Lines Matching refs:self

755     "    def __init__(self,slices):\n",
756 " self._windowLength=len(slices[0])\n",
757 " self._fftLen,self._fftShift=fft_length(self._windowLength)\n",
759 " self._padding_left=(self._fftLen - self._windowLength)//2 \n",
760 " self._padding_right=self._fftLen- self._windowLength-self._padding_left\n",
762 " self._signal=[]\n",
763 " self._slices=slices\n",
764 " self._window=None\n",
766 " def window_and_pad(self,w):\n",
768 " w=dsp.arm_mult_q31(w,self._window)\n",
770 " w=dsp.arm_mult_q15(w,self._window)\n",
772 " w = w*self._window\n",
773 …" sig=np.hstack([np.zeros(self._padding_left,dtype=w.dtype),w,np.zeros(self._padding_right,…
776 " def remove_padding(self,w):\n",
777 " return(w[self._padding_left:self._padding_left+self._windowLength])\n",
789 " def __init__(self,slices):\n",
792 " NoiseSuppression.__init__(self,slices)\n",
795 " self._vad=clean_vad([signal_vad(w) for w in slices])\n",
796 " self._noise=np.zeros(self._fftLen)\n",
798 " self._window=hann(self._windowLength,sym=False)\n",
801 " def subnoise(self,v):\n",
805 " scaling = (energy - self._noise)/energy\n",
810 " def remove_noise(self,w):\n",
815 " sig=self.window_and_pad(w)\n",
820 " fft = self.subnoise(fft)\n",
826 " res=self.remove_padding(res)\n",
831 " def estimate_noise(self,w):\n",
833 " sig=self.window_and_pad(w)\n",
837 " self._noise = np.abs(fft)*np.abs(fft)\n",
840 " fft = self.subnoise(fft)\n",
845 " res=self.remove_padding(res)\n",
849 " def nr(self):\n",
850 " for (w,v) in zip(self._slices,self._vad):\n",
854 " result=self.remove_noise(w)\n",
857 " result=self.estimate_noise(w)\n",
858 " self._signal.append(result)\n",
861 " def overlap_and_add(self):\n",
862 " offsets = range(0, len(self._signal)*winOverlap,winOverlap)\n",
863 " offsets=offsets[0:len(self._signal)]\n",
867 " res[n:n+winLength]+=self._signal[i]\n",
1059 " def __init__(self,slices):\n",
1060 " NoiseSuppression.__init__(self,slices)\n",
1063 " self._vad= clean_vad(np.array([signal_vad(w) for w in slices]))\n",
1064 " self._noise=np.zeros(self._fftLen,dtype=np.float32)\n",
1066 " self._window=hann(self._windowLength,sym=False)\n",
1068 " self._cfftF32=dsp.arm_cfft_instance_f32()\n",
1069 " status=dsp.arm_cfft_init_f32(self._cfftF32,self._fftLen)\n",
1073 " def subnoise(self,v):\n",
1078 " temp = dsp.arm_sub_f32(energy , self._noise)\n",
1090 " def remove_noise(self,w):\n",
1091 " sig=self.window_and_pad(w)\n",
1097 " resultR = dsp.arm_cfft_f32(self._cfftF32,signalR,0,1)\n",
1100 " resultR = self.subnoise(resultR)\n",
1103 " res = dsp.arm_cfft_f32(self._cfftF32,resultR,1,1)*self._fftLen\n",
1106 " res=self.remove_padding(res)\n",
1109 " def estimate_noise(self,w):\n",
1110 " sig=self.window_and_pad(w)\n",
1115 " resultR = dsp.arm_cfft_f32(self._cfftF32,signalR,0,1)\n",
1117 " self._noise = dsp.arm_cmplx_mag_squared_f32(resultR)\n",
1127 " res = dsp.arm_cfft_f32(self._cfftF32,resultR,1,1)*self._fftLen\n",
1130 " res=self.remove_padding(res)\n",
1133 " def nr(self):\n",
1134 " for (w,v) in zip(self._slices,self._vad):\n",
1137 " result=self.remove_noise(w)\n",
1139 " result=self.estimate_noise(w)\n",
1140 " self._signal.append(result)\n",
1142 " def overlap_and_add(self):\n",
1143 " nbSamples = len(self._signal)*winOverlap\n",
1145 " offsets=offsets[0:len(self._signal)]\n",
1149 " res[n:n+winLength] = dsp.arm_add_f32(res[n:n+winLength],self._signal[i])\n",
1228 " def __init__(self,slices):\n",
1229 " NoiseSuppression.__init__(self,slices)\n",
1232 " self._vad= clean_vad(np.array([signal_vad_q31(w) for w in slices]))\n",
1233 " self._noise=np.zeros(self._fftLen,dtype=np.int32)\n",
1235 " self._window=fix.toQ31(hann(self._windowLength,sym=False))\n",
1237 " self._cfftQ31=dsp.arm_cfft_instance_q31()\n",
1238 " status=dsp.arm_cfft_init_q31(self._cfftQ31,self._fftLen)\n",
1242 " def subnoise(self,v):\n",
1246 " temp = dsp.arm_sub_q31(energy , self._noise)\n",
1282 " def remove_noise(self,w):\n",
1283 " sig=self.window_and_pad(w)\n",
1290 " resultR = dsp.arm_cfft_q31(self._cfftQ31,signalR,0,1)\n",
1292 " resultR = self.subnoise(resultR)\n",
1294 " res = dsp.arm_cfft_q31(self._cfftQ31,resultR,1,1)\n",
1295 " res = dsp.arm_shift_q31(res,self._fftShift)\n",
1298 " res=self.remove_padding(res)\n",
1301 " def estimate_noise(self,w):\n",
1302 " sig=self.window_and_pad(w)\n",
1307 " resultR = dsp.arm_cfft_q31(self._cfftQ31,signalR,0,1)\n",
1309 " self._noise = dsp.arm_cmplx_mag_squared_q31(resultR)\n",
1313 " res = dsp.arm_cfft_q31(self._cfftQ31,resultR,1,1)\n",
1314 " res = dsp.arm_shift_q31(res,self._fftShift)\n",
1317 " res=self.remove_padding(res)\n",
1320 " def nr(self):\n",
1321 " for (w,v) in zip(self._slices,self._vad):\n",
1324 " result=self.remove_noise(w)\n",
1326 " result=self.estimate_noise(w)\n",
1327 " self._signal.append(result)\n",
1329 " def overlap_and_add(self):\n",
1330 " nbSamples = len(self._signal)*winOverlap\n",
1332 " offsets=offsets[0:len(self._signal)]\n",
1336 " res[n:n+winLength] = dsp.arm_add_q31(res[n:n+winLength],self._signal[i])\n",
1428 " def __init__(self,slices):\n",
1429 " NoiseSuppression.__init__(self,slices)\n",
1432 " self._vad= clean_vad(np.array([signal_vad_q15(w) for w in slices]))\n",
1433 " self._noise=np.zeros(self._fftLen,dtype=np.int32)\n",
1435 " self._window=fix.toQ15(hann(self._windowLength,sym=False))\n",
1437 " self._cfftQ15=dsp.arm_cfft_instance_q15()\n",
1438 " status=dsp.arm_cfft_init_q15(self._cfftQ15,self._fftLen)\n",
1440 " self._noise_status = -1 \n",
1441 " self._noise_max = 0x7FFF\n",
1445 " def subnoise(self,v,status,the_max):\n",
1460 " noise = self._noise \n",
1461 " if self._noise_status==0:\n",
1462 " the_max_q31=dsp.arm_q15_to_q31([self._noise_max])[0]\n",
1503 " def rescale(self,w):\n",
1516 " def undo_scale(self,w,the_max):\n",
1521 " def remove_noise(self,w):\n",
1522 " w,status,the_max = self.rescale(w)\n",
1523 " sig=self.window_and_pad(w)\n",
1530 " resultR = dsp.arm_cfft_q15(self._cfftQ15,signalR,0,1)\n",
1532 " resultR = self.subnoise(resultR,status,the_max)\n",
1534 " res = dsp.arm_cfft_q15(self._cfftQ15,resultR,1,1)\n",
1535 " res = dsp.arm_shift_q15(res,self._fftShift)\n",
1538 " res=self.remove_padding(res)\n",
1541 " res=self.undo_scale(res,the_max)\n",
1544 " def estimate_noise(self,w):\n",
1545 " w,status,the_max = self.rescale(w)\n",
1546 " self._noise_status = status \n",
1547 " self._noise_max = the_max\n",
1549 " sig=self.window_and_pad(w)\n",
1554 " resultR = dsp.arm_cfft_q15(self._cfftQ15,signalR,0,1)\n",
1559 " self._noise = dsp.arm_cmplx_mag_squared_q31(resultRQ31)\n",
1564 " res = dsp.arm_cfft_q15(self._cfftQ15,resultR,1,1)\n",
1565 " res = dsp.arm_shift_q15(res,self._fftShift)\n",
1568 " res=self.remove_padding(res)\n",
1571 " res=self.undo_scale(res,the_max)\n",
1575 " def do_nothing(self,w):\n",
1576 " w,status,the_max = self.rescale(w)\n",
1577 " sig=self.window_and_pad(w)\n",
1585 " resultR = dsp.arm_cfft_q15(self._cfftQ15,signalR,0,1)\n",
1586 " res = dsp.arm_cfft_q15(self._cfftQ15,resultR,1,1)\n",
1587 " res = dsp.arm_shift_q15(res,self._fftShift)\n",
1591 " res=self.remove_padding(res)\n",
1594 " res=self.undo_scale(res,the_max)\n",
1599 " def nr(self,nonr=False):\n",
1600 " for (w,v) in zip(self._slices,self._vad):\n",
1603 " result = self.do_nothing(w)\n",
1606 " result=self.remove_noise(w)\n",
1608 " result=self.estimate_noise(w)\n",
1609 " self._signal.append(result)\n",
1611 " def overlap_and_add(self):\n",
1612 " nbSamples = len(self._signal)*winOverlap\n",
1614 " offsets=offsets[0:len(self._signal)]\n",
1618 " res[n:n+winLength] = dsp.arm_add_q15(res[n:n+winLength],self._signal[i])\n",
1790 "temp = dsp.arm_sub_f32(energy , self._noise)\n",