min"], params["weights_max"], decimals=8)
91 if params["generate_bias"]:
93 shapes["bias_shape"], params["bias_min"], params["bias_max"])
100 def generate_data_tflite(tflite_fname, params): argument
117 if params["generate_bias"]:
126 if params["generate_bias"]:
140 def calculate_padding(x_output, y_output, params): argument
141 x_input = params["input_w"]
142 y_input = params["input_h"]
144 if params["padding"] == "SAME":
146 filter_x = (params["filter_x"] - 1) * params["dilation_x"] + 1
147 filter_y = (params["filter_y"] - 1) * params["dilation_y"] + 1
149 pad_along_width = max((x_output - 1) * params["stride_x"] + filter_x - x_input, 0)
150 pad_along_height = max((y_output - 1) * params["stride_y"] + filter_y - y_input, 0)
169 … pad_y_with_offset, pad_x_with_offset, pad_y, pad_x = calculate_padding(x_output, y_output, params)
173 if params["generate_bias"]:
180 def generate_quantize_per_channel_multiplier(params, scales): argument
186 num_channels = params["out_ch"]
202 generated_params["input_batches"] = params["batch_size"]
207 generated_params["dst_size"] = x_output * y_output * params["out_ch"] * params["batch_size"]
211 …per_channel_multiplier, per_channel_shift = generate_quantize_per_channel_multiplier(params, scale…