# Eclipse ThreadX GUIX Eclipse ThreadX GUIX is a professional-quality package, created to meet the needs of embedded systems developers. Unlike alternative GUI solutions Eclipse ThreadX GUIX is small, fast, and easily ported to virtually any hardware configuration that’s capable of supporting graphical output. Eclipse ThreadX GUIX also delivers exceptional visual appeal and an intuitive and powerful API for application-level user interface development. Eclipse ThreadX GUIX Studio provides a complete, embedded graphical user interface (GUI) application design environment, facilitating the creation and maintenance of all graphical elements in the application’s GUI. Eclipse ThreadX GUIX Studio automatically generates C code that’s compatible with the Eclipse ThreadX GUIX library, ready to be compiled and run on the target. The Eclipse ThreadX GUIX Studio installer is available here: https://aka.ms/azrtos-guix-installer. Here are the key features and modules of GUIX: ![GUIX Key Features](./docs/guix-features.png) ## Getting Started GUIX as part of Eclipse ThreadX has been integrated to the semiconductor's SDKs and development environment. You can develop using the tools of choice from [NXP](https://www.nxp.com/design/software/embedded-software/azure-rtos-for-nxp-microcontrollers:AZURE-RTOS), [Renesas](https://github.com/renesas/azure-rtos) and [Microchip](https://mu.microchip.com/get-started-simplifying-your-iot-design-with-azure-rtos). We also [samples](https://github.com/eclipse-threadx/samples) using hero development boards from semiconductors you can build and test with. See [Overview of Eclipse ThreadX GUIX](https://github.com/eclipse-threadx/rtos-docs/blob/main/rtos-docs/guix/overview-guix.md) for the high-level overview. ## Repository Structure and Usage ### Directory layout . ├── cmake # CMakeList files for building the project ├── common # Core GUIX files ├── fonts # Fonts required by GUIX ├── graphics # Graphic assets ├── ports # Architecture and compiler specific files ├── samples # Sample codes ├── tutorials # More sample codes ├── LICENSE.txt # License terms ├── LICENSE-HARDWARE.txt # Licensed hardware from semiconductors ├── CONTRIBUTING.md # Contribution guidance └── SECURITY.md # Repo security guidance ### Branches & Releases The master branch has the most recent code with all new features and bug fixes. It does not represent the latest General Availability (GA) release of the library. Each official release (preview or GA) will be tagged to mark the commit and push it into the Github releases tab, e.g. `v6.2-rel`. > When you see xx-xx-xxxx, 6.x or x.x in function header, this means the file is not officially released yet. They will be updated in the next release. See example below. ``` /**************************************************************************/ /* */ /* FUNCTION RELEASE */ /* */ /* _tx_initialize_low_level Cortex-M23/GNU */ /* 6.x */ /* AUTHOR */ /* */ /* Scott Larson, Microsoft Corporation */ /* */ /* DESCRIPTION */ /* */ /* This function is responsible for any low-level processor */ /* initialization, including setting up interrupt vectors, setting */ /* up a periodic timer interrupt source, saving the system stack */ /* pointer for use in ISR processing later, and finding the first */ /* available RAM memory address for tx_application_define. */ /* */ /* INPUT */ /* */ /* None */ /* */ /* OUTPUT */ /* */ /* None */ /* */ /* CALLS */ /* */ /* None */ /* */ /* CALLED BY */ /* */ /* _tx_initialize_kernel_enter ThreadX entry function */ /* */ /* RELEASE HISTORY */ /* */ /* DATE NAME DESCRIPTION */ /* */ /* 09-30-2020 Scott Larson Initial Version 6.1 */ /* xx-xx-xxxx Scott Larson Include tx_user.h, */ /* resulting in version 6.x */ /* */ /**************************************************************************/ ``` ## Component dependencies The main components of Eclipse ThreadX are each provided in their own repository, but there are dependencies between them, as shown in the following graph. This is important to understand when setting up your builds. ![dependency graph](docs/deps.png) > You will have to take the dependency graph above into account when building anything other than ThreadX itself. ### Building and using the library Instruction for building the GUIX as static library using Arm GNU Toolchain and CMake. If you are using toolchain and IDE from semiconductor, you might follow its own instructions to use Eclipse ThreadX components as explained in the [Getting Started](#getting-started) section. 1. Install the following tools: * [CMake](https://cmake.org/download/) version 3.0 or later * [Arm GNU Toolchain for arm-none-eabi](https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads) * [Ninja](https://ninja-build.org/) 1. Build the [ThreadX library](https://github.com/eclipse-threadx/threadx#building-and-using-the-library) as the dependency. 1. Cloning the repo. ```bash $ git clone https://github.com/eclipse-threadx/guix.git ``` 1. Define the features and addons you need in `gx_user.h` and build together with the component source code. You can refer to [`gx_user_sample.h`](https://github.com/eclipse-threadx/guix/blob/master/common/inc/gx_user_sample.h) as an example. 1. Building as a static library Each component of Eclipse ThreadX comes with a composable CMake-based build system that supports many different MCUs and host systems. Integrating any of these components into your device app code is as simple as adding a git submodule and then including it in your build using the CMake `add_subdirectory()`. While the typical usage pattern is to include GUIX into your device code source tree to be built & linked with your code, you can compile this project as a standalone static library to confirm your build is set up correctly. An example of building the library for Cortex-M4: ```bash $ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cmake/cortex_m4.cmake . $ cmake --build ./build ``` ## Licensing License terms for using Eclipse ThreadX are defined in the LICENSE.txt file of this repo. Please refer to this file for all definitive licensing information. ## Resources The following are references to additional Eclipse ThreadX resources: - **Product introduction**: https://github.com/eclipse-threadx/rtos-docs - **Product issues and bugs, or feature requests**: https://github.com/eclipse-threadx/guix/issues - **TraceX Installer**: https://aka.ms/azrtos-tracex-installer You can also check [previous questions](https://stackoverflow.com/questions/tagged/azure-rtos+guix) or ask new ones on StackOverflow using the `threadx` and `guix` tags. ## Security Eclipse ThreadX provides OEMs with components to secure communication and to create code and data isolation using underlying MCU/MPU hardware protection mechanisms. It is ultimately the responsibility of the device builder to ensure the device fully meets the evolving security requirements associated with its specific use case. ## Contribution Please follow the instructions provided in the [CONTRIBUTING.md](./CONTRIBUTING.md) for the corresponding repository.