1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63
64 /*
65 * magic2 = "PERFILE2"
66 * must be a numerical value to let the endianness
67 * determine the memory layout. That way we are able
68 * to detect endianness when reading the perf.data file
69 * back.
70 *
71 * we check for legacy (PERFFILE) format.
72 */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76
77 #define PERF_MAGIC __perf_magic2
78
79 const char perf_version_string[] = PERF_VERSION;
80
81 struct perf_file_attr {
82 struct perf_event_attr attr;
83 struct perf_file_section ids;
84 };
85
perf_header__set_feat(struct perf_header * header,int feat)86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88 __set_bit(feat, header->adds_features);
89 }
90
perf_header__clear_feat(struct perf_header * header,int feat)91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93 __clear_bit(feat, header->adds_features);
94 }
95
perf_header__has_feat(const struct perf_header * header,int feat)96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98 return test_bit(feat, header->adds_features);
99 }
100
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103 ssize_t ret = writen(ff->fd, buf, size);
104
105 if (ret != (ssize_t)size)
106 return ret < 0 ? (int)ret : -1;
107 return 0;
108 }
109
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)110 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
111 {
112 /* struct perf_event_header::size is u16 */
113 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 size_t new_size = ff->size;
115 void *addr;
116
117 if (size + ff->offset > max_size)
118 return -E2BIG;
119
120 while (size > (new_size - ff->offset))
121 new_size <<= 1;
122 new_size = min(max_size, new_size);
123
124 if (ff->size < new_size) {
125 addr = realloc(ff->buf, new_size);
126 if (!addr)
127 return -ENOMEM;
128 ff->buf = addr;
129 ff->size = new_size;
130 }
131
132 memcpy(ff->buf + ff->offset, buf, size);
133 ff->offset += size;
134
135 return 0;
136 }
137
138 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141 if (!ff->buf)
142 return __do_write_fd(ff, buf, size);
143 return __do_write_buf(ff, buf, size);
144 }
145
146 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149 u64 *p = (u64 *) set;
150 int i, ret;
151
152 ret = do_write(ff, &size, sizeof(size));
153 if (ret < 0)
154 return ret;
155
156 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 ret = do_write(ff, p + i, sizeof(*p));
158 if (ret < 0)
159 return ret;
160 }
161
162 return 0;
163 }
164
165 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)166 int write_padded(struct feat_fd *ff, const void *bf,
167 size_t count, size_t count_aligned)
168 {
169 static const char zero_buf[NAME_ALIGN];
170 int err = do_write(ff, bf, count);
171
172 if (!err)
173 err = do_write(ff, zero_buf, count_aligned - count);
174
175 return err;
176 }
177
178 #define string_size(str) \
179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180
181 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184 u32 len, olen;
185 int ret;
186
187 olen = strlen(str) + 1;
188 len = PERF_ALIGN(olen, NAME_ALIGN);
189
190 /* write len, incl. \0 */
191 ret = do_write(ff, &len, sizeof(len));
192 if (ret < 0)
193 return ret;
194
195 return write_padded(ff, str, olen, len);
196 }
197
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 ssize_t ret = readn(ff->fd, addr, size);
201
202 if (ret != size)
203 return ret < 0 ? (int)ret : -1;
204 return 0;
205 }
206
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209 if (size > (ssize_t)ff->size - ff->offset)
210 return -1;
211
212 memcpy(addr, ff->buf + ff->offset, size);
213 ff->offset += size;
214
215 return 0;
216
217 }
218
__do_read(struct feat_fd * ff,void * addr,ssize_t size)219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221 if (!ff->buf)
222 return __do_read_fd(ff, addr, size);
223 return __do_read_buf(ff, addr, size);
224 }
225
do_read_u32(struct feat_fd * ff,u32 * addr)226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228 int ret;
229
230 ret = __do_read(ff, addr, sizeof(*addr));
231 if (ret)
232 return ret;
233
234 if (ff->ph->needs_swap)
235 *addr = bswap_32(*addr);
236 return 0;
237 }
238
do_read_u64(struct feat_fd * ff,u64 * addr)239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241 int ret;
242
243 ret = __do_read(ff, addr, sizeof(*addr));
244 if (ret)
245 return ret;
246
247 if (ff->ph->needs_swap)
248 *addr = bswap_64(*addr);
249 return 0;
250 }
251
do_read_string(struct feat_fd * ff)252 static char *do_read_string(struct feat_fd *ff)
253 {
254 u32 len;
255 char *buf;
256
257 if (do_read_u32(ff, &len))
258 return NULL;
259
260 buf = malloc(len);
261 if (!buf)
262 return NULL;
263
264 if (!__do_read(ff, buf, len)) {
265 /*
266 * strings are padded by zeroes
267 * thus the actual strlen of buf
268 * may be less than len
269 */
270 return buf;
271 }
272
273 free(buf);
274 return NULL;
275 }
276
277 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280 unsigned long *set;
281 u64 size, *p;
282 int i, ret;
283
284 ret = do_read_u64(ff, &size);
285 if (ret)
286 return ret;
287
288 set = bitmap_zalloc(size);
289 if (!set)
290 return -ENOMEM;
291
292 p = (u64 *) set;
293
294 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 ret = do_read_u64(ff, p + i);
296 if (ret < 0) {
297 free(set);
298 return ret;
299 }
300 }
301
302 *pset = set;
303 *psize = size;
304 return 0;
305 }
306
307 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)308 static int write_tracing_data(struct feat_fd *ff,
309 struct evlist *evlist)
310 {
311 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 return -1;
313
314 return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)318 static int write_build_id(struct feat_fd *ff,
319 struct evlist *evlist __maybe_unused)
320 {
321 struct perf_session *session;
322 int err;
323
324 session = container_of(ff->ph, struct perf_session, header);
325
326 if (!perf_session__read_build_ids(session, true))
327 return -1;
328
329 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 return -1;
331
332 err = perf_session__write_buildid_table(session, ff);
333 if (err < 0) {
334 pr_debug("failed to write buildid table\n");
335 return err;
336 }
337 perf_session__cache_build_ids(session);
338
339 return 0;
340 }
341
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_hostname(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344 {
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.nodename);
353 }
354
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_osrelease(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357 {
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.release);
366 }
367
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_arch(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370 {
371 struct utsname uts;
372 int ret;
373
374 ret = uname(&uts);
375 if (ret < 0)
376 return -1;
377
378 return do_write_string(ff, uts.machine);
379 }
380
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381 static int write_version(struct feat_fd *ff,
382 struct evlist *evlist __maybe_unused)
383 {
384 return do_write_string(ff, perf_version_string);
385 }
386
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 FILE *file;
390 char *buf = NULL;
391 char *s, *p;
392 const char *search = cpuinfo_proc;
393 size_t len = 0;
394 int ret = -1;
395
396 if (!search)
397 return -1;
398
399 file = fopen("/proc/cpuinfo", "r");
400 if (!file)
401 return -1;
402
403 while (getline(&buf, &len, file) > 0) {
404 ret = strncmp(buf, search, strlen(search));
405 if (!ret)
406 break;
407 }
408
409 if (ret) {
410 ret = -1;
411 goto done;
412 }
413
414 s = buf;
415
416 p = strchr(buf, ':');
417 if (p && *(p+1) == ' ' && *(p+2))
418 s = p + 2;
419 p = strchr(s, '\n');
420 if (p)
421 *p = '\0';
422
423 /* squash extra space characters (branding string) */
424 p = s;
425 while (*p) {
426 if (isspace(*p)) {
427 char *r = p + 1;
428 char *q = skip_spaces(r);
429 *p = ' ';
430 if (q != (p+1))
431 while ((*r++ = *q++));
432 }
433 p++;
434 }
435 ret = do_write_string(ff, s);
436 done:
437 free(buf);
438 fclose(file);
439 return ret;
440 }
441
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442 static int write_cpudesc(struct feat_fd *ff,
443 struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC { "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC { "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC { "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC { "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC { "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC { "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC { "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC { "Model Name", }
461 #else
462 #define CPUINFO_PROC { "model name", }
463 #endif
464 const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466 unsigned int i;
467
468 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 int ret;
470 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 if (ret >= 0)
472 return ret;
473 }
474 return -1;
475 }
476
477
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478 static int write_nrcpus(struct feat_fd *ff,
479 struct evlist *evlist __maybe_unused)
480 {
481 long nr;
482 u32 nrc, nra;
483 int ret;
484
485 nrc = cpu__max_present_cpu().cpu;
486
487 nr = sysconf(_SC_NPROCESSORS_ONLN);
488 if (nr < 0)
489 return -1;
490
491 nra = (u32)(nr & UINT_MAX);
492
493 ret = do_write(ff, &nrc, sizeof(nrc));
494 if (ret < 0)
495 return ret;
496
497 return do_write(ff, &nra, sizeof(nra));
498 }
499
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500 static int write_event_desc(struct feat_fd *ff,
501 struct evlist *evlist)
502 {
503 struct evsel *evsel;
504 u32 nre, nri, sz;
505 int ret;
506
507 nre = evlist->core.nr_entries;
508
509 /*
510 * write number of events
511 */
512 ret = do_write(ff, &nre, sizeof(nre));
513 if (ret < 0)
514 return ret;
515
516 /*
517 * size of perf_event_attr struct
518 */
519 sz = (u32)sizeof(evsel->core.attr);
520 ret = do_write(ff, &sz, sizeof(sz));
521 if (ret < 0)
522 return ret;
523
524 evlist__for_each_entry(evlist, evsel) {
525 ret = do_write(ff, &evsel->core.attr, sz);
526 if (ret < 0)
527 return ret;
528 /*
529 * write number of unique id per event
530 * there is one id per instance of an event
531 *
532 * copy into an nri to be independent of the
533 * type of ids,
534 */
535 nri = evsel->core.ids;
536 ret = do_write(ff, &nri, sizeof(nri));
537 if (ret < 0)
538 return ret;
539
540 /*
541 * write event string as passed on cmdline
542 */
543 ret = do_write_string(ff, evsel__name(evsel));
544 if (ret < 0)
545 return ret;
546 /*
547 * write unique ids for this event
548 */
549 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 if (ret < 0)
551 return ret;
552 }
553 return 0;
554 }
555
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556 static int write_cmdline(struct feat_fd *ff,
557 struct evlist *evlist __maybe_unused)
558 {
559 char pbuf[MAXPATHLEN], *buf;
560 int i, ret, n;
561
562 /* actual path to perf binary */
563 buf = perf_exe(pbuf, MAXPATHLEN);
564
565 /* account for binary path */
566 n = perf_env.nr_cmdline + 1;
567
568 ret = do_write(ff, &n, sizeof(n));
569 if (ret < 0)
570 return ret;
571
572 ret = do_write_string(ff, buf);
573 if (ret < 0)
574 return ret;
575
576 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578 if (ret < 0)
579 return ret;
580 }
581 return 0;
582 }
583
584
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)585 static int write_cpu_topology(struct feat_fd *ff,
586 struct evlist *evlist __maybe_unused)
587 {
588 struct cpu_topology *tp;
589 u32 i;
590 int ret, j;
591
592 tp = cpu_topology__new();
593 if (!tp)
594 return -1;
595
596 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597 if (ret < 0)
598 goto done;
599
600 for (i = 0; i < tp->package_cpus_lists; i++) {
601 ret = do_write_string(ff, tp->package_cpus_list[i]);
602 if (ret < 0)
603 goto done;
604 }
605 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606 if (ret < 0)
607 goto done;
608
609 for (i = 0; i < tp->core_cpus_lists; i++) {
610 ret = do_write_string(ff, tp->core_cpus_list[i]);
611 if (ret < 0)
612 break;
613 }
614
615 ret = perf_env__read_cpu_topology_map(&perf_env);
616 if (ret < 0)
617 goto done;
618
619 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620 ret = do_write(ff, &perf_env.cpu[j].core_id,
621 sizeof(perf_env.cpu[j].core_id));
622 if (ret < 0)
623 return ret;
624 ret = do_write(ff, &perf_env.cpu[j].socket_id,
625 sizeof(perf_env.cpu[j].socket_id));
626 if (ret < 0)
627 return ret;
628 }
629
630 if (!tp->die_cpus_lists)
631 goto done;
632
633 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634 if (ret < 0)
635 goto done;
636
637 for (i = 0; i < tp->die_cpus_lists; i++) {
638 ret = do_write_string(ff, tp->die_cpus_list[i]);
639 if (ret < 0)
640 goto done;
641 }
642
643 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644 ret = do_write(ff, &perf_env.cpu[j].die_id,
645 sizeof(perf_env.cpu[j].die_id));
646 if (ret < 0)
647 return ret;
648 }
649
650 done:
651 cpu_topology__delete(tp);
652 return ret;
653 }
654
655
656
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)657 static int write_total_mem(struct feat_fd *ff,
658 struct evlist *evlist __maybe_unused)
659 {
660 char *buf = NULL;
661 FILE *fp;
662 size_t len = 0;
663 int ret = -1, n;
664 uint64_t mem;
665
666 fp = fopen("/proc/meminfo", "r");
667 if (!fp)
668 return -1;
669
670 while (getline(&buf, &len, fp) > 0) {
671 ret = strncmp(buf, "MemTotal:", 9);
672 if (!ret)
673 break;
674 }
675 if (!ret) {
676 n = sscanf(buf, "%*s %"PRIu64, &mem);
677 if (n == 1)
678 ret = do_write(ff, &mem, sizeof(mem));
679 } else
680 ret = -1;
681 free(buf);
682 fclose(fp);
683 return ret;
684 }
685
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)686 static int write_numa_topology(struct feat_fd *ff,
687 struct evlist *evlist __maybe_unused)
688 {
689 struct numa_topology *tp;
690 int ret = -1;
691 u32 i;
692
693 tp = numa_topology__new();
694 if (!tp)
695 return -ENOMEM;
696
697 ret = do_write(ff, &tp->nr, sizeof(u32));
698 if (ret < 0)
699 goto err;
700
701 for (i = 0; i < tp->nr; i++) {
702 struct numa_topology_node *n = &tp->nodes[i];
703
704 ret = do_write(ff, &n->node, sizeof(u32));
705 if (ret < 0)
706 goto err;
707
708 ret = do_write(ff, &n->mem_total, sizeof(u64));
709 if (ret)
710 goto err;
711
712 ret = do_write(ff, &n->mem_free, sizeof(u64));
713 if (ret)
714 goto err;
715
716 ret = do_write_string(ff, n->cpus);
717 if (ret < 0)
718 goto err;
719 }
720
721 ret = 0;
722
723 err:
724 numa_topology__delete(tp);
725 return ret;
726 }
727
728 /*
729 * File format:
730 *
731 * struct pmu_mappings {
732 * u32 pmu_num;
733 * struct pmu_map {
734 * u32 type;
735 * char name[];
736 * }[pmu_num];
737 * };
738 */
739
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)740 static int write_pmu_mappings(struct feat_fd *ff,
741 struct evlist *evlist __maybe_unused)
742 {
743 struct perf_pmu *pmu = NULL;
744 u32 pmu_num = 0;
745 int ret;
746
747 /*
748 * Do a first pass to count number of pmu to avoid lseek so this
749 * works in pipe mode as well.
750 */
751 while ((pmu = perf_pmus__scan(pmu)))
752 pmu_num++;
753
754 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 if (ret < 0)
756 return ret;
757
758 while ((pmu = perf_pmus__scan(pmu))) {
759 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 if (ret < 0)
761 return ret;
762
763 ret = do_write_string(ff, pmu->name);
764 if (ret < 0)
765 return ret;
766 }
767
768 return 0;
769 }
770
771 /*
772 * File format:
773 *
774 * struct group_descs {
775 * u32 nr_groups;
776 * struct group_desc {
777 * char name[];
778 * u32 leader_idx;
779 * u32 nr_members;
780 * }[nr_groups];
781 * };
782 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)783 static int write_group_desc(struct feat_fd *ff,
784 struct evlist *evlist)
785 {
786 u32 nr_groups = evlist__nr_groups(evlist);
787 struct evsel *evsel;
788 int ret;
789
790 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 if (ret < 0)
792 return ret;
793
794 evlist__for_each_entry(evlist, evsel) {
795 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796 const char *name = evsel->group_name ?: "{anon_group}";
797 u32 leader_idx = evsel->core.idx;
798 u32 nr_members = evsel->core.nr_members;
799
800 ret = do_write_string(ff, name);
801 if (ret < 0)
802 return ret;
803
804 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 if (ret < 0)
806 return ret;
807
808 ret = do_write(ff, &nr_members, sizeof(nr_members));
809 if (ret < 0)
810 return ret;
811 }
812 }
813 return 0;
814 }
815
816 /*
817 * Return the CPU id as a raw string.
818 *
819 * Each architecture should provide a more precise id string that
820 * can be use to match the architecture's "mapfile".
821 */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824 return NULL;
825 }
826
827 /* Return zero when the cpuid from the mapfile.csv matches the
828 * cpuid string generated on this platform.
829 * Otherwise return non-zero.
830 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833 regex_t re;
834 regmatch_t pmatch[1];
835 int match;
836
837 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838 /* Warn unable to generate match particular string. */
839 pr_info("Invalid regular expression %s\n", mapcpuid);
840 return 1;
841 }
842
843 match = !regexec(&re, cpuid, 1, pmatch, 0);
844 regfree(&re);
845 if (match) {
846 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847
848 /* Verify the entire string matched. */
849 if (match_len == strlen(cpuid))
850 return 0;
851 }
852 return 1;
853 }
854
855 /*
856 * default get_cpuid(): nothing gets recorded
857 * actual implementation must be in arch/$(SRCARCH)/util/header.c
858 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861 return ENOSYS; /* Not implemented */
862 }
863
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)864 static int write_cpuid(struct feat_fd *ff,
865 struct evlist *evlist __maybe_unused)
866 {
867 char buffer[64];
868 int ret;
869
870 ret = get_cpuid(buffer, sizeof(buffer));
871 if (ret)
872 return -1;
873
874 return do_write_string(ff, buffer);
875 }
876
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878 struct evlist *evlist __maybe_unused)
879 {
880 return 0;
881 }
882
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)883 static int write_auxtrace(struct feat_fd *ff,
884 struct evlist *evlist __maybe_unused)
885 {
886 struct perf_session *session;
887 int err;
888
889 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890 return -1;
891
892 session = container_of(ff->ph, struct perf_session, header);
893
894 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895 if (err < 0)
896 pr_err("Failed to write auxtrace index\n");
897 return err;
898 }
899
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)900 static int write_clockid(struct feat_fd *ff,
901 struct evlist *evlist __maybe_unused)
902 {
903 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904 sizeof(ff->ph->env.clock.clockid_res_ns));
905 }
906
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)907 static int write_clock_data(struct feat_fd *ff,
908 struct evlist *evlist __maybe_unused)
909 {
910 u64 *data64;
911 u32 data32;
912 int ret;
913
914 /* version */
915 data32 = 1;
916
917 ret = do_write(ff, &data32, sizeof(data32));
918 if (ret < 0)
919 return ret;
920
921 /* clockid */
922 data32 = ff->ph->env.clock.clockid;
923
924 ret = do_write(ff, &data32, sizeof(data32));
925 if (ret < 0)
926 return ret;
927
928 /* TOD ref time */
929 data64 = &ff->ph->env.clock.tod_ns;
930
931 ret = do_write(ff, data64, sizeof(*data64));
932 if (ret < 0)
933 return ret;
934
935 /* clockid ref time */
936 data64 = &ff->ph->env.clock.clockid_ns;
937
938 return do_write(ff, data64, sizeof(*data64));
939 }
940
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)941 static int write_hybrid_topology(struct feat_fd *ff,
942 struct evlist *evlist __maybe_unused)
943 {
944 struct hybrid_topology *tp;
945 int ret;
946 u32 i;
947
948 tp = hybrid_topology__new();
949 if (!tp)
950 return -ENOENT;
951
952 ret = do_write(ff, &tp->nr, sizeof(u32));
953 if (ret < 0)
954 goto err;
955
956 for (i = 0; i < tp->nr; i++) {
957 struct hybrid_topology_node *n = &tp->nodes[i];
958
959 ret = do_write_string(ff, n->pmu_name);
960 if (ret < 0)
961 goto err;
962
963 ret = do_write_string(ff, n->cpus);
964 if (ret < 0)
965 goto err;
966 }
967
968 ret = 0;
969
970 err:
971 hybrid_topology__delete(tp);
972 return ret;
973 }
974
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)975 static int write_dir_format(struct feat_fd *ff,
976 struct evlist *evlist __maybe_unused)
977 {
978 struct perf_session *session;
979 struct perf_data *data;
980
981 session = container_of(ff->ph, struct perf_session, header);
982 data = session->data;
983
984 if (WARN_ON(!perf_data__is_dir(data)))
985 return -1;
986
987 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988 }
989
990 /*
991 * Check whether a CPU is online
992 *
993 * Returns:
994 * 1 -> if CPU is online
995 * 0 -> if CPU is offline
996 * -1 -> error case
997 */
is_cpu_online(unsigned int cpu)998 int is_cpu_online(unsigned int cpu)
999 {
1000 char *str;
1001 size_t strlen;
1002 char buf[256];
1003 int status = -1;
1004 struct stat statbuf;
1005
1006 snprintf(buf, sizeof(buf),
1007 "/sys/devices/system/cpu/cpu%d", cpu);
1008 if (stat(buf, &statbuf) != 0)
1009 return 0;
1010
1011 /*
1012 * Check if /sys/devices/system/cpu/cpux/online file
1013 * exists. Some cases cpu0 won't have online file since
1014 * it is not expected to be turned off generally.
1015 * In kernels without CONFIG_HOTPLUG_CPU, this
1016 * file won't exist
1017 */
1018 snprintf(buf, sizeof(buf),
1019 "/sys/devices/system/cpu/cpu%d/online", cpu);
1020 if (stat(buf, &statbuf) != 0)
1021 return 1;
1022
1023 /*
1024 * Read online file using sysfs__read_str.
1025 * If read or open fails, return -1.
1026 * If read succeeds, return value from file
1027 * which gets stored in "str"
1028 */
1029 snprintf(buf, sizeof(buf),
1030 "devices/system/cpu/cpu%d/online", cpu);
1031
1032 if (sysfs__read_str(buf, &str, &strlen) < 0)
1033 return status;
1034
1035 status = atoi(str);
1036
1037 free(str);
1038 return status;
1039 }
1040
1041 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1042 static int write_bpf_prog_info(struct feat_fd *ff,
1043 struct evlist *evlist __maybe_unused)
1044 {
1045 struct perf_env *env = &ff->ph->env;
1046 struct rb_root *root;
1047 struct rb_node *next;
1048 int ret;
1049
1050 down_read(&env->bpf_progs.lock);
1051
1052 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053 sizeof(env->bpf_progs.infos_cnt));
1054 if (ret < 0)
1055 goto out;
1056
1057 root = &env->bpf_progs.infos;
1058 next = rb_first(root);
1059 while (next) {
1060 struct bpf_prog_info_node *node;
1061 size_t len;
1062
1063 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064 next = rb_next(&node->rb_node);
1065 len = sizeof(struct perf_bpil) +
1066 node->info_linear->data_len;
1067
1068 /* before writing to file, translate address to offset */
1069 bpil_addr_to_offs(node->info_linear);
1070 ret = do_write(ff, node->info_linear, len);
1071 /*
1072 * translate back to address even when do_write() fails,
1073 * so that this function never changes the data.
1074 */
1075 bpil_offs_to_addr(node->info_linear);
1076 if (ret < 0)
1077 goto out;
1078 }
1079 out:
1080 up_read(&env->bpf_progs.lock);
1081 return ret;
1082 }
1083
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1084 static int write_bpf_btf(struct feat_fd *ff,
1085 struct evlist *evlist __maybe_unused)
1086 {
1087 struct perf_env *env = &ff->ph->env;
1088 struct rb_root *root;
1089 struct rb_node *next;
1090 int ret;
1091
1092 down_read(&env->bpf_progs.lock);
1093
1094 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095 sizeof(env->bpf_progs.btfs_cnt));
1096
1097 if (ret < 0)
1098 goto out;
1099
1100 root = &env->bpf_progs.btfs;
1101 next = rb_first(root);
1102 while (next) {
1103 struct btf_node *node;
1104
1105 node = rb_entry(next, struct btf_node, rb_node);
1106 next = rb_next(&node->rb_node);
1107 ret = do_write(ff, &node->id,
1108 sizeof(u32) * 2 + node->data_size);
1109 if (ret < 0)
1110 goto out;
1111 }
1112 out:
1113 up_read(&env->bpf_progs.lock);
1114 return ret;
1115 }
1116 #endif // HAVE_LIBBPF_SUPPORT
1117
cpu_cache_level__sort(const void * a,const void * b)1118 static int cpu_cache_level__sort(const void *a, const void *b)
1119 {
1120 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122
1123 return cache_a->level - cache_b->level;
1124 }
1125
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127 {
1128 if (a->level != b->level)
1129 return false;
1130
1131 if (a->line_size != b->line_size)
1132 return false;
1133
1134 if (a->sets != b->sets)
1135 return false;
1136
1137 if (a->ways != b->ways)
1138 return false;
1139
1140 if (strcmp(a->type, b->type))
1141 return false;
1142
1143 if (strcmp(a->size, b->size))
1144 return false;
1145
1146 if (strcmp(a->map, b->map))
1147 return false;
1148
1149 return true;
1150 }
1151
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153 {
1154 char path[PATH_MAX], file[PATH_MAX];
1155 struct stat st;
1156 size_t len;
1157
1158 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160
1161 if (stat(file, &st))
1162 return 1;
1163
1164 scnprintf(file, PATH_MAX, "%s/level", path);
1165 if (sysfs__read_int(file, (int *) &cache->level))
1166 return -1;
1167
1168 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169 if (sysfs__read_int(file, (int *) &cache->line_size))
1170 return -1;
1171
1172 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173 if (sysfs__read_int(file, (int *) &cache->sets))
1174 return -1;
1175
1176 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177 if (sysfs__read_int(file, (int *) &cache->ways))
1178 return -1;
1179
1180 scnprintf(file, PATH_MAX, "%s/type", path);
1181 if (sysfs__read_str(file, &cache->type, &len))
1182 return -1;
1183
1184 cache->type[len] = 0;
1185 cache->type = strim(cache->type);
1186
1187 scnprintf(file, PATH_MAX, "%s/size", path);
1188 if (sysfs__read_str(file, &cache->size, &len)) {
1189 zfree(&cache->type);
1190 return -1;
1191 }
1192
1193 cache->size[len] = 0;
1194 cache->size = strim(cache->size);
1195
1196 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197 if (sysfs__read_str(file, &cache->map, &len)) {
1198 zfree(&cache->size);
1199 zfree(&cache->type);
1200 return -1;
1201 }
1202
1203 cache->map[len] = 0;
1204 cache->map = strim(cache->map);
1205 return 0;
1206 }
1207
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209 {
1210 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211 }
1212
1213 /*
1214 * Build caches levels for a particular CPU from the data in
1215 * /sys/devices/system/cpu/cpu<cpu>/cache/
1216 * The cache level data is stored in caches[] from index at
1217 * *cntp.
1218 */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220 {
1221 u16 level;
1222
1223 for (level = 0; level < MAX_CACHE_LVL; level++) {
1224 struct cpu_cache_level c;
1225 int err;
1226 u32 i;
1227
1228 err = cpu_cache_level__read(&c, cpu, level);
1229 if (err < 0)
1230 return err;
1231
1232 if (err == 1)
1233 break;
1234
1235 for (i = 0; i < *cntp; i++) {
1236 if (cpu_cache_level__cmp(&c, &caches[i]))
1237 break;
1238 }
1239
1240 if (i == *cntp) {
1241 caches[*cntp] = c;
1242 *cntp = *cntp + 1;
1243 } else
1244 cpu_cache_level__free(&c);
1245 }
1246
1247 return 0;
1248 }
1249
build_caches(struct cpu_cache_level caches[],u32 * cntp)1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251 {
1252 u32 nr, cpu, cnt = 0;
1253
1254 nr = cpu__max_cpu().cpu;
1255
1256 for (cpu = 0; cpu < nr; cpu++) {
1257 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258
1259 if (ret)
1260 return ret;
1261 }
1262 *cntp = cnt;
1263 return 0;
1264 }
1265
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1266 static int write_cache(struct feat_fd *ff,
1267 struct evlist *evlist __maybe_unused)
1268 {
1269 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270 struct cpu_cache_level caches[max_caches];
1271 u32 cnt = 0, i, version = 1;
1272 int ret;
1273
1274 ret = build_caches(caches, &cnt);
1275 if (ret)
1276 goto out;
1277
1278 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279
1280 ret = do_write(ff, &version, sizeof(u32));
1281 if (ret < 0)
1282 goto out;
1283
1284 ret = do_write(ff, &cnt, sizeof(u32));
1285 if (ret < 0)
1286 goto out;
1287
1288 for (i = 0; i < cnt; i++) {
1289 struct cpu_cache_level *c = &caches[i];
1290
1291 #define _W(v) \
1292 ret = do_write(ff, &c->v, sizeof(u32)); \
1293 if (ret < 0) \
1294 goto out;
1295
1296 _W(level)
1297 _W(line_size)
1298 _W(sets)
1299 _W(ways)
1300 #undef _W
1301
1302 #define _W(v) \
1303 ret = do_write_string(ff, (const char *) c->v); \
1304 if (ret < 0) \
1305 goto out;
1306
1307 _W(type)
1308 _W(size)
1309 _W(map)
1310 #undef _W
1311 }
1312
1313 out:
1314 for (i = 0; i < cnt; i++)
1315 cpu_cache_level__free(&caches[i]);
1316 return ret;
1317 }
1318
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1319 static int write_stat(struct feat_fd *ff __maybe_unused,
1320 struct evlist *evlist __maybe_unused)
1321 {
1322 return 0;
1323 }
1324
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1325 static int write_sample_time(struct feat_fd *ff,
1326 struct evlist *evlist)
1327 {
1328 int ret;
1329
1330 ret = do_write(ff, &evlist->first_sample_time,
1331 sizeof(evlist->first_sample_time));
1332 if (ret < 0)
1333 return ret;
1334
1335 return do_write(ff, &evlist->last_sample_time,
1336 sizeof(evlist->last_sample_time));
1337 }
1338
1339
memory_node__read(struct memory_node * n,unsigned long idx)1340 static int memory_node__read(struct memory_node *n, unsigned long idx)
1341 {
1342 unsigned int phys, size = 0;
1343 char path[PATH_MAX];
1344 struct dirent *ent;
1345 DIR *dir;
1346
1347 #define for_each_memory(mem, dir) \
1348 while ((ent = readdir(dir))) \
1349 if (strcmp(ent->d_name, ".") && \
1350 strcmp(ent->d_name, "..") && \
1351 sscanf(ent->d_name, "memory%u", &mem) == 1)
1352
1353 scnprintf(path, PATH_MAX,
1354 "%s/devices/system/node/node%lu",
1355 sysfs__mountpoint(), idx);
1356
1357 dir = opendir(path);
1358 if (!dir) {
1359 pr_warning("failed: can't open memory sysfs data\n");
1360 return -1;
1361 }
1362
1363 for_each_memory(phys, dir) {
1364 size = max(phys, size);
1365 }
1366
1367 size++;
1368
1369 n->set = bitmap_zalloc(size);
1370 if (!n->set) {
1371 closedir(dir);
1372 return -ENOMEM;
1373 }
1374
1375 n->node = idx;
1376 n->size = size;
1377
1378 rewinddir(dir);
1379
1380 for_each_memory(phys, dir) {
1381 __set_bit(phys, n->set);
1382 }
1383
1384 closedir(dir);
1385 return 0;
1386 }
1387
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389 {
1390 for (u64 i = 0; i < cnt; i++)
1391 bitmap_free(nodesp[i].set);
1392
1393 free(nodesp);
1394 }
1395
memory_node__sort(const void * a,const void * b)1396 static int memory_node__sort(const void *a, const void *b)
1397 {
1398 const struct memory_node *na = a;
1399 const struct memory_node *nb = b;
1400
1401 return na->node - nb->node;
1402 }
1403
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405 {
1406 char path[PATH_MAX];
1407 struct dirent *ent;
1408 DIR *dir;
1409 int ret = 0;
1410 size_t cnt = 0, size = 0;
1411 struct memory_node *nodes = NULL;
1412
1413 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414 sysfs__mountpoint());
1415
1416 dir = opendir(path);
1417 if (!dir) {
1418 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419 __func__, path);
1420 return -1;
1421 }
1422
1423 while (!ret && (ent = readdir(dir))) {
1424 unsigned int idx;
1425 int r;
1426
1427 if (!strcmp(ent->d_name, ".") ||
1428 !strcmp(ent->d_name, ".."))
1429 continue;
1430
1431 r = sscanf(ent->d_name, "node%u", &idx);
1432 if (r != 1)
1433 continue;
1434
1435 if (cnt >= size) {
1436 struct memory_node *new_nodes =
1437 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438
1439 if (!new_nodes) {
1440 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441 ret = -ENOMEM;
1442 goto out;
1443 }
1444 nodes = new_nodes;
1445 size += 4;
1446 }
1447 ret = memory_node__read(&nodes[cnt++], idx);
1448 }
1449 out:
1450 closedir(dir);
1451 if (!ret) {
1452 *cntp = cnt;
1453 *nodesp = nodes;
1454 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1455 } else
1456 memory_node__delete_nodes(nodes, cnt);
1457
1458 return ret;
1459 }
1460
1461 /*
1462 * The MEM_TOPOLOGY holds physical memory map for every
1463 * node in system. The format of data is as follows:
1464 *
1465 * 0 - version | for future changes
1466 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1467 * 16 - count | number of nodes
1468 *
1469 * For each node we store map of physical indexes for
1470 * each node:
1471 *
1472 * 32 - node id | node index
1473 * 40 - size | size of bitmap
1474 * 48 - bitmap | bitmap of memory indexes that belongs to node
1475 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1476 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1477 struct evlist *evlist __maybe_unused)
1478 {
1479 struct memory_node *nodes = NULL;
1480 u64 bsize, version = 1, i, nr = 0;
1481 int ret;
1482
1483 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1484 (unsigned long long *) &bsize);
1485 if (ret)
1486 return ret;
1487
1488 ret = build_mem_topology(&nodes, &nr);
1489 if (ret)
1490 return ret;
1491
1492 ret = do_write(ff, &version, sizeof(version));
1493 if (ret < 0)
1494 goto out;
1495
1496 ret = do_write(ff, &bsize, sizeof(bsize));
1497 if (ret < 0)
1498 goto out;
1499
1500 ret = do_write(ff, &nr, sizeof(nr));
1501 if (ret < 0)
1502 goto out;
1503
1504 for (i = 0; i < nr; i++) {
1505 struct memory_node *n = &nodes[i];
1506
1507 #define _W(v) \
1508 ret = do_write(ff, &n->v, sizeof(n->v)); \
1509 if (ret < 0) \
1510 goto out;
1511
1512 _W(node)
1513 _W(size)
1514
1515 #undef _W
1516
1517 ret = do_write_bitmap(ff, n->set, n->size);
1518 if (ret < 0)
1519 goto out;
1520 }
1521
1522 out:
1523 memory_node__delete_nodes(nodes, nr);
1524 return ret;
1525 }
1526
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1527 static int write_compressed(struct feat_fd *ff __maybe_unused,
1528 struct evlist *evlist __maybe_unused)
1529 {
1530 int ret;
1531
1532 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1533 if (ret)
1534 return ret;
1535
1536 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1537 if (ret)
1538 return ret;
1539
1540 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1541 if (ret)
1542 return ret;
1543
1544 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1545 if (ret)
1546 return ret;
1547
1548 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1549 }
1550
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1551 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1552 bool write_pmu)
1553 {
1554 struct perf_pmu_caps *caps = NULL;
1555 int ret;
1556
1557 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1558 if (ret < 0)
1559 return ret;
1560
1561 list_for_each_entry(caps, &pmu->caps, list) {
1562 ret = do_write_string(ff, caps->name);
1563 if (ret < 0)
1564 return ret;
1565
1566 ret = do_write_string(ff, caps->value);
1567 if (ret < 0)
1568 return ret;
1569 }
1570
1571 if (write_pmu) {
1572 ret = do_write_string(ff, pmu->name);
1573 if (ret < 0)
1574 return ret;
1575 }
1576
1577 return ret;
1578 }
1579
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1580 static int write_cpu_pmu_caps(struct feat_fd *ff,
1581 struct evlist *evlist __maybe_unused)
1582 {
1583 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1584 int ret;
1585
1586 if (!cpu_pmu)
1587 return -ENOENT;
1588
1589 ret = perf_pmu__caps_parse(cpu_pmu);
1590 if (ret < 0)
1591 return ret;
1592
1593 return __write_pmu_caps(ff, cpu_pmu, false);
1594 }
1595
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1596 static int write_pmu_caps(struct feat_fd *ff,
1597 struct evlist *evlist __maybe_unused)
1598 {
1599 struct perf_pmu *pmu = NULL;
1600 int nr_pmu = 0;
1601 int ret;
1602
1603 while ((pmu = perf_pmus__scan(pmu))) {
1604 if (!strcmp(pmu->name, "cpu")) {
1605 /*
1606 * The "cpu" PMU is special and covered by
1607 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1608 * counted/written here for ARM, s390 and Intel hybrid.
1609 */
1610 continue;
1611 }
1612 if (perf_pmu__caps_parse(pmu) <= 0)
1613 continue;
1614 nr_pmu++;
1615 }
1616
1617 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1618 if (ret < 0)
1619 return ret;
1620
1621 if (!nr_pmu)
1622 return 0;
1623
1624 /*
1625 * Note older perf tools assume core PMUs come first, this is a property
1626 * of perf_pmus__scan.
1627 */
1628 pmu = NULL;
1629 while ((pmu = perf_pmus__scan(pmu))) {
1630 if (!strcmp(pmu->name, "cpu")) {
1631 /* Skip as above. */
1632 continue;
1633 }
1634 if (perf_pmu__caps_parse(pmu) <= 0)
1635 continue;
1636 ret = __write_pmu_caps(ff, pmu, true);
1637 if (ret < 0)
1638 return ret;
1639 }
1640 return 0;
1641 }
1642
print_hostname(struct feat_fd * ff,FILE * fp)1643 static void print_hostname(struct feat_fd *ff, FILE *fp)
1644 {
1645 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1646 }
1647
print_osrelease(struct feat_fd * ff,FILE * fp)1648 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1649 {
1650 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1651 }
1652
print_arch(struct feat_fd * ff,FILE * fp)1653 static void print_arch(struct feat_fd *ff, FILE *fp)
1654 {
1655 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1656 }
1657
print_cpudesc(struct feat_fd * ff,FILE * fp)1658 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1659 {
1660 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1661 }
1662
print_nrcpus(struct feat_fd * ff,FILE * fp)1663 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1664 {
1665 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1666 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1667 }
1668
print_version(struct feat_fd * ff,FILE * fp)1669 static void print_version(struct feat_fd *ff, FILE *fp)
1670 {
1671 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1672 }
1673
print_cmdline(struct feat_fd * ff,FILE * fp)1674 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1675 {
1676 int nr, i;
1677
1678 nr = ff->ph->env.nr_cmdline;
1679
1680 fprintf(fp, "# cmdline : ");
1681
1682 for (i = 0; i < nr; i++) {
1683 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1684 if (!argv_i) {
1685 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1686 } else {
1687 char *mem = argv_i;
1688 do {
1689 char *quote = strchr(argv_i, '\'');
1690 if (!quote)
1691 break;
1692 *quote++ = '\0';
1693 fprintf(fp, "%s\\\'", argv_i);
1694 argv_i = quote;
1695 } while (1);
1696 fprintf(fp, "%s ", argv_i);
1697 free(mem);
1698 }
1699 }
1700 fputc('\n', fp);
1701 }
1702
print_cpu_topology(struct feat_fd * ff,FILE * fp)1703 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1704 {
1705 struct perf_header *ph = ff->ph;
1706 int cpu_nr = ph->env.nr_cpus_avail;
1707 int nr, i;
1708 char *str;
1709
1710 nr = ph->env.nr_sibling_cores;
1711 str = ph->env.sibling_cores;
1712
1713 for (i = 0; i < nr; i++) {
1714 fprintf(fp, "# sibling sockets : %s\n", str);
1715 str += strlen(str) + 1;
1716 }
1717
1718 if (ph->env.nr_sibling_dies) {
1719 nr = ph->env.nr_sibling_dies;
1720 str = ph->env.sibling_dies;
1721
1722 for (i = 0; i < nr; i++) {
1723 fprintf(fp, "# sibling dies : %s\n", str);
1724 str += strlen(str) + 1;
1725 }
1726 }
1727
1728 nr = ph->env.nr_sibling_threads;
1729 str = ph->env.sibling_threads;
1730
1731 for (i = 0; i < nr; i++) {
1732 fprintf(fp, "# sibling threads : %s\n", str);
1733 str += strlen(str) + 1;
1734 }
1735
1736 if (ph->env.nr_sibling_dies) {
1737 if (ph->env.cpu != NULL) {
1738 for (i = 0; i < cpu_nr; i++)
1739 fprintf(fp, "# CPU %d: Core ID %d, "
1740 "Die ID %d, Socket ID %d\n",
1741 i, ph->env.cpu[i].core_id,
1742 ph->env.cpu[i].die_id,
1743 ph->env.cpu[i].socket_id);
1744 } else
1745 fprintf(fp, "# Core ID, Die ID and Socket ID "
1746 "information is not available\n");
1747 } else {
1748 if (ph->env.cpu != NULL) {
1749 for (i = 0; i < cpu_nr; i++)
1750 fprintf(fp, "# CPU %d: Core ID %d, "
1751 "Socket ID %d\n",
1752 i, ph->env.cpu[i].core_id,
1753 ph->env.cpu[i].socket_id);
1754 } else
1755 fprintf(fp, "# Core ID and Socket ID "
1756 "information is not available\n");
1757 }
1758 }
1759
print_clockid(struct feat_fd * ff,FILE * fp)1760 static void print_clockid(struct feat_fd *ff, FILE *fp)
1761 {
1762 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1763 ff->ph->env.clock.clockid_res_ns * 1000);
1764 }
1765
print_clock_data(struct feat_fd * ff,FILE * fp)1766 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1767 {
1768 struct timespec clockid_ns;
1769 char tstr[64], date[64];
1770 struct timeval tod_ns;
1771 clockid_t clockid;
1772 struct tm ltime;
1773 u64 ref;
1774
1775 if (!ff->ph->env.clock.enabled) {
1776 fprintf(fp, "# reference time disabled\n");
1777 return;
1778 }
1779
1780 /* Compute TOD time. */
1781 ref = ff->ph->env.clock.tod_ns;
1782 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1783 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1784 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1785
1786 /* Compute clockid time. */
1787 ref = ff->ph->env.clock.clockid_ns;
1788 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1789 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1790 clockid_ns.tv_nsec = ref;
1791
1792 clockid = ff->ph->env.clock.clockid;
1793
1794 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1795 snprintf(tstr, sizeof(tstr), "<error>");
1796 else {
1797 strftime(date, sizeof(date), "%F %T", <ime);
1798 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1799 date, (int) tod_ns.tv_usec);
1800 }
1801
1802 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1803 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1804 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1805 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1806 clockid_name(clockid));
1807 }
1808
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1809 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1810 {
1811 int i;
1812 struct hybrid_node *n;
1813
1814 fprintf(fp, "# hybrid cpu system:\n");
1815 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1816 n = &ff->ph->env.hybrid_nodes[i];
1817 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1818 }
1819 }
1820
print_dir_format(struct feat_fd * ff,FILE * fp)1821 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1822 {
1823 struct perf_session *session;
1824 struct perf_data *data;
1825
1826 session = container_of(ff->ph, struct perf_session, header);
1827 data = session->data;
1828
1829 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1830 }
1831
1832 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1833 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1834 {
1835 struct perf_env *env = &ff->ph->env;
1836 struct rb_root *root;
1837 struct rb_node *next;
1838
1839 down_read(&env->bpf_progs.lock);
1840
1841 root = &env->bpf_progs.infos;
1842 next = rb_first(root);
1843
1844 while (next) {
1845 struct bpf_prog_info_node *node;
1846
1847 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1848 next = rb_next(&node->rb_node);
1849
1850 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1851 env, fp);
1852 }
1853
1854 up_read(&env->bpf_progs.lock);
1855 }
1856
print_bpf_btf(struct feat_fd * ff,FILE * fp)1857 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1858 {
1859 struct perf_env *env = &ff->ph->env;
1860 struct rb_root *root;
1861 struct rb_node *next;
1862
1863 down_read(&env->bpf_progs.lock);
1864
1865 root = &env->bpf_progs.btfs;
1866 next = rb_first(root);
1867
1868 while (next) {
1869 struct btf_node *node;
1870
1871 node = rb_entry(next, struct btf_node, rb_node);
1872 next = rb_next(&node->rb_node);
1873 fprintf(fp, "# btf info of id %u\n", node->id);
1874 }
1875
1876 up_read(&env->bpf_progs.lock);
1877 }
1878 #endif // HAVE_LIBBPF_SUPPORT
1879
free_event_desc(struct evsel * events)1880 static void free_event_desc(struct evsel *events)
1881 {
1882 struct evsel *evsel;
1883
1884 if (!events)
1885 return;
1886
1887 for (evsel = events; evsel->core.attr.size; evsel++) {
1888 zfree(&evsel->name);
1889 zfree(&evsel->core.id);
1890 }
1891
1892 free(events);
1893 }
1894
perf_attr_check(struct perf_event_attr * attr)1895 static bool perf_attr_check(struct perf_event_attr *attr)
1896 {
1897 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1898 pr_warning("Reserved bits are set unexpectedly. "
1899 "Please update perf tool.\n");
1900 return false;
1901 }
1902
1903 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1904 pr_warning("Unknown sample type (0x%llx) is detected. "
1905 "Please update perf tool.\n",
1906 attr->sample_type);
1907 return false;
1908 }
1909
1910 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1911 pr_warning("Unknown read format (0x%llx) is detected. "
1912 "Please update perf tool.\n",
1913 attr->read_format);
1914 return false;
1915 }
1916
1917 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1918 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1919 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1920 "Please update perf tool.\n",
1921 attr->branch_sample_type);
1922
1923 return false;
1924 }
1925
1926 return true;
1927 }
1928
read_event_desc(struct feat_fd * ff)1929 static struct evsel *read_event_desc(struct feat_fd *ff)
1930 {
1931 struct evsel *evsel, *events = NULL;
1932 u64 *id;
1933 void *buf = NULL;
1934 u32 nre, sz, nr, i, j;
1935 size_t msz;
1936
1937 /* number of events */
1938 if (do_read_u32(ff, &nre))
1939 goto error;
1940
1941 if (do_read_u32(ff, &sz))
1942 goto error;
1943
1944 /* buffer to hold on file attr struct */
1945 buf = malloc(sz);
1946 if (!buf)
1947 goto error;
1948
1949 /* the last event terminates with evsel->core.attr.size == 0: */
1950 events = calloc(nre + 1, sizeof(*events));
1951 if (!events)
1952 goto error;
1953
1954 msz = sizeof(evsel->core.attr);
1955 if (sz < msz)
1956 msz = sz;
1957
1958 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1959 evsel->core.idx = i;
1960
1961 /*
1962 * must read entire on-file attr struct to
1963 * sync up with layout.
1964 */
1965 if (__do_read(ff, buf, sz))
1966 goto error;
1967
1968 if (ff->ph->needs_swap)
1969 perf_event__attr_swap(buf);
1970
1971 memcpy(&evsel->core.attr, buf, msz);
1972
1973 if (!perf_attr_check(&evsel->core.attr))
1974 goto error;
1975
1976 if (do_read_u32(ff, &nr))
1977 goto error;
1978
1979 if (ff->ph->needs_swap)
1980 evsel->needs_swap = true;
1981
1982 evsel->name = do_read_string(ff);
1983 if (!evsel->name)
1984 goto error;
1985
1986 if (!nr)
1987 continue;
1988
1989 id = calloc(nr, sizeof(*id));
1990 if (!id)
1991 goto error;
1992 evsel->core.ids = nr;
1993 evsel->core.id = id;
1994
1995 for (j = 0 ; j < nr; j++) {
1996 if (do_read_u64(ff, id))
1997 goto error;
1998 id++;
1999 }
2000 }
2001 out:
2002 free(buf);
2003 return events;
2004 error:
2005 free_event_desc(events);
2006 events = NULL;
2007 goto out;
2008 }
2009
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)2010 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2011 void *priv __maybe_unused)
2012 {
2013 return fprintf(fp, ", %s = %s", name, val);
2014 }
2015
print_event_desc(struct feat_fd * ff,FILE * fp)2016 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2017 {
2018 struct evsel *evsel, *events;
2019 u32 j;
2020 u64 *id;
2021
2022 if (ff->events)
2023 events = ff->events;
2024 else
2025 events = read_event_desc(ff);
2026
2027 if (!events) {
2028 fprintf(fp, "# event desc: not available or unable to read\n");
2029 return;
2030 }
2031
2032 for (evsel = events; evsel->core.attr.size; evsel++) {
2033 fprintf(fp, "# event : name = %s, ", evsel->name);
2034
2035 if (evsel->core.ids) {
2036 fprintf(fp, ", id = {");
2037 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2038 if (j)
2039 fputc(',', fp);
2040 fprintf(fp, " %"PRIu64, *id);
2041 }
2042 fprintf(fp, " }");
2043 }
2044
2045 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2046
2047 fputc('\n', fp);
2048 }
2049
2050 free_event_desc(events);
2051 ff->events = NULL;
2052 }
2053
print_total_mem(struct feat_fd * ff,FILE * fp)2054 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2055 {
2056 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2057 }
2058
print_numa_topology(struct feat_fd * ff,FILE * fp)2059 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2060 {
2061 int i;
2062 struct numa_node *n;
2063
2064 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2065 n = &ff->ph->env.numa_nodes[i];
2066
2067 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2068 " free = %"PRIu64" kB\n",
2069 n->node, n->mem_total, n->mem_free);
2070
2071 fprintf(fp, "# node%u cpu list : ", n->node);
2072 cpu_map__fprintf(n->map, fp);
2073 }
2074 }
2075
print_cpuid(struct feat_fd * ff,FILE * fp)2076 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2077 {
2078 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2079 }
2080
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2081 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2082 {
2083 fprintf(fp, "# contains samples with branch stack\n");
2084 }
2085
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2086 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2087 {
2088 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2089 }
2090
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2091 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2092 {
2093 fprintf(fp, "# contains stat data\n");
2094 }
2095
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2096 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2097 {
2098 int i;
2099
2100 fprintf(fp, "# CPU cache info:\n");
2101 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2102 fprintf(fp, "# ");
2103 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2104 }
2105 }
2106
print_compressed(struct feat_fd * ff,FILE * fp)2107 static void print_compressed(struct feat_fd *ff, FILE *fp)
2108 {
2109 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2110 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2111 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2112 }
2113
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2114 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2115 {
2116 const char *delimiter = "";
2117 int i;
2118
2119 if (!nr_caps) {
2120 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2121 return;
2122 }
2123
2124 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2125 for (i = 0; i < nr_caps; i++) {
2126 fprintf(fp, "%s%s", delimiter, caps[i]);
2127 delimiter = ", ";
2128 }
2129
2130 fprintf(fp, "\n");
2131 }
2132
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2133 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2134 {
2135 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2136 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2137 }
2138
print_pmu_caps(struct feat_fd * ff,FILE * fp)2139 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2140 {
2141 struct pmu_caps *pmu_caps;
2142
2143 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2144 pmu_caps = &ff->ph->env.pmu_caps[i];
2145 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2146 pmu_caps->pmu_name);
2147 }
2148 }
2149
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2150 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2151 {
2152 const char *delimiter = "# pmu mappings: ";
2153 char *str, *tmp;
2154 u32 pmu_num;
2155 u32 type;
2156
2157 pmu_num = ff->ph->env.nr_pmu_mappings;
2158 if (!pmu_num) {
2159 fprintf(fp, "# pmu mappings: not available\n");
2160 return;
2161 }
2162
2163 str = ff->ph->env.pmu_mappings;
2164
2165 while (pmu_num) {
2166 type = strtoul(str, &tmp, 0);
2167 if (*tmp != ':')
2168 goto error;
2169
2170 str = tmp + 1;
2171 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2172
2173 delimiter = ", ";
2174 str += strlen(str) + 1;
2175 pmu_num--;
2176 }
2177
2178 fprintf(fp, "\n");
2179
2180 if (!pmu_num)
2181 return;
2182 error:
2183 fprintf(fp, "# pmu mappings: unable to read\n");
2184 }
2185
print_group_desc(struct feat_fd * ff,FILE * fp)2186 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2187 {
2188 struct perf_session *session;
2189 struct evsel *evsel;
2190 u32 nr = 0;
2191
2192 session = container_of(ff->ph, struct perf_session, header);
2193
2194 evlist__for_each_entry(session->evlist, evsel) {
2195 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2196 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2197
2198 nr = evsel->core.nr_members - 1;
2199 } else if (nr) {
2200 fprintf(fp, ",%s", evsel__name(evsel));
2201
2202 if (--nr == 0)
2203 fprintf(fp, "}\n");
2204 }
2205 }
2206 }
2207
print_sample_time(struct feat_fd * ff,FILE * fp)2208 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2209 {
2210 struct perf_session *session;
2211 char time_buf[32];
2212 double d;
2213
2214 session = container_of(ff->ph, struct perf_session, header);
2215
2216 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2217 time_buf, sizeof(time_buf));
2218 fprintf(fp, "# time of first sample : %s\n", time_buf);
2219
2220 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2221 time_buf, sizeof(time_buf));
2222 fprintf(fp, "# time of last sample : %s\n", time_buf);
2223
2224 d = (double)(session->evlist->last_sample_time -
2225 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2226
2227 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2228 }
2229
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2230 static void memory_node__fprintf(struct memory_node *n,
2231 unsigned long long bsize, FILE *fp)
2232 {
2233 char buf_map[100], buf_size[50];
2234 unsigned long long size;
2235
2236 size = bsize * bitmap_weight(n->set, n->size);
2237 unit_number__scnprintf(buf_size, 50, size);
2238
2239 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2240 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2241 }
2242
print_mem_topology(struct feat_fd * ff,FILE * fp)2243 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2244 {
2245 struct memory_node *nodes;
2246 int i, nr;
2247
2248 nodes = ff->ph->env.memory_nodes;
2249 nr = ff->ph->env.nr_memory_nodes;
2250
2251 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2252 nr, ff->ph->env.memory_bsize);
2253
2254 for (i = 0; i < nr; i++) {
2255 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2256 }
2257 }
2258
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2259 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2260 char *filename,
2261 struct perf_session *session)
2262 {
2263 int err = -1;
2264 struct machine *machine;
2265 u16 cpumode;
2266 struct dso *dso;
2267 enum dso_space_type dso_space;
2268
2269 machine = perf_session__findnew_machine(session, bev->pid);
2270 if (!machine)
2271 goto out;
2272
2273 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2274
2275 switch (cpumode) {
2276 case PERF_RECORD_MISC_KERNEL:
2277 dso_space = DSO_SPACE__KERNEL;
2278 break;
2279 case PERF_RECORD_MISC_GUEST_KERNEL:
2280 dso_space = DSO_SPACE__KERNEL_GUEST;
2281 break;
2282 case PERF_RECORD_MISC_USER:
2283 case PERF_RECORD_MISC_GUEST_USER:
2284 dso_space = DSO_SPACE__USER;
2285 break;
2286 default:
2287 goto out;
2288 }
2289
2290 dso = machine__findnew_dso(machine, filename);
2291 if (dso != NULL) {
2292 char sbuild_id[SBUILD_ID_SIZE];
2293 struct build_id bid;
2294 size_t size = BUILD_ID_SIZE;
2295
2296 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2297 size = bev->size;
2298
2299 build_id__init(&bid, bev->data, size);
2300 dso__set_build_id(dso, &bid);
2301 dso->header_build_id = 1;
2302
2303 if (dso_space != DSO_SPACE__USER) {
2304 struct kmod_path m = { .name = NULL, };
2305
2306 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2307 dso__set_module_info(dso, &m, machine);
2308
2309 dso->kernel = dso_space;
2310 free(m.name);
2311 }
2312
2313 build_id__sprintf(&dso->bid, sbuild_id);
2314 pr_debug("build id event received for %s: %s [%zu]\n",
2315 dso->long_name, sbuild_id, size);
2316 dso__put(dso);
2317 }
2318
2319 err = 0;
2320 out:
2321 return err;
2322 }
2323
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2324 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2325 int input, u64 offset, u64 size)
2326 {
2327 struct perf_session *session = container_of(header, struct perf_session, header);
2328 struct {
2329 struct perf_event_header header;
2330 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2331 char filename[0];
2332 } old_bev;
2333 struct perf_record_header_build_id bev;
2334 char filename[PATH_MAX];
2335 u64 limit = offset + size;
2336
2337 while (offset < limit) {
2338 ssize_t len;
2339
2340 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2341 return -1;
2342
2343 if (header->needs_swap)
2344 perf_event_header__bswap(&old_bev.header);
2345
2346 len = old_bev.header.size - sizeof(old_bev);
2347 if (readn(input, filename, len) != len)
2348 return -1;
2349
2350 bev.header = old_bev.header;
2351
2352 /*
2353 * As the pid is the missing value, we need to fill
2354 * it properly. The header.misc value give us nice hint.
2355 */
2356 bev.pid = HOST_KERNEL_ID;
2357 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2358 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2359 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2360
2361 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2362 __event_process_build_id(&bev, filename, session);
2363
2364 offset += bev.header.size;
2365 }
2366
2367 return 0;
2368 }
2369
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2370 static int perf_header__read_build_ids(struct perf_header *header,
2371 int input, u64 offset, u64 size)
2372 {
2373 struct perf_session *session = container_of(header, struct perf_session, header);
2374 struct perf_record_header_build_id bev;
2375 char filename[PATH_MAX];
2376 u64 limit = offset + size, orig_offset = offset;
2377 int err = -1;
2378
2379 while (offset < limit) {
2380 ssize_t len;
2381
2382 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2383 goto out;
2384
2385 if (header->needs_swap)
2386 perf_event_header__bswap(&bev.header);
2387
2388 len = bev.header.size - sizeof(bev);
2389 if (readn(input, filename, len) != len)
2390 goto out;
2391 /*
2392 * The a1645ce1 changeset:
2393 *
2394 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2395 *
2396 * Added a field to struct perf_record_header_build_id that broke the file
2397 * format.
2398 *
2399 * Since the kernel build-id is the first entry, process the
2400 * table using the old format if the well known
2401 * '[kernel.kallsyms]' string for the kernel build-id has the
2402 * first 4 characters chopped off (where the pid_t sits).
2403 */
2404 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2405 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2406 return -1;
2407 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2408 }
2409
2410 __event_process_build_id(&bev, filename, session);
2411
2412 offset += bev.header.size;
2413 }
2414 err = 0;
2415 out:
2416 return err;
2417 }
2418
2419 /* Macro for features that simply need to read and store a string. */
2420 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2421 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2422 {\
2423 free(ff->ph->env.__feat_env); \
2424 ff->ph->env.__feat_env = do_read_string(ff); \
2425 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2426 }
2427
2428 FEAT_PROCESS_STR_FUN(hostname, hostname);
2429 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2430 FEAT_PROCESS_STR_FUN(version, version);
2431 FEAT_PROCESS_STR_FUN(arch, arch);
2432 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2433 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2434
2435 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2436 static int process_tracing_data(struct feat_fd *ff, void *data)
2437 {
2438 ssize_t ret = trace_report(ff->fd, data, false);
2439
2440 return ret < 0 ? -1 : 0;
2441 }
2442 #endif
2443
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2444 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2445 {
2446 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2447 pr_debug("Failed to read buildids, continuing...\n");
2448 return 0;
2449 }
2450
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2451 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2452 {
2453 int ret;
2454 u32 nr_cpus_avail, nr_cpus_online;
2455
2456 ret = do_read_u32(ff, &nr_cpus_avail);
2457 if (ret)
2458 return ret;
2459
2460 ret = do_read_u32(ff, &nr_cpus_online);
2461 if (ret)
2462 return ret;
2463 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2464 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2465 return 0;
2466 }
2467
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2468 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2469 {
2470 u64 total_mem;
2471 int ret;
2472
2473 ret = do_read_u64(ff, &total_mem);
2474 if (ret)
2475 return -1;
2476 ff->ph->env.total_mem = (unsigned long long)total_mem;
2477 return 0;
2478 }
2479
evlist__find_by_index(struct evlist * evlist,int idx)2480 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2481 {
2482 struct evsel *evsel;
2483
2484 evlist__for_each_entry(evlist, evsel) {
2485 if (evsel->core.idx == idx)
2486 return evsel;
2487 }
2488
2489 return NULL;
2490 }
2491
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2492 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2493 {
2494 struct evsel *evsel;
2495
2496 if (!event->name)
2497 return;
2498
2499 evsel = evlist__find_by_index(evlist, event->core.idx);
2500 if (!evsel)
2501 return;
2502
2503 if (evsel->name)
2504 return;
2505
2506 evsel->name = strdup(event->name);
2507 }
2508
2509 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2510 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2511 {
2512 struct perf_session *session;
2513 struct evsel *evsel, *events = read_event_desc(ff);
2514
2515 if (!events)
2516 return 0;
2517
2518 session = container_of(ff->ph, struct perf_session, header);
2519
2520 if (session->data->is_pipe) {
2521 /* Save events for reading later by print_event_desc,
2522 * since they can't be read again in pipe mode. */
2523 ff->events = events;
2524 }
2525
2526 for (evsel = events; evsel->core.attr.size; evsel++)
2527 evlist__set_event_name(session->evlist, evsel);
2528
2529 if (!session->data->is_pipe)
2530 free_event_desc(events);
2531
2532 return 0;
2533 }
2534
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2535 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2536 {
2537 char *str, *cmdline = NULL, **argv = NULL;
2538 u32 nr, i, len = 0;
2539
2540 if (do_read_u32(ff, &nr))
2541 return -1;
2542
2543 ff->ph->env.nr_cmdline = nr;
2544
2545 cmdline = zalloc(ff->size + nr + 1);
2546 if (!cmdline)
2547 return -1;
2548
2549 argv = zalloc(sizeof(char *) * (nr + 1));
2550 if (!argv)
2551 goto error;
2552
2553 for (i = 0; i < nr; i++) {
2554 str = do_read_string(ff);
2555 if (!str)
2556 goto error;
2557
2558 argv[i] = cmdline + len;
2559 memcpy(argv[i], str, strlen(str) + 1);
2560 len += strlen(str) + 1;
2561 free(str);
2562 }
2563 ff->ph->env.cmdline = cmdline;
2564 ff->ph->env.cmdline_argv = (const char **) argv;
2565 return 0;
2566
2567 error:
2568 free(argv);
2569 free(cmdline);
2570 return -1;
2571 }
2572
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2573 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2574 {
2575 u32 nr, i;
2576 char *str;
2577 struct strbuf sb;
2578 int cpu_nr = ff->ph->env.nr_cpus_avail;
2579 u64 size = 0;
2580 struct perf_header *ph = ff->ph;
2581 bool do_core_id_test = true;
2582
2583 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2584 if (!ph->env.cpu)
2585 return -1;
2586
2587 if (do_read_u32(ff, &nr))
2588 goto free_cpu;
2589
2590 ph->env.nr_sibling_cores = nr;
2591 size += sizeof(u32);
2592 if (strbuf_init(&sb, 128) < 0)
2593 goto free_cpu;
2594
2595 for (i = 0; i < nr; i++) {
2596 str = do_read_string(ff);
2597 if (!str)
2598 goto error;
2599
2600 /* include a NULL character at the end */
2601 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2602 goto error;
2603 size += string_size(str);
2604 free(str);
2605 }
2606 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2607
2608 if (do_read_u32(ff, &nr))
2609 return -1;
2610
2611 ph->env.nr_sibling_threads = nr;
2612 size += sizeof(u32);
2613
2614 for (i = 0; i < nr; i++) {
2615 str = do_read_string(ff);
2616 if (!str)
2617 goto error;
2618
2619 /* include a NULL character at the end */
2620 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2621 goto error;
2622 size += string_size(str);
2623 free(str);
2624 }
2625 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2626
2627 /*
2628 * The header may be from old perf,
2629 * which doesn't include core id and socket id information.
2630 */
2631 if (ff->size <= size) {
2632 zfree(&ph->env.cpu);
2633 return 0;
2634 }
2635
2636 /* On s390 the socket_id number is not related to the numbers of cpus.
2637 * The socket_id number might be higher than the numbers of cpus.
2638 * This depends on the configuration.
2639 * AArch64 is the same.
2640 */
2641 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2642 || !strncmp(ph->env.arch, "aarch64", 7)))
2643 do_core_id_test = false;
2644
2645 for (i = 0; i < (u32)cpu_nr; i++) {
2646 if (do_read_u32(ff, &nr))
2647 goto free_cpu;
2648
2649 ph->env.cpu[i].core_id = nr;
2650 size += sizeof(u32);
2651
2652 if (do_read_u32(ff, &nr))
2653 goto free_cpu;
2654
2655 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2656 pr_debug("socket_id number is too big."
2657 "You may need to upgrade the perf tool.\n");
2658 goto free_cpu;
2659 }
2660
2661 ph->env.cpu[i].socket_id = nr;
2662 size += sizeof(u32);
2663 }
2664
2665 /*
2666 * The header may be from old perf,
2667 * which doesn't include die information.
2668 */
2669 if (ff->size <= size)
2670 return 0;
2671
2672 if (do_read_u32(ff, &nr))
2673 return -1;
2674
2675 ph->env.nr_sibling_dies = nr;
2676 size += sizeof(u32);
2677
2678 for (i = 0; i < nr; i++) {
2679 str = do_read_string(ff);
2680 if (!str)
2681 goto error;
2682
2683 /* include a NULL character at the end */
2684 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2685 goto error;
2686 size += string_size(str);
2687 free(str);
2688 }
2689 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2690
2691 for (i = 0; i < (u32)cpu_nr; i++) {
2692 if (do_read_u32(ff, &nr))
2693 goto free_cpu;
2694
2695 ph->env.cpu[i].die_id = nr;
2696 }
2697
2698 return 0;
2699
2700 error:
2701 strbuf_release(&sb);
2702 free_cpu:
2703 zfree(&ph->env.cpu);
2704 return -1;
2705 }
2706
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2707 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2708 {
2709 struct numa_node *nodes, *n;
2710 u32 nr, i;
2711 char *str;
2712
2713 /* nr nodes */
2714 if (do_read_u32(ff, &nr))
2715 return -1;
2716
2717 nodes = zalloc(sizeof(*nodes) * nr);
2718 if (!nodes)
2719 return -ENOMEM;
2720
2721 for (i = 0; i < nr; i++) {
2722 n = &nodes[i];
2723
2724 /* node number */
2725 if (do_read_u32(ff, &n->node))
2726 goto error;
2727
2728 if (do_read_u64(ff, &n->mem_total))
2729 goto error;
2730
2731 if (do_read_u64(ff, &n->mem_free))
2732 goto error;
2733
2734 str = do_read_string(ff);
2735 if (!str)
2736 goto error;
2737
2738 n->map = perf_cpu_map__new(str);
2739 if (!n->map)
2740 goto error;
2741
2742 free(str);
2743 }
2744 ff->ph->env.nr_numa_nodes = nr;
2745 ff->ph->env.numa_nodes = nodes;
2746 return 0;
2747
2748 error:
2749 free(nodes);
2750 return -1;
2751 }
2752
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2753 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2754 {
2755 char *name;
2756 u32 pmu_num;
2757 u32 type;
2758 struct strbuf sb;
2759
2760 if (do_read_u32(ff, &pmu_num))
2761 return -1;
2762
2763 if (!pmu_num) {
2764 pr_debug("pmu mappings not available\n");
2765 return 0;
2766 }
2767
2768 ff->ph->env.nr_pmu_mappings = pmu_num;
2769 if (strbuf_init(&sb, 128) < 0)
2770 return -1;
2771
2772 while (pmu_num) {
2773 if (do_read_u32(ff, &type))
2774 goto error;
2775
2776 name = do_read_string(ff);
2777 if (!name)
2778 goto error;
2779
2780 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2781 goto error;
2782 /* include a NULL character at the end */
2783 if (strbuf_add(&sb, "", 1) < 0)
2784 goto error;
2785
2786 if (!strcmp(name, "msr"))
2787 ff->ph->env.msr_pmu_type = type;
2788
2789 free(name);
2790 pmu_num--;
2791 }
2792 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2793 return 0;
2794
2795 error:
2796 strbuf_release(&sb);
2797 return -1;
2798 }
2799
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2800 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2801 {
2802 size_t ret = -1;
2803 u32 i, nr, nr_groups;
2804 struct perf_session *session;
2805 struct evsel *evsel, *leader = NULL;
2806 struct group_desc {
2807 char *name;
2808 u32 leader_idx;
2809 u32 nr_members;
2810 } *desc;
2811
2812 if (do_read_u32(ff, &nr_groups))
2813 return -1;
2814
2815 ff->ph->env.nr_groups = nr_groups;
2816 if (!nr_groups) {
2817 pr_debug("group desc not available\n");
2818 return 0;
2819 }
2820
2821 desc = calloc(nr_groups, sizeof(*desc));
2822 if (!desc)
2823 return -1;
2824
2825 for (i = 0; i < nr_groups; i++) {
2826 desc[i].name = do_read_string(ff);
2827 if (!desc[i].name)
2828 goto out_free;
2829
2830 if (do_read_u32(ff, &desc[i].leader_idx))
2831 goto out_free;
2832
2833 if (do_read_u32(ff, &desc[i].nr_members))
2834 goto out_free;
2835 }
2836
2837 /*
2838 * Rebuild group relationship based on the group_desc
2839 */
2840 session = container_of(ff->ph, struct perf_session, header);
2841
2842 i = nr = 0;
2843 evlist__for_each_entry(session->evlist, evsel) {
2844 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2845 evsel__set_leader(evsel, evsel);
2846 /* {anon_group} is a dummy name */
2847 if (strcmp(desc[i].name, "{anon_group}")) {
2848 evsel->group_name = desc[i].name;
2849 desc[i].name = NULL;
2850 }
2851 evsel->core.nr_members = desc[i].nr_members;
2852
2853 if (i >= nr_groups || nr > 0) {
2854 pr_debug("invalid group desc\n");
2855 goto out_free;
2856 }
2857
2858 leader = evsel;
2859 nr = evsel->core.nr_members - 1;
2860 i++;
2861 } else if (nr) {
2862 /* This is a group member */
2863 evsel__set_leader(evsel, leader);
2864
2865 nr--;
2866 }
2867 }
2868
2869 if (i != nr_groups || nr != 0) {
2870 pr_debug("invalid group desc\n");
2871 goto out_free;
2872 }
2873
2874 ret = 0;
2875 out_free:
2876 for (i = 0; i < nr_groups; i++)
2877 zfree(&desc[i].name);
2878 free(desc);
2879
2880 return ret;
2881 }
2882
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2883 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2884 {
2885 struct perf_session *session;
2886 int err;
2887
2888 session = container_of(ff->ph, struct perf_session, header);
2889
2890 err = auxtrace_index__process(ff->fd, ff->size, session,
2891 ff->ph->needs_swap);
2892 if (err < 0)
2893 pr_err("Failed to process auxtrace index\n");
2894 return err;
2895 }
2896
process_cache(struct feat_fd * ff,void * data __maybe_unused)2897 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2898 {
2899 struct cpu_cache_level *caches;
2900 u32 cnt, i, version;
2901
2902 if (do_read_u32(ff, &version))
2903 return -1;
2904
2905 if (version != 1)
2906 return -1;
2907
2908 if (do_read_u32(ff, &cnt))
2909 return -1;
2910
2911 caches = zalloc(sizeof(*caches) * cnt);
2912 if (!caches)
2913 return -1;
2914
2915 for (i = 0; i < cnt; i++) {
2916 struct cpu_cache_level c;
2917
2918 #define _R(v) \
2919 if (do_read_u32(ff, &c.v))\
2920 goto out_free_caches; \
2921
2922 _R(level)
2923 _R(line_size)
2924 _R(sets)
2925 _R(ways)
2926 #undef _R
2927
2928 #define _R(v) \
2929 c.v = do_read_string(ff); \
2930 if (!c.v) \
2931 goto out_free_caches;
2932
2933 _R(type)
2934 _R(size)
2935 _R(map)
2936 #undef _R
2937
2938 caches[i] = c;
2939 }
2940
2941 ff->ph->env.caches = caches;
2942 ff->ph->env.caches_cnt = cnt;
2943 return 0;
2944 out_free_caches:
2945 free(caches);
2946 return -1;
2947 }
2948
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2949 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2950 {
2951 struct perf_session *session;
2952 u64 first_sample_time, last_sample_time;
2953 int ret;
2954
2955 session = container_of(ff->ph, struct perf_session, header);
2956
2957 ret = do_read_u64(ff, &first_sample_time);
2958 if (ret)
2959 return -1;
2960
2961 ret = do_read_u64(ff, &last_sample_time);
2962 if (ret)
2963 return -1;
2964
2965 session->evlist->first_sample_time = first_sample_time;
2966 session->evlist->last_sample_time = last_sample_time;
2967 return 0;
2968 }
2969
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2970 static int process_mem_topology(struct feat_fd *ff,
2971 void *data __maybe_unused)
2972 {
2973 struct memory_node *nodes;
2974 u64 version, i, nr, bsize;
2975 int ret = -1;
2976
2977 if (do_read_u64(ff, &version))
2978 return -1;
2979
2980 if (version != 1)
2981 return -1;
2982
2983 if (do_read_u64(ff, &bsize))
2984 return -1;
2985
2986 if (do_read_u64(ff, &nr))
2987 return -1;
2988
2989 nodes = zalloc(sizeof(*nodes) * nr);
2990 if (!nodes)
2991 return -1;
2992
2993 for (i = 0; i < nr; i++) {
2994 struct memory_node n;
2995
2996 #define _R(v) \
2997 if (do_read_u64(ff, &n.v)) \
2998 goto out; \
2999
3000 _R(node)
3001 _R(size)
3002
3003 #undef _R
3004
3005 if (do_read_bitmap(ff, &n.set, &n.size))
3006 goto out;
3007
3008 nodes[i] = n;
3009 }
3010
3011 ff->ph->env.memory_bsize = bsize;
3012 ff->ph->env.memory_nodes = nodes;
3013 ff->ph->env.nr_memory_nodes = nr;
3014 ret = 0;
3015
3016 out:
3017 if (ret)
3018 free(nodes);
3019 return ret;
3020 }
3021
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3022 static int process_clockid(struct feat_fd *ff,
3023 void *data __maybe_unused)
3024 {
3025 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3026 return -1;
3027
3028 return 0;
3029 }
3030
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3031 static int process_clock_data(struct feat_fd *ff,
3032 void *_data __maybe_unused)
3033 {
3034 u32 data32;
3035 u64 data64;
3036
3037 /* version */
3038 if (do_read_u32(ff, &data32))
3039 return -1;
3040
3041 if (data32 != 1)
3042 return -1;
3043
3044 /* clockid */
3045 if (do_read_u32(ff, &data32))
3046 return -1;
3047
3048 ff->ph->env.clock.clockid = data32;
3049
3050 /* TOD ref time */
3051 if (do_read_u64(ff, &data64))
3052 return -1;
3053
3054 ff->ph->env.clock.tod_ns = data64;
3055
3056 /* clockid ref time */
3057 if (do_read_u64(ff, &data64))
3058 return -1;
3059
3060 ff->ph->env.clock.clockid_ns = data64;
3061 ff->ph->env.clock.enabled = true;
3062 return 0;
3063 }
3064
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3065 static int process_hybrid_topology(struct feat_fd *ff,
3066 void *data __maybe_unused)
3067 {
3068 struct hybrid_node *nodes, *n;
3069 u32 nr, i;
3070
3071 /* nr nodes */
3072 if (do_read_u32(ff, &nr))
3073 return -1;
3074
3075 nodes = zalloc(sizeof(*nodes) * nr);
3076 if (!nodes)
3077 return -ENOMEM;
3078
3079 for (i = 0; i < nr; i++) {
3080 n = &nodes[i];
3081
3082 n->pmu_name = do_read_string(ff);
3083 if (!n->pmu_name)
3084 goto error;
3085
3086 n->cpus = do_read_string(ff);
3087 if (!n->cpus)
3088 goto error;
3089 }
3090
3091 ff->ph->env.nr_hybrid_nodes = nr;
3092 ff->ph->env.hybrid_nodes = nodes;
3093 return 0;
3094
3095 error:
3096 for (i = 0; i < nr; i++) {
3097 free(nodes[i].pmu_name);
3098 free(nodes[i].cpus);
3099 }
3100
3101 free(nodes);
3102 return -1;
3103 }
3104
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3105 static int process_dir_format(struct feat_fd *ff,
3106 void *_data __maybe_unused)
3107 {
3108 struct perf_session *session;
3109 struct perf_data *data;
3110
3111 session = container_of(ff->ph, struct perf_session, header);
3112 data = session->data;
3113
3114 if (WARN_ON(!perf_data__is_dir(data)))
3115 return -1;
3116
3117 return do_read_u64(ff, &data->dir.version);
3118 }
3119
3120 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3121 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3122 {
3123 struct bpf_prog_info_node *info_node;
3124 struct perf_env *env = &ff->ph->env;
3125 struct perf_bpil *info_linear;
3126 u32 count, i;
3127 int err = -1;
3128
3129 if (ff->ph->needs_swap) {
3130 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3131 return 0;
3132 }
3133
3134 if (do_read_u32(ff, &count))
3135 return -1;
3136
3137 down_write(&env->bpf_progs.lock);
3138
3139 for (i = 0; i < count; ++i) {
3140 u32 info_len, data_len;
3141
3142 info_linear = NULL;
3143 info_node = NULL;
3144 if (do_read_u32(ff, &info_len))
3145 goto out;
3146 if (do_read_u32(ff, &data_len))
3147 goto out;
3148
3149 if (info_len > sizeof(struct bpf_prog_info)) {
3150 pr_warning("detected invalid bpf_prog_info\n");
3151 goto out;
3152 }
3153
3154 info_linear = malloc(sizeof(struct perf_bpil) +
3155 data_len);
3156 if (!info_linear)
3157 goto out;
3158 info_linear->info_len = sizeof(struct bpf_prog_info);
3159 info_linear->data_len = data_len;
3160 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3161 goto out;
3162 if (__do_read(ff, &info_linear->info, info_len))
3163 goto out;
3164 if (info_len < sizeof(struct bpf_prog_info))
3165 memset(((void *)(&info_linear->info)) + info_len, 0,
3166 sizeof(struct bpf_prog_info) - info_len);
3167
3168 if (__do_read(ff, info_linear->data, data_len))
3169 goto out;
3170
3171 info_node = malloc(sizeof(struct bpf_prog_info_node));
3172 if (!info_node)
3173 goto out;
3174
3175 /* after reading from file, translate offset to address */
3176 bpil_offs_to_addr(info_linear);
3177 info_node->info_linear = info_linear;
3178 perf_env__insert_bpf_prog_info(env, info_node);
3179 }
3180
3181 up_write(&env->bpf_progs.lock);
3182 return 0;
3183 out:
3184 free(info_linear);
3185 free(info_node);
3186 up_write(&env->bpf_progs.lock);
3187 return err;
3188 }
3189
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3190 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3191 {
3192 struct perf_env *env = &ff->ph->env;
3193 struct btf_node *node = NULL;
3194 u32 count, i;
3195 int err = -1;
3196
3197 if (ff->ph->needs_swap) {
3198 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3199 return 0;
3200 }
3201
3202 if (do_read_u32(ff, &count))
3203 return -1;
3204
3205 down_write(&env->bpf_progs.lock);
3206
3207 for (i = 0; i < count; ++i) {
3208 u32 id, data_size;
3209
3210 if (do_read_u32(ff, &id))
3211 goto out;
3212 if (do_read_u32(ff, &data_size))
3213 goto out;
3214
3215 node = malloc(sizeof(struct btf_node) + data_size);
3216 if (!node)
3217 goto out;
3218
3219 node->id = id;
3220 node->data_size = data_size;
3221
3222 if (__do_read(ff, node->data, data_size))
3223 goto out;
3224
3225 perf_env__insert_btf(env, node);
3226 node = NULL;
3227 }
3228
3229 err = 0;
3230 out:
3231 up_write(&env->bpf_progs.lock);
3232 free(node);
3233 return err;
3234 }
3235 #endif // HAVE_LIBBPF_SUPPORT
3236
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3237 static int process_compressed(struct feat_fd *ff,
3238 void *data __maybe_unused)
3239 {
3240 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3241 return -1;
3242
3243 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3244 return -1;
3245
3246 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3247 return -1;
3248
3249 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3250 return -1;
3251
3252 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3253 return -1;
3254
3255 return 0;
3256 }
3257
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches)3258 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3259 char ***caps, unsigned int *max_branches)
3260 {
3261 char *name, *value, *ptr;
3262 u32 nr_pmu_caps, i;
3263
3264 *nr_caps = 0;
3265 *caps = NULL;
3266
3267 if (do_read_u32(ff, &nr_pmu_caps))
3268 return -1;
3269
3270 if (!nr_pmu_caps)
3271 return 0;
3272
3273 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3274 if (!*caps)
3275 return -1;
3276
3277 for (i = 0; i < nr_pmu_caps; i++) {
3278 name = do_read_string(ff);
3279 if (!name)
3280 goto error;
3281
3282 value = do_read_string(ff);
3283 if (!value)
3284 goto free_name;
3285
3286 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3287 goto free_value;
3288
3289 (*caps)[i] = ptr;
3290
3291 if (!strcmp(name, "branches"))
3292 *max_branches = atoi(value);
3293
3294 free(value);
3295 free(name);
3296 }
3297 *nr_caps = nr_pmu_caps;
3298 return 0;
3299
3300 free_value:
3301 free(value);
3302 free_name:
3303 free(name);
3304 error:
3305 for (; i > 0; i--)
3306 free((*caps)[i - 1]);
3307 free(*caps);
3308 *caps = NULL;
3309 *nr_caps = 0;
3310 return -1;
3311 }
3312
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3313 static int process_cpu_pmu_caps(struct feat_fd *ff,
3314 void *data __maybe_unused)
3315 {
3316 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3317 &ff->ph->env.cpu_pmu_caps,
3318 &ff->ph->env.max_branches);
3319
3320 if (!ret && !ff->ph->env.cpu_pmu_caps)
3321 pr_debug("cpu pmu capabilities not available\n");
3322 return ret;
3323 }
3324
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3325 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3326 {
3327 struct pmu_caps *pmu_caps;
3328 u32 nr_pmu, i;
3329 int ret;
3330 int j;
3331
3332 if (do_read_u32(ff, &nr_pmu))
3333 return -1;
3334
3335 if (!nr_pmu) {
3336 pr_debug("pmu capabilities not available\n");
3337 return 0;
3338 }
3339
3340 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3341 if (!pmu_caps)
3342 return -ENOMEM;
3343
3344 for (i = 0; i < nr_pmu; i++) {
3345 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3346 &pmu_caps[i].caps,
3347 &pmu_caps[i].max_branches);
3348 if (ret)
3349 goto err;
3350
3351 pmu_caps[i].pmu_name = do_read_string(ff);
3352 if (!pmu_caps[i].pmu_name) {
3353 ret = -1;
3354 goto err;
3355 }
3356 if (!pmu_caps[i].nr_caps) {
3357 pr_debug("%s pmu capabilities not available\n",
3358 pmu_caps[i].pmu_name);
3359 }
3360 }
3361
3362 ff->ph->env.nr_pmus_with_caps = nr_pmu;
3363 ff->ph->env.pmu_caps = pmu_caps;
3364 return 0;
3365
3366 err:
3367 for (i = 0; i < nr_pmu; i++) {
3368 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3369 free(pmu_caps[i].caps[j]);
3370 free(pmu_caps[i].caps);
3371 free(pmu_caps[i].pmu_name);
3372 }
3373
3374 free(pmu_caps);
3375 return ret;
3376 }
3377
3378 #define FEAT_OPR(n, func, __full_only) \
3379 [HEADER_##n] = { \
3380 .name = __stringify(n), \
3381 .write = write_##func, \
3382 .print = print_##func, \
3383 .full_only = __full_only, \
3384 .process = process_##func, \
3385 .synthesize = true \
3386 }
3387
3388 #define FEAT_OPN(n, func, __full_only) \
3389 [HEADER_##n] = { \
3390 .name = __stringify(n), \
3391 .write = write_##func, \
3392 .print = print_##func, \
3393 .full_only = __full_only, \
3394 .process = process_##func \
3395 }
3396
3397 /* feature_ops not implemented: */
3398 #define print_tracing_data NULL
3399 #define print_build_id NULL
3400
3401 #define process_branch_stack NULL
3402 #define process_stat NULL
3403
3404 // Only used in util/synthetic-events.c
3405 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3406
3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3408 #ifdef HAVE_LIBTRACEEVENT
3409 FEAT_OPN(TRACING_DATA, tracing_data, false),
3410 #endif
3411 FEAT_OPN(BUILD_ID, build_id, false),
3412 FEAT_OPR(HOSTNAME, hostname, false),
3413 FEAT_OPR(OSRELEASE, osrelease, false),
3414 FEAT_OPR(VERSION, version, false),
3415 FEAT_OPR(ARCH, arch, false),
3416 FEAT_OPR(NRCPUS, nrcpus, false),
3417 FEAT_OPR(CPUDESC, cpudesc, false),
3418 FEAT_OPR(CPUID, cpuid, false),
3419 FEAT_OPR(TOTAL_MEM, total_mem, false),
3420 FEAT_OPR(EVENT_DESC, event_desc, false),
3421 FEAT_OPR(CMDLINE, cmdline, false),
3422 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3423 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3424 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3425 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3426 FEAT_OPR(GROUP_DESC, group_desc, false),
3427 FEAT_OPN(AUXTRACE, auxtrace, false),
3428 FEAT_OPN(STAT, stat, false),
3429 FEAT_OPN(CACHE, cache, true),
3430 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3431 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3432 FEAT_OPR(CLOCKID, clockid, false),
3433 FEAT_OPN(DIR_FORMAT, dir_format, false),
3434 #ifdef HAVE_LIBBPF_SUPPORT
3435 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3436 FEAT_OPR(BPF_BTF, bpf_btf, false),
3437 #endif
3438 FEAT_OPR(COMPRESSED, compressed, false),
3439 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3440 FEAT_OPR(CLOCK_DATA, clock_data, false),
3441 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3442 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3443 };
3444
3445 struct header_print_data {
3446 FILE *fp;
3447 bool full; /* extended list of headers */
3448 };
3449
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3450 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3451 struct perf_header *ph,
3452 int feat, int fd, void *data)
3453 {
3454 struct header_print_data *hd = data;
3455 struct feat_fd ff;
3456
3457 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3458 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3459 "%d, continuing...\n", section->offset, feat);
3460 return 0;
3461 }
3462 if (feat >= HEADER_LAST_FEATURE) {
3463 pr_warning("unknown feature %d\n", feat);
3464 return 0;
3465 }
3466 if (!feat_ops[feat].print)
3467 return 0;
3468
3469 ff = (struct feat_fd) {
3470 .fd = fd,
3471 .ph = ph,
3472 };
3473
3474 if (!feat_ops[feat].full_only || hd->full)
3475 feat_ops[feat].print(&ff, hd->fp);
3476 else
3477 fprintf(hd->fp, "# %s info available, use -I to display\n",
3478 feat_ops[feat].name);
3479
3480 return 0;
3481 }
3482
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3483 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3484 {
3485 struct header_print_data hd;
3486 struct perf_header *header = &session->header;
3487 int fd = perf_data__fd(session->data);
3488 struct stat st;
3489 time_t stctime;
3490 int ret, bit;
3491
3492 hd.fp = fp;
3493 hd.full = full;
3494
3495 ret = fstat(fd, &st);
3496 if (ret == -1)
3497 return -1;
3498
3499 stctime = st.st_mtime;
3500 fprintf(fp, "# captured on : %s", ctime(&stctime));
3501
3502 fprintf(fp, "# header version : %u\n", header->version);
3503 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3504 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3505 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3506
3507 perf_header__process_sections(header, fd, &hd,
3508 perf_file_section__fprintf_info);
3509
3510 if (session->data->is_pipe)
3511 return 0;
3512
3513 fprintf(fp, "# missing features: ");
3514 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3515 if (bit)
3516 fprintf(fp, "%s ", feat_ops[bit].name);
3517 }
3518
3519 fprintf(fp, "\n");
3520 return 0;
3521 }
3522
3523 struct header_fw {
3524 struct feat_writer fw;
3525 struct feat_fd *ff;
3526 };
3527
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3528 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3529 {
3530 struct header_fw *h = container_of(fw, struct header_fw, fw);
3531
3532 return do_write(h->ff, buf, sz);
3533 }
3534
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3535 static int do_write_feat(struct feat_fd *ff, int type,
3536 struct perf_file_section **p,
3537 struct evlist *evlist,
3538 struct feat_copier *fc)
3539 {
3540 int err;
3541 int ret = 0;
3542
3543 if (perf_header__has_feat(ff->ph, type)) {
3544 if (!feat_ops[type].write)
3545 return -1;
3546
3547 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3548 return -1;
3549
3550 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3551
3552 /*
3553 * Hook to let perf inject copy features sections from the input
3554 * file.
3555 */
3556 if (fc && fc->copy) {
3557 struct header_fw h = {
3558 .fw.write = feat_writer_cb,
3559 .ff = ff,
3560 };
3561
3562 /* ->copy() returns 0 if the feature was not copied */
3563 err = fc->copy(fc, type, &h.fw);
3564 } else {
3565 err = 0;
3566 }
3567 if (!err)
3568 err = feat_ops[type].write(ff, evlist);
3569 if (err < 0) {
3570 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3571
3572 /* undo anything written */
3573 lseek(ff->fd, (*p)->offset, SEEK_SET);
3574
3575 return -1;
3576 }
3577 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3578 (*p)++;
3579 }
3580 return ret;
3581 }
3582
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3583 static int perf_header__adds_write(struct perf_header *header,
3584 struct evlist *evlist, int fd,
3585 struct feat_copier *fc)
3586 {
3587 int nr_sections;
3588 struct feat_fd ff;
3589 struct perf_file_section *feat_sec, *p;
3590 int sec_size;
3591 u64 sec_start;
3592 int feat;
3593 int err;
3594
3595 ff = (struct feat_fd){
3596 .fd = fd,
3597 .ph = header,
3598 };
3599
3600 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3601 if (!nr_sections)
3602 return 0;
3603
3604 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3605 if (feat_sec == NULL)
3606 return -ENOMEM;
3607
3608 sec_size = sizeof(*feat_sec) * nr_sections;
3609
3610 sec_start = header->feat_offset;
3611 lseek(fd, sec_start + sec_size, SEEK_SET);
3612
3613 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3614 if (do_write_feat(&ff, feat, &p, evlist, fc))
3615 perf_header__clear_feat(header, feat);
3616 }
3617
3618 lseek(fd, sec_start, SEEK_SET);
3619 /*
3620 * may write more than needed due to dropped feature, but
3621 * this is okay, reader will skip the missing entries
3622 */
3623 err = do_write(&ff, feat_sec, sec_size);
3624 if (err < 0)
3625 pr_debug("failed to write feature section\n");
3626 free(feat_sec);
3627 return err;
3628 }
3629
perf_header__write_pipe(int fd)3630 int perf_header__write_pipe(int fd)
3631 {
3632 struct perf_pipe_file_header f_header;
3633 struct feat_fd ff;
3634 int err;
3635
3636 ff = (struct feat_fd){ .fd = fd };
3637
3638 f_header = (struct perf_pipe_file_header){
3639 .magic = PERF_MAGIC,
3640 .size = sizeof(f_header),
3641 };
3642
3643 err = do_write(&ff, &f_header, sizeof(f_header));
3644 if (err < 0) {
3645 pr_debug("failed to write perf pipe header\n");
3646 return err;
3647 }
3648
3649 return 0;
3650 }
3651
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc)3652 static int perf_session__do_write_header(struct perf_session *session,
3653 struct evlist *evlist,
3654 int fd, bool at_exit,
3655 struct feat_copier *fc)
3656 {
3657 struct perf_file_header f_header;
3658 struct perf_file_attr f_attr;
3659 struct perf_header *header = &session->header;
3660 struct evsel *evsel;
3661 struct feat_fd ff;
3662 u64 attr_offset;
3663 int err;
3664
3665 ff = (struct feat_fd){ .fd = fd};
3666 lseek(fd, sizeof(f_header), SEEK_SET);
3667
3668 evlist__for_each_entry(session->evlist, evsel) {
3669 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3670 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3671 if (err < 0) {
3672 pr_debug("failed to write perf header\n");
3673 return err;
3674 }
3675 }
3676
3677 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3678
3679 evlist__for_each_entry(evlist, evsel) {
3680 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3681 /*
3682 * We are likely in "perf inject" and have read
3683 * from an older file. Update attr size so that
3684 * reader gets the right offset to the ids.
3685 */
3686 evsel->core.attr.size = sizeof(evsel->core.attr);
3687 }
3688 f_attr = (struct perf_file_attr){
3689 .attr = evsel->core.attr,
3690 .ids = {
3691 .offset = evsel->id_offset,
3692 .size = evsel->core.ids * sizeof(u64),
3693 }
3694 };
3695 err = do_write(&ff, &f_attr, sizeof(f_attr));
3696 if (err < 0) {
3697 pr_debug("failed to write perf header attribute\n");
3698 return err;
3699 }
3700 }
3701
3702 if (!header->data_offset)
3703 header->data_offset = lseek(fd, 0, SEEK_CUR);
3704 header->feat_offset = header->data_offset + header->data_size;
3705
3706 if (at_exit) {
3707 err = perf_header__adds_write(header, evlist, fd, fc);
3708 if (err < 0)
3709 return err;
3710 }
3711
3712 f_header = (struct perf_file_header){
3713 .magic = PERF_MAGIC,
3714 .size = sizeof(f_header),
3715 .attr_size = sizeof(f_attr),
3716 .attrs = {
3717 .offset = attr_offset,
3718 .size = evlist->core.nr_entries * sizeof(f_attr),
3719 },
3720 .data = {
3721 .offset = header->data_offset,
3722 .size = header->data_size,
3723 },
3724 /* event_types is ignored, store zeros */
3725 };
3726
3727 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3728
3729 lseek(fd, 0, SEEK_SET);
3730 err = do_write(&ff, &f_header, sizeof(f_header));
3731 if (err < 0) {
3732 pr_debug("failed to write perf header\n");
3733 return err;
3734 }
3735 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3736
3737 return 0;
3738 }
3739
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3740 int perf_session__write_header(struct perf_session *session,
3741 struct evlist *evlist,
3742 int fd, bool at_exit)
3743 {
3744 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3745 }
3746
perf_session__data_offset(const struct evlist * evlist)3747 size_t perf_session__data_offset(const struct evlist *evlist)
3748 {
3749 struct evsel *evsel;
3750 size_t data_offset;
3751
3752 data_offset = sizeof(struct perf_file_header);
3753 evlist__for_each_entry(evlist, evsel) {
3754 data_offset += evsel->core.ids * sizeof(u64);
3755 }
3756 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3757
3758 return data_offset;
3759 }
3760
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc)3761 int perf_session__inject_header(struct perf_session *session,
3762 struct evlist *evlist,
3763 int fd,
3764 struct feat_copier *fc)
3765 {
3766 return perf_session__do_write_header(session, evlist, fd, true, fc);
3767 }
3768
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3769 static int perf_header__getbuffer64(struct perf_header *header,
3770 int fd, void *buf, size_t size)
3771 {
3772 if (readn(fd, buf, size) <= 0)
3773 return -1;
3774
3775 if (header->needs_swap)
3776 mem_bswap_64(buf, size);
3777
3778 return 0;
3779 }
3780
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3781 int perf_header__process_sections(struct perf_header *header, int fd,
3782 void *data,
3783 int (*process)(struct perf_file_section *section,
3784 struct perf_header *ph,
3785 int feat, int fd, void *data))
3786 {
3787 struct perf_file_section *feat_sec, *sec;
3788 int nr_sections;
3789 int sec_size;
3790 int feat;
3791 int err;
3792
3793 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3794 if (!nr_sections)
3795 return 0;
3796
3797 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3798 if (!feat_sec)
3799 return -1;
3800
3801 sec_size = sizeof(*feat_sec) * nr_sections;
3802
3803 lseek(fd, header->feat_offset, SEEK_SET);
3804
3805 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3806 if (err < 0)
3807 goto out_free;
3808
3809 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3810 err = process(sec++, header, feat, fd, data);
3811 if (err < 0)
3812 goto out_free;
3813 }
3814 err = 0;
3815 out_free:
3816 free(feat_sec);
3817 return err;
3818 }
3819
3820 static const int attr_file_abi_sizes[] = {
3821 [0] = PERF_ATTR_SIZE_VER0,
3822 [1] = PERF_ATTR_SIZE_VER1,
3823 [2] = PERF_ATTR_SIZE_VER2,
3824 [3] = PERF_ATTR_SIZE_VER3,
3825 [4] = PERF_ATTR_SIZE_VER4,
3826 0,
3827 };
3828
3829 /*
3830 * In the legacy file format, the magic number is not used to encode endianness.
3831 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3832 * on ABI revisions, we need to try all combinations for all endianness to
3833 * detect the endianness.
3834 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3835 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3836 {
3837 uint64_t ref_size, attr_size;
3838 int i;
3839
3840 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3841 ref_size = attr_file_abi_sizes[i]
3842 + sizeof(struct perf_file_section);
3843 if (hdr_sz != ref_size) {
3844 attr_size = bswap_64(hdr_sz);
3845 if (attr_size != ref_size)
3846 continue;
3847
3848 ph->needs_swap = true;
3849 }
3850 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3851 i,
3852 ph->needs_swap);
3853 return 0;
3854 }
3855 /* could not determine endianness */
3856 return -1;
3857 }
3858
3859 #define PERF_PIPE_HDR_VER0 16
3860
3861 static const size_t attr_pipe_abi_sizes[] = {
3862 [0] = PERF_PIPE_HDR_VER0,
3863 0,
3864 };
3865
3866 /*
3867 * In the legacy pipe format, there is an implicit assumption that endianness
3868 * between host recording the samples, and host parsing the samples is the
3869 * same. This is not always the case given that the pipe output may always be
3870 * redirected into a file and analyzed on a different machine with possibly a
3871 * different endianness and perf_event ABI revisions in the perf tool itself.
3872 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3873 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3874 {
3875 u64 attr_size;
3876 int i;
3877
3878 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3879 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3880 attr_size = bswap_64(hdr_sz);
3881 if (attr_size != hdr_sz)
3882 continue;
3883
3884 ph->needs_swap = true;
3885 }
3886 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3887 return 0;
3888 }
3889 return -1;
3890 }
3891
is_perf_magic(u64 magic)3892 bool is_perf_magic(u64 magic)
3893 {
3894 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3895 || magic == __perf_magic2
3896 || magic == __perf_magic2_sw)
3897 return true;
3898
3899 return false;
3900 }
3901
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3902 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3903 bool is_pipe, struct perf_header *ph)
3904 {
3905 int ret;
3906
3907 /* check for legacy format */
3908 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3909 if (ret == 0) {
3910 ph->version = PERF_HEADER_VERSION_1;
3911 pr_debug("legacy perf.data format\n");
3912 if (is_pipe)
3913 return try_all_pipe_abis(hdr_sz, ph);
3914
3915 return try_all_file_abis(hdr_sz, ph);
3916 }
3917 /*
3918 * the new magic number serves two purposes:
3919 * - unique number to identify actual perf.data files
3920 * - encode endianness of file
3921 */
3922 ph->version = PERF_HEADER_VERSION_2;
3923
3924 /* check magic number with one endianness */
3925 if (magic == __perf_magic2)
3926 return 0;
3927
3928 /* check magic number with opposite endianness */
3929 if (magic != __perf_magic2_sw)
3930 return -1;
3931
3932 ph->needs_swap = true;
3933
3934 return 0;
3935 }
3936
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3937 int perf_file_header__read(struct perf_file_header *header,
3938 struct perf_header *ph, int fd)
3939 {
3940 ssize_t ret;
3941
3942 lseek(fd, 0, SEEK_SET);
3943
3944 ret = readn(fd, header, sizeof(*header));
3945 if (ret <= 0)
3946 return -1;
3947
3948 if (check_magic_endian(header->magic,
3949 header->attr_size, false, ph) < 0) {
3950 pr_debug("magic/endian check failed\n");
3951 return -1;
3952 }
3953
3954 if (ph->needs_swap) {
3955 mem_bswap_64(header, offsetof(struct perf_file_header,
3956 adds_features));
3957 }
3958
3959 if (header->size != sizeof(*header)) {
3960 /* Support the previous format */
3961 if (header->size == offsetof(typeof(*header), adds_features))
3962 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3963 else
3964 return -1;
3965 } else if (ph->needs_swap) {
3966 /*
3967 * feature bitmap is declared as an array of unsigned longs --
3968 * not good since its size can differ between the host that
3969 * generated the data file and the host analyzing the file.
3970 *
3971 * We need to handle endianness, but we don't know the size of
3972 * the unsigned long where the file was generated. Take a best
3973 * guess at determining it: try 64-bit swap first (ie., file
3974 * created on a 64-bit host), and check if the hostname feature
3975 * bit is set (this feature bit is forced on as of fbe96f2).
3976 * If the bit is not, undo the 64-bit swap and try a 32-bit
3977 * swap. If the hostname bit is still not set (e.g., older data
3978 * file), punt and fallback to the original behavior --
3979 * clearing all feature bits and setting buildid.
3980 */
3981 mem_bswap_64(&header->adds_features,
3982 BITS_TO_U64(HEADER_FEAT_BITS));
3983
3984 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3985 /* unswap as u64 */
3986 mem_bswap_64(&header->adds_features,
3987 BITS_TO_U64(HEADER_FEAT_BITS));
3988
3989 /* unswap as u32 */
3990 mem_bswap_32(&header->adds_features,
3991 BITS_TO_U32(HEADER_FEAT_BITS));
3992 }
3993
3994 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3995 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3996 __set_bit(HEADER_BUILD_ID, header->adds_features);
3997 }
3998 }
3999
4000 memcpy(&ph->adds_features, &header->adds_features,
4001 sizeof(ph->adds_features));
4002
4003 ph->data_offset = header->data.offset;
4004 ph->data_size = header->data.size;
4005 ph->feat_offset = header->data.offset + header->data.size;
4006 return 0;
4007 }
4008
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4009 static int perf_file_section__process(struct perf_file_section *section,
4010 struct perf_header *ph,
4011 int feat, int fd, void *data)
4012 {
4013 struct feat_fd fdd = {
4014 .fd = fd,
4015 .ph = ph,
4016 .size = section->size,
4017 .offset = section->offset,
4018 };
4019
4020 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4021 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4022 "%d, continuing...\n", section->offset, feat);
4023 return 0;
4024 }
4025
4026 if (feat >= HEADER_LAST_FEATURE) {
4027 pr_debug("unknown feature %d, continuing...\n", feat);
4028 return 0;
4029 }
4030
4031 if (!feat_ops[feat].process)
4032 return 0;
4033
4034 return feat_ops[feat].process(&fdd, data);
4035 }
4036
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data,bool repipe,int repipe_fd)4037 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4038 struct perf_header *ph,
4039 struct perf_data* data,
4040 bool repipe, int repipe_fd)
4041 {
4042 struct feat_fd ff = {
4043 .fd = repipe_fd,
4044 .ph = ph,
4045 };
4046 ssize_t ret;
4047
4048 ret = perf_data__read(data, header, sizeof(*header));
4049 if (ret <= 0)
4050 return -1;
4051
4052 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4053 pr_debug("endian/magic failed\n");
4054 return -1;
4055 }
4056
4057 if (ph->needs_swap)
4058 header->size = bswap_64(header->size);
4059
4060 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4061 return -1;
4062
4063 return 0;
4064 }
4065
perf_header__read_pipe(struct perf_session * session,int repipe_fd)4066 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4067 {
4068 struct perf_header *header = &session->header;
4069 struct perf_pipe_file_header f_header;
4070
4071 if (perf_file_header__read_pipe(&f_header, header, session->data,
4072 session->repipe, repipe_fd) < 0) {
4073 pr_debug("incompatible file format\n");
4074 return -EINVAL;
4075 }
4076
4077 return f_header.size == sizeof(f_header) ? 0 : -1;
4078 }
4079
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4080 static int read_attr(int fd, struct perf_header *ph,
4081 struct perf_file_attr *f_attr)
4082 {
4083 struct perf_event_attr *attr = &f_attr->attr;
4084 size_t sz, left;
4085 size_t our_sz = sizeof(f_attr->attr);
4086 ssize_t ret;
4087
4088 memset(f_attr, 0, sizeof(*f_attr));
4089
4090 /* read minimal guaranteed structure */
4091 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4092 if (ret <= 0) {
4093 pr_debug("cannot read %d bytes of header attr\n",
4094 PERF_ATTR_SIZE_VER0);
4095 return -1;
4096 }
4097
4098 /* on file perf_event_attr size */
4099 sz = attr->size;
4100
4101 if (ph->needs_swap)
4102 sz = bswap_32(sz);
4103
4104 if (sz == 0) {
4105 /* assume ABI0 */
4106 sz = PERF_ATTR_SIZE_VER0;
4107 } else if (sz > our_sz) {
4108 pr_debug("file uses a more recent and unsupported ABI"
4109 " (%zu bytes extra)\n", sz - our_sz);
4110 return -1;
4111 }
4112 /* what we have not yet read and that we know about */
4113 left = sz - PERF_ATTR_SIZE_VER0;
4114 if (left) {
4115 void *ptr = attr;
4116 ptr += PERF_ATTR_SIZE_VER0;
4117
4118 ret = readn(fd, ptr, left);
4119 }
4120 /* read perf_file_section, ids are read in caller */
4121 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4122
4123 return ret <= 0 ? -1 : 0;
4124 }
4125
4126 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4127 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4128 {
4129 struct tep_event *event;
4130 char bf[128];
4131
4132 /* already prepared */
4133 if (evsel->tp_format)
4134 return 0;
4135
4136 if (pevent == NULL) {
4137 pr_debug("broken or missing trace data\n");
4138 return -1;
4139 }
4140
4141 event = tep_find_event(pevent, evsel->core.attr.config);
4142 if (event == NULL) {
4143 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4144 return -1;
4145 }
4146
4147 if (!evsel->name) {
4148 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4149 evsel->name = strdup(bf);
4150 if (evsel->name == NULL)
4151 return -1;
4152 }
4153
4154 evsel->tp_format = event;
4155 return 0;
4156 }
4157
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4158 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4159 {
4160 struct evsel *pos;
4161
4162 evlist__for_each_entry(evlist, pos) {
4163 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4164 evsel__prepare_tracepoint_event(pos, pevent))
4165 return -1;
4166 }
4167
4168 return 0;
4169 }
4170 #endif
4171
perf_session__read_header(struct perf_session * session,int repipe_fd)4172 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4173 {
4174 struct perf_data *data = session->data;
4175 struct perf_header *header = &session->header;
4176 struct perf_file_header f_header;
4177 struct perf_file_attr f_attr;
4178 u64 f_id;
4179 int nr_attrs, nr_ids, i, j, err;
4180 int fd = perf_data__fd(data);
4181
4182 session->evlist = evlist__new();
4183 if (session->evlist == NULL)
4184 return -ENOMEM;
4185
4186 session->evlist->env = &header->env;
4187 session->machines.host.env = &header->env;
4188
4189 /*
4190 * We can read 'pipe' data event from regular file,
4191 * check for the pipe header regardless of source.
4192 */
4193 err = perf_header__read_pipe(session, repipe_fd);
4194 if (!err || perf_data__is_pipe(data)) {
4195 data->is_pipe = true;
4196 return err;
4197 }
4198
4199 if (perf_file_header__read(&f_header, header, fd) < 0)
4200 return -EINVAL;
4201
4202 if (header->needs_swap && data->in_place_update) {
4203 pr_err("In-place update not supported when byte-swapping is required\n");
4204 return -EINVAL;
4205 }
4206
4207 /*
4208 * Sanity check that perf.data was written cleanly; data size is
4209 * initialized to 0 and updated only if the on_exit function is run.
4210 * If data size is still 0 then the file contains only partial
4211 * information. Just warn user and process it as much as it can.
4212 */
4213 if (f_header.data.size == 0) {
4214 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4215 "Was the 'perf record' command properly terminated?\n",
4216 data->file.path);
4217 }
4218
4219 if (f_header.attr_size == 0) {
4220 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4221 "Was the 'perf record' command properly terminated?\n",
4222 data->file.path);
4223 return -EINVAL;
4224 }
4225
4226 nr_attrs = f_header.attrs.size / f_header.attr_size;
4227 lseek(fd, f_header.attrs.offset, SEEK_SET);
4228
4229 for (i = 0; i < nr_attrs; i++) {
4230 struct evsel *evsel;
4231 off_t tmp;
4232
4233 if (read_attr(fd, header, &f_attr) < 0)
4234 goto out_errno;
4235
4236 if (header->needs_swap) {
4237 f_attr.ids.size = bswap_64(f_attr.ids.size);
4238 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4239 perf_event__attr_swap(&f_attr.attr);
4240 }
4241
4242 tmp = lseek(fd, 0, SEEK_CUR);
4243 evsel = evsel__new(&f_attr.attr);
4244
4245 if (evsel == NULL)
4246 goto out_delete_evlist;
4247
4248 evsel->needs_swap = header->needs_swap;
4249 /*
4250 * Do it before so that if perf_evsel__alloc_id fails, this
4251 * entry gets purged too at evlist__delete().
4252 */
4253 evlist__add(session->evlist, evsel);
4254
4255 nr_ids = f_attr.ids.size / sizeof(u64);
4256 /*
4257 * We don't have the cpu and thread maps on the header, so
4258 * for allocating the perf_sample_id table we fake 1 cpu and
4259 * hattr->ids threads.
4260 */
4261 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4262 goto out_delete_evlist;
4263
4264 lseek(fd, f_attr.ids.offset, SEEK_SET);
4265
4266 for (j = 0; j < nr_ids; j++) {
4267 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4268 goto out_errno;
4269
4270 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4271 }
4272
4273 lseek(fd, tmp, SEEK_SET);
4274 }
4275
4276 #ifdef HAVE_LIBTRACEEVENT
4277 perf_header__process_sections(header, fd, &session->tevent,
4278 perf_file_section__process);
4279
4280 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4281 goto out_delete_evlist;
4282 #else
4283 perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4284 #endif
4285
4286 return 0;
4287 out_errno:
4288 return -errno;
4289
4290 out_delete_evlist:
4291 evlist__delete(session->evlist);
4292 session->evlist = NULL;
4293 return -ENOMEM;
4294 }
4295
perf_event__process_feature(struct perf_session * session,union perf_event * event)4296 int perf_event__process_feature(struct perf_session *session,
4297 union perf_event *event)
4298 {
4299 struct perf_tool *tool = session->tool;
4300 struct feat_fd ff = { .fd = 0 };
4301 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4302 int type = fe->header.type;
4303 u64 feat = fe->feat_id;
4304 int ret = 0;
4305
4306 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4307 pr_warning("invalid record type %d in pipe-mode\n", type);
4308 return 0;
4309 }
4310 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4311 pr_warning("invalid record type %d in pipe-mode\n", type);
4312 return -1;
4313 }
4314
4315 if (!feat_ops[feat].process)
4316 return 0;
4317
4318 ff.buf = (void *)fe->data;
4319 ff.size = event->header.size - sizeof(*fe);
4320 ff.ph = &session->header;
4321
4322 if (feat_ops[feat].process(&ff, NULL)) {
4323 ret = -1;
4324 goto out;
4325 }
4326
4327 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4328 goto out;
4329
4330 if (!feat_ops[feat].full_only ||
4331 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4332 feat_ops[feat].print(&ff, stdout);
4333 } else {
4334 fprintf(stdout, "# %s info available, use -I to display\n",
4335 feat_ops[feat].name);
4336 }
4337 out:
4338 free_event_desc(ff.events);
4339 return ret;
4340 }
4341
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4342 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4343 {
4344 struct perf_record_event_update *ev = &event->event_update;
4345 struct perf_cpu_map *map;
4346 size_t ret;
4347
4348 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4349
4350 switch (ev->type) {
4351 case PERF_EVENT_UPDATE__SCALE:
4352 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4353 break;
4354 case PERF_EVENT_UPDATE__UNIT:
4355 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4356 break;
4357 case PERF_EVENT_UPDATE__NAME:
4358 ret += fprintf(fp, "... name: %s\n", ev->name);
4359 break;
4360 case PERF_EVENT_UPDATE__CPUS:
4361 ret += fprintf(fp, "... ");
4362
4363 map = cpu_map__new_data(&ev->cpus.cpus);
4364 if (map)
4365 ret += cpu_map__fprintf(map, fp);
4366 else
4367 ret += fprintf(fp, "failed to get cpus\n");
4368 break;
4369 default:
4370 ret += fprintf(fp, "... unknown type\n");
4371 break;
4372 }
4373
4374 return ret;
4375 }
4376
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4377 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4378 union perf_event *event,
4379 struct evlist **pevlist)
4380 {
4381 u32 i, n_ids;
4382 u64 *ids;
4383 struct evsel *evsel;
4384 struct evlist *evlist = *pevlist;
4385
4386 if (evlist == NULL) {
4387 *pevlist = evlist = evlist__new();
4388 if (evlist == NULL)
4389 return -ENOMEM;
4390 }
4391
4392 evsel = evsel__new(&event->attr.attr);
4393 if (evsel == NULL)
4394 return -ENOMEM;
4395
4396 evlist__add(evlist, evsel);
4397
4398 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4399 n_ids = n_ids / sizeof(u64);
4400 /*
4401 * We don't have the cpu and thread maps on the header, so
4402 * for allocating the perf_sample_id table we fake 1 cpu and
4403 * hattr->ids threads.
4404 */
4405 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4406 return -ENOMEM;
4407
4408 ids = perf_record_header_attr_id(event);
4409 for (i = 0; i < n_ids; i++) {
4410 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4411 }
4412
4413 return 0;
4414 }
4415
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4416 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4417 union perf_event *event,
4418 struct evlist **pevlist)
4419 {
4420 struct perf_record_event_update *ev = &event->event_update;
4421 struct evlist *evlist;
4422 struct evsel *evsel;
4423 struct perf_cpu_map *map;
4424
4425 if (dump_trace)
4426 perf_event__fprintf_event_update(event, stdout);
4427
4428 if (!pevlist || *pevlist == NULL)
4429 return -EINVAL;
4430
4431 evlist = *pevlist;
4432
4433 evsel = evlist__id2evsel(evlist, ev->id);
4434 if (evsel == NULL)
4435 return -EINVAL;
4436
4437 switch (ev->type) {
4438 case PERF_EVENT_UPDATE__UNIT:
4439 free((char *)evsel->unit);
4440 evsel->unit = strdup(ev->unit);
4441 break;
4442 case PERF_EVENT_UPDATE__NAME:
4443 free(evsel->name);
4444 evsel->name = strdup(ev->name);
4445 break;
4446 case PERF_EVENT_UPDATE__SCALE:
4447 evsel->scale = ev->scale.scale;
4448 break;
4449 case PERF_EVENT_UPDATE__CPUS:
4450 map = cpu_map__new_data(&ev->cpus.cpus);
4451 if (map) {
4452 perf_cpu_map__put(evsel->core.own_cpus);
4453 evsel->core.own_cpus = map;
4454 } else
4455 pr_err("failed to get event_update cpus\n");
4456 default:
4457 break;
4458 }
4459
4460 return 0;
4461 }
4462
4463 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4464 int perf_event__process_tracing_data(struct perf_session *session,
4465 union perf_event *event)
4466 {
4467 ssize_t size_read, padding, size = event->tracing_data.size;
4468 int fd = perf_data__fd(session->data);
4469 char buf[BUFSIZ];
4470
4471 /*
4472 * The pipe fd is already in proper place and in any case
4473 * we can't move it, and we'd screw the case where we read
4474 * 'pipe' data from regular file. The trace_report reads
4475 * data from 'fd' so we need to set it directly behind the
4476 * event, where the tracing data starts.
4477 */
4478 if (!perf_data__is_pipe(session->data)) {
4479 off_t offset = lseek(fd, 0, SEEK_CUR);
4480
4481 /* setup for reading amidst mmap */
4482 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4483 SEEK_SET);
4484 }
4485
4486 size_read = trace_report(fd, &session->tevent,
4487 session->repipe);
4488 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4489
4490 if (readn(fd, buf, padding) < 0) {
4491 pr_err("%s: reading input file", __func__);
4492 return -1;
4493 }
4494 if (session->repipe) {
4495 int retw = write(STDOUT_FILENO, buf, padding);
4496 if (retw <= 0 || retw != padding) {
4497 pr_err("%s: repiping tracing data padding", __func__);
4498 return -1;
4499 }
4500 }
4501
4502 if (size_read + padding != size) {
4503 pr_err("%s: tracing data size mismatch", __func__);
4504 return -1;
4505 }
4506
4507 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4508
4509 return size_read + padding;
4510 }
4511 #endif
4512
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4513 int perf_event__process_build_id(struct perf_session *session,
4514 union perf_event *event)
4515 {
4516 __event_process_build_id(&event->build_id,
4517 event->build_id.filename,
4518 session);
4519 return 0;
4520 }
4521