1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55 
56 #![stable(feature = "rust1", since = "1.0.0")]
57 
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::fmt;
62 use core::hash::{Hash, Hasher};
63 use core::iter;
64 use core::marker::PhantomData;
65 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
66 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
67 use core::ptr::{self, NonNull};
68 use core::slice::{self, SliceIndex};
69 
70 use crate::alloc::{Allocator, Global};
71 #[cfg(not(no_borrow))]
72 use crate::borrow::{Cow, ToOwned};
73 use crate::boxed::Box;
74 use crate::collections::{TryReserveError, TryReserveErrorKind};
75 use crate::raw_vec::RawVec;
76 
77 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
78 pub use self::drain_filter::DrainFilter;
79 
80 mod drain_filter;
81 
82 #[cfg(not(no_global_oom_handling))]
83 #[stable(feature = "vec_splice", since = "1.21.0")]
84 pub use self::splice::Splice;
85 
86 #[cfg(not(no_global_oom_handling))]
87 mod splice;
88 
89 #[stable(feature = "drain", since = "1.6.0")]
90 pub use self::drain::Drain;
91 
92 mod drain;
93 
94 #[cfg(not(no_borrow))]
95 #[cfg(not(no_global_oom_handling))]
96 mod cow;
97 
98 #[cfg(not(no_global_oom_handling))]
99 pub(crate) use self::in_place_collect::AsVecIntoIter;
100 #[stable(feature = "rust1", since = "1.0.0")]
101 pub use self::into_iter::IntoIter;
102 
103 mod into_iter;
104 
105 #[cfg(not(no_global_oom_handling))]
106 use self::is_zero::IsZero;
107 
108 mod is_zero;
109 
110 #[cfg(not(no_global_oom_handling))]
111 mod in_place_collect;
112 
113 mod partial_eq;
114 
115 #[cfg(not(no_global_oom_handling))]
116 use self::spec_from_elem::SpecFromElem;
117 
118 #[cfg(not(no_global_oom_handling))]
119 mod spec_from_elem;
120 
121 use self::set_len_on_drop::SetLenOnDrop;
122 
123 mod set_len_on_drop;
124 
125 #[cfg(not(no_global_oom_handling))]
126 use self::in_place_drop::{InPlaceDrop, InPlaceDstBufDrop};
127 
128 #[cfg(not(no_global_oom_handling))]
129 mod in_place_drop;
130 
131 #[cfg(not(no_global_oom_handling))]
132 use self::spec_from_iter_nested::SpecFromIterNested;
133 
134 #[cfg(not(no_global_oom_handling))]
135 mod spec_from_iter_nested;
136 
137 #[cfg(not(no_global_oom_handling))]
138 use self::spec_from_iter::SpecFromIter;
139 
140 #[cfg(not(no_global_oom_handling))]
141 mod spec_from_iter;
142 
143 #[cfg(not(no_global_oom_handling))]
144 use self::spec_extend::SpecExtend;
145 
146 use self::spec_extend::TrySpecExtend;
147 
148 mod spec_extend;
149 
150 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
151 ///
152 /// # Examples
153 ///
154 /// ```
155 /// let mut vec = Vec::new();
156 /// vec.push(1);
157 /// vec.push(2);
158 ///
159 /// assert_eq!(vec.len(), 2);
160 /// assert_eq!(vec[0], 1);
161 ///
162 /// assert_eq!(vec.pop(), Some(2));
163 /// assert_eq!(vec.len(), 1);
164 ///
165 /// vec[0] = 7;
166 /// assert_eq!(vec[0], 7);
167 ///
168 /// vec.extend([1, 2, 3]);
169 ///
170 /// for x in &vec {
171 ///     println!("{x}");
172 /// }
173 /// assert_eq!(vec, [7, 1, 2, 3]);
174 /// ```
175 ///
176 /// The [`vec!`] macro is provided for convenient initialization:
177 ///
178 /// ```
179 /// let mut vec1 = vec![1, 2, 3];
180 /// vec1.push(4);
181 /// let vec2 = Vec::from([1, 2, 3, 4]);
182 /// assert_eq!(vec1, vec2);
183 /// ```
184 ///
185 /// It can also initialize each element of a `Vec<T>` with a given value.
186 /// This may be more efficient than performing allocation and initialization
187 /// in separate steps, especially when initializing a vector of zeros:
188 ///
189 /// ```
190 /// let vec = vec![0; 5];
191 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
192 ///
193 /// // The following is equivalent, but potentially slower:
194 /// let mut vec = Vec::with_capacity(5);
195 /// vec.resize(5, 0);
196 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
197 /// ```
198 ///
199 /// For more information, see
200 /// [Capacity and Reallocation](#capacity-and-reallocation).
201 ///
202 /// Use a `Vec<T>` as an efficient stack:
203 ///
204 /// ```
205 /// let mut stack = Vec::new();
206 ///
207 /// stack.push(1);
208 /// stack.push(2);
209 /// stack.push(3);
210 ///
211 /// while let Some(top) = stack.pop() {
212 ///     // Prints 3, 2, 1
213 ///     println!("{top}");
214 /// }
215 /// ```
216 ///
217 /// # Indexing
218 ///
219 /// The `Vec` type allows to access values by index, because it implements the
220 /// [`Index`] trait. An example will be more explicit:
221 ///
222 /// ```
223 /// let v = vec![0, 2, 4, 6];
224 /// println!("{}", v[1]); // it will display '2'
225 /// ```
226 ///
227 /// However be careful: if you try to access an index which isn't in the `Vec`,
228 /// your software will panic! You cannot do this:
229 ///
230 /// ```should_panic
231 /// let v = vec![0, 2, 4, 6];
232 /// println!("{}", v[6]); // it will panic!
233 /// ```
234 ///
235 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
236 /// the `Vec`.
237 ///
238 /// # Slicing
239 ///
240 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
241 /// To get a [slice][prim@slice], use [`&`]. Example:
242 ///
243 /// ```
244 /// fn read_slice(slice: &[usize]) {
245 ///     // ...
246 /// }
247 ///
248 /// let v = vec![0, 1];
249 /// read_slice(&v);
250 ///
251 /// // ... and that's all!
252 /// // you can also do it like this:
253 /// let u: &[usize] = &v;
254 /// // or like this:
255 /// let u: &[_] = &v;
256 /// ```
257 ///
258 /// In Rust, it's more common to pass slices as arguments rather than vectors
259 /// when you just want to provide read access. The same goes for [`String`] and
260 /// [`&str`].
261 ///
262 /// # Capacity and reallocation
263 ///
264 /// The capacity of a vector is the amount of space allocated for any future
265 /// elements that will be added onto the vector. This is not to be confused with
266 /// the *length* of a vector, which specifies the number of actual elements
267 /// within the vector. If a vector's length exceeds its capacity, its capacity
268 /// will automatically be increased, but its elements will have to be
269 /// reallocated.
270 ///
271 /// For example, a vector with capacity 10 and length 0 would be an empty vector
272 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
273 /// vector will not change its capacity or cause reallocation to occur. However,
274 /// if the vector's length is increased to 11, it will have to reallocate, which
275 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
276 /// whenever possible to specify how big the vector is expected to get.
277 ///
278 /// # Guarantees
279 ///
280 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
281 /// about its design. This ensures that it's as low-overhead as possible in
282 /// the general case, and can be correctly manipulated in primitive ways
283 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
284 /// If additional type parameters are added (e.g., to support custom allocators),
285 /// overriding their defaults may change the behavior.
286 ///
287 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
288 /// triplet. No more, no less. The order of these fields is completely
289 /// unspecified, and you should use the appropriate methods to modify these.
290 /// The pointer will never be null, so this type is null-pointer-optimized.
291 ///
292 /// However, the pointer might not actually point to allocated memory. In particular,
293 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
294 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
295 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
296 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
297 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
298 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
299 /// details are very subtle --- if you intend to allocate memory using a `Vec`
300 /// and use it for something else (either to pass to unsafe code, or to build your
301 /// own memory-backed collection), be sure to deallocate this memory by using
302 /// `from_raw_parts` to recover the `Vec` and then dropping it.
303 ///
304 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
305 /// (as defined by the allocator Rust is configured to use by default), and its
306 /// pointer points to [`len`] initialized, contiguous elements in order (what
307 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
308 /// logically uninitialized, contiguous elements.
309 ///
310 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
311 /// visualized as below. The top part is the `Vec` struct, it contains a
312 /// pointer to the head of the allocation in the heap, length and capacity.
313 /// The bottom part is the allocation on the heap, a contiguous memory block.
314 ///
315 /// ```text
316 ///             ptr      len  capacity
317 ///        +--------+--------+--------+
318 ///        | 0x0123 |      2 |      4 |
319 ///        +--------+--------+--------+
320 ///             |
321 ///             v
322 /// Heap   +--------+--------+--------+--------+
323 ///        |    'a' |    'b' | uninit | uninit |
324 ///        +--------+--------+--------+--------+
325 /// ```
326 ///
327 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
328 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
329 ///   layout (including the order of fields).
330 ///
331 /// `Vec` will never perform a "small optimization" where elements are actually
332 /// stored on the stack for two reasons:
333 ///
334 /// * It would make it more difficult for unsafe code to correctly manipulate
335 ///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
336 ///   only moved, and it would be more difficult to determine if a `Vec` had
337 ///   actually allocated memory.
338 ///
339 /// * It would penalize the general case, incurring an additional branch
340 ///   on every access.
341 ///
342 /// `Vec` will never automatically shrink itself, even if completely empty. This
343 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
344 /// and then filling it back up to the same [`len`] should incur no calls to
345 /// the allocator. If you wish to free up unused memory, use
346 /// [`shrink_to_fit`] or [`shrink_to`].
347 ///
348 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
349 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
350 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
351 /// accurate, and can be relied on. It can even be used to manually free the memory
352 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
353 /// when not necessary.
354 ///
355 /// `Vec` does not guarantee any particular growth strategy when reallocating
356 /// when full, nor when [`reserve`] is called. The current strategy is basic
357 /// and it may prove desirable to use a non-constant growth factor. Whatever
358 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
359 ///
360 /// `vec![x; n]`, `vec![a, b, c, d]`, and
361 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
362 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
363 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
364 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
365 ///
366 /// `Vec` will not specifically overwrite any data that is removed from it,
367 /// but also won't specifically preserve it. Its uninitialized memory is
368 /// scratch space that it may use however it wants. It will generally just do
369 /// whatever is most efficient or otherwise easy to implement. Do not rely on
370 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
371 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
372 /// first, that might not actually happen because the optimizer does not consider
373 /// this a side-effect that must be preserved. There is one case which we will
374 /// not break, however: using `unsafe` code to write to the excess capacity,
375 /// and then increasing the length to match, is always valid.
376 ///
377 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
378 /// The order has changed in the past and may change again.
379 ///
380 /// [`get`]: slice::get
381 /// [`get_mut`]: slice::get_mut
382 /// [`String`]: crate::string::String
383 /// [`&str`]: type@str
384 /// [`shrink_to_fit`]: Vec::shrink_to_fit
385 /// [`shrink_to`]: Vec::shrink_to
386 /// [capacity]: Vec::capacity
387 /// [`capacity`]: Vec::capacity
388 /// [mem::size_of::\<T>]: core::mem::size_of
389 /// [len]: Vec::len
390 /// [`len`]: Vec::len
391 /// [`push`]: Vec::push
392 /// [`insert`]: Vec::insert
393 /// [`reserve`]: Vec::reserve
394 /// [`MaybeUninit`]: core::mem::MaybeUninit
395 /// [owned slice]: Box
396 #[stable(feature = "rust1", since = "1.0.0")]
397 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
398 #[rustc_insignificant_dtor]
399 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
400     buf: RawVec<T, A>,
401     len: usize,
402 }
403 
404 ////////////////////////////////////////////////////////////////////////////////
405 // Inherent methods
406 ////////////////////////////////////////////////////////////////////////////////
407 
408 impl<T> Vec<T> {
409     /// Constructs a new, empty `Vec<T>`.
410     ///
411     /// The vector will not allocate until elements are pushed onto it.
412     ///
413     /// # Examples
414     ///
415     /// ```
416     /// # #![allow(unused_mut)]
417     /// let mut vec: Vec<i32> = Vec::new();
418     /// ```
419     #[inline]
420     #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
421     #[stable(feature = "rust1", since = "1.0.0")]
422     #[must_use]
new() -> Self423     pub const fn new() -> Self {
424         Vec { buf: RawVec::NEW, len: 0 }
425     }
426 
427     /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
428     ///
429     /// The vector will be able to hold at least `capacity` elements without
430     /// reallocating. This method is allowed to allocate for more elements than
431     /// `capacity`. If `capacity` is 0, the vector will not allocate.
432     ///
433     /// It is important to note that although the returned vector has the
434     /// minimum *capacity* specified, the vector will have a zero *length*. For
435     /// an explanation of the difference between length and capacity, see
436     /// *[Capacity and reallocation]*.
437     ///
438     /// If it is important to know the exact allocated capacity of a `Vec`,
439     /// always use the [`capacity`] method after construction.
440     ///
441     /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
442     /// and the capacity will always be `usize::MAX`.
443     ///
444     /// [Capacity and reallocation]: #capacity-and-reallocation
445     /// [`capacity`]: Vec::capacity
446     ///
447     /// # Panics
448     ///
449     /// Panics if the new capacity exceeds `isize::MAX` bytes.
450     ///
451     /// # Examples
452     ///
453     /// ```
454     /// let mut vec = Vec::with_capacity(10);
455     ///
456     /// // The vector contains no items, even though it has capacity for more
457     /// assert_eq!(vec.len(), 0);
458     /// assert!(vec.capacity() >= 10);
459     ///
460     /// // These are all done without reallocating...
461     /// for i in 0..10 {
462     ///     vec.push(i);
463     /// }
464     /// assert_eq!(vec.len(), 10);
465     /// assert!(vec.capacity() >= 10);
466     ///
467     /// // ...but this may make the vector reallocate
468     /// vec.push(11);
469     /// assert_eq!(vec.len(), 11);
470     /// assert!(vec.capacity() >= 11);
471     ///
472     /// // A vector of a zero-sized type will always over-allocate, since no
473     /// // allocation is necessary
474     /// let vec_units = Vec::<()>::with_capacity(10);
475     /// assert_eq!(vec_units.capacity(), usize::MAX);
476     /// ```
477     #[cfg(not(no_global_oom_handling))]
478     #[inline]
479     #[stable(feature = "rust1", since = "1.0.0")]
480     #[must_use]
with_capacity(capacity: usize) -> Self481     pub fn with_capacity(capacity: usize) -> Self {
482         Self::with_capacity_in(capacity, Global)
483     }
484 
485     /// Tries to construct a new, empty `Vec<T>` with at least the specified capacity.
486     ///
487     /// The vector will be able to hold at least `capacity` elements without
488     /// reallocating. This method is allowed to allocate for more elements than
489     /// `capacity`. If `capacity` is 0, the vector will not allocate.
490     ///
491     /// It is important to note that although the returned vector has the
492     /// minimum *capacity* specified, the vector will have a zero *length*. For
493     /// an explanation of the difference between length and capacity, see
494     /// *[Capacity and reallocation]*.
495     ///
496     /// If it is important to know the exact allocated capacity of a `Vec`,
497     /// always use the [`capacity`] method after construction.
498     ///
499     /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
500     /// and the capacity will always be `usize::MAX`.
501     ///
502     /// [Capacity and reallocation]: #capacity-and-reallocation
503     /// [`capacity`]: Vec::capacity
504     ///
505     /// # Examples
506     ///
507     /// ```
508     /// let mut vec = Vec::try_with_capacity(10).unwrap();
509     ///
510     /// // The vector contains no items, even though it has capacity for more
511     /// assert_eq!(vec.len(), 0);
512     /// assert!(vec.capacity() >= 10);
513     ///
514     /// // These are all done without reallocating...
515     /// for i in 0..10 {
516     ///     vec.push(i);
517     /// }
518     /// assert_eq!(vec.len(), 10);
519     /// assert!(vec.capacity() >= 10);
520     ///
521     /// // ...but this may make the vector reallocate
522     /// vec.push(11);
523     /// assert_eq!(vec.len(), 11);
524     /// assert!(vec.capacity() >= 11);
525     ///
526     /// let mut result = Vec::try_with_capacity(usize::MAX);
527     /// assert!(result.is_err());
528     ///
529     /// // A vector of a zero-sized type will always over-allocate, since no
530     /// // allocation is necessary
531     /// let vec_units = Vec::<()>::try_with_capacity(10).unwrap();
532     /// assert_eq!(vec_units.capacity(), usize::MAX);
533     /// ```
534     #[inline]
535     #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity(capacity: usize) -> Result<Self, TryReserveError>536     pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
537         Self::try_with_capacity_in(capacity, Global)
538     }
539 
540     /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length.
541     ///
542     /// # Safety
543     ///
544     /// This is highly unsafe, due to the number of invariants that aren't
545     /// checked:
546     ///
547     /// * `ptr` must have been allocated using the global allocator, such as via
548     ///   the [`alloc::alloc`] function.
549     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
550     ///   (`T` having a less strict alignment is not sufficient, the alignment really
551     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
552     ///   allocated and deallocated with the same layout.)
553     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
554     ///   to be the same size as the pointer was allocated with. (Because similar to
555     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
556     /// * `length` needs to be less than or equal to `capacity`.
557     /// * The first `length` values must be properly initialized values of type `T`.
558     /// * `capacity` needs to be the capacity that the pointer was allocated with.
559     /// * The allocated size in bytes must be no larger than `isize::MAX`.
560     ///   See the safety documentation of [`pointer::offset`].
561     ///
562     /// These requirements are always upheld by any `ptr` that has been allocated
563     /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
564     /// upheld.
565     ///
566     /// Violating these may cause problems like corrupting the allocator's
567     /// internal data structures. For example it is normally **not** safe
568     /// to build a `Vec<u8>` from a pointer to a C `char` array with length
569     /// `size_t`, doing so is only safe if the array was initially allocated by
570     /// a `Vec` or `String`.
571     /// It's also not safe to build one from a `Vec<u16>` and its length, because
572     /// the allocator cares about the alignment, and these two types have different
573     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
574     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
575     /// these issues, it is often preferable to do casting/transmuting using
576     /// [`slice::from_raw_parts`] instead.
577     ///
578     /// The ownership of `ptr` is effectively transferred to the
579     /// `Vec<T>` which may then deallocate, reallocate or change the
580     /// contents of memory pointed to by the pointer at will. Ensure
581     /// that nothing else uses the pointer after calling this
582     /// function.
583     ///
584     /// [`String`]: crate::string::String
585     /// [`alloc::alloc`]: crate::alloc::alloc
586     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
587     ///
588     /// # Examples
589     ///
590     /// ```
591     /// use std::ptr;
592     /// use std::mem;
593     ///
594     /// let v = vec![1, 2, 3];
595     ///
596     // FIXME Update this when vec_into_raw_parts is stabilized
597     /// // Prevent running `v`'s destructor so we are in complete control
598     /// // of the allocation.
599     /// let mut v = mem::ManuallyDrop::new(v);
600     ///
601     /// // Pull out the various important pieces of information about `v`
602     /// let p = v.as_mut_ptr();
603     /// let len = v.len();
604     /// let cap = v.capacity();
605     ///
606     /// unsafe {
607     ///     // Overwrite memory with 4, 5, 6
608     ///     for i in 0..len {
609     ///         ptr::write(p.add(i), 4 + i);
610     ///     }
611     ///
612     ///     // Put everything back together into a Vec
613     ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
614     ///     assert_eq!(rebuilt, [4, 5, 6]);
615     /// }
616     /// ```
617     ///
618     /// Using memory that was allocated elsewhere:
619     ///
620     /// ```rust
621     /// #![feature(allocator_api)]
622     ///
623     /// use std::alloc::{AllocError, Allocator, Global, Layout};
624     ///
625     /// fn main() {
626     ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
627     ///
628     ///     let vec = unsafe {
629     ///         let mem = match Global.allocate(layout) {
630     ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
631     ///             Err(AllocError) => return,
632     ///         };
633     ///
634     ///         mem.write(1_000_000);
635     ///
636     ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
637     ///     };
638     ///
639     ///     assert_eq!(vec, &[1_000_000]);
640     ///     assert_eq!(vec.capacity(), 16);
641     /// }
642     /// ```
643     #[inline]
644     #[stable(feature = "rust1", since = "1.0.0")]
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self645     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
646         unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
647     }
648 }
649 
650 impl<T, A: Allocator> Vec<T, A> {
651     /// Constructs a new, empty `Vec<T, A>`.
652     ///
653     /// The vector will not allocate until elements are pushed onto it.
654     ///
655     /// # Examples
656     ///
657     /// ```
658     /// #![feature(allocator_api)]
659     ///
660     /// use std::alloc::System;
661     ///
662     /// # #[allow(unused_mut)]
663     /// let mut vec: Vec<i32, _> = Vec::new_in(System);
664     /// ```
665     #[inline]
666     #[unstable(feature = "allocator_api", issue = "32838")]
new_in(alloc: A) -> Self667     pub const fn new_in(alloc: A) -> Self {
668         Vec { buf: RawVec::new_in(alloc), len: 0 }
669     }
670 
671     /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
672     /// with the provided allocator.
673     ///
674     /// The vector will be able to hold at least `capacity` elements without
675     /// reallocating. This method is allowed to allocate for more elements than
676     /// `capacity`. If `capacity` is 0, the vector will not allocate.
677     ///
678     /// It is important to note that although the returned vector has the
679     /// minimum *capacity* specified, the vector will have a zero *length*. For
680     /// an explanation of the difference between length and capacity, see
681     /// *[Capacity and reallocation]*.
682     ///
683     /// If it is important to know the exact allocated capacity of a `Vec`,
684     /// always use the [`capacity`] method after construction.
685     ///
686     /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
687     /// and the capacity will always be `usize::MAX`.
688     ///
689     /// [Capacity and reallocation]: #capacity-and-reallocation
690     /// [`capacity`]: Vec::capacity
691     ///
692     /// # Panics
693     ///
694     /// Panics if the new capacity exceeds `isize::MAX` bytes.
695     ///
696     /// # Examples
697     ///
698     /// ```
699     /// #![feature(allocator_api)]
700     ///
701     /// use std::alloc::System;
702     ///
703     /// let mut vec = Vec::with_capacity_in(10, System);
704     ///
705     /// // The vector contains no items, even though it has capacity for more
706     /// assert_eq!(vec.len(), 0);
707     /// assert!(vec.capacity() >= 10);
708     ///
709     /// // These are all done without reallocating...
710     /// for i in 0..10 {
711     ///     vec.push(i);
712     /// }
713     /// assert_eq!(vec.len(), 10);
714     /// assert!(vec.capacity() >= 10);
715     ///
716     /// // ...but this may make the vector reallocate
717     /// vec.push(11);
718     /// assert_eq!(vec.len(), 11);
719     /// assert!(vec.capacity() >= 11);
720     ///
721     /// // A vector of a zero-sized type will always over-allocate, since no
722     /// // allocation is necessary
723     /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
724     /// assert_eq!(vec_units.capacity(), usize::MAX);
725     /// ```
726     #[cfg(not(no_global_oom_handling))]
727     #[inline]
728     #[unstable(feature = "allocator_api", issue = "32838")]
with_capacity_in(capacity: usize, alloc: A) -> Self729     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
730         Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
731     }
732 
733     /// Tries to construct a new, empty `Vec<T, A>` with at least the specified capacity
734     /// with the provided allocator.
735     ///
736     /// The vector will be able to hold at least `capacity` elements without
737     /// reallocating. This method is allowed to allocate for more elements than
738     /// `capacity`. If `capacity` is 0, the vector will not allocate.
739     ///
740     /// It is important to note that although the returned vector has the
741     /// minimum *capacity* specified, the vector will have a zero *length*. For
742     /// an explanation of the difference between length and capacity, see
743     /// *[Capacity and reallocation]*.
744     ///
745     /// If it is important to know the exact allocated capacity of a `Vec`,
746     /// always use the [`capacity`] method after construction.
747     ///
748     /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
749     /// and the capacity will always be `usize::MAX`.
750     ///
751     /// [Capacity and reallocation]: #capacity-and-reallocation
752     /// [`capacity`]: Vec::capacity
753     ///
754     /// # Examples
755     ///
756     /// ```
757     /// #![feature(allocator_api)]
758     ///
759     /// use std::alloc::System;
760     ///
761     /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
762     ///
763     /// // The vector contains no items, even though it has capacity for more
764     /// assert_eq!(vec.len(), 0);
765     /// assert!(vec.capacity() >= 10);
766     ///
767     /// // These are all done without reallocating...
768     /// for i in 0..10 {
769     ///     vec.push(i);
770     /// }
771     /// assert_eq!(vec.len(), 10);
772     /// assert!(vec.capacity() >= 10);
773     ///
774     /// // ...but this may make the vector reallocate
775     /// vec.push(11);
776     /// assert_eq!(vec.len(), 11);
777     /// assert!(vec.capacity() >= 11);
778     ///
779     /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
780     /// assert!(result.is_err());
781     ///
782     /// // A vector of a zero-sized type will always over-allocate, since no
783     /// // allocation is necessary
784     /// let vec_units = Vec::<(), System>::try_with_capacity_in(10, System).unwrap();
785     /// assert_eq!(vec_units.capacity(), usize::MAX);
786     /// ```
787     #[inline]
788     #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError>789     pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
790         Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
791     }
792 
793     /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length,
794     /// and an allocator.
795     ///
796     /// # Safety
797     ///
798     /// This is highly unsafe, due to the number of invariants that aren't
799     /// checked:
800     ///
801     /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
802     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
803     ///   (`T` having a less strict alignment is not sufficient, the alignment really
804     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
805     ///   allocated and deallocated with the same layout.)
806     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
807     ///   to be the same size as the pointer was allocated with. (Because similar to
808     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
809     /// * `length` needs to be less than or equal to `capacity`.
810     /// * The first `length` values must be properly initialized values of type `T`.
811     /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
812     /// * The allocated size in bytes must be no larger than `isize::MAX`.
813     ///   See the safety documentation of [`pointer::offset`].
814     ///
815     /// These requirements are always upheld by any `ptr` that has been allocated
816     /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
817     /// upheld.
818     ///
819     /// Violating these may cause problems like corrupting the allocator's
820     /// internal data structures. For example it is **not** safe
821     /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
822     /// It's also not safe to build one from a `Vec<u16>` and its length, because
823     /// the allocator cares about the alignment, and these two types have different
824     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
825     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
826     ///
827     /// The ownership of `ptr` is effectively transferred to the
828     /// `Vec<T>` which may then deallocate, reallocate or change the
829     /// contents of memory pointed to by the pointer at will. Ensure
830     /// that nothing else uses the pointer after calling this
831     /// function.
832     ///
833     /// [`String`]: crate::string::String
834     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
835     /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
836     /// [*fit*]: crate::alloc::Allocator#memory-fitting
837     ///
838     /// # Examples
839     ///
840     /// ```
841     /// #![feature(allocator_api)]
842     ///
843     /// use std::alloc::System;
844     ///
845     /// use std::ptr;
846     /// use std::mem;
847     ///
848     /// let mut v = Vec::with_capacity_in(3, System);
849     /// v.push(1);
850     /// v.push(2);
851     /// v.push(3);
852     ///
853     // FIXME Update this when vec_into_raw_parts is stabilized
854     /// // Prevent running `v`'s destructor so we are in complete control
855     /// // of the allocation.
856     /// let mut v = mem::ManuallyDrop::new(v);
857     ///
858     /// // Pull out the various important pieces of information about `v`
859     /// let p = v.as_mut_ptr();
860     /// let len = v.len();
861     /// let cap = v.capacity();
862     /// let alloc = v.allocator();
863     ///
864     /// unsafe {
865     ///     // Overwrite memory with 4, 5, 6
866     ///     for i in 0..len {
867     ///         ptr::write(p.add(i), 4 + i);
868     ///     }
869     ///
870     ///     // Put everything back together into a Vec
871     ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
872     ///     assert_eq!(rebuilt, [4, 5, 6]);
873     /// }
874     /// ```
875     ///
876     /// Using memory that was allocated elsewhere:
877     ///
878     /// ```rust
879     /// use std::alloc::{alloc, Layout};
880     ///
881     /// fn main() {
882     ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
883     ///     let vec = unsafe {
884     ///         let mem = alloc(layout).cast::<u32>();
885     ///         if mem.is_null() {
886     ///             return;
887     ///         }
888     ///
889     ///         mem.write(1_000_000);
890     ///
891     ///         Vec::from_raw_parts(mem, 1, 16)
892     ///     };
893     ///
894     ///     assert_eq!(vec, &[1_000_000]);
895     ///     assert_eq!(vec.capacity(), 16);
896     /// }
897     /// ```
898     #[inline]
899     #[unstable(feature = "allocator_api", issue = "32838")]
from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self900     pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
901         unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
902     }
903 
904     /// Decomposes a `Vec<T>` into its raw components.
905     ///
906     /// Returns the raw pointer to the underlying data, the length of
907     /// the vector (in elements), and the allocated capacity of the
908     /// data (in elements). These are the same arguments in the same
909     /// order as the arguments to [`from_raw_parts`].
910     ///
911     /// After calling this function, the caller is responsible for the
912     /// memory previously managed by the `Vec`. The only way to do
913     /// this is to convert the raw pointer, length, and capacity back
914     /// into a `Vec` with the [`from_raw_parts`] function, allowing
915     /// the destructor to perform the cleanup.
916     ///
917     /// [`from_raw_parts`]: Vec::from_raw_parts
918     ///
919     /// # Examples
920     ///
921     /// ```
922     /// #![feature(vec_into_raw_parts)]
923     /// let v: Vec<i32> = vec![-1, 0, 1];
924     ///
925     /// let (ptr, len, cap) = v.into_raw_parts();
926     ///
927     /// let rebuilt = unsafe {
928     ///     // We can now make changes to the components, such as
929     ///     // transmuting the raw pointer to a compatible type.
930     ///     let ptr = ptr as *mut u32;
931     ///
932     ///     Vec::from_raw_parts(ptr, len, cap)
933     /// };
934     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
935     /// ```
936     #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts(self) -> (*mut T, usize, usize)937     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
938         let mut me = ManuallyDrop::new(self);
939         (me.as_mut_ptr(), me.len(), me.capacity())
940     }
941 
942     /// Decomposes a `Vec<T>` into its raw components.
943     ///
944     /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
945     /// the allocated capacity of the data (in elements), and the allocator. These are the same
946     /// arguments in the same order as the arguments to [`from_raw_parts_in`].
947     ///
948     /// After calling this function, the caller is responsible for the
949     /// memory previously managed by the `Vec`. The only way to do
950     /// this is to convert the raw pointer, length, and capacity back
951     /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
952     /// the destructor to perform the cleanup.
953     ///
954     /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
955     ///
956     /// # Examples
957     ///
958     /// ```
959     /// #![feature(allocator_api, vec_into_raw_parts)]
960     ///
961     /// use std::alloc::System;
962     ///
963     /// let mut v: Vec<i32, System> = Vec::new_in(System);
964     /// v.push(-1);
965     /// v.push(0);
966     /// v.push(1);
967     ///
968     /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
969     ///
970     /// let rebuilt = unsafe {
971     ///     // We can now make changes to the components, such as
972     ///     // transmuting the raw pointer to a compatible type.
973     ///     let ptr = ptr as *mut u32;
974     ///
975     ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
976     /// };
977     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
978     /// ```
979     #[unstable(feature = "allocator_api", issue = "32838")]
980     // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A)981     pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
982         let mut me = ManuallyDrop::new(self);
983         let len = me.len();
984         let capacity = me.capacity();
985         let ptr = me.as_mut_ptr();
986         let alloc = unsafe { ptr::read(me.allocator()) };
987         (ptr, len, capacity, alloc)
988     }
989 
990     /// Returns the total number of elements the vector can hold without
991     /// reallocating.
992     ///
993     /// # Examples
994     ///
995     /// ```
996     /// let mut vec: Vec<i32> = Vec::with_capacity(10);
997     /// vec.push(42);
998     /// assert!(vec.capacity() >= 10);
999     /// ```
1000     #[inline]
1001     #[stable(feature = "rust1", since = "1.0.0")]
capacity(&self) -> usize1002     pub fn capacity(&self) -> usize {
1003         self.buf.capacity()
1004     }
1005 
1006     /// Reserves capacity for at least `additional` more elements to be inserted
1007     /// in the given `Vec<T>`. The collection may reserve more space to
1008     /// speculatively avoid frequent reallocations. After calling `reserve`,
1009     /// capacity will be greater than or equal to `self.len() + additional`.
1010     /// Does nothing if capacity is already sufficient.
1011     ///
1012     /// # Panics
1013     ///
1014     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1015     ///
1016     /// # Examples
1017     ///
1018     /// ```
1019     /// let mut vec = vec![1];
1020     /// vec.reserve(10);
1021     /// assert!(vec.capacity() >= 11);
1022     /// ```
1023     #[cfg(not(no_global_oom_handling))]
1024     #[stable(feature = "rust1", since = "1.0.0")]
reserve(&mut self, additional: usize)1025     pub fn reserve(&mut self, additional: usize) {
1026         self.buf.reserve(self.len, additional);
1027     }
1028 
1029     /// Reserves the minimum capacity for at least `additional` more elements to
1030     /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1031     /// deliberately over-allocate to speculatively avoid frequent allocations.
1032     /// After calling `reserve_exact`, capacity will be greater than or equal to
1033     /// `self.len() + additional`. Does nothing if the capacity is already
1034     /// sufficient.
1035     ///
1036     /// Note that the allocator may give the collection more space than it
1037     /// requests. Therefore, capacity can not be relied upon to be precisely
1038     /// minimal. Prefer [`reserve`] if future insertions are expected.
1039     ///
1040     /// [`reserve`]: Vec::reserve
1041     ///
1042     /// # Panics
1043     ///
1044     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1045     ///
1046     /// # Examples
1047     ///
1048     /// ```
1049     /// let mut vec = vec![1];
1050     /// vec.reserve_exact(10);
1051     /// assert!(vec.capacity() >= 11);
1052     /// ```
1053     #[cfg(not(no_global_oom_handling))]
1054     #[stable(feature = "rust1", since = "1.0.0")]
reserve_exact(&mut self, additional: usize)1055     pub fn reserve_exact(&mut self, additional: usize) {
1056         self.buf.reserve_exact(self.len, additional);
1057     }
1058 
1059     /// Tries to reserve capacity for at least `additional` more elements to be inserted
1060     /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1061     /// frequent reallocations. After calling `try_reserve`, capacity will be
1062     /// greater than or equal to `self.len() + additional` if it returns
1063     /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1064     /// preserves the contents even if an error occurs.
1065     ///
1066     /// # Errors
1067     ///
1068     /// If the capacity overflows, or the allocator reports a failure, then an error
1069     /// is returned.
1070     ///
1071     /// # Examples
1072     ///
1073     /// ```
1074     /// use std::collections::TryReserveError;
1075     ///
1076     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1077     ///     let mut output = Vec::new();
1078     ///
1079     ///     // Pre-reserve the memory, exiting if we can't
1080     ///     output.try_reserve(data.len())?;
1081     ///
1082     ///     // Now we know this can't OOM in the middle of our complex work
1083     ///     output.extend(data.iter().map(|&val| {
1084     ///         val * 2 + 5 // very complicated
1085     ///     }));
1086     ///
1087     ///     Ok(output)
1088     /// }
1089     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1090     /// ```
1091     #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>1092     pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1093         self.buf.try_reserve(self.len, additional)
1094     }
1095 
1096     /// Tries to reserve the minimum capacity for at least `additional`
1097     /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1098     /// this will not deliberately over-allocate to speculatively avoid frequent
1099     /// allocations. After calling `try_reserve_exact`, capacity will be greater
1100     /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1101     /// Does nothing if the capacity is already sufficient.
1102     ///
1103     /// Note that the allocator may give the collection more space than it
1104     /// requests. Therefore, capacity can not be relied upon to be precisely
1105     /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1106     ///
1107     /// [`try_reserve`]: Vec::try_reserve
1108     ///
1109     /// # Errors
1110     ///
1111     /// If the capacity overflows, or the allocator reports a failure, then an error
1112     /// is returned.
1113     ///
1114     /// # Examples
1115     ///
1116     /// ```
1117     /// use std::collections::TryReserveError;
1118     ///
1119     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1120     ///     let mut output = Vec::new();
1121     ///
1122     ///     // Pre-reserve the memory, exiting if we can't
1123     ///     output.try_reserve_exact(data.len())?;
1124     ///
1125     ///     // Now we know this can't OOM in the middle of our complex work
1126     ///     output.extend(data.iter().map(|&val| {
1127     ///         val * 2 + 5 // very complicated
1128     ///     }));
1129     ///
1130     ///     Ok(output)
1131     /// }
1132     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1133     /// ```
1134     #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError>1135     pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1136         self.buf.try_reserve_exact(self.len, additional)
1137     }
1138 
1139     /// Shrinks the capacity of the vector as much as possible.
1140     ///
1141     /// It will drop down as close as possible to the length but the allocator
1142     /// may still inform the vector that there is space for a few more elements.
1143     ///
1144     /// # Examples
1145     ///
1146     /// ```
1147     /// let mut vec = Vec::with_capacity(10);
1148     /// vec.extend([1, 2, 3]);
1149     /// assert!(vec.capacity() >= 10);
1150     /// vec.shrink_to_fit();
1151     /// assert!(vec.capacity() >= 3);
1152     /// ```
1153     #[cfg(not(no_global_oom_handling))]
1154     #[stable(feature = "rust1", since = "1.0.0")]
shrink_to_fit(&mut self)1155     pub fn shrink_to_fit(&mut self) {
1156         // The capacity is never less than the length, and there's nothing to do when
1157         // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1158         // by only calling it with a greater capacity.
1159         if self.capacity() > self.len {
1160             self.buf.shrink_to_fit(self.len);
1161         }
1162     }
1163 
1164     /// Shrinks the capacity of the vector with a lower bound.
1165     ///
1166     /// The capacity will remain at least as large as both the length
1167     /// and the supplied value.
1168     ///
1169     /// If the current capacity is less than the lower limit, this is a no-op.
1170     ///
1171     /// # Examples
1172     ///
1173     /// ```
1174     /// let mut vec = Vec::with_capacity(10);
1175     /// vec.extend([1, 2, 3]);
1176     /// assert!(vec.capacity() >= 10);
1177     /// vec.shrink_to(4);
1178     /// assert!(vec.capacity() >= 4);
1179     /// vec.shrink_to(0);
1180     /// assert!(vec.capacity() >= 3);
1181     /// ```
1182     #[cfg(not(no_global_oom_handling))]
1183     #[stable(feature = "shrink_to", since = "1.56.0")]
shrink_to(&mut self, min_capacity: usize)1184     pub fn shrink_to(&mut self, min_capacity: usize) {
1185         if self.capacity() > min_capacity {
1186             self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1187         }
1188     }
1189 
1190     /// Converts the vector into [`Box<[T]>`][owned slice].
1191     ///
1192     /// If the vector has excess capacity, its items will be moved into a
1193     /// newly-allocated buffer with exactly the right capacity.
1194     ///
1195     /// [owned slice]: Box
1196     ///
1197     /// # Examples
1198     ///
1199     /// ```
1200     /// let v = vec![1, 2, 3];
1201     ///
1202     /// let slice = v.into_boxed_slice();
1203     /// ```
1204     ///
1205     /// Any excess capacity is removed:
1206     ///
1207     /// ```
1208     /// let mut vec = Vec::with_capacity(10);
1209     /// vec.extend([1, 2, 3]);
1210     ///
1211     /// assert!(vec.capacity() >= 10);
1212     /// let slice = vec.into_boxed_slice();
1213     /// assert_eq!(slice.into_vec().capacity(), 3);
1214     /// ```
1215     #[cfg(not(no_global_oom_handling))]
1216     #[stable(feature = "rust1", since = "1.0.0")]
into_boxed_slice(mut self) -> Box<[T], A>1217     pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1218         unsafe {
1219             self.shrink_to_fit();
1220             let me = ManuallyDrop::new(self);
1221             let buf = ptr::read(&me.buf);
1222             let len = me.len();
1223             buf.into_box(len).assume_init()
1224         }
1225     }
1226 
1227     /// Shortens the vector, keeping the first `len` elements and dropping
1228     /// the rest.
1229     ///
1230     /// If `len` is greater than the vector's current length, this has no
1231     /// effect.
1232     ///
1233     /// The [`drain`] method can emulate `truncate`, but causes the excess
1234     /// elements to be returned instead of dropped.
1235     ///
1236     /// Note that this method has no effect on the allocated capacity
1237     /// of the vector.
1238     ///
1239     /// # Examples
1240     ///
1241     /// Truncating a five element vector to two elements:
1242     ///
1243     /// ```
1244     /// let mut vec = vec![1, 2, 3, 4, 5];
1245     /// vec.truncate(2);
1246     /// assert_eq!(vec, [1, 2]);
1247     /// ```
1248     ///
1249     /// No truncation occurs when `len` is greater than the vector's current
1250     /// length:
1251     ///
1252     /// ```
1253     /// let mut vec = vec![1, 2, 3];
1254     /// vec.truncate(8);
1255     /// assert_eq!(vec, [1, 2, 3]);
1256     /// ```
1257     ///
1258     /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1259     /// method.
1260     ///
1261     /// ```
1262     /// let mut vec = vec![1, 2, 3];
1263     /// vec.truncate(0);
1264     /// assert_eq!(vec, []);
1265     /// ```
1266     ///
1267     /// [`clear`]: Vec::clear
1268     /// [`drain`]: Vec::drain
1269     #[stable(feature = "rust1", since = "1.0.0")]
truncate(&mut self, len: usize)1270     pub fn truncate(&mut self, len: usize) {
1271         // This is safe because:
1272         //
1273         // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1274         //   case avoids creating an invalid slice, and
1275         // * the `len` of the vector is shrunk before calling `drop_in_place`,
1276         //   such that no value will be dropped twice in case `drop_in_place`
1277         //   were to panic once (if it panics twice, the program aborts).
1278         unsafe {
1279             // Note: It's intentional that this is `>` and not `>=`.
1280             //       Changing it to `>=` has negative performance
1281             //       implications in some cases. See #78884 for more.
1282             if len > self.len {
1283                 return;
1284             }
1285             let remaining_len = self.len - len;
1286             let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1287             self.len = len;
1288             ptr::drop_in_place(s);
1289         }
1290     }
1291 
1292     /// Extracts a slice containing the entire vector.
1293     ///
1294     /// Equivalent to `&s[..]`.
1295     ///
1296     /// # Examples
1297     ///
1298     /// ```
1299     /// use std::io::{self, Write};
1300     /// let buffer = vec![1, 2, 3, 5, 8];
1301     /// io::sink().write(buffer.as_slice()).unwrap();
1302     /// ```
1303     #[inline]
1304     #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_slice(&self) -> &[T]1305     pub fn as_slice(&self) -> &[T] {
1306         self
1307     }
1308 
1309     /// Extracts a mutable slice of the entire vector.
1310     ///
1311     /// Equivalent to `&mut s[..]`.
1312     ///
1313     /// # Examples
1314     ///
1315     /// ```
1316     /// use std::io::{self, Read};
1317     /// let mut buffer = vec![0; 3];
1318     /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1319     /// ```
1320     #[inline]
1321     #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_mut_slice(&mut self) -> &mut [T]1322     pub fn as_mut_slice(&mut self) -> &mut [T] {
1323         self
1324     }
1325 
1326     /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1327     /// valid for zero sized reads if the vector didn't allocate.
1328     ///
1329     /// The caller must ensure that the vector outlives the pointer this
1330     /// function returns, or else it will end up pointing to garbage.
1331     /// Modifying the vector may cause its buffer to be reallocated,
1332     /// which would also make any pointers to it invalid.
1333     ///
1334     /// The caller must also ensure that the memory the pointer (non-transitively) points to
1335     /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1336     /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1337     ///
1338     /// # Examples
1339     ///
1340     /// ```
1341     /// let x = vec![1, 2, 4];
1342     /// let x_ptr = x.as_ptr();
1343     ///
1344     /// unsafe {
1345     ///     for i in 0..x.len() {
1346     ///         assert_eq!(*x_ptr.add(i), 1 << i);
1347     ///     }
1348     /// }
1349     /// ```
1350     ///
1351     /// [`as_mut_ptr`]: Vec::as_mut_ptr
1352     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1353     #[inline]
as_ptr(&self) -> *const T1354     pub fn as_ptr(&self) -> *const T {
1355         // We shadow the slice method of the same name to avoid going through
1356         // `deref`, which creates an intermediate reference.
1357         self.buf.ptr()
1358     }
1359 
1360     /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
1361     /// raw pointer valid for zero sized reads if the vector didn't allocate.
1362     ///
1363     /// The caller must ensure that the vector outlives the pointer this
1364     /// function returns, or else it will end up pointing to garbage.
1365     /// Modifying the vector may cause its buffer to be reallocated,
1366     /// which would also make any pointers to it invalid.
1367     ///
1368     /// # Examples
1369     ///
1370     /// ```
1371     /// // Allocate vector big enough for 4 elements.
1372     /// let size = 4;
1373     /// let mut x: Vec<i32> = Vec::with_capacity(size);
1374     /// let x_ptr = x.as_mut_ptr();
1375     ///
1376     /// // Initialize elements via raw pointer writes, then set length.
1377     /// unsafe {
1378     ///     for i in 0..size {
1379     ///         *x_ptr.add(i) = i as i32;
1380     ///     }
1381     ///     x.set_len(size);
1382     /// }
1383     /// assert_eq!(&*x, &[0, 1, 2, 3]);
1384     /// ```
1385     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1386     #[inline]
as_mut_ptr(&mut self) -> *mut T1387     pub fn as_mut_ptr(&mut self) -> *mut T {
1388         // We shadow the slice method of the same name to avoid going through
1389         // `deref_mut`, which creates an intermediate reference.
1390         self.buf.ptr()
1391     }
1392 
1393     /// Returns a reference to the underlying allocator.
1394     #[unstable(feature = "allocator_api", issue = "32838")]
1395     #[inline]
allocator(&self) -> &A1396     pub fn allocator(&self) -> &A {
1397         self.buf.allocator()
1398     }
1399 
1400     /// Forces the length of the vector to `new_len`.
1401     ///
1402     /// This is a low-level operation that maintains none of the normal
1403     /// invariants of the type. Normally changing the length of a vector
1404     /// is done using one of the safe operations instead, such as
1405     /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1406     ///
1407     /// [`truncate`]: Vec::truncate
1408     /// [`resize`]: Vec::resize
1409     /// [`extend`]: Extend::extend
1410     /// [`clear`]: Vec::clear
1411     ///
1412     /// # Safety
1413     ///
1414     /// - `new_len` must be less than or equal to [`capacity()`].
1415     /// - The elements at `old_len..new_len` must be initialized.
1416     ///
1417     /// [`capacity()`]: Vec::capacity
1418     ///
1419     /// # Examples
1420     ///
1421     /// This method can be useful for situations in which the vector
1422     /// is serving as a buffer for other code, particularly over FFI:
1423     ///
1424     /// ```no_run
1425     /// # #![allow(dead_code)]
1426     /// # // This is just a minimal skeleton for the doc example;
1427     /// # // don't use this as a starting point for a real library.
1428     /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1429     /// # const Z_OK: i32 = 0;
1430     /// # extern "C" {
1431     /// #     fn deflateGetDictionary(
1432     /// #         strm: *mut std::ffi::c_void,
1433     /// #         dictionary: *mut u8,
1434     /// #         dictLength: *mut usize,
1435     /// #     ) -> i32;
1436     /// # }
1437     /// # impl StreamWrapper {
1438     /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1439     ///     // Per the FFI method's docs, "32768 bytes is always enough".
1440     ///     let mut dict = Vec::with_capacity(32_768);
1441     ///     let mut dict_length = 0;
1442     ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1443     ///     // 1. `dict_length` elements were initialized.
1444     ///     // 2. `dict_length` <= the capacity (32_768)
1445     ///     // which makes `set_len` safe to call.
1446     ///     unsafe {
1447     ///         // Make the FFI call...
1448     ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1449     ///         if r == Z_OK {
1450     ///             // ...and update the length to what was initialized.
1451     ///             dict.set_len(dict_length);
1452     ///             Some(dict)
1453     ///         } else {
1454     ///             None
1455     ///         }
1456     ///     }
1457     /// }
1458     /// # }
1459     /// ```
1460     ///
1461     /// While the following example is sound, there is a memory leak since
1462     /// the inner vectors were not freed prior to the `set_len` call:
1463     ///
1464     /// ```
1465     /// let mut vec = vec![vec![1, 0, 0],
1466     ///                    vec![0, 1, 0],
1467     ///                    vec![0, 0, 1]];
1468     /// // SAFETY:
1469     /// // 1. `old_len..0` is empty so no elements need to be initialized.
1470     /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1471     /// unsafe {
1472     ///     vec.set_len(0);
1473     /// }
1474     /// ```
1475     ///
1476     /// Normally, here, one would use [`clear`] instead to correctly drop
1477     /// the contents and thus not leak memory.
1478     #[inline]
1479     #[stable(feature = "rust1", since = "1.0.0")]
set_len(&mut self, new_len: usize)1480     pub unsafe fn set_len(&mut self, new_len: usize) {
1481         debug_assert!(new_len <= self.capacity());
1482 
1483         self.len = new_len;
1484     }
1485 
1486     /// Removes an element from the vector and returns it.
1487     ///
1488     /// The removed element is replaced by the last element of the vector.
1489     ///
1490     /// This does not preserve ordering, but is *O*(1).
1491     /// If you need to preserve the element order, use [`remove`] instead.
1492     ///
1493     /// [`remove`]: Vec::remove
1494     ///
1495     /// # Panics
1496     ///
1497     /// Panics if `index` is out of bounds.
1498     ///
1499     /// # Examples
1500     ///
1501     /// ```
1502     /// let mut v = vec!["foo", "bar", "baz", "qux"];
1503     ///
1504     /// assert_eq!(v.swap_remove(1), "bar");
1505     /// assert_eq!(v, ["foo", "qux", "baz"]);
1506     ///
1507     /// assert_eq!(v.swap_remove(0), "foo");
1508     /// assert_eq!(v, ["baz", "qux"]);
1509     /// ```
1510     #[inline]
1511     #[stable(feature = "rust1", since = "1.0.0")]
swap_remove(&mut self, index: usize) -> T1512     pub fn swap_remove(&mut self, index: usize) -> T {
1513         #[cold]
1514         #[inline(never)]
1515         fn assert_failed(index: usize, len: usize) -> ! {
1516             panic!("swap_remove index (is {index}) should be < len (is {len})");
1517         }
1518 
1519         let len = self.len();
1520         if index >= len {
1521             assert_failed(index, len);
1522         }
1523         unsafe {
1524             // We replace self[index] with the last element. Note that if the
1525             // bounds check above succeeds there must be a last element (which
1526             // can be self[index] itself).
1527             let value = ptr::read(self.as_ptr().add(index));
1528             let base_ptr = self.as_mut_ptr();
1529             ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1530             self.set_len(len - 1);
1531             value
1532         }
1533     }
1534 
1535     /// Inserts an element at position `index` within the vector, shifting all
1536     /// elements after it to the right.
1537     ///
1538     /// # Panics
1539     ///
1540     /// Panics if `index > len`.
1541     ///
1542     /// # Examples
1543     ///
1544     /// ```
1545     /// let mut vec = vec![1, 2, 3];
1546     /// vec.insert(1, 4);
1547     /// assert_eq!(vec, [1, 4, 2, 3]);
1548     /// vec.insert(4, 5);
1549     /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1550     /// ```
1551     #[cfg(not(no_global_oom_handling))]
1552     #[stable(feature = "rust1", since = "1.0.0")]
insert(&mut self, index: usize, element: T)1553     pub fn insert(&mut self, index: usize, element: T) {
1554         #[cold]
1555         #[inline(never)]
1556         fn assert_failed(index: usize, len: usize) -> ! {
1557             panic!("insertion index (is {index}) should be <= len (is {len})");
1558         }
1559 
1560         let len = self.len();
1561 
1562         // space for the new element
1563         if len == self.buf.capacity() {
1564             self.reserve(1);
1565         }
1566 
1567         unsafe {
1568             // infallible
1569             // The spot to put the new value
1570             {
1571                 let p = self.as_mut_ptr().add(index);
1572                 if index < len {
1573                     // Shift everything over to make space. (Duplicating the
1574                     // `index`th element into two consecutive places.)
1575                     ptr::copy(p, p.add(1), len - index);
1576                 } else if index == len {
1577                     // No elements need shifting.
1578                 } else {
1579                     assert_failed(index, len);
1580                 }
1581                 // Write it in, overwriting the first copy of the `index`th
1582                 // element.
1583                 ptr::write(p, element);
1584             }
1585             self.set_len(len + 1);
1586         }
1587     }
1588 
1589     /// Removes and returns the element at position `index` within the vector,
1590     /// shifting all elements after it to the left.
1591     ///
1592     /// Note: Because this shifts over the remaining elements, it has a
1593     /// worst-case performance of *O*(*n*). If you don't need the order of elements
1594     /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1595     /// elements from the beginning of the `Vec`, consider using
1596     /// [`VecDeque::pop_front`] instead.
1597     ///
1598     /// [`swap_remove`]: Vec::swap_remove
1599     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1600     ///
1601     /// # Panics
1602     ///
1603     /// Panics if `index` is out of bounds.
1604     ///
1605     /// # Examples
1606     ///
1607     /// ```
1608     /// let mut v = vec![1, 2, 3];
1609     /// assert_eq!(v.remove(1), 2);
1610     /// assert_eq!(v, [1, 3]);
1611     /// ```
1612     #[stable(feature = "rust1", since = "1.0.0")]
1613     #[track_caller]
remove(&mut self, index: usize) -> T1614     pub fn remove(&mut self, index: usize) -> T {
1615         #[cold]
1616         #[inline(never)]
1617         #[track_caller]
1618         fn assert_failed(index: usize, len: usize) -> ! {
1619             panic!("removal index (is {index}) should be < len (is {len})");
1620         }
1621 
1622         let len = self.len();
1623         if index >= len {
1624             assert_failed(index, len);
1625         }
1626         unsafe {
1627             // infallible
1628             let ret;
1629             {
1630                 // the place we are taking from.
1631                 let ptr = self.as_mut_ptr().add(index);
1632                 // copy it out, unsafely having a copy of the value on
1633                 // the stack and in the vector at the same time.
1634                 ret = ptr::read(ptr);
1635 
1636                 // Shift everything down to fill in that spot.
1637                 ptr::copy(ptr.add(1), ptr, len - index - 1);
1638             }
1639             self.set_len(len - 1);
1640             ret
1641         }
1642     }
1643 
1644     /// Retains only the elements specified by the predicate.
1645     ///
1646     /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1647     /// This method operates in place, visiting each element exactly once in the
1648     /// original order, and preserves the order of the retained elements.
1649     ///
1650     /// # Examples
1651     ///
1652     /// ```
1653     /// let mut vec = vec![1, 2, 3, 4];
1654     /// vec.retain(|&x| x % 2 == 0);
1655     /// assert_eq!(vec, [2, 4]);
1656     /// ```
1657     ///
1658     /// Because the elements are visited exactly once in the original order,
1659     /// external state may be used to decide which elements to keep.
1660     ///
1661     /// ```
1662     /// let mut vec = vec![1, 2, 3, 4, 5];
1663     /// let keep = [false, true, true, false, true];
1664     /// let mut iter = keep.iter();
1665     /// vec.retain(|_| *iter.next().unwrap());
1666     /// assert_eq!(vec, [2, 3, 5]);
1667     /// ```
1668     #[stable(feature = "rust1", since = "1.0.0")]
retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool,1669     pub fn retain<F>(&mut self, mut f: F)
1670     where
1671         F: FnMut(&T) -> bool,
1672     {
1673         self.retain_mut(|elem| f(elem));
1674     }
1675 
1676     /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1677     ///
1678     /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1679     /// This method operates in place, visiting each element exactly once in the
1680     /// original order, and preserves the order of the retained elements.
1681     ///
1682     /// # Examples
1683     ///
1684     /// ```
1685     /// let mut vec = vec![1, 2, 3, 4];
1686     /// vec.retain_mut(|x| if *x <= 3 {
1687     ///     *x += 1;
1688     ///     true
1689     /// } else {
1690     ///     false
1691     /// });
1692     /// assert_eq!(vec, [2, 3, 4]);
1693     /// ```
1694     #[stable(feature = "vec_retain_mut", since = "1.61.0")]
retain_mut<F>(&mut self, mut f: F) where F: FnMut(&mut T) -> bool,1695     pub fn retain_mut<F>(&mut self, mut f: F)
1696     where
1697         F: FnMut(&mut T) -> bool,
1698     {
1699         let original_len = self.len();
1700         // Avoid double drop if the drop guard is not executed,
1701         // since we may make some holes during the process.
1702         unsafe { self.set_len(0) };
1703 
1704         // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1705         //      |<-              processed len   ->| ^- next to check
1706         //                  |<-  deleted cnt     ->|
1707         //      |<-              original_len                          ->|
1708         // Kept: Elements which predicate returns true on.
1709         // Hole: Moved or dropped element slot.
1710         // Unchecked: Unchecked valid elements.
1711         //
1712         // This drop guard will be invoked when predicate or `drop` of element panicked.
1713         // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1714         // In cases when predicate and `drop` never panick, it will be optimized out.
1715         struct BackshiftOnDrop<'a, T, A: Allocator> {
1716             v: &'a mut Vec<T, A>,
1717             processed_len: usize,
1718             deleted_cnt: usize,
1719             original_len: usize,
1720         }
1721 
1722         impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1723             fn drop(&mut self) {
1724                 if self.deleted_cnt > 0 {
1725                     // SAFETY: Trailing unchecked items must be valid since we never touch them.
1726                     unsafe {
1727                         ptr::copy(
1728                             self.v.as_ptr().add(self.processed_len),
1729                             self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1730                             self.original_len - self.processed_len,
1731                         );
1732                     }
1733                 }
1734                 // SAFETY: After filling holes, all items are in contiguous memory.
1735                 unsafe {
1736                     self.v.set_len(self.original_len - self.deleted_cnt);
1737                 }
1738             }
1739         }
1740 
1741         let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1742 
1743         fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1744             original_len: usize,
1745             f: &mut F,
1746             g: &mut BackshiftOnDrop<'_, T, A>,
1747         ) where
1748             F: FnMut(&mut T) -> bool,
1749         {
1750             while g.processed_len != original_len {
1751                 // SAFETY: Unchecked element must be valid.
1752                 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1753                 if !f(cur) {
1754                     // Advance early to avoid double drop if `drop_in_place` panicked.
1755                     g.processed_len += 1;
1756                     g.deleted_cnt += 1;
1757                     // SAFETY: We never touch this element again after dropped.
1758                     unsafe { ptr::drop_in_place(cur) };
1759                     // We already advanced the counter.
1760                     if DELETED {
1761                         continue;
1762                     } else {
1763                         break;
1764                     }
1765                 }
1766                 if DELETED {
1767                     // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1768                     // We use copy for move, and never touch this element again.
1769                     unsafe {
1770                         let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1771                         ptr::copy_nonoverlapping(cur, hole_slot, 1);
1772                     }
1773                 }
1774                 g.processed_len += 1;
1775             }
1776         }
1777 
1778         // Stage 1: Nothing was deleted.
1779         process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1780 
1781         // Stage 2: Some elements were deleted.
1782         process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1783 
1784         // All item are processed. This can be optimized to `set_len` by LLVM.
1785         drop(g);
1786     }
1787 
1788     /// Removes all but the first of consecutive elements in the vector that resolve to the same
1789     /// key.
1790     ///
1791     /// If the vector is sorted, this removes all duplicates.
1792     ///
1793     /// # Examples
1794     ///
1795     /// ```
1796     /// let mut vec = vec![10, 20, 21, 30, 20];
1797     ///
1798     /// vec.dedup_by_key(|i| *i / 10);
1799     ///
1800     /// assert_eq!(vec, [10, 20, 30, 20]);
1801     /// ```
1802     #[stable(feature = "dedup_by", since = "1.16.0")]
1803     #[inline]
dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq,1804     pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1805     where
1806         F: FnMut(&mut T) -> K,
1807         K: PartialEq,
1808     {
1809         self.dedup_by(|a, b| key(a) == key(b))
1810     }
1811 
1812     /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1813     /// relation.
1814     ///
1815     /// The `same_bucket` function is passed references to two elements from the vector and
1816     /// must determine if the elements compare equal. The elements are passed in opposite order
1817     /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1818     ///
1819     /// If the vector is sorted, this removes all duplicates.
1820     ///
1821     /// # Examples
1822     ///
1823     /// ```
1824     /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1825     ///
1826     /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1827     ///
1828     /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1829     /// ```
1830     #[stable(feature = "dedup_by", since = "1.16.0")]
dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool,1831     pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1832     where
1833         F: FnMut(&mut T, &mut T) -> bool,
1834     {
1835         let len = self.len();
1836         if len <= 1 {
1837             return;
1838         }
1839 
1840         /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1841         struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1842             /* Offset of the element we want to check if it is duplicate */
1843             read: usize,
1844 
1845             /* Offset of the place where we want to place the non-duplicate
1846              * when we find it. */
1847             write: usize,
1848 
1849             /* The Vec that would need correction if `same_bucket` panicked */
1850             vec: &'a mut Vec<T, A>,
1851         }
1852 
1853         impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1854             fn drop(&mut self) {
1855                 /* This code gets executed when `same_bucket` panics */
1856 
1857                 /* SAFETY: invariant guarantees that `read - write`
1858                  * and `len - read` never overflow and that the copy is always
1859                  * in-bounds. */
1860                 unsafe {
1861                     let ptr = self.vec.as_mut_ptr();
1862                     let len = self.vec.len();
1863 
1864                     /* How many items were left when `same_bucket` panicked.
1865                      * Basically vec[read..].len() */
1866                     let items_left = len.wrapping_sub(self.read);
1867 
1868                     /* Pointer to first item in vec[write..write+items_left] slice */
1869                     let dropped_ptr = ptr.add(self.write);
1870                     /* Pointer to first item in vec[read..] slice */
1871                     let valid_ptr = ptr.add(self.read);
1872 
1873                     /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1874                      * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1875                     ptr::copy(valid_ptr, dropped_ptr, items_left);
1876 
1877                     /* How many items have been already dropped
1878                      * Basically vec[read..write].len() */
1879                     let dropped = self.read.wrapping_sub(self.write);
1880 
1881                     self.vec.set_len(len - dropped);
1882                 }
1883             }
1884         }
1885 
1886         let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1887         let ptr = gap.vec.as_mut_ptr();
1888 
1889         /* Drop items while going through Vec, it should be more efficient than
1890          * doing slice partition_dedup + truncate */
1891 
1892         /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1893          * are always in-bounds and read_ptr never aliases prev_ptr */
1894         unsafe {
1895             while gap.read < len {
1896                 let read_ptr = ptr.add(gap.read);
1897                 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1898 
1899                 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1900                     // Increase `gap.read` now since the drop may panic.
1901                     gap.read += 1;
1902                     /* We have found duplicate, drop it in-place */
1903                     ptr::drop_in_place(read_ptr);
1904                 } else {
1905                     let write_ptr = ptr.add(gap.write);
1906 
1907                     /* Because `read_ptr` can be equal to `write_ptr`, we either
1908                      * have to use `copy` or conditional `copy_nonoverlapping`.
1909                      * Looks like the first option is faster. */
1910                     ptr::copy(read_ptr, write_ptr, 1);
1911 
1912                     /* We have filled that place, so go further */
1913                     gap.write += 1;
1914                     gap.read += 1;
1915                 }
1916             }
1917 
1918             /* Technically we could let `gap` clean up with its Drop, but
1919              * when `same_bucket` is guaranteed to not panic, this bloats a little
1920              * the codegen, so we just do it manually */
1921             gap.vec.set_len(gap.write);
1922             mem::forget(gap);
1923         }
1924     }
1925 
1926     /// Appends an element to the back of a collection.
1927     ///
1928     /// # Panics
1929     ///
1930     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1931     ///
1932     /// # Examples
1933     ///
1934     /// ```
1935     /// let mut vec = vec![1, 2];
1936     /// vec.push(3);
1937     /// assert_eq!(vec, [1, 2, 3]);
1938     /// ```
1939     #[cfg(not(no_global_oom_handling))]
1940     #[inline]
1941     #[stable(feature = "rust1", since = "1.0.0")]
push(&mut self, value: T)1942     pub fn push(&mut self, value: T) {
1943         // This will panic or abort if we would allocate > isize::MAX bytes
1944         // or if the length increment would overflow for zero-sized types.
1945         if self.len == self.buf.capacity() {
1946             self.buf.reserve_for_push(self.len);
1947         }
1948         unsafe {
1949             let end = self.as_mut_ptr().add(self.len);
1950             ptr::write(end, value);
1951             self.len += 1;
1952         }
1953     }
1954 
1955     /// Tries to append an element to the back of a collection.
1956     ///
1957     /// # Examples
1958     ///
1959     /// ```
1960     /// let mut vec = vec![1, 2];
1961     /// vec.try_push(3).unwrap();
1962     /// assert_eq!(vec, [1, 2, 3]);
1963     /// ```
1964     #[inline]
1965     #[stable(feature = "kernel", since = "1.0.0")]
try_push(&mut self, value: T) -> Result<(), TryReserveError>1966     pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1967         if self.len == self.buf.capacity() {
1968             self.buf.try_reserve_for_push(self.len)?;
1969         }
1970         unsafe {
1971             let end = self.as_mut_ptr().add(self.len);
1972             ptr::write(end, value);
1973             self.len += 1;
1974         }
1975         Ok(())
1976     }
1977 
1978     /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
1979     /// with the element.
1980     ///
1981     /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
1982     /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
1983     ///
1984     /// [`push`]: Vec::push
1985     /// [`reserve`]: Vec::reserve
1986     /// [`try_reserve`]: Vec::try_reserve
1987     ///
1988     /// # Examples
1989     ///
1990     /// A manual, panic-free alternative to [`FromIterator`]:
1991     ///
1992     /// ```
1993     /// #![feature(vec_push_within_capacity)]
1994     ///
1995     /// use std::collections::TryReserveError;
1996     /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
1997     ///     let mut vec = Vec::new();
1998     ///     for value in iter {
1999     ///         if let Err(value) = vec.push_within_capacity(value) {
2000     ///             vec.try_reserve(1)?;
2001     ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2002     ///             let _ = vec.push_within_capacity(value);
2003     ///         }
2004     ///     }
2005     ///     Ok(vec)
2006     /// }
2007     /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2008     /// ```
2009     #[inline]
2010     #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
push_within_capacity(&mut self, value: T) -> Result<(), T>2011     pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2012         if self.len == self.buf.capacity() {
2013             return Err(value);
2014         }
2015         unsafe {
2016             let end = self.as_mut_ptr().add(self.len);
2017             ptr::write(end, value);
2018             self.len += 1;
2019         }
2020         Ok(())
2021     }
2022 
2023     /// Removes the last element from a vector and returns it, or [`None`] if it
2024     /// is empty.
2025     ///
2026     /// If you'd like to pop the first element, consider using
2027     /// [`VecDeque::pop_front`] instead.
2028     ///
2029     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2030     ///
2031     /// # Examples
2032     ///
2033     /// ```
2034     /// let mut vec = vec![1, 2, 3];
2035     /// assert_eq!(vec.pop(), Some(3));
2036     /// assert_eq!(vec, [1, 2]);
2037     /// ```
2038     #[inline]
2039     #[stable(feature = "rust1", since = "1.0.0")]
pop(&mut self) -> Option<T>2040     pub fn pop(&mut self) -> Option<T> {
2041         if self.len == 0 {
2042             None
2043         } else {
2044             unsafe {
2045                 self.len -= 1;
2046                 Some(ptr::read(self.as_ptr().add(self.len())))
2047             }
2048         }
2049     }
2050 
2051     /// Moves all the elements of `other` into `self`, leaving `other` empty.
2052     ///
2053     /// # Panics
2054     ///
2055     /// Panics if the new capacity exceeds `isize::MAX` bytes.
2056     ///
2057     /// # Examples
2058     ///
2059     /// ```
2060     /// let mut vec = vec![1, 2, 3];
2061     /// let mut vec2 = vec![4, 5, 6];
2062     /// vec.append(&mut vec2);
2063     /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2064     /// assert_eq!(vec2, []);
2065     /// ```
2066     #[cfg(not(no_global_oom_handling))]
2067     #[inline]
2068     #[stable(feature = "append", since = "1.4.0")]
append(&mut self, other: &mut Self)2069     pub fn append(&mut self, other: &mut Self) {
2070         unsafe {
2071             self.append_elements(other.as_slice() as _);
2072             other.set_len(0);
2073         }
2074     }
2075 
2076     /// Appends elements to `self` from other buffer.
2077     #[cfg(not(no_global_oom_handling))]
2078     #[inline]
append_elements(&mut self, other: *const [T])2079     unsafe fn append_elements(&mut self, other: *const [T]) {
2080         let count = unsafe { (*other).len() };
2081         self.reserve(count);
2082         let len = self.len();
2083         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2084         self.len += count;
2085     }
2086 
2087     /// Tries to append elements to `self` from other buffer.
2088     #[inline]
try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError>2089     unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
2090         let count = unsafe { (*other).len() };
2091         self.try_reserve(count)?;
2092         let len = self.len();
2093         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2094         self.len += count;
2095         Ok(())
2096     }
2097 
2098     /// Removes the specified range from the vector in bulk, returning all
2099     /// removed elements as an iterator. If the iterator is dropped before
2100     /// being fully consumed, it drops the remaining removed elements.
2101     ///
2102     /// The returned iterator keeps a mutable borrow on the vector to optimize
2103     /// its implementation.
2104     ///
2105     /// # Panics
2106     ///
2107     /// Panics if the starting point is greater than the end point or if
2108     /// the end point is greater than the length of the vector.
2109     ///
2110     /// # Leaking
2111     ///
2112     /// If the returned iterator goes out of scope without being dropped (due to
2113     /// [`mem::forget`], for example), the vector may have lost and leaked
2114     /// elements arbitrarily, including elements outside the range.
2115     ///
2116     /// # Examples
2117     ///
2118     /// ```
2119     /// let mut v = vec![1, 2, 3];
2120     /// let u: Vec<_> = v.drain(1..).collect();
2121     /// assert_eq!(v, &[1]);
2122     /// assert_eq!(u, &[2, 3]);
2123     ///
2124     /// // A full range clears the vector, like `clear()` does
2125     /// v.drain(..);
2126     /// assert_eq!(v, &[]);
2127     /// ```
2128     #[stable(feature = "drain", since = "1.6.0")]
drain<R>(&mut self, range: R) -> Drain<'_, T, A> where R: RangeBounds<usize>,2129     pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2130     where
2131         R: RangeBounds<usize>,
2132     {
2133         // Memory safety
2134         //
2135         // When the Drain is first created, it shortens the length of
2136         // the source vector to make sure no uninitialized or moved-from elements
2137         // are accessible at all if the Drain's destructor never gets to run.
2138         //
2139         // Drain will ptr::read out the values to remove.
2140         // When finished, remaining tail of the vec is copied back to cover
2141         // the hole, and the vector length is restored to the new length.
2142         //
2143         let len = self.len();
2144         let Range { start, end } = slice::range(range, ..len);
2145 
2146         unsafe {
2147             // set self.vec length's to start, to be safe in case Drain is leaked
2148             self.set_len(start);
2149             let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2150             Drain {
2151                 tail_start: end,
2152                 tail_len: len - end,
2153                 iter: range_slice.iter(),
2154                 vec: NonNull::from(self),
2155             }
2156         }
2157     }
2158 
2159     /// Clears the vector, removing all values.
2160     ///
2161     /// Note that this method has no effect on the allocated capacity
2162     /// of the vector.
2163     ///
2164     /// # Examples
2165     ///
2166     /// ```
2167     /// let mut v = vec![1, 2, 3];
2168     ///
2169     /// v.clear();
2170     ///
2171     /// assert!(v.is_empty());
2172     /// ```
2173     #[inline]
2174     #[stable(feature = "rust1", since = "1.0.0")]
clear(&mut self)2175     pub fn clear(&mut self) {
2176         let elems: *mut [T] = self.as_mut_slice();
2177 
2178         // SAFETY:
2179         // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2180         // - Setting `self.len` before calling `drop_in_place` means that,
2181         //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2182         //   do nothing (leaking the rest of the elements) instead of dropping
2183         //   some twice.
2184         unsafe {
2185             self.len = 0;
2186             ptr::drop_in_place(elems);
2187         }
2188     }
2189 
2190     /// Returns the number of elements in the vector, also referred to
2191     /// as its 'length'.
2192     ///
2193     /// # Examples
2194     ///
2195     /// ```
2196     /// let a = vec![1, 2, 3];
2197     /// assert_eq!(a.len(), 3);
2198     /// ```
2199     #[inline]
2200     #[stable(feature = "rust1", since = "1.0.0")]
len(&self) -> usize2201     pub fn len(&self) -> usize {
2202         self.len
2203     }
2204 
2205     /// Returns `true` if the vector contains no elements.
2206     ///
2207     /// # Examples
2208     ///
2209     /// ```
2210     /// let mut v = Vec::new();
2211     /// assert!(v.is_empty());
2212     ///
2213     /// v.push(1);
2214     /// assert!(!v.is_empty());
2215     /// ```
2216     #[stable(feature = "rust1", since = "1.0.0")]
is_empty(&self) -> bool2217     pub fn is_empty(&self) -> bool {
2218         self.len() == 0
2219     }
2220 
2221     /// Splits the collection into two at the given index.
2222     ///
2223     /// Returns a newly allocated vector containing the elements in the range
2224     /// `[at, len)`. After the call, the original vector will be left containing
2225     /// the elements `[0, at)` with its previous capacity unchanged.
2226     ///
2227     /// # Panics
2228     ///
2229     /// Panics if `at > len`.
2230     ///
2231     /// # Examples
2232     ///
2233     /// ```
2234     /// let mut vec = vec![1, 2, 3];
2235     /// let vec2 = vec.split_off(1);
2236     /// assert_eq!(vec, [1]);
2237     /// assert_eq!(vec2, [2, 3]);
2238     /// ```
2239     #[cfg(not(no_global_oom_handling))]
2240     #[inline]
2241     #[must_use = "use `.truncate()` if you don't need the other half"]
2242     #[stable(feature = "split_off", since = "1.4.0")]
split_off(&mut self, at: usize) -> Self where A: Clone,2243     pub fn split_off(&mut self, at: usize) -> Self
2244     where
2245         A: Clone,
2246     {
2247         #[cold]
2248         #[inline(never)]
2249         fn assert_failed(at: usize, len: usize) -> ! {
2250             panic!("`at` split index (is {at}) should be <= len (is {len})");
2251         }
2252 
2253         if at > self.len() {
2254             assert_failed(at, self.len());
2255         }
2256 
2257         if at == 0 {
2258             // the new vector can take over the original buffer and avoid the copy
2259             return mem::replace(
2260                 self,
2261                 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2262             );
2263         }
2264 
2265         let other_len = self.len - at;
2266         let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2267 
2268         // Unsafely `set_len` and copy items to `other`.
2269         unsafe {
2270             self.set_len(at);
2271             other.set_len(other_len);
2272 
2273             ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2274         }
2275         other
2276     }
2277 
2278     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2279     ///
2280     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2281     /// difference, with each additional slot filled with the result of
2282     /// calling the closure `f`. The return values from `f` will end up
2283     /// in the `Vec` in the order they have been generated.
2284     ///
2285     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2286     ///
2287     /// This method uses a closure to create new values on every push. If
2288     /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2289     /// want to use the [`Default`] trait to generate values, you can
2290     /// pass [`Default::default`] as the second argument.
2291     ///
2292     /// # Examples
2293     ///
2294     /// ```
2295     /// let mut vec = vec![1, 2, 3];
2296     /// vec.resize_with(5, Default::default);
2297     /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2298     ///
2299     /// let mut vec = vec![];
2300     /// let mut p = 1;
2301     /// vec.resize_with(4, || { p *= 2; p });
2302     /// assert_eq!(vec, [2, 4, 8, 16]);
2303     /// ```
2304     #[cfg(not(no_global_oom_handling))]
2305     #[stable(feature = "vec_resize_with", since = "1.33.0")]
resize_with<F>(&mut self, new_len: usize, f: F) where F: FnMut() -> T,2306     pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2307     where
2308         F: FnMut() -> T,
2309     {
2310         let len = self.len();
2311         if new_len > len {
2312             self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2313         } else {
2314             self.truncate(new_len);
2315         }
2316     }
2317 
2318     /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2319     /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2320     /// `'a`. If the type has only static references, or none at all, then this
2321     /// may be chosen to be `'static`.
2322     ///
2323     /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2324     /// so the leaked allocation may include unused capacity that is not part
2325     /// of the returned slice.
2326     ///
2327     /// This function is mainly useful for data that lives for the remainder of
2328     /// the program's life. Dropping the returned reference will cause a memory
2329     /// leak.
2330     ///
2331     /// # Examples
2332     ///
2333     /// Simple usage:
2334     ///
2335     /// ```
2336     /// let x = vec![1, 2, 3];
2337     /// let static_ref: &'static mut [usize] = x.leak();
2338     /// static_ref[0] += 1;
2339     /// assert_eq!(static_ref, &[2, 2, 3]);
2340     /// ```
2341     #[stable(feature = "vec_leak", since = "1.47.0")]
2342     #[inline]
leak<'a>(self) -> &'a mut [T] where A: 'a,2343     pub fn leak<'a>(self) -> &'a mut [T]
2344     where
2345         A: 'a,
2346     {
2347         let mut me = ManuallyDrop::new(self);
2348         unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2349     }
2350 
2351     /// Returns the remaining spare capacity of the vector as a slice of
2352     /// `MaybeUninit<T>`.
2353     ///
2354     /// The returned slice can be used to fill the vector with data (e.g. by
2355     /// reading from a file) before marking the data as initialized using the
2356     /// [`set_len`] method.
2357     ///
2358     /// [`set_len`]: Vec::set_len
2359     ///
2360     /// # Examples
2361     ///
2362     /// ```
2363     /// // Allocate vector big enough for 10 elements.
2364     /// let mut v = Vec::with_capacity(10);
2365     ///
2366     /// // Fill in the first 3 elements.
2367     /// let uninit = v.spare_capacity_mut();
2368     /// uninit[0].write(0);
2369     /// uninit[1].write(1);
2370     /// uninit[2].write(2);
2371     ///
2372     /// // Mark the first 3 elements of the vector as being initialized.
2373     /// unsafe {
2374     ///     v.set_len(3);
2375     /// }
2376     ///
2377     /// assert_eq!(&v, &[0, 1, 2]);
2378     /// ```
2379     #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2380     #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]2381     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2382         // Note:
2383         // This method is not implemented in terms of `split_at_spare_mut`,
2384         // to prevent invalidation of pointers to the buffer.
2385         unsafe {
2386             slice::from_raw_parts_mut(
2387                 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2388                 self.buf.capacity() - self.len,
2389             )
2390         }
2391     }
2392 
2393     /// Returns vector content as a slice of `T`, along with the remaining spare
2394     /// capacity of the vector as a slice of `MaybeUninit<T>`.
2395     ///
2396     /// The returned spare capacity slice can be used to fill the vector with data
2397     /// (e.g. by reading from a file) before marking the data as initialized using
2398     /// the [`set_len`] method.
2399     ///
2400     /// [`set_len`]: Vec::set_len
2401     ///
2402     /// Note that this is a low-level API, which should be used with care for
2403     /// optimization purposes. If you need to append data to a `Vec`
2404     /// you can use [`push`], [`extend`], [`extend_from_slice`],
2405     /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2406     /// [`resize_with`], depending on your exact needs.
2407     ///
2408     /// [`push`]: Vec::push
2409     /// [`extend`]: Vec::extend
2410     /// [`extend_from_slice`]: Vec::extend_from_slice
2411     /// [`extend_from_within`]: Vec::extend_from_within
2412     /// [`insert`]: Vec::insert
2413     /// [`append`]: Vec::append
2414     /// [`resize`]: Vec::resize
2415     /// [`resize_with`]: Vec::resize_with
2416     ///
2417     /// # Examples
2418     ///
2419     /// ```
2420     /// #![feature(vec_split_at_spare)]
2421     ///
2422     /// let mut v = vec![1, 1, 2];
2423     ///
2424     /// // Reserve additional space big enough for 10 elements.
2425     /// v.reserve(10);
2426     ///
2427     /// let (init, uninit) = v.split_at_spare_mut();
2428     /// let sum = init.iter().copied().sum::<u32>();
2429     ///
2430     /// // Fill in the next 4 elements.
2431     /// uninit[0].write(sum);
2432     /// uninit[1].write(sum * 2);
2433     /// uninit[2].write(sum * 3);
2434     /// uninit[3].write(sum * 4);
2435     ///
2436     /// // Mark the 4 elements of the vector as being initialized.
2437     /// unsafe {
2438     ///     let len = v.len();
2439     ///     v.set_len(len + 4);
2440     /// }
2441     ///
2442     /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2443     /// ```
2444     #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2445     #[inline]
split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])2446     pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2447         // SAFETY:
2448         // - len is ignored and so never changed
2449         let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2450         (init, spare)
2451     }
2452 
2453     /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2454     ///
2455     /// This method provides unique access to all vec parts at once in `extend_from_within`.
split_at_spare_mut_with_len( &mut self, ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize)2456     unsafe fn split_at_spare_mut_with_len(
2457         &mut self,
2458     ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2459         let ptr = self.as_mut_ptr();
2460         // SAFETY:
2461         // - `ptr` is guaranteed to be valid for `self.len` elements
2462         // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2463         // uninitialized
2464         let spare_ptr = unsafe { ptr.add(self.len) };
2465         let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2466         let spare_len = self.buf.capacity() - self.len;
2467 
2468         // SAFETY:
2469         // - `ptr` is guaranteed to be valid for `self.len` elements
2470         // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2471         unsafe {
2472             let initialized = slice::from_raw_parts_mut(ptr, self.len);
2473             let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2474 
2475             (initialized, spare, &mut self.len)
2476         }
2477     }
2478 }
2479 
2480 impl<T: Clone, A: Allocator> Vec<T, A> {
2481     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2482     ///
2483     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2484     /// difference, with each additional slot filled with `value`.
2485     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2486     ///
2487     /// This method requires `T` to implement [`Clone`],
2488     /// in order to be able to clone the passed value.
2489     /// If you need more flexibility (or want to rely on [`Default`] instead of
2490     /// [`Clone`]), use [`Vec::resize_with`].
2491     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2492     ///
2493     /// # Examples
2494     ///
2495     /// ```
2496     /// let mut vec = vec!["hello"];
2497     /// vec.resize(3, "world");
2498     /// assert_eq!(vec, ["hello", "world", "world"]);
2499     ///
2500     /// let mut vec = vec![1, 2, 3, 4];
2501     /// vec.resize(2, 0);
2502     /// assert_eq!(vec, [1, 2]);
2503     /// ```
2504     #[cfg(not(no_global_oom_handling))]
2505     #[stable(feature = "vec_resize", since = "1.5.0")]
resize(&mut self, new_len: usize, value: T)2506     pub fn resize(&mut self, new_len: usize, value: T) {
2507         let len = self.len();
2508 
2509         if new_len > len {
2510             self.extend_with(new_len - len, ExtendElement(value))
2511         } else {
2512             self.truncate(new_len);
2513         }
2514     }
2515 
2516     /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
2517     ///
2518     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2519     /// difference, with each additional slot filled with `value`.
2520     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2521     ///
2522     /// This method requires `T` to implement [`Clone`],
2523     /// in order to be able to clone the passed value.
2524     /// If you need more flexibility (or want to rely on [`Default`] instead of
2525     /// [`Clone`]), use [`Vec::resize_with`].
2526     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2527     ///
2528     /// # Examples
2529     ///
2530     /// ```
2531     /// let mut vec = vec!["hello"];
2532     /// vec.try_resize(3, "world").unwrap();
2533     /// assert_eq!(vec, ["hello", "world", "world"]);
2534     ///
2535     /// let mut vec = vec![1, 2, 3, 4];
2536     /// vec.try_resize(2, 0).unwrap();
2537     /// assert_eq!(vec, [1, 2]);
2538     ///
2539     /// let mut vec = vec![42];
2540     /// let result = vec.try_resize(usize::MAX, 0);
2541     /// assert!(result.is_err());
2542     /// ```
2543     #[stable(feature = "kernel", since = "1.0.0")]
try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError>2544     pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
2545         let len = self.len();
2546 
2547         if new_len > len {
2548             self.try_extend_with(new_len - len, ExtendElement(value))
2549         } else {
2550             self.truncate(new_len);
2551             Ok(())
2552         }
2553     }
2554 
2555     /// Clones and appends all elements in a slice to the `Vec`.
2556     ///
2557     /// Iterates over the slice `other`, clones each element, and then appends
2558     /// it to this `Vec`. The `other` slice is traversed in-order.
2559     ///
2560     /// Note that this function is same as [`extend`] except that it is
2561     /// specialized to work with slices instead. If and when Rust gets
2562     /// specialization this function will likely be deprecated (but still
2563     /// available).
2564     ///
2565     /// # Examples
2566     ///
2567     /// ```
2568     /// let mut vec = vec![1];
2569     /// vec.extend_from_slice(&[2, 3, 4]);
2570     /// assert_eq!(vec, [1, 2, 3, 4]);
2571     /// ```
2572     ///
2573     /// [`extend`]: Vec::extend
2574     #[cfg(not(no_global_oom_handling))]
2575     #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
extend_from_slice(&mut self, other: &[T])2576     pub fn extend_from_slice(&mut self, other: &[T]) {
2577         self.spec_extend(other.iter())
2578     }
2579 
2580     /// Tries to clone and append all elements in a slice to the `Vec`.
2581     ///
2582     /// Iterates over the slice `other`, clones each element, and then appends
2583     /// it to this `Vec`. The `other` slice is traversed in-order.
2584     ///
2585     /// Note that this function is same as [`extend`] except that it is
2586     /// specialized to work with slices instead. If and when Rust gets
2587     /// specialization this function will likely be deprecated (but still
2588     /// available).
2589     ///
2590     /// # Examples
2591     ///
2592     /// ```
2593     /// let mut vec = vec![1];
2594     /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
2595     /// assert_eq!(vec, [1, 2, 3, 4]);
2596     /// ```
2597     ///
2598     /// [`extend`]: Vec::extend
2599     #[stable(feature = "kernel", since = "1.0.0")]
try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError>2600     pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
2601         self.try_spec_extend(other.iter())
2602     }
2603 
2604     /// Copies elements from `src` range to the end of the vector.
2605     ///
2606     /// # Panics
2607     ///
2608     /// Panics if the starting point is greater than the end point or if
2609     /// the end point is greater than the length of the vector.
2610     ///
2611     /// # Examples
2612     ///
2613     /// ```
2614     /// let mut vec = vec![0, 1, 2, 3, 4];
2615     ///
2616     /// vec.extend_from_within(2..);
2617     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2618     ///
2619     /// vec.extend_from_within(..2);
2620     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2621     ///
2622     /// vec.extend_from_within(4..8);
2623     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2624     /// ```
2625     #[cfg(not(no_global_oom_handling))]
2626     #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
extend_from_within<R>(&mut self, src: R) where R: RangeBounds<usize>,2627     pub fn extend_from_within<R>(&mut self, src: R)
2628     where
2629         R: RangeBounds<usize>,
2630     {
2631         let range = slice::range(src, ..self.len());
2632         self.reserve(range.len());
2633 
2634         // SAFETY:
2635         // - `slice::range` guarantees that the given range is valid for indexing self
2636         unsafe {
2637             self.spec_extend_from_within(range);
2638         }
2639     }
2640 }
2641 
2642 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2643     /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2644     ///
2645     /// # Panics
2646     ///
2647     /// Panics if the length of the resulting vector would overflow a `usize`.
2648     ///
2649     /// This is only possible when flattening a vector of arrays of zero-sized
2650     /// types, and thus tends to be irrelevant in practice. If
2651     /// `size_of::<T>() > 0`, this will never panic.
2652     ///
2653     /// # Examples
2654     ///
2655     /// ```
2656     /// #![feature(slice_flatten)]
2657     ///
2658     /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2659     /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2660     ///
2661     /// let mut flattened = vec.into_flattened();
2662     /// assert_eq!(flattened.pop(), Some(6));
2663     /// ```
2664     #[unstable(feature = "slice_flatten", issue = "95629")]
into_flattened(self) -> Vec<T, A>2665     pub fn into_flattened(self) -> Vec<T, A> {
2666         let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2667         let (new_len, new_cap) = if T::IS_ZST {
2668             (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2669         } else {
2670             // SAFETY:
2671             // - `cap * N` cannot overflow because the allocation is already in
2672             // the address space.
2673             // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2674             // valid elements in the allocation.
2675             unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2676         };
2677         // SAFETY:
2678         // - `ptr` was allocated by `self`
2679         // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2680         // - `new_cap` refers to the same sized allocation as `cap` because
2681         // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2682         // - `len` <= `cap`, so `len * N` <= `cap * N`.
2683         unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2684     }
2685 }
2686 
2687 // This code generalizes `extend_with_{element,default}`.
2688 trait ExtendWith<T> {
next(&mut self) -> T2689     fn next(&mut self) -> T;
last(self) -> T2690     fn last(self) -> T;
2691 }
2692 
2693 struct ExtendElement<T>(T);
2694 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
next(&mut self) -> T2695     fn next(&mut self) -> T {
2696         self.0.clone()
2697     }
last(self) -> T2698     fn last(self) -> T {
2699         self.0
2700     }
2701 }
2702 
2703 impl<T, A: Allocator> Vec<T, A> {
2704     #[cfg(not(no_global_oom_handling))]
2705     /// Extend the vector by `n` values, using the given generator.
extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E)2706     fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2707         self.reserve(n);
2708 
2709         unsafe {
2710             let mut ptr = self.as_mut_ptr().add(self.len());
2711             // Use SetLenOnDrop to work around bug where compiler
2712             // might not realize the store through `ptr` through self.set_len()
2713             // don't alias.
2714             let mut local_len = SetLenOnDrop::new(&mut self.len);
2715 
2716             // Write all elements except the last one
2717             for _ in 1..n {
2718                 ptr::write(ptr, value.next());
2719                 ptr = ptr.add(1);
2720                 // Increment the length in every step in case next() panics
2721                 local_len.increment_len(1);
2722             }
2723 
2724             if n > 0 {
2725                 // We can write the last element directly without cloning needlessly
2726                 ptr::write(ptr, value.last());
2727                 local_len.increment_len(1);
2728             }
2729 
2730             // len set by scope guard
2731         }
2732     }
2733 
2734     /// Try to extend the vector by `n` values, using the given generator.
try_extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) -> Result<(), TryReserveError>2735     fn try_extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) -> Result<(), TryReserveError> {
2736         self.try_reserve(n)?;
2737 
2738         unsafe {
2739             let mut ptr = self.as_mut_ptr().add(self.len());
2740             // Use SetLenOnDrop to work around bug where compiler
2741             // might not realize the store through `ptr` through self.set_len()
2742             // don't alias.
2743             let mut local_len = SetLenOnDrop::new(&mut self.len);
2744 
2745             // Write all elements except the last one
2746             for _ in 1..n {
2747                 ptr::write(ptr, value.next());
2748                 ptr = ptr.add(1);
2749                 // Increment the length in every step in case next() panics
2750                 local_len.increment_len(1);
2751             }
2752 
2753             if n > 0 {
2754                 // We can write the last element directly without cloning needlessly
2755                 ptr::write(ptr, value.last());
2756                 local_len.increment_len(1);
2757             }
2758 
2759             // len set by scope guard
2760             Ok(())
2761         }
2762     }
2763 }
2764 
2765 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2766     /// Removes consecutive repeated elements in the vector according to the
2767     /// [`PartialEq`] trait implementation.
2768     ///
2769     /// If the vector is sorted, this removes all duplicates.
2770     ///
2771     /// # Examples
2772     ///
2773     /// ```
2774     /// let mut vec = vec![1, 2, 2, 3, 2];
2775     ///
2776     /// vec.dedup();
2777     ///
2778     /// assert_eq!(vec, [1, 2, 3, 2]);
2779     /// ```
2780     #[stable(feature = "rust1", since = "1.0.0")]
2781     #[inline]
dedup(&mut self)2782     pub fn dedup(&mut self) {
2783         self.dedup_by(|a, b| a == b)
2784     }
2785 }
2786 
2787 ////////////////////////////////////////////////////////////////////////////////
2788 // Internal methods and functions
2789 ////////////////////////////////////////////////////////////////////////////////
2790 
2791 #[doc(hidden)]
2792 #[cfg(not(no_global_oom_handling))]
2793 #[stable(feature = "rust1", since = "1.0.0")]
from_elem<T: Clone>(elem: T, n: usize) -> Vec<T>2794 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2795     <T as SpecFromElem>::from_elem(elem, n, Global)
2796 }
2797 
2798 #[doc(hidden)]
2799 #[cfg(not(no_global_oom_handling))]
2800 #[unstable(feature = "allocator_api", issue = "32838")]
from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A>2801 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2802     <T as SpecFromElem>::from_elem(elem, n, alloc)
2803 }
2804 
2805 trait ExtendFromWithinSpec {
2806     /// # Safety
2807     ///
2808     /// - `src` needs to be valid index
2809     /// - `self.capacity() - self.len()` must be `>= src.len()`
spec_extend_from_within(&mut self, src: Range<usize>)2810     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2811 }
2812 
2813 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2814     default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2815         // SAFETY:
2816         // - len is increased only after initializing elements
2817         let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2818 
2819         // SAFETY:
2820         // - caller guarantees that src is a valid index
2821         let to_clone = unsafe { this.get_unchecked(src) };
2822 
2823         iter::zip(to_clone, spare)
2824             .map(|(src, dst)| dst.write(src.clone()))
2825             // Note:
2826             // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2827             // - len is increased after each element to prevent leaks (see issue #82533)
2828             .for_each(|_| *len += 1);
2829     }
2830 }
2831 
2832 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2833     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2834         let count = src.len();
2835         {
2836             let (init, spare) = self.split_at_spare_mut();
2837 
2838             // SAFETY:
2839             // - caller guarantees that `src` is a valid index
2840             let source = unsafe { init.get_unchecked(src) };
2841 
2842             // SAFETY:
2843             // - Both pointers are created from unique slice references (`&mut [_]`)
2844             //   so they are valid and do not overlap.
2845             // - Elements are :Copy so it's OK to copy them, without doing
2846             //   anything with the original values
2847             // - `count` is equal to the len of `source`, so source is valid for
2848             //   `count` reads
2849             // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2850             //   is valid for `count` writes
2851             unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2852         }
2853 
2854         // SAFETY:
2855         // - The elements were just initialized by `copy_nonoverlapping`
2856         self.len += count;
2857     }
2858 }
2859 
2860 ////////////////////////////////////////////////////////////////////////////////
2861 // Common trait implementations for Vec
2862 ////////////////////////////////////////////////////////////////////////////////
2863 
2864 #[stable(feature = "rust1", since = "1.0.0")]
2865 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2866     type Target = [T];
2867 
2868     #[inline]
deref(&self) -> &[T]2869     fn deref(&self) -> &[T] {
2870         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2871     }
2872 }
2873 
2874 #[stable(feature = "rust1", since = "1.0.0")]
2875 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2876     #[inline]
deref_mut(&mut self) -> &mut [T]2877     fn deref_mut(&mut self) -> &mut [T] {
2878         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2879     }
2880 }
2881 
2882 #[cfg(not(no_global_oom_handling))]
2883 #[stable(feature = "rust1", since = "1.0.0")]
2884 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2885     #[cfg(not(test))]
clone(&self) -> Self2886     fn clone(&self) -> Self {
2887         let alloc = self.allocator().clone();
2888         <[T]>::to_vec_in(&**self, alloc)
2889     }
2890 
2891     // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2892     // required for this method definition, is not available. Instead use the
2893     // `slice::to_vec` function which is only available with cfg(test)
2894     // NB see the slice::hack module in slice.rs for more information
2895     #[cfg(test)]
clone(&self) -> Self2896     fn clone(&self) -> Self {
2897         let alloc = self.allocator().clone();
2898         crate::slice::to_vec(&**self, alloc)
2899     }
2900 
clone_from(&mut self, other: &Self)2901     fn clone_from(&mut self, other: &Self) {
2902         crate::slice::SpecCloneIntoVec::clone_into(other.as_slice(), self);
2903     }
2904 }
2905 
2906 /// The hash of a vector is the same as that of the corresponding slice,
2907 /// as required by the `core::borrow::Borrow` implementation.
2908 ///
2909 /// ```
2910 /// use std::hash::BuildHasher;
2911 ///
2912 /// let b = std::collections::hash_map::RandomState::new();
2913 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2914 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2915 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2916 /// ```
2917 #[stable(feature = "rust1", since = "1.0.0")]
2918 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2919     #[inline]
hash<H: Hasher>(&self, state: &mut H)2920     fn hash<H: Hasher>(&self, state: &mut H) {
2921         Hash::hash(&**self, state)
2922     }
2923 }
2924 
2925 #[stable(feature = "rust1", since = "1.0.0")]
2926 #[rustc_on_unimplemented(
2927     message = "vector indices are of type `usize` or ranges of `usize`",
2928     label = "vector indices are of type `usize` or ranges of `usize`"
2929 )]
2930 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2931     type Output = I::Output;
2932 
2933     #[inline]
index(&self, index: I) -> &Self::Output2934     fn index(&self, index: I) -> &Self::Output {
2935         Index::index(&**self, index)
2936     }
2937 }
2938 
2939 #[stable(feature = "rust1", since = "1.0.0")]
2940 #[rustc_on_unimplemented(
2941     message = "vector indices are of type `usize` or ranges of `usize`",
2942     label = "vector indices are of type `usize` or ranges of `usize`"
2943 )]
2944 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2945     #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output2946     fn index_mut(&mut self, index: I) -> &mut Self::Output {
2947         IndexMut::index_mut(&mut **self, index)
2948     }
2949 }
2950 
2951 #[cfg(not(no_global_oom_handling))]
2952 #[stable(feature = "rust1", since = "1.0.0")]
2953 impl<T> FromIterator<T> for Vec<T> {
2954     #[inline]
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>2955     fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2956         <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2957     }
2958 }
2959 
2960 #[stable(feature = "rust1", since = "1.0.0")]
2961 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2962     type Item = T;
2963     type IntoIter = IntoIter<T, A>;
2964 
2965     /// Creates a consuming iterator, that is, one that moves each value out of
2966     /// the vector (from start to end). The vector cannot be used after calling
2967     /// this.
2968     ///
2969     /// # Examples
2970     ///
2971     /// ```
2972     /// let v = vec!["a".to_string(), "b".to_string()];
2973     /// let mut v_iter = v.into_iter();
2974     ///
2975     /// let first_element: Option<String> = v_iter.next();
2976     ///
2977     /// assert_eq!(first_element, Some("a".to_string()));
2978     /// assert_eq!(v_iter.next(), Some("b".to_string()));
2979     /// assert_eq!(v_iter.next(), None);
2980     /// ```
2981     #[inline]
into_iter(self) -> Self::IntoIter2982     fn into_iter(self) -> Self::IntoIter {
2983         unsafe {
2984             let mut me = ManuallyDrop::new(self);
2985             let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2986             let begin = me.as_mut_ptr();
2987             let end = if T::IS_ZST {
2988                 begin.wrapping_byte_add(me.len())
2989             } else {
2990                 begin.add(me.len()) as *const T
2991             };
2992             let cap = me.buf.capacity();
2993             IntoIter {
2994                 buf: NonNull::new_unchecked(begin),
2995                 phantom: PhantomData,
2996                 cap,
2997                 alloc,
2998                 ptr: begin,
2999                 end,
3000             }
3001         }
3002     }
3003 }
3004 
3005 #[stable(feature = "rust1", since = "1.0.0")]
3006 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3007     type Item = &'a T;
3008     type IntoIter = slice::Iter<'a, T>;
3009 
into_iter(self) -> Self::IntoIter3010     fn into_iter(self) -> Self::IntoIter {
3011         self.iter()
3012     }
3013 }
3014 
3015 #[stable(feature = "rust1", since = "1.0.0")]
3016 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3017     type Item = &'a mut T;
3018     type IntoIter = slice::IterMut<'a, T>;
3019 
into_iter(self) -> Self::IntoIter3020     fn into_iter(self) -> Self::IntoIter {
3021         self.iter_mut()
3022     }
3023 }
3024 
3025 #[cfg(not(no_global_oom_handling))]
3026 #[stable(feature = "rust1", since = "1.0.0")]
3027 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3028     #[inline]
extend<I: IntoIterator<Item = T>>(&mut self, iter: I)3029     fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3030         <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3031     }
3032 
3033     #[inline]
extend_one(&mut self, item: T)3034     fn extend_one(&mut self, item: T) {
3035         self.push(item);
3036     }
3037 
3038     #[inline]
extend_reserve(&mut self, additional: usize)3039     fn extend_reserve(&mut self, additional: usize) {
3040         self.reserve(additional);
3041     }
3042 }
3043 
3044 impl<T, A: Allocator> Vec<T, A> {
3045     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3046     // they have no further optimizations to apply
3047     #[cfg(not(no_global_oom_handling))]
extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I)3048     fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3049         // This is the case for a general iterator.
3050         //
3051         // This function should be the moral equivalent of:
3052         //
3053         //      for item in iterator {
3054         //          self.push(item);
3055         //      }
3056         while let Some(element) = iterator.next() {
3057             let len = self.len();
3058             if len == self.capacity() {
3059                 let (lower, _) = iterator.size_hint();
3060                 self.reserve(lower.saturating_add(1));
3061             }
3062             unsafe {
3063                 ptr::write(self.as_mut_ptr().add(len), element);
3064                 // Since next() executes user code which can panic we have to bump the length
3065                 // after each step.
3066                 // NB can't overflow since we would have had to alloc the address space
3067                 self.set_len(len + 1);
3068             }
3069         }
3070     }
3071 
3072     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3073     // they have no further optimizations to apply
try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError>3074     fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
3075         // This is the case for a general iterator.
3076         //
3077         // This function should be the moral equivalent of:
3078         //
3079         //      for item in iterator {
3080         //          self.push(item);
3081         //      }
3082         while let Some(element) = iterator.next() {
3083             let len = self.len();
3084             if len == self.capacity() {
3085                 let (lower, _) = iterator.size_hint();
3086                 self.try_reserve(lower.saturating_add(1))?;
3087             }
3088             unsafe {
3089                 ptr::write(self.as_mut_ptr().add(len), element);
3090                 // Since next() executes user code which can panic we have to bump the length
3091                 // after each step.
3092                 // NB can't overflow since we would have had to alloc the address space
3093                 self.set_len(len + 1);
3094             }
3095         }
3096 
3097         Ok(())
3098     }
3099 
3100     // specific extend for `TrustedLen` iterators, called both by the specializations
3101     // and internal places where resolving specialization makes compilation slower
3102     #[cfg(not(no_global_oom_handling))]
extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>)3103     fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3104         let (low, high) = iterator.size_hint();
3105         if let Some(additional) = high {
3106             debug_assert_eq!(
3107                 low,
3108                 additional,
3109                 "TrustedLen iterator's size hint is not exact: {:?}",
3110                 (low, high)
3111             );
3112             self.reserve(additional);
3113             unsafe {
3114                 let ptr = self.as_mut_ptr();
3115                 let mut local_len = SetLenOnDrop::new(&mut self.len);
3116                 iterator.for_each(move |element| {
3117                     ptr::write(ptr.add(local_len.current_len()), element);
3118                     // Since the loop executes user code which can panic we have to update
3119                     // the length every step to correctly drop what we've written.
3120                     // NB can't overflow since we would have had to alloc the address space
3121                     local_len.increment_len(1);
3122                 });
3123             }
3124         } else {
3125             // Per TrustedLen contract a `None` upper bound means that the iterator length
3126             // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3127             // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3128             // This avoids additional codegen for a fallback code path which would eventually
3129             // panic anyway.
3130             panic!("capacity overflow");
3131         }
3132     }
3133 
3134     // specific extend for `TrustedLen` iterators, called both by the specializations
3135     // and internal places where resolving specialization makes compilation slower
try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError>3136     fn try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError> {
3137         let (low, high) = iterator.size_hint();
3138         if let Some(additional) = high {
3139             debug_assert_eq!(
3140                 low,
3141                 additional,
3142                 "TrustedLen iterator's size hint is not exact: {:?}",
3143                 (low, high)
3144             );
3145             self.try_reserve(additional)?;
3146             unsafe {
3147                 let ptr = self.as_mut_ptr();
3148                 let mut local_len = SetLenOnDrop::new(&mut self.len);
3149                 iterator.for_each(move |element| {
3150                     ptr::write(ptr.add(local_len.current_len()), element);
3151                     // Since the loop executes user code which can panic we have to update
3152                     // the length every step to correctly drop what we've written.
3153                     // NB can't overflow since we would have had to alloc the address space
3154                     local_len.increment_len(1);
3155                 });
3156             }
3157             Ok(())
3158         } else {
3159             Err(TryReserveErrorKind::CapacityOverflow.into())
3160         }
3161     }
3162 
3163     /// Creates a splicing iterator that replaces the specified range in the vector
3164     /// with the given `replace_with` iterator and yields the removed items.
3165     /// `replace_with` does not need to be the same length as `range`.
3166     ///
3167     /// `range` is removed even if the iterator is not consumed until the end.
3168     ///
3169     /// It is unspecified how many elements are removed from the vector
3170     /// if the `Splice` value is leaked.
3171     ///
3172     /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3173     ///
3174     /// This is optimal if:
3175     ///
3176     /// * The tail (elements in the vector after `range`) is empty,
3177     /// * or `replace_with` yields fewer or equal elements than `range`’s length
3178     /// * or the lower bound of its `size_hint()` is exact.
3179     ///
3180     /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3181     ///
3182     /// # Panics
3183     ///
3184     /// Panics if the starting point is greater than the end point or if
3185     /// the end point is greater than the length of the vector.
3186     ///
3187     /// # Examples
3188     ///
3189     /// ```
3190     /// let mut v = vec![1, 2, 3, 4];
3191     /// let new = [7, 8, 9];
3192     /// let u: Vec<_> = v.splice(1..3, new).collect();
3193     /// assert_eq!(v, &[1, 7, 8, 9, 4]);
3194     /// assert_eq!(u, &[2, 3]);
3195     /// ```
3196     #[cfg(not(no_global_oom_handling))]
3197     #[inline]
3198     #[stable(feature = "vec_splice", since = "1.21.0")]
splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> where R: RangeBounds<usize>, I: IntoIterator<Item = T>,3199     pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3200     where
3201         R: RangeBounds<usize>,
3202         I: IntoIterator<Item = T>,
3203     {
3204         Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3205     }
3206 
3207     /// Creates an iterator which uses a closure to determine if an element should be removed.
3208     ///
3209     /// If the closure returns true, then the element is removed and yielded.
3210     /// If the closure returns false, the element will remain in the vector and will not be yielded
3211     /// by the iterator.
3212     ///
3213     /// Using this method is equivalent to the following code:
3214     ///
3215     /// ```
3216     /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3217     /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3218     /// let mut i = 0;
3219     /// while i < vec.len() {
3220     ///     if some_predicate(&mut vec[i]) {
3221     ///         let val = vec.remove(i);
3222     ///         // your code here
3223     ///     } else {
3224     ///         i += 1;
3225     ///     }
3226     /// }
3227     ///
3228     /// # assert_eq!(vec, vec![1, 4, 5]);
3229     /// ```
3230     ///
3231     /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
3232     /// because it can backshift the elements of the array in bulk.
3233     ///
3234     /// Note that `drain_filter` also lets you mutate every element in the filter closure,
3235     /// regardless of whether you choose to keep or remove it.
3236     ///
3237     /// # Examples
3238     ///
3239     /// Splitting an array into evens and odds, reusing the original allocation:
3240     ///
3241     /// ```
3242     /// #![feature(drain_filter)]
3243     /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3244     ///
3245     /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
3246     /// let odds = numbers;
3247     ///
3248     /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3249     /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3250     /// ```
3251     #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A> where F: FnMut(&mut T) -> bool,3252     pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
3253     where
3254         F: FnMut(&mut T) -> bool,
3255     {
3256         let old_len = self.len();
3257 
3258         // Guard against us getting leaked (leak amplification)
3259         unsafe {
3260             self.set_len(0);
3261         }
3262 
3263         DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
3264     }
3265 }
3266 
3267 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
3268 ///
3269 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3270 /// append the entire slice at once.
3271 ///
3272 /// [`copy_from_slice`]: slice::copy_from_slice
3273 #[cfg(not(no_global_oom_handling))]
3274 #[stable(feature = "extend_ref", since = "1.2.0")]
3275 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)3276     fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3277         self.spec_extend(iter.into_iter())
3278     }
3279 
3280     #[inline]
extend_one(&mut self, &item: &'a T)3281     fn extend_one(&mut self, &item: &'a T) {
3282         self.push(item);
3283     }
3284 
3285     #[inline]
extend_reserve(&mut self, additional: usize)3286     fn extend_reserve(&mut self, additional: usize) {
3287         self.reserve(additional);
3288     }
3289 }
3290 
3291 /// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3292 #[stable(feature = "rust1", since = "1.0.0")]
3293 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
3294     #[inline]
partial_cmp(&self, other: &Self) -> Option<Ordering>3295     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
3296         PartialOrd::partial_cmp(&**self, &**other)
3297     }
3298 }
3299 
3300 #[stable(feature = "rust1", since = "1.0.0")]
3301 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3302 
3303 /// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3304 #[stable(feature = "rust1", since = "1.0.0")]
3305 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3306     #[inline]
cmp(&self, other: &Self) -> Ordering3307     fn cmp(&self, other: &Self) -> Ordering {
3308         Ord::cmp(&**self, &**other)
3309     }
3310 }
3311 
3312 #[stable(feature = "rust1", since = "1.0.0")]
3313 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
drop(&mut self)3314     fn drop(&mut self) {
3315         unsafe {
3316             // use drop for [T]
3317             // use a raw slice to refer to the elements of the vector as weakest necessary type;
3318             // could avoid questions of validity in certain cases
3319             ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3320         }
3321         // RawVec handles deallocation
3322     }
3323 }
3324 
3325 #[stable(feature = "rust1", since = "1.0.0")]
3326 impl<T> Default for Vec<T> {
3327     /// Creates an empty `Vec<T>`.
3328     ///
3329     /// The vector will not allocate until elements are pushed onto it.
default() -> Vec<T>3330     fn default() -> Vec<T> {
3331         Vec::new()
3332     }
3333 }
3334 
3335 #[stable(feature = "rust1", since = "1.0.0")]
3336 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3337     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3338         fmt::Debug::fmt(&**self, f)
3339     }
3340 }
3341 
3342 #[stable(feature = "rust1", since = "1.0.0")]
3343 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
as_ref(&self) -> &Vec<T, A>3344     fn as_ref(&self) -> &Vec<T, A> {
3345         self
3346     }
3347 }
3348 
3349 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3350 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
as_mut(&mut self) -> &mut Vec<T, A>3351     fn as_mut(&mut self) -> &mut Vec<T, A> {
3352         self
3353     }
3354 }
3355 
3356 #[stable(feature = "rust1", since = "1.0.0")]
3357 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
as_ref(&self) -> &[T]3358     fn as_ref(&self) -> &[T] {
3359         self
3360     }
3361 }
3362 
3363 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3364 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
as_mut(&mut self) -> &mut [T]3365     fn as_mut(&mut self) -> &mut [T] {
3366         self
3367     }
3368 }
3369 
3370 #[cfg(not(no_global_oom_handling))]
3371 #[stable(feature = "rust1", since = "1.0.0")]
3372 impl<T: Clone> From<&[T]> for Vec<T> {
3373     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3374     ///
3375     /// # Examples
3376     ///
3377     /// ```
3378     /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3379     /// ```
3380     #[cfg(not(test))]
from(s: &[T]) -> Vec<T>3381     fn from(s: &[T]) -> Vec<T> {
3382         s.to_vec()
3383     }
3384     #[cfg(test)]
from(s: &[T]) -> Vec<T>3385     fn from(s: &[T]) -> Vec<T> {
3386         crate::slice::to_vec(s, Global)
3387     }
3388 }
3389 
3390 #[cfg(not(no_global_oom_handling))]
3391 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3392 impl<T: Clone> From<&mut [T]> for Vec<T> {
3393     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3394     ///
3395     /// # Examples
3396     ///
3397     /// ```
3398     /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3399     /// ```
3400     #[cfg(not(test))]
from(s: &mut [T]) -> Vec<T>3401     fn from(s: &mut [T]) -> Vec<T> {
3402         s.to_vec()
3403     }
3404     #[cfg(test)]
from(s: &mut [T]) -> Vec<T>3405     fn from(s: &mut [T]) -> Vec<T> {
3406         crate::slice::to_vec(s, Global)
3407     }
3408 }
3409 
3410 #[cfg(not(no_global_oom_handling))]
3411 #[stable(feature = "vec_from_array", since = "1.44.0")]
3412 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3413     /// Allocate a `Vec<T>` and move `s`'s items into it.
3414     ///
3415     /// # Examples
3416     ///
3417     /// ```
3418     /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3419     /// ```
3420     #[cfg(not(test))]
from(s: [T; N]) -> Vec<T>3421     fn from(s: [T; N]) -> Vec<T> {
3422         <[T]>::into_vec(Box::new(s))
3423     }
3424 
3425     #[cfg(test)]
from(s: [T; N]) -> Vec<T>3426     fn from(s: [T; N]) -> Vec<T> {
3427         crate::slice::into_vec(Box::new(s))
3428     }
3429 }
3430 
3431 #[cfg(not(no_borrow))]
3432 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3433 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3434 where
3435     [T]: ToOwned<Owned = Vec<T>>,
3436 {
3437     /// Convert a clone-on-write slice into a vector.
3438     ///
3439     /// If `s` already owns a `Vec<T>`, it will be returned directly.
3440     /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3441     /// filled by cloning `s`'s items into it.
3442     ///
3443     /// # Examples
3444     ///
3445     /// ```
3446     /// # use std::borrow::Cow;
3447     /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3448     /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3449     /// assert_eq!(Vec::from(o), Vec::from(b));
3450     /// ```
from(s: Cow<'a, [T]>) -> Vec<T>3451     fn from(s: Cow<'a, [T]>) -> Vec<T> {
3452         s.into_owned()
3453     }
3454 }
3455 
3456 // note: test pulls in std, which causes errors here
3457 #[cfg(not(test))]
3458 #[stable(feature = "vec_from_box", since = "1.18.0")]
3459 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3460     /// Convert a boxed slice into a vector by transferring ownership of
3461     /// the existing heap allocation.
3462     ///
3463     /// # Examples
3464     ///
3465     /// ```
3466     /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3467     /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3468     /// ```
from(s: Box<[T], A>) -> Self3469     fn from(s: Box<[T], A>) -> Self {
3470         s.into_vec()
3471     }
3472 }
3473 
3474 // note: test pulls in std, which causes errors here
3475 #[cfg(not(no_global_oom_handling))]
3476 #[cfg(not(test))]
3477 #[stable(feature = "box_from_vec", since = "1.20.0")]
3478 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3479     /// Convert a vector into a boxed slice.
3480     ///
3481     /// If `v` has excess capacity, its items will be moved into a
3482     /// newly-allocated buffer with exactly the right capacity.
3483     ///
3484     /// # Examples
3485     ///
3486     /// ```
3487     /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3488     /// ```
3489     ///
3490     /// Any excess capacity is removed:
3491     /// ```
3492     /// let mut vec = Vec::with_capacity(10);
3493     /// vec.extend([1, 2, 3]);
3494     ///
3495     /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
3496     /// ```
from(v: Vec<T, A>) -> Self3497     fn from(v: Vec<T, A>) -> Self {
3498         v.into_boxed_slice()
3499     }
3500 }
3501 
3502 #[cfg(not(no_global_oom_handling))]
3503 #[stable(feature = "rust1", since = "1.0.0")]
3504 impl From<&str> for Vec<u8> {
3505     /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3506     ///
3507     /// # Examples
3508     ///
3509     /// ```
3510     /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3511     /// ```
from(s: &str) -> Vec<u8>3512     fn from(s: &str) -> Vec<u8> {
3513         From::from(s.as_bytes())
3514     }
3515 }
3516 
3517 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3518 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3519     type Error = Vec<T, A>;
3520 
3521     /// Gets the entire contents of the `Vec<T>` as an array,
3522     /// if its size exactly matches that of the requested array.
3523     ///
3524     /// # Examples
3525     ///
3526     /// ```
3527     /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3528     /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3529     /// ```
3530     ///
3531     /// If the length doesn't match, the input comes back in `Err`:
3532     /// ```
3533     /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3534     /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3535     /// ```
3536     ///
3537     /// If you're fine with just getting a prefix of the `Vec<T>`,
3538     /// you can call [`.truncate(N)`](Vec::truncate) first.
3539     /// ```
3540     /// let mut v = String::from("hello world").into_bytes();
3541     /// v.sort();
3542     /// v.truncate(2);
3543     /// let [a, b]: [_; 2] = v.try_into().unwrap();
3544     /// assert_eq!(a, b' ');
3545     /// assert_eq!(b, b'd');
3546     /// ```
try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>>3547     fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3548         if vec.len() != N {
3549             return Err(vec);
3550         }
3551 
3552         // SAFETY: `.set_len(0)` is always sound.
3553         unsafe { vec.set_len(0) };
3554 
3555         // SAFETY: A `Vec`'s pointer is always aligned properly, and
3556         // the alignment the array needs is the same as the items.
3557         // We checked earlier that we have sufficient items.
3558         // The items will not double-drop as the `set_len`
3559         // tells the `Vec` not to also drop them.
3560         let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3561         Ok(array)
3562     }
3563 }
3564