1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55
56 #![stable(feature = "rust1", since = "1.0.0")]
57
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::fmt;
62 use core::hash::{Hash, Hasher};
63 use core::iter;
64 use core::marker::PhantomData;
65 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
66 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
67 use core::ptr::{self, NonNull};
68 use core::slice::{self, SliceIndex};
69
70 use crate::alloc::{Allocator, Global};
71 #[cfg(not(no_borrow))]
72 use crate::borrow::{Cow, ToOwned};
73 use crate::boxed::Box;
74 use crate::collections::{TryReserveError, TryReserveErrorKind};
75 use crate::raw_vec::RawVec;
76
77 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
78 pub use self::drain_filter::DrainFilter;
79
80 mod drain_filter;
81
82 #[cfg(not(no_global_oom_handling))]
83 #[stable(feature = "vec_splice", since = "1.21.0")]
84 pub use self::splice::Splice;
85
86 #[cfg(not(no_global_oom_handling))]
87 mod splice;
88
89 #[stable(feature = "drain", since = "1.6.0")]
90 pub use self::drain::Drain;
91
92 mod drain;
93
94 #[cfg(not(no_borrow))]
95 #[cfg(not(no_global_oom_handling))]
96 mod cow;
97
98 #[cfg(not(no_global_oom_handling))]
99 pub(crate) use self::in_place_collect::AsVecIntoIter;
100 #[stable(feature = "rust1", since = "1.0.0")]
101 pub use self::into_iter::IntoIter;
102
103 mod into_iter;
104
105 #[cfg(not(no_global_oom_handling))]
106 use self::is_zero::IsZero;
107
108 mod is_zero;
109
110 #[cfg(not(no_global_oom_handling))]
111 mod in_place_collect;
112
113 mod partial_eq;
114
115 #[cfg(not(no_global_oom_handling))]
116 use self::spec_from_elem::SpecFromElem;
117
118 #[cfg(not(no_global_oom_handling))]
119 mod spec_from_elem;
120
121 use self::set_len_on_drop::SetLenOnDrop;
122
123 mod set_len_on_drop;
124
125 #[cfg(not(no_global_oom_handling))]
126 use self::in_place_drop::{InPlaceDrop, InPlaceDstBufDrop};
127
128 #[cfg(not(no_global_oom_handling))]
129 mod in_place_drop;
130
131 #[cfg(not(no_global_oom_handling))]
132 use self::spec_from_iter_nested::SpecFromIterNested;
133
134 #[cfg(not(no_global_oom_handling))]
135 mod spec_from_iter_nested;
136
137 #[cfg(not(no_global_oom_handling))]
138 use self::spec_from_iter::SpecFromIter;
139
140 #[cfg(not(no_global_oom_handling))]
141 mod spec_from_iter;
142
143 #[cfg(not(no_global_oom_handling))]
144 use self::spec_extend::SpecExtend;
145
146 use self::spec_extend::TrySpecExtend;
147
148 mod spec_extend;
149
150 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
151 ///
152 /// # Examples
153 ///
154 /// ```
155 /// let mut vec = Vec::new();
156 /// vec.push(1);
157 /// vec.push(2);
158 ///
159 /// assert_eq!(vec.len(), 2);
160 /// assert_eq!(vec[0], 1);
161 ///
162 /// assert_eq!(vec.pop(), Some(2));
163 /// assert_eq!(vec.len(), 1);
164 ///
165 /// vec[0] = 7;
166 /// assert_eq!(vec[0], 7);
167 ///
168 /// vec.extend([1, 2, 3]);
169 ///
170 /// for x in &vec {
171 /// println!("{x}");
172 /// }
173 /// assert_eq!(vec, [7, 1, 2, 3]);
174 /// ```
175 ///
176 /// The [`vec!`] macro is provided for convenient initialization:
177 ///
178 /// ```
179 /// let mut vec1 = vec![1, 2, 3];
180 /// vec1.push(4);
181 /// let vec2 = Vec::from([1, 2, 3, 4]);
182 /// assert_eq!(vec1, vec2);
183 /// ```
184 ///
185 /// It can also initialize each element of a `Vec<T>` with a given value.
186 /// This may be more efficient than performing allocation and initialization
187 /// in separate steps, especially when initializing a vector of zeros:
188 ///
189 /// ```
190 /// let vec = vec![0; 5];
191 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
192 ///
193 /// // The following is equivalent, but potentially slower:
194 /// let mut vec = Vec::with_capacity(5);
195 /// vec.resize(5, 0);
196 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
197 /// ```
198 ///
199 /// For more information, see
200 /// [Capacity and Reallocation](#capacity-and-reallocation).
201 ///
202 /// Use a `Vec<T>` as an efficient stack:
203 ///
204 /// ```
205 /// let mut stack = Vec::new();
206 ///
207 /// stack.push(1);
208 /// stack.push(2);
209 /// stack.push(3);
210 ///
211 /// while let Some(top) = stack.pop() {
212 /// // Prints 3, 2, 1
213 /// println!("{top}");
214 /// }
215 /// ```
216 ///
217 /// # Indexing
218 ///
219 /// The `Vec` type allows to access values by index, because it implements the
220 /// [`Index`] trait. An example will be more explicit:
221 ///
222 /// ```
223 /// let v = vec![0, 2, 4, 6];
224 /// println!("{}", v[1]); // it will display '2'
225 /// ```
226 ///
227 /// However be careful: if you try to access an index which isn't in the `Vec`,
228 /// your software will panic! You cannot do this:
229 ///
230 /// ```should_panic
231 /// let v = vec![0, 2, 4, 6];
232 /// println!("{}", v[6]); // it will panic!
233 /// ```
234 ///
235 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
236 /// the `Vec`.
237 ///
238 /// # Slicing
239 ///
240 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
241 /// To get a [slice][prim@slice], use [`&`]. Example:
242 ///
243 /// ```
244 /// fn read_slice(slice: &[usize]) {
245 /// // ...
246 /// }
247 ///
248 /// let v = vec![0, 1];
249 /// read_slice(&v);
250 ///
251 /// // ... and that's all!
252 /// // you can also do it like this:
253 /// let u: &[usize] = &v;
254 /// // or like this:
255 /// let u: &[_] = &v;
256 /// ```
257 ///
258 /// In Rust, it's more common to pass slices as arguments rather than vectors
259 /// when you just want to provide read access. The same goes for [`String`] and
260 /// [`&str`].
261 ///
262 /// # Capacity and reallocation
263 ///
264 /// The capacity of a vector is the amount of space allocated for any future
265 /// elements that will be added onto the vector. This is not to be confused with
266 /// the *length* of a vector, which specifies the number of actual elements
267 /// within the vector. If a vector's length exceeds its capacity, its capacity
268 /// will automatically be increased, but its elements will have to be
269 /// reallocated.
270 ///
271 /// For example, a vector with capacity 10 and length 0 would be an empty vector
272 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
273 /// vector will not change its capacity or cause reallocation to occur. However,
274 /// if the vector's length is increased to 11, it will have to reallocate, which
275 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
276 /// whenever possible to specify how big the vector is expected to get.
277 ///
278 /// # Guarantees
279 ///
280 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
281 /// about its design. This ensures that it's as low-overhead as possible in
282 /// the general case, and can be correctly manipulated in primitive ways
283 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
284 /// If additional type parameters are added (e.g., to support custom allocators),
285 /// overriding their defaults may change the behavior.
286 ///
287 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
288 /// triplet. No more, no less. The order of these fields is completely
289 /// unspecified, and you should use the appropriate methods to modify these.
290 /// The pointer will never be null, so this type is null-pointer-optimized.
291 ///
292 /// However, the pointer might not actually point to allocated memory. In particular,
293 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
294 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
295 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
296 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
297 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
298 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
299 /// details are very subtle --- if you intend to allocate memory using a `Vec`
300 /// and use it for something else (either to pass to unsafe code, or to build your
301 /// own memory-backed collection), be sure to deallocate this memory by using
302 /// `from_raw_parts` to recover the `Vec` and then dropping it.
303 ///
304 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
305 /// (as defined by the allocator Rust is configured to use by default), and its
306 /// pointer points to [`len`] initialized, contiguous elements in order (what
307 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
308 /// logically uninitialized, contiguous elements.
309 ///
310 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
311 /// visualized as below. The top part is the `Vec` struct, it contains a
312 /// pointer to the head of the allocation in the heap, length and capacity.
313 /// The bottom part is the allocation on the heap, a contiguous memory block.
314 ///
315 /// ```text
316 /// ptr len capacity
317 /// +--------+--------+--------+
318 /// | 0x0123 | 2 | 4 |
319 /// +--------+--------+--------+
320 /// |
321 /// v
322 /// Heap +--------+--------+--------+--------+
323 /// | 'a' | 'b' | uninit | uninit |
324 /// +--------+--------+--------+--------+
325 /// ```
326 ///
327 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
328 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
329 /// layout (including the order of fields).
330 ///
331 /// `Vec` will never perform a "small optimization" where elements are actually
332 /// stored on the stack for two reasons:
333 ///
334 /// * It would make it more difficult for unsafe code to correctly manipulate
335 /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
336 /// only moved, and it would be more difficult to determine if a `Vec` had
337 /// actually allocated memory.
338 ///
339 /// * It would penalize the general case, incurring an additional branch
340 /// on every access.
341 ///
342 /// `Vec` will never automatically shrink itself, even if completely empty. This
343 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
344 /// and then filling it back up to the same [`len`] should incur no calls to
345 /// the allocator. If you wish to free up unused memory, use
346 /// [`shrink_to_fit`] or [`shrink_to`].
347 ///
348 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
349 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
350 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
351 /// accurate, and can be relied on. It can even be used to manually free the memory
352 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
353 /// when not necessary.
354 ///
355 /// `Vec` does not guarantee any particular growth strategy when reallocating
356 /// when full, nor when [`reserve`] is called. The current strategy is basic
357 /// and it may prove desirable to use a non-constant growth factor. Whatever
358 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
359 ///
360 /// `vec![x; n]`, `vec![a, b, c, d]`, and
361 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
362 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
363 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
364 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
365 ///
366 /// `Vec` will not specifically overwrite any data that is removed from it,
367 /// but also won't specifically preserve it. Its uninitialized memory is
368 /// scratch space that it may use however it wants. It will generally just do
369 /// whatever is most efficient or otherwise easy to implement. Do not rely on
370 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
371 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
372 /// first, that might not actually happen because the optimizer does not consider
373 /// this a side-effect that must be preserved. There is one case which we will
374 /// not break, however: using `unsafe` code to write to the excess capacity,
375 /// and then increasing the length to match, is always valid.
376 ///
377 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
378 /// The order has changed in the past and may change again.
379 ///
380 /// [`get`]: slice::get
381 /// [`get_mut`]: slice::get_mut
382 /// [`String`]: crate::string::String
383 /// [`&str`]: type@str
384 /// [`shrink_to_fit`]: Vec::shrink_to_fit
385 /// [`shrink_to`]: Vec::shrink_to
386 /// [capacity]: Vec::capacity
387 /// [`capacity`]: Vec::capacity
388 /// [mem::size_of::\<T>]: core::mem::size_of
389 /// [len]: Vec::len
390 /// [`len`]: Vec::len
391 /// [`push`]: Vec::push
392 /// [`insert`]: Vec::insert
393 /// [`reserve`]: Vec::reserve
394 /// [`MaybeUninit`]: core::mem::MaybeUninit
395 /// [owned slice]: Box
396 #[stable(feature = "rust1", since = "1.0.0")]
397 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
398 #[rustc_insignificant_dtor]
399 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
400 buf: RawVec<T, A>,
401 len: usize,
402 }
403
404 ////////////////////////////////////////////////////////////////////////////////
405 // Inherent methods
406 ////////////////////////////////////////////////////////////////////////////////
407
408 impl<T> Vec<T> {
409 /// Constructs a new, empty `Vec<T>`.
410 ///
411 /// The vector will not allocate until elements are pushed onto it.
412 ///
413 /// # Examples
414 ///
415 /// ```
416 /// # #![allow(unused_mut)]
417 /// let mut vec: Vec<i32> = Vec::new();
418 /// ```
419 #[inline]
420 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
421 #[stable(feature = "rust1", since = "1.0.0")]
422 #[must_use]
new() -> Self423 pub const fn new() -> Self {
424 Vec { buf: RawVec::NEW, len: 0 }
425 }
426
427 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
428 ///
429 /// The vector will be able to hold at least `capacity` elements without
430 /// reallocating. This method is allowed to allocate for more elements than
431 /// `capacity`. If `capacity` is 0, the vector will not allocate.
432 ///
433 /// It is important to note that although the returned vector has the
434 /// minimum *capacity* specified, the vector will have a zero *length*. For
435 /// an explanation of the difference between length and capacity, see
436 /// *[Capacity and reallocation]*.
437 ///
438 /// If it is important to know the exact allocated capacity of a `Vec`,
439 /// always use the [`capacity`] method after construction.
440 ///
441 /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
442 /// and the capacity will always be `usize::MAX`.
443 ///
444 /// [Capacity and reallocation]: #capacity-and-reallocation
445 /// [`capacity`]: Vec::capacity
446 ///
447 /// # Panics
448 ///
449 /// Panics if the new capacity exceeds `isize::MAX` bytes.
450 ///
451 /// # Examples
452 ///
453 /// ```
454 /// let mut vec = Vec::with_capacity(10);
455 ///
456 /// // The vector contains no items, even though it has capacity for more
457 /// assert_eq!(vec.len(), 0);
458 /// assert!(vec.capacity() >= 10);
459 ///
460 /// // These are all done without reallocating...
461 /// for i in 0..10 {
462 /// vec.push(i);
463 /// }
464 /// assert_eq!(vec.len(), 10);
465 /// assert!(vec.capacity() >= 10);
466 ///
467 /// // ...but this may make the vector reallocate
468 /// vec.push(11);
469 /// assert_eq!(vec.len(), 11);
470 /// assert!(vec.capacity() >= 11);
471 ///
472 /// // A vector of a zero-sized type will always over-allocate, since no
473 /// // allocation is necessary
474 /// let vec_units = Vec::<()>::with_capacity(10);
475 /// assert_eq!(vec_units.capacity(), usize::MAX);
476 /// ```
477 #[cfg(not(no_global_oom_handling))]
478 #[inline]
479 #[stable(feature = "rust1", since = "1.0.0")]
480 #[must_use]
with_capacity(capacity: usize) -> Self481 pub fn with_capacity(capacity: usize) -> Self {
482 Self::with_capacity_in(capacity, Global)
483 }
484
485 /// Tries to construct a new, empty `Vec<T>` with at least the specified capacity.
486 ///
487 /// The vector will be able to hold at least `capacity` elements without
488 /// reallocating. This method is allowed to allocate for more elements than
489 /// `capacity`. If `capacity` is 0, the vector will not allocate.
490 ///
491 /// It is important to note that although the returned vector has the
492 /// minimum *capacity* specified, the vector will have a zero *length*. For
493 /// an explanation of the difference between length and capacity, see
494 /// *[Capacity and reallocation]*.
495 ///
496 /// If it is important to know the exact allocated capacity of a `Vec`,
497 /// always use the [`capacity`] method after construction.
498 ///
499 /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
500 /// and the capacity will always be `usize::MAX`.
501 ///
502 /// [Capacity and reallocation]: #capacity-and-reallocation
503 /// [`capacity`]: Vec::capacity
504 ///
505 /// # Examples
506 ///
507 /// ```
508 /// let mut vec = Vec::try_with_capacity(10).unwrap();
509 ///
510 /// // The vector contains no items, even though it has capacity for more
511 /// assert_eq!(vec.len(), 0);
512 /// assert!(vec.capacity() >= 10);
513 ///
514 /// // These are all done without reallocating...
515 /// for i in 0..10 {
516 /// vec.push(i);
517 /// }
518 /// assert_eq!(vec.len(), 10);
519 /// assert!(vec.capacity() >= 10);
520 ///
521 /// // ...but this may make the vector reallocate
522 /// vec.push(11);
523 /// assert_eq!(vec.len(), 11);
524 /// assert!(vec.capacity() >= 11);
525 ///
526 /// let mut result = Vec::try_with_capacity(usize::MAX);
527 /// assert!(result.is_err());
528 ///
529 /// // A vector of a zero-sized type will always over-allocate, since no
530 /// // allocation is necessary
531 /// let vec_units = Vec::<()>::try_with_capacity(10).unwrap();
532 /// assert_eq!(vec_units.capacity(), usize::MAX);
533 /// ```
534 #[inline]
535 #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity(capacity: usize) -> Result<Self, TryReserveError>536 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
537 Self::try_with_capacity_in(capacity, Global)
538 }
539
540 /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length.
541 ///
542 /// # Safety
543 ///
544 /// This is highly unsafe, due to the number of invariants that aren't
545 /// checked:
546 ///
547 /// * `ptr` must have been allocated using the global allocator, such as via
548 /// the [`alloc::alloc`] function.
549 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
550 /// (`T` having a less strict alignment is not sufficient, the alignment really
551 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
552 /// allocated and deallocated with the same layout.)
553 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
554 /// to be the same size as the pointer was allocated with. (Because similar to
555 /// alignment, [`dealloc`] must be called with the same layout `size`.)
556 /// * `length` needs to be less than or equal to `capacity`.
557 /// * The first `length` values must be properly initialized values of type `T`.
558 /// * `capacity` needs to be the capacity that the pointer was allocated with.
559 /// * The allocated size in bytes must be no larger than `isize::MAX`.
560 /// See the safety documentation of [`pointer::offset`].
561 ///
562 /// These requirements are always upheld by any `ptr` that has been allocated
563 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
564 /// upheld.
565 ///
566 /// Violating these may cause problems like corrupting the allocator's
567 /// internal data structures. For example it is normally **not** safe
568 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
569 /// `size_t`, doing so is only safe if the array was initially allocated by
570 /// a `Vec` or `String`.
571 /// It's also not safe to build one from a `Vec<u16>` and its length, because
572 /// the allocator cares about the alignment, and these two types have different
573 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
574 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
575 /// these issues, it is often preferable to do casting/transmuting using
576 /// [`slice::from_raw_parts`] instead.
577 ///
578 /// The ownership of `ptr` is effectively transferred to the
579 /// `Vec<T>` which may then deallocate, reallocate or change the
580 /// contents of memory pointed to by the pointer at will. Ensure
581 /// that nothing else uses the pointer after calling this
582 /// function.
583 ///
584 /// [`String`]: crate::string::String
585 /// [`alloc::alloc`]: crate::alloc::alloc
586 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
587 ///
588 /// # Examples
589 ///
590 /// ```
591 /// use std::ptr;
592 /// use std::mem;
593 ///
594 /// let v = vec![1, 2, 3];
595 ///
596 // FIXME Update this when vec_into_raw_parts is stabilized
597 /// // Prevent running `v`'s destructor so we are in complete control
598 /// // of the allocation.
599 /// let mut v = mem::ManuallyDrop::new(v);
600 ///
601 /// // Pull out the various important pieces of information about `v`
602 /// let p = v.as_mut_ptr();
603 /// let len = v.len();
604 /// let cap = v.capacity();
605 ///
606 /// unsafe {
607 /// // Overwrite memory with 4, 5, 6
608 /// for i in 0..len {
609 /// ptr::write(p.add(i), 4 + i);
610 /// }
611 ///
612 /// // Put everything back together into a Vec
613 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
614 /// assert_eq!(rebuilt, [4, 5, 6]);
615 /// }
616 /// ```
617 ///
618 /// Using memory that was allocated elsewhere:
619 ///
620 /// ```rust
621 /// #![feature(allocator_api)]
622 ///
623 /// use std::alloc::{AllocError, Allocator, Global, Layout};
624 ///
625 /// fn main() {
626 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
627 ///
628 /// let vec = unsafe {
629 /// let mem = match Global.allocate(layout) {
630 /// Ok(mem) => mem.cast::<u32>().as_ptr(),
631 /// Err(AllocError) => return,
632 /// };
633 ///
634 /// mem.write(1_000_000);
635 ///
636 /// Vec::from_raw_parts_in(mem, 1, 16, Global)
637 /// };
638 ///
639 /// assert_eq!(vec, &[1_000_000]);
640 /// assert_eq!(vec.capacity(), 16);
641 /// }
642 /// ```
643 #[inline]
644 #[stable(feature = "rust1", since = "1.0.0")]
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self645 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
646 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
647 }
648 }
649
650 impl<T, A: Allocator> Vec<T, A> {
651 /// Constructs a new, empty `Vec<T, A>`.
652 ///
653 /// The vector will not allocate until elements are pushed onto it.
654 ///
655 /// # Examples
656 ///
657 /// ```
658 /// #![feature(allocator_api)]
659 ///
660 /// use std::alloc::System;
661 ///
662 /// # #[allow(unused_mut)]
663 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
664 /// ```
665 #[inline]
666 #[unstable(feature = "allocator_api", issue = "32838")]
new_in(alloc: A) -> Self667 pub const fn new_in(alloc: A) -> Self {
668 Vec { buf: RawVec::new_in(alloc), len: 0 }
669 }
670
671 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
672 /// with the provided allocator.
673 ///
674 /// The vector will be able to hold at least `capacity` elements without
675 /// reallocating. This method is allowed to allocate for more elements than
676 /// `capacity`. If `capacity` is 0, the vector will not allocate.
677 ///
678 /// It is important to note that although the returned vector has the
679 /// minimum *capacity* specified, the vector will have a zero *length*. For
680 /// an explanation of the difference between length and capacity, see
681 /// *[Capacity and reallocation]*.
682 ///
683 /// If it is important to know the exact allocated capacity of a `Vec`,
684 /// always use the [`capacity`] method after construction.
685 ///
686 /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
687 /// and the capacity will always be `usize::MAX`.
688 ///
689 /// [Capacity and reallocation]: #capacity-and-reallocation
690 /// [`capacity`]: Vec::capacity
691 ///
692 /// # Panics
693 ///
694 /// Panics if the new capacity exceeds `isize::MAX` bytes.
695 ///
696 /// # Examples
697 ///
698 /// ```
699 /// #![feature(allocator_api)]
700 ///
701 /// use std::alloc::System;
702 ///
703 /// let mut vec = Vec::with_capacity_in(10, System);
704 ///
705 /// // The vector contains no items, even though it has capacity for more
706 /// assert_eq!(vec.len(), 0);
707 /// assert!(vec.capacity() >= 10);
708 ///
709 /// // These are all done without reallocating...
710 /// for i in 0..10 {
711 /// vec.push(i);
712 /// }
713 /// assert_eq!(vec.len(), 10);
714 /// assert!(vec.capacity() >= 10);
715 ///
716 /// // ...but this may make the vector reallocate
717 /// vec.push(11);
718 /// assert_eq!(vec.len(), 11);
719 /// assert!(vec.capacity() >= 11);
720 ///
721 /// // A vector of a zero-sized type will always over-allocate, since no
722 /// // allocation is necessary
723 /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
724 /// assert_eq!(vec_units.capacity(), usize::MAX);
725 /// ```
726 #[cfg(not(no_global_oom_handling))]
727 #[inline]
728 #[unstable(feature = "allocator_api", issue = "32838")]
with_capacity_in(capacity: usize, alloc: A) -> Self729 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
730 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
731 }
732
733 /// Tries to construct a new, empty `Vec<T, A>` with at least the specified capacity
734 /// with the provided allocator.
735 ///
736 /// The vector will be able to hold at least `capacity` elements without
737 /// reallocating. This method is allowed to allocate for more elements than
738 /// `capacity`. If `capacity` is 0, the vector will not allocate.
739 ///
740 /// It is important to note that although the returned vector has the
741 /// minimum *capacity* specified, the vector will have a zero *length*. For
742 /// an explanation of the difference between length and capacity, see
743 /// *[Capacity and reallocation]*.
744 ///
745 /// If it is important to know the exact allocated capacity of a `Vec`,
746 /// always use the [`capacity`] method after construction.
747 ///
748 /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
749 /// and the capacity will always be `usize::MAX`.
750 ///
751 /// [Capacity and reallocation]: #capacity-and-reallocation
752 /// [`capacity`]: Vec::capacity
753 ///
754 /// # Examples
755 ///
756 /// ```
757 /// #![feature(allocator_api)]
758 ///
759 /// use std::alloc::System;
760 ///
761 /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
762 ///
763 /// // The vector contains no items, even though it has capacity for more
764 /// assert_eq!(vec.len(), 0);
765 /// assert!(vec.capacity() >= 10);
766 ///
767 /// // These are all done without reallocating...
768 /// for i in 0..10 {
769 /// vec.push(i);
770 /// }
771 /// assert_eq!(vec.len(), 10);
772 /// assert!(vec.capacity() >= 10);
773 ///
774 /// // ...but this may make the vector reallocate
775 /// vec.push(11);
776 /// assert_eq!(vec.len(), 11);
777 /// assert!(vec.capacity() >= 11);
778 ///
779 /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
780 /// assert!(result.is_err());
781 ///
782 /// // A vector of a zero-sized type will always over-allocate, since no
783 /// // allocation is necessary
784 /// let vec_units = Vec::<(), System>::try_with_capacity_in(10, System).unwrap();
785 /// assert_eq!(vec_units.capacity(), usize::MAX);
786 /// ```
787 #[inline]
788 #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError>789 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
790 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
791 }
792
793 /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length,
794 /// and an allocator.
795 ///
796 /// # Safety
797 ///
798 /// This is highly unsafe, due to the number of invariants that aren't
799 /// checked:
800 ///
801 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
802 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
803 /// (`T` having a less strict alignment is not sufficient, the alignment really
804 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
805 /// allocated and deallocated with the same layout.)
806 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
807 /// to be the same size as the pointer was allocated with. (Because similar to
808 /// alignment, [`dealloc`] must be called with the same layout `size`.)
809 /// * `length` needs to be less than or equal to `capacity`.
810 /// * The first `length` values must be properly initialized values of type `T`.
811 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
812 /// * The allocated size in bytes must be no larger than `isize::MAX`.
813 /// See the safety documentation of [`pointer::offset`].
814 ///
815 /// These requirements are always upheld by any `ptr` that has been allocated
816 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
817 /// upheld.
818 ///
819 /// Violating these may cause problems like corrupting the allocator's
820 /// internal data structures. For example it is **not** safe
821 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
822 /// It's also not safe to build one from a `Vec<u16>` and its length, because
823 /// the allocator cares about the alignment, and these two types have different
824 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
825 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
826 ///
827 /// The ownership of `ptr` is effectively transferred to the
828 /// `Vec<T>` which may then deallocate, reallocate or change the
829 /// contents of memory pointed to by the pointer at will. Ensure
830 /// that nothing else uses the pointer after calling this
831 /// function.
832 ///
833 /// [`String`]: crate::string::String
834 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
835 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
836 /// [*fit*]: crate::alloc::Allocator#memory-fitting
837 ///
838 /// # Examples
839 ///
840 /// ```
841 /// #![feature(allocator_api)]
842 ///
843 /// use std::alloc::System;
844 ///
845 /// use std::ptr;
846 /// use std::mem;
847 ///
848 /// let mut v = Vec::with_capacity_in(3, System);
849 /// v.push(1);
850 /// v.push(2);
851 /// v.push(3);
852 ///
853 // FIXME Update this when vec_into_raw_parts is stabilized
854 /// // Prevent running `v`'s destructor so we are in complete control
855 /// // of the allocation.
856 /// let mut v = mem::ManuallyDrop::new(v);
857 ///
858 /// // Pull out the various important pieces of information about `v`
859 /// let p = v.as_mut_ptr();
860 /// let len = v.len();
861 /// let cap = v.capacity();
862 /// let alloc = v.allocator();
863 ///
864 /// unsafe {
865 /// // Overwrite memory with 4, 5, 6
866 /// for i in 0..len {
867 /// ptr::write(p.add(i), 4 + i);
868 /// }
869 ///
870 /// // Put everything back together into a Vec
871 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
872 /// assert_eq!(rebuilt, [4, 5, 6]);
873 /// }
874 /// ```
875 ///
876 /// Using memory that was allocated elsewhere:
877 ///
878 /// ```rust
879 /// use std::alloc::{alloc, Layout};
880 ///
881 /// fn main() {
882 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
883 /// let vec = unsafe {
884 /// let mem = alloc(layout).cast::<u32>();
885 /// if mem.is_null() {
886 /// return;
887 /// }
888 ///
889 /// mem.write(1_000_000);
890 ///
891 /// Vec::from_raw_parts(mem, 1, 16)
892 /// };
893 ///
894 /// assert_eq!(vec, &[1_000_000]);
895 /// assert_eq!(vec.capacity(), 16);
896 /// }
897 /// ```
898 #[inline]
899 #[unstable(feature = "allocator_api", issue = "32838")]
from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self900 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
901 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
902 }
903
904 /// Decomposes a `Vec<T>` into its raw components.
905 ///
906 /// Returns the raw pointer to the underlying data, the length of
907 /// the vector (in elements), and the allocated capacity of the
908 /// data (in elements). These are the same arguments in the same
909 /// order as the arguments to [`from_raw_parts`].
910 ///
911 /// After calling this function, the caller is responsible for the
912 /// memory previously managed by the `Vec`. The only way to do
913 /// this is to convert the raw pointer, length, and capacity back
914 /// into a `Vec` with the [`from_raw_parts`] function, allowing
915 /// the destructor to perform the cleanup.
916 ///
917 /// [`from_raw_parts`]: Vec::from_raw_parts
918 ///
919 /// # Examples
920 ///
921 /// ```
922 /// #![feature(vec_into_raw_parts)]
923 /// let v: Vec<i32> = vec![-1, 0, 1];
924 ///
925 /// let (ptr, len, cap) = v.into_raw_parts();
926 ///
927 /// let rebuilt = unsafe {
928 /// // We can now make changes to the components, such as
929 /// // transmuting the raw pointer to a compatible type.
930 /// let ptr = ptr as *mut u32;
931 ///
932 /// Vec::from_raw_parts(ptr, len, cap)
933 /// };
934 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
935 /// ```
936 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts(self) -> (*mut T, usize, usize)937 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
938 let mut me = ManuallyDrop::new(self);
939 (me.as_mut_ptr(), me.len(), me.capacity())
940 }
941
942 /// Decomposes a `Vec<T>` into its raw components.
943 ///
944 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
945 /// the allocated capacity of the data (in elements), and the allocator. These are the same
946 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
947 ///
948 /// After calling this function, the caller is responsible for the
949 /// memory previously managed by the `Vec`. The only way to do
950 /// this is to convert the raw pointer, length, and capacity back
951 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
952 /// the destructor to perform the cleanup.
953 ///
954 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
955 ///
956 /// # Examples
957 ///
958 /// ```
959 /// #![feature(allocator_api, vec_into_raw_parts)]
960 ///
961 /// use std::alloc::System;
962 ///
963 /// let mut v: Vec<i32, System> = Vec::new_in(System);
964 /// v.push(-1);
965 /// v.push(0);
966 /// v.push(1);
967 ///
968 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
969 ///
970 /// let rebuilt = unsafe {
971 /// // We can now make changes to the components, such as
972 /// // transmuting the raw pointer to a compatible type.
973 /// let ptr = ptr as *mut u32;
974 ///
975 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
976 /// };
977 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
978 /// ```
979 #[unstable(feature = "allocator_api", issue = "32838")]
980 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A)981 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
982 let mut me = ManuallyDrop::new(self);
983 let len = me.len();
984 let capacity = me.capacity();
985 let ptr = me.as_mut_ptr();
986 let alloc = unsafe { ptr::read(me.allocator()) };
987 (ptr, len, capacity, alloc)
988 }
989
990 /// Returns the total number of elements the vector can hold without
991 /// reallocating.
992 ///
993 /// # Examples
994 ///
995 /// ```
996 /// let mut vec: Vec<i32> = Vec::with_capacity(10);
997 /// vec.push(42);
998 /// assert!(vec.capacity() >= 10);
999 /// ```
1000 #[inline]
1001 #[stable(feature = "rust1", since = "1.0.0")]
capacity(&self) -> usize1002 pub fn capacity(&self) -> usize {
1003 self.buf.capacity()
1004 }
1005
1006 /// Reserves capacity for at least `additional` more elements to be inserted
1007 /// in the given `Vec<T>`. The collection may reserve more space to
1008 /// speculatively avoid frequent reallocations. After calling `reserve`,
1009 /// capacity will be greater than or equal to `self.len() + additional`.
1010 /// Does nothing if capacity is already sufficient.
1011 ///
1012 /// # Panics
1013 ///
1014 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1015 ///
1016 /// # Examples
1017 ///
1018 /// ```
1019 /// let mut vec = vec![1];
1020 /// vec.reserve(10);
1021 /// assert!(vec.capacity() >= 11);
1022 /// ```
1023 #[cfg(not(no_global_oom_handling))]
1024 #[stable(feature = "rust1", since = "1.0.0")]
reserve(&mut self, additional: usize)1025 pub fn reserve(&mut self, additional: usize) {
1026 self.buf.reserve(self.len, additional);
1027 }
1028
1029 /// Reserves the minimum capacity for at least `additional` more elements to
1030 /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1031 /// deliberately over-allocate to speculatively avoid frequent allocations.
1032 /// After calling `reserve_exact`, capacity will be greater than or equal to
1033 /// `self.len() + additional`. Does nothing if the capacity is already
1034 /// sufficient.
1035 ///
1036 /// Note that the allocator may give the collection more space than it
1037 /// requests. Therefore, capacity can not be relied upon to be precisely
1038 /// minimal. Prefer [`reserve`] if future insertions are expected.
1039 ///
1040 /// [`reserve`]: Vec::reserve
1041 ///
1042 /// # Panics
1043 ///
1044 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1045 ///
1046 /// # Examples
1047 ///
1048 /// ```
1049 /// let mut vec = vec![1];
1050 /// vec.reserve_exact(10);
1051 /// assert!(vec.capacity() >= 11);
1052 /// ```
1053 #[cfg(not(no_global_oom_handling))]
1054 #[stable(feature = "rust1", since = "1.0.0")]
reserve_exact(&mut self, additional: usize)1055 pub fn reserve_exact(&mut self, additional: usize) {
1056 self.buf.reserve_exact(self.len, additional);
1057 }
1058
1059 /// Tries to reserve capacity for at least `additional` more elements to be inserted
1060 /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1061 /// frequent reallocations. After calling `try_reserve`, capacity will be
1062 /// greater than or equal to `self.len() + additional` if it returns
1063 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1064 /// preserves the contents even if an error occurs.
1065 ///
1066 /// # Errors
1067 ///
1068 /// If the capacity overflows, or the allocator reports a failure, then an error
1069 /// is returned.
1070 ///
1071 /// # Examples
1072 ///
1073 /// ```
1074 /// use std::collections::TryReserveError;
1075 ///
1076 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1077 /// let mut output = Vec::new();
1078 ///
1079 /// // Pre-reserve the memory, exiting if we can't
1080 /// output.try_reserve(data.len())?;
1081 ///
1082 /// // Now we know this can't OOM in the middle of our complex work
1083 /// output.extend(data.iter().map(|&val| {
1084 /// val * 2 + 5 // very complicated
1085 /// }));
1086 ///
1087 /// Ok(output)
1088 /// }
1089 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1090 /// ```
1091 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>1092 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1093 self.buf.try_reserve(self.len, additional)
1094 }
1095
1096 /// Tries to reserve the minimum capacity for at least `additional`
1097 /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1098 /// this will not deliberately over-allocate to speculatively avoid frequent
1099 /// allocations. After calling `try_reserve_exact`, capacity will be greater
1100 /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1101 /// Does nothing if the capacity is already sufficient.
1102 ///
1103 /// Note that the allocator may give the collection more space than it
1104 /// requests. Therefore, capacity can not be relied upon to be precisely
1105 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1106 ///
1107 /// [`try_reserve`]: Vec::try_reserve
1108 ///
1109 /// # Errors
1110 ///
1111 /// If the capacity overflows, or the allocator reports a failure, then an error
1112 /// is returned.
1113 ///
1114 /// # Examples
1115 ///
1116 /// ```
1117 /// use std::collections::TryReserveError;
1118 ///
1119 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1120 /// let mut output = Vec::new();
1121 ///
1122 /// // Pre-reserve the memory, exiting if we can't
1123 /// output.try_reserve_exact(data.len())?;
1124 ///
1125 /// // Now we know this can't OOM in the middle of our complex work
1126 /// output.extend(data.iter().map(|&val| {
1127 /// val * 2 + 5 // very complicated
1128 /// }));
1129 ///
1130 /// Ok(output)
1131 /// }
1132 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1133 /// ```
1134 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError>1135 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1136 self.buf.try_reserve_exact(self.len, additional)
1137 }
1138
1139 /// Shrinks the capacity of the vector as much as possible.
1140 ///
1141 /// It will drop down as close as possible to the length but the allocator
1142 /// may still inform the vector that there is space for a few more elements.
1143 ///
1144 /// # Examples
1145 ///
1146 /// ```
1147 /// let mut vec = Vec::with_capacity(10);
1148 /// vec.extend([1, 2, 3]);
1149 /// assert!(vec.capacity() >= 10);
1150 /// vec.shrink_to_fit();
1151 /// assert!(vec.capacity() >= 3);
1152 /// ```
1153 #[cfg(not(no_global_oom_handling))]
1154 #[stable(feature = "rust1", since = "1.0.0")]
shrink_to_fit(&mut self)1155 pub fn shrink_to_fit(&mut self) {
1156 // The capacity is never less than the length, and there's nothing to do when
1157 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1158 // by only calling it with a greater capacity.
1159 if self.capacity() > self.len {
1160 self.buf.shrink_to_fit(self.len);
1161 }
1162 }
1163
1164 /// Shrinks the capacity of the vector with a lower bound.
1165 ///
1166 /// The capacity will remain at least as large as both the length
1167 /// and the supplied value.
1168 ///
1169 /// If the current capacity is less than the lower limit, this is a no-op.
1170 ///
1171 /// # Examples
1172 ///
1173 /// ```
1174 /// let mut vec = Vec::with_capacity(10);
1175 /// vec.extend([1, 2, 3]);
1176 /// assert!(vec.capacity() >= 10);
1177 /// vec.shrink_to(4);
1178 /// assert!(vec.capacity() >= 4);
1179 /// vec.shrink_to(0);
1180 /// assert!(vec.capacity() >= 3);
1181 /// ```
1182 #[cfg(not(no_global_oom_handling))]
1183 #[stable(feature = "shrink_to", since = "1.56.0")]
shrink_to(&mut self, min_capacity: usize)1184 pub fn shrink_to(&mut self, min_capacity: usize) {
1185 if self.capacity() > min_capacity {
1186 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1187 }
1188 }
1189
1190 /// Converts the vector into [`Box<[T]>`][owned slice].
1191 ///
1192 /// If the vector has excess capacity, its items will be moved into a
1193 /// newly-allocated buffer with exactly the right capacity.
1194 ///
1195 /// [owned slice]: Box
1196 ///
1197 /// # Examples
1198 ///
1199 /// ```
1200 /// let v = vec![1, 2, 3];
1201 ///
1202 /// let slice = v.into_boxed_slice();
1203 /// ```
1204 ///
1205 /// Any excess capacity is removed:
1206 ///
1207 /// ```
1208 /// let mut vec = Vec::with_capacity(10);
1209 /// vec.extend([1, 2, 3]);
1210 ///
1211 /// assert!(vec.capacity() >= 10);
1212 /// let slice = vec.into_boxed_slice();
1213 /// assert_eq!(slice.into_vec().capacity(), 3);
1214 /// ```
1215 #[cfg(not(no_global_oom_handling))]
1216 #[stable(feature = "rust1", since = "1.0.0")]
into_boxed_slice(mut self) -> Box<[T], A>1217 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1218 unsafe {
1219 self.shrink_to_fit();
1220 let me = ManuallyDrop::new(self);
1221 let buf = ptr::read(&me.buf);
1222 let len = me.len();
1223 buf.into_box(len).assume_init()
1224 }
1225 }
1226
1227 /// Shortens the vector, keeping the first `len` elements and dropping
1228 /// the rest.
1229 ///
1230 /// If `len` is greater than the vector's current length, this has no
1231 /// effect.
1232 ///
1233 /// The [`drain`] method can emulate `truncate`, but causes the excess
1234 /// elements to be returned instead of dropped.
1235 ///
1236 /// Note that this method has no effect on the allocated capacity
1237 /// of the vector.
1238 ///
1239 /// # Examples
1240 ///
1241 /// Truncating a five element vector to two elements:
1242 ///
1243 /// ```
1244 /// let mut vec = vec![1, 2, 3, 4, 5];
1245 /// vec.truncate(2);
1246 /// assert_eq!(vec, [1, 2]);
1247 /// ```
1248 ///
1249 /// No truncation occurs when `len` is greater than the vector's current
1250 /// length:
1251 ///
1252 /// ```
1253 /// let mut vec = vec![1, 2, 3];
1254 /// vec.truncate(8);
1255 /// assert_eq!(vec, [1, 2, 3]);
1256 /// ```
1257 ///
1258 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1259 /// method.
1260 ///
1261 /// ```
1262 /// let mut vec = vec![1, 2, 3];
1263 /// vec.truncate(0);
1264 /// assert_eq!(vec, []);
1265 /// ```
1266 ///
1267 /// [`clear`]: Vec::clear
1268 /// [`drain`]: Vec::drain
1269 #[stable(feature = "rust1", since = "1.0.0")]
truncate(&mut self, len: usize)1270 pub fn truncate(&mut self, len: usize) {
1271 // This is safe because:
1272 //
1273 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1274 // case avoids creating an invalid slice, and
1275 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1276 // such that no value will be dropped twice in case `drop_in_place`
1277 // were to panic once (if it panics twice, the program aborts).
1278 unsafe {
1279 // Note: It's intentional that this is `>` and not `>=`.
1280 // Changing it to `>=` has negative performance
1281 // implications in some cases. See #78884 for more.
1282 if len > self.len {
1283 return;
1284 }
1285 let remaining_len = self.len - len;
1286 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1287 self.len = len;
1288 ptr::drop_in_place(s);
1289 }
1290 }
1291
1292 /// Extracts a slice containing the entire vector.
1293 ///
1294 /// Equivalent to `&s[..]`.
1295 ///
1296 /// # Examples
1297 ///
1298 /// ```
1299 /// use std::io::{self, Write};
1300 /// let buffer = vec![1, 2, 3, 5, 8];
1301 /// io::sink().write(buffer.as_slice()).unwrap();
1302 /// ```
1303 #[inline]
1304 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_slice(&self) -> &[T]1305 pub fn as_slice(&self) -> &[T] {
1306 self
1307 }
1308
1309 /// Extracts a mutable slice of the entire vector.
1310 ///
1311 /// Equivalent to `&mut s[..]`.
1312 ///
1313 /// # Examples
1314 ///
1315 /// ```
1316 /// use std::io::{self, Read};
1317 /// let mut buffer = vec![0; 3];
1318 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1319 /// ```
1320 #[inline]
1321 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_mut_slice(&mut self) -> &mut [T]1322 pub fn as_mut_slice(&mut self) -> &mut [T] {
1323 self
1324 }
1325
1326 /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1327 /// valid for zero sized reads if the vector didn't allocate.
1328 ///
1329 /// The caller must ensure that the vector outlives the pointer this
1330 /// function returns, or else it will end up pointing to garbage.
1331 /// Modifying the vector may cause its buffer to be reallocated,
1332 /// which would also make any pointers to it invalid.
1333 ///
1334 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1335 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1336 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1337 ///
1338 /// # Examples
1339 ///
1340 /// ```
1341 /// let x = vec![1, 2, 4];
1342 /// let x_ptr = x.as_ptr();
1343 ///
1344 /// unsafe {
1345 /// for i in 0..x.len() {
1346 /// assert_eq!(*x_ptr.add(i), 1 << i);
1347 /// }
1348 /// }
1349 /// ```
1350 ///
1351 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1352 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1353 #[inline]
as_ptr(&self) -> *const T1354 pub fn as_ptr(&self) -> *const T {
1355 // We shadow the slice method of the same name to avoid going through
1356 // `deref`, which creates an intermediate reference.
1357 self.buf.ptr()
1358 }
1359
1360 /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
1361 /// raw pointer valid for zero sized reads if the vector didn't allocate.
1362 ///
1363 /// The caller must ensure that the vector outlives the pointer this
1364 /// function returns, or else it will end up pointing to garbage.
1365 /// Modifying the vector may cause its buffer to be reallocated,
1366 /// which would also make any pointers to it invalid.
1367 ///
1368 /// # Examples
1369 ///
1370 /// ```
1371 /// // Allocate vector big enough for 4 elements.
1372 /// let size = 4;
1373 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1374 /// let x_ptr = x.as_mut_ptr();
1375 ///
1376 /// // Initialize elements via raw pointer writes, then set length.
1377 /// unsafe {
1378 /// for i in 0..size {
1379 /// *x_ptr.add(i) = i as i32;
1380 /// }
1381 /// x.set_len(size);
1382 /// }
1383 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1384 /// ```
1385 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1386 #[inline]
as_mut_ptr(&mut self) -> *mut T1387 pub fn as_mut_ptr(&mut self) -> *mut T {
1388 // We shadow the slice method of the same name to avoid going through
1389 // `deref_mut`, which creates an intermediate reference.
1390 self.buf.ptr()
1391 }
1392
1393 /// Returns a reference to the underlying allocator.
1394 #[unstable(feature = "allocator_api", issue = "32838")]
1395 #[inline]
allocator(&self) -> &A1396 pub fn allocator(&self) -> &A {
1397 self.buf.allocator()
1398 }
1399
1400 /// Forces the length of the vector to `new_len`.
1401 ///
1402 /// This is a low-level operation that maintains none of the normal
1403 /// invariants of the type. Normally changing the length of a vector
1404 /// is done using one of the safe operations instead, such as
1405 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1406 ///
1407 /// [`truncate`]: Vec::truncate
1408 /// [`resize`]: Vec::resize
1409 /// [`extend`]: Extend::extend
1410 /// [`clear`]: Vec::clear
1411 ///
1412 /// # Safety
1413 ///
1414 /// - `new_len` must be less than or equal to [`capacity()`].
1415 /// - The elements at `old_len..new_len` must be initialized.
1416 ///
1417 /// [`capacity()`]: Vec::capacity
1418 ///
1419 /// # Examples
1420 ///
1421 /// This method can be useful for situations in which the vector
1422 /// is serving as a buffer for other code, particularly over FFI:
1423 ///
1424 /// ```no_run
1425 /// # #![allow(dead_code)]
1426 /// # // This is just a minimal skeleton for the doc example;
1427 /// # // don't use this as a starting point for a real library.
1428 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1429 /// # const Z_OK: i32 = 0;
1430 /// # extern "C" {
1431 /// # fn deflateGetDictionary(
1432 /// # strm: *mut std::ffi::c_void,
1433 /// # dictionary: *mut u8,
1434 /// # dictLength: *mut usize,
1435 /// # ) -> i32;
1436 /// # }
1437 /// # impl StreamWrapper {
1438 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1439 /// // Per the FFI method's docs, "32768 bytes is always enough".
1440 /// let mut dict = Vec::with_capacity(32_768);
1441 /// let mut dict_length = 0;
1442 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1443 /// // 1. `dict_length` elements were initialized.
1444 /// // 2. `dict_length` <= the capacity (32_768)
1445 /// // which makes `set_len` safe to call.
1446 /// unsafe {
1447 /// // Make the FFI call...
1448 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1449 /// if r == Z_OK {
1450 /// // ...and update the length to what was initialized.
1451 /// dict.set_len(dict_length);
1452 /// Some(dict)
1453 /// } else {
1454 /// None
1455 /// }
1456 /// }
1457 /// }
1458 /// # }
1459 /// ```
1460 ///
1461 /// While the following example is sound, there is a memory leak since
1462 /// the inner vectors were not freed prior to the `set_len` call:
1463 ///
1464 /// ```
1465 /// let mut vec = vec![vec![1, 0, 0],
1466 /// vec![0, 1, 0],
1467 /// vec![0, 0, 1]];
1468 /// // SAFETY:
1469 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1470 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1471 /// unsafe {
1472 /// vec.set_len(0);
1473 /// }
1474 /// ```
1475 ///
1476 /// Normally, here, one would use [`clear`] instead to correctly drop
1477 /// the contents and thus not leak memory.
1478 #[inline]
1479 #[stable(feature = "rust1", since = "1.0.0")]
set_len(&mut self, new_len: usize)1480 pub unsafe fn set_len(&mut self, new_len: usize) {
1481 debug_assert!(new_len <= self.capacity());
1482
1483 self.len = new_len;
1484 }
1485
1486 /// Removes an element from the vector and returns it.
1487 ///
1488 /// The removed element is replaced by the last element of the vector.
1489 ///
1490 /// This does not preserve ordering, but is *O*(1).
1491 /// If you need to preserve the element order, use [`remove`] instead.
1492 ///
1493 /// [`remove`]: Vec::remove
1494 ///
1495 /// # Panics
1496 ///
1497 /// Panics if `index` is out of bounds.
1498 ///
1499 /// # Examples
1500 ///
1501 /// ```
1502 /// let mut v = vec!["foo", "bar", "baz", "qux"];
1503 ///
1504 /// assert_eq!(v.swap_remove(1), "bar");
1505 /// assert_eq!(v, ["foo", "qux", "baz"]);
1506 ///
1507 /// assert_eq!(v.swap_remove(0), "foo");
1508 /// assert_eq!(v, ["baz", "qux"]);
1509 /// ```
1510 #[inline]
1511 #[stable(feature = "rust1", since = "1.0.0")]
swap_remove(&mut self, index: usize) -> T1512 pub fn swap_remove(&mut self, index: usize) -> T {
1513 #[cold]
1514 #[inline(never)]
1515 fn assert_failed(index: usize, len: usize) -> ! {
1516 panic!("swap_remove index (is {index}) should be < len (is {len})");
1517 }
1518
1519 let len = self.len();
1520 if index >= len {
1521 assert_failed(index, len);
1522 }
1523 unsafe {
1524 // We replace self[index] with the last element. Note that if the
1525 // bounds check above succeeds there must be a last element (which
1526 // can be self[index] itself).
1527 let value = ptr::read(self.as_ptr().add(index));
1528 let base_ptr = self.as_mut_ptr();
1529 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1530 self.set_len(len - 1);
1531 value
1532 }
1533 }
1534
1535 /// Inserts an element at position `index` within the vector, shifting all
1536 /// elements after it to the right.
1537 ///
1538 /// # Panics
1539 ///
1540 /// Panics if `index > len`.
1541 ///
1542 /// # Examples
1543 ///
1544 /// ```
1545 /// let mut vec = vec![1, 2, 3];
1546 /// vec.insert(1, 4);
1547 /// assert_eq!(vec, [1, 4, 2, 3]);
1548 /// vec.insert(4, 5);
1549 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1550 /// ```
1551 #[cfg(not(no_global_oom_handling))]
1552 #[stable(feature = "rust1", since = "1.0.0")]
insert(&mut self, index: usize, element: T)1553 pub fn insert(&mut self, index: usize, element: T) {
1554 #[cold]
1555 #[inline(never)]
1556 fn assert_failed(index: usize, len: usize) -> ! {
1557 panic!("insertion index (is {index}) should be <= len (is {len})");
1558 }
1559
1560 let len = self.len();
1561
1562 // space for the new element
1563 if len == self.buf.capacity() {
1564 self.reserve(1);
1565 }
1566
1567 unsafe {
1568 // infallible
1569 // The spot to put the new value
1570 {
1571 let p = self.as_mut_ptr().add(index);
1572 if index < len {
1573 // Shift everything over to make space. (Duplicating the
1574 // `index`th element into two consecutive places.)
1575 ptr::copy(p, p.add(1), len - index);
1576 } else if index == len {
1577 // No elements need shifting.
1578 } else {
1579 assert_failed(index, len);
1580 }
1581 // Write it in, overwriting the first copy of the `index`th
1582 // element.
1583 ptr::write(p, element);
1584 }
1585 self.set_len(len + 1);
1586 }
1587 }
1588
1589 /// Removes and returns the element at position `index` within the vector,
1590 /// shifting all elements after it to the left.
1591 ///
1592 /// Note: Because this shifts over the remaining elements, it has a
1593 /// worst-case performance of *O*(*n*). If you don't need the order of elements
1594 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1595 /// elements from the beginning of the `Vec`, consider using
1596 /// [`VecDeque::pop_front`] instead.
1597 ///
1598 /// [`swap_remove`]: Vec::swap_remove
1599 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1600 ///
1601 /// # Panics
1602 ///
1603 /// Panics if `index` is out of bounds.
1604 ///
1605 /// # Examples
1606 ///
1607 /// ```
1608 /// let mut v = vec![1, 2, 3];
1609 /// assert_eq!(v.remove(1), 2);
1610 /// assert_eq!(v, [1, 3]);
1611 /// ```
1612 #[stable(feature = "rust1", since = "1.0.0")]
1613 #[track_caller]
remove(&mut self, index: usize) -> T1614 pub fn remove(&mut self, index: usize) -> T {
1615 #[cold]
1616 #[inline(never)]
1617 #[track_caller]
1618 fn assert_failed(index: usize, len: usize) -> ! {
1619 panic!("removal index (is {index}) should be < len (is {len})");
1620 }
1621
1622 let len = self.len();
1623 if index >= len {
1624 assert_failed(index, len);
1625 }
1626 unsafe {
1627 // infallible
1628 let ret;
1629 {
1630 // the place we are taking from.
1631 let ptr = self.as_mut_ptr().add(index);
1632 // copy it out, unsafely having a copy of the value on
1633 // the stack and in the vector at the same time.
1634 ret = ptr::read(ptr);
1635
1636 // Shift everything down to fill in that spot.
1637 ptr::copy(ptr.add(1), ptr, len - index - 1);
1638 }
1639 self.set_len(len - 1);
1640 ret
1641 }
1642 }
1643
1644 /// Retains only the elements specified by the predicate.
1645 ///
1646 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1647 /// This method operates in place, visiting each element exactly once in the
1648 /// original order, and preserves the order of the retained elements.
1649 ///
1650 /// # Examples
1651 ///
1652 /// ```
1653 /// let mut vec = vec![1, 2, 3, 4];
1654 /// vec.retain(|&x| x % 2 == 0);
1655 /// assert_eq!(vec, [2, 4]);
1656 /// ```
1657 ///
1658 /// Because the elements are visited exactly once in the original order,
1659 /// external state may be used to decide which elements to keep.
1660 ///
1661 /// ```
1662 /// let mut vec = vec![1, 2, 3, 4, 5];
1663 /// let keep = [false, true, true, false, true];
1664 /// let mut iter = keep.iter();
1665 /// vec.retain(|_| *iter.next().unwrap());
1666 /// assert_eq!(vec, [2, 3, 5]);
1667 /// ```
1668 #[stable(feature = "rust1", since = "1.0.0")]
retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool,1669 pub fn retain<F>(&mut self, mut f: F)
1670 where
1671 F: FnMut(&T) -> bool,
1672 {
1673 self.retain_mut(|elem| f(elem));
1674 }
1675
1676 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1677 ///
1678 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1679 /// This method operates in place, visiting each element exactly once in the
1680 /// original order, and preserves the order of the retained elements.
1681 ///
1682 /// # Examples
1683 ///
1684 /// ```
1685 /// let mut vec = vec![1, 2, 3, 4];
1686 /// vec.retain_mut(|x| if *x <= 3 {
1687 /// *x += 1;
1688 /// true
1689 /// } else {
1690 /// false
1691 /// });
1692 /// assert_eq!(vec, [2, 3, 4]);
1693 /// ```
1694 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
retain_mut<F>(&mut self, mut f: F) where F: FnMut(&mut T) -> bool,1695 pub fn retain_mut<F>(&mut self, mut f: F)
1696 where
1697 F: FnMut(&mut T) -> bool,
1698 {
1699 let original_len = self.len();
1700 // Avoid double drop if the drop guard is not executed,
1701 // since we may make some holes during the process.
1702 unsafe { self.set_len(0) };
1703
1704 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1705 // |<- processed len ->| ^- next to check
1706 // |<- deleted cnt ->|
1707 // |<- original_len ->|
1708 // Kept: Elements which predicate returns true on.
1709 // Hole: Moved or dropped element slot.
1710 // Unchecked: Unchecked valid elements.
1711 //
1712 // This drop guard will be invoked when predicate or `drop` of element panicked.
1713 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1714 // In cases when predicate and `drop` never panick, it will be optimized out.
1715 struct BackshiftOnDrop<'a, T, A: Allocator> {
1716 v: &'a mut Vec<T, A>,
1717 processed_len: usize,
1718 deleted_cnt: usize,
1719 original_len: usize,
1720 }
1721
1722 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1723 fn drop(&mut self) {
1724 if self.deleted_cnt > 0 {
1725 // SAFETY: Trailing unchecked items must be valid since we never touch them.
1726 unsafe {
1727 ptr::copy(
1728 self.v.as_ptr().add(self.processed_len),
1729 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1730 self.original_len - self.processed_len,
1731 );
1732 }
1733 }
1734 // SAFETY: After filling holes, all items are in contiguous memory.
1735 unsafe {
1736 self.v.set_len(self.original_len - self.deleted_cnt);
1737 }
1738 }
1739 }
1740
1741 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1742
1743 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1744 original_len: usize,
1745 f: &mut F,
1746 g: &mut BackshiftOnDrop<'_, T, A>,
1747 ) where
1748 F: FnMut(&mut T) -> bool,
1749 {
1750 while g.processed_len != original_len {
1751 // SAFETY: Unchecked element must be valid.
1752 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1753 if !f(cur) {
1754 // Advance early to avoid double drop if `drop_in_place` panicked.
1755 g.processed_len += 1;
1756 g.deleted_cnt += 1;
1757 // SAFETY: We never touch this element again after dropped.
1758 unsafe { ptr::drop_in_place(cur) };
1759 // We already advanced the counter.
1760 if DELETED {
1761 continue;
1762 } else {
1763 break;
1764 }
1765 }
1766 if DELETED {
1767 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1768 // We use copy for move, and never touch this element again.
1769 unsafe {
1770 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1771 ptr::copy_nonoverlapping(cur, hole_slot, 1);
1772 }
1773 }
1774 g.processed_len += 1;
1775 }
1776 }
1777
1778 // Stage 1: Nothing was deleted.
1779 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1780
1781 // Stage 2: Some elements were deleted.
1782 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1783
1784 // All item are processed. This can be optimized to `set_len` by LLVM.
1785 drop(g);
1786 }
1787
1788 /// Removes all but the first of consecutive elements in the vector that resolve to the same
1789 /// key.
1790 ///
1791 /// If the vector is sorted, this removes all duplicates.
1792 ///
1793 /// # Examples
1794 ///
1795 /// ```
1796 /// let mut vec = vec![10, 20, 21, 30, 20];
1797 ///
1798 /// vec.dedup_by_key(|i| *i / 10);
1799 ///
1800 /// assert_eq!(vec, [10, 20, 30, 20]);
1801 /// ```
1802 #[stable(feature = "dedup_by", since = "1.16.0")]
1803 #[inline]
dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq,1804 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1805 where
1806 F: FnMut(&mut T) -> K,
1807 K: PartialEq,
1808 {
1809 self.dedup_by(|a, b| key(a) == key(b))
1810 }
1811
1812 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1813 /// relation.
1814 ///
1815 /// The `same_bucket` function is passed references to two elements from the vector and
1816 /// must determine if the elements compare equal. The elements are passed in opposite order
1817 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1818 ///
1819 /// If the vector is sorted, this removes all duplicates.
1820 ///
1821 /// # Examples
1822 ///
1823 /// ```
1824 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1825 ///
1826 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1827 ///
1828 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1829 /// ```
1830 #[stable(feature = "dedup_by", since = "1.16.0")]
dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool,1831 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1832 where
1833 F: FnMut(&mut T, &mut T) -> bool,
1834 {
1835 let len = self.len();
1836 if len <= 1 {
1837 return;
1838 }
1839
1840 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1841 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1842 /* Offset of the element we want to check if it is duplicate */
1843 read: usize,
1844
1845 /* Offset of the place where we want to place the non-duplicate
1846 * when we find it. */
1847 write: usize,
1848
1849 /* The Vec that would need correction if `same_bucket` panicked */
1850 vec: &'a mut Vec<T, A>,
1851 }
1852
1853 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1854 fn drop(&mut self) {
1855 /* This code gets executed when `same_bucket` panics */
1856
1857 /* SAFETY: invariant guarantees that `read - write`
1858 * and `len - read` never overflow and that the copy is always
1859 * in-bounds. */
1860 unsafe {
1861 let ptr = self.vec.as_mut_ptr();
1862 let len = self.vec.len();
1863
1864 /* How many items were left when `same_bucket` panicked.
1865 * Basically vec[read..].len() */
1866 let items_left = len.wrapping_sub(self.read);
1867
1868 /* Pointer to first item in vec[write..write+items_left] slice */
1869 let dropped_ptr = ptr.add(self.write);
1870 /* Pointer to first item in vec[read..] slice */
1871 let valid_ptr = ptr.add(self.read);
1872
1873 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1874 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1875 ptr::copy(valid_ptr, dropped_ptr, items_left);
1876
1877 /* How many items have been already dropped
1878 * Basically vec[read..write].len() */
1879 let dropped = self.read.wrapping_sub(self.write);
1880
1881 self.vec.set_len(len - dropped);
1882 }
1883 }
1884 }
1885
1886 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1887 let ptr = gap.vec.as_mut_ptr();
1888
1889 /* Drop items while going through Vec, it should be more efficient than
1890 * doing slice partition_dedup + truncate */
1891
1892 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1893 * are always in-bounds and read_ptr never aliases prev_ptr */
1894 unsafe {
1895 while gap.read < len {
1896 let read_ptr = ptr.add(gap.read);
1897 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1898
1899 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1900 // Increase `gap.read` now since the drop may panic.
1901 gap.read += 1;
1902 /* We have found duplicate, drop it in-place */
1903 ptr::drop_in_place(read_ptr);
1904 } else {
1905 let write_ptr = ptr.add(gap.write);
1906
1907 /* Because `read_ptr` can be equal to `write_ptr`, we either
1908 * have to use `copy` or conditional `copy_nonoverlapping`.
1909 * Looks like the first option is faster. */
1910 ptr::copy(read_ptr, write_ptr, 1);
1911
1912 /* We have filled that place, so go further */
1913 gap.write += 1;
1914 gap.read += 1;
1915 }
1916 }
1917
1918 /* Technically we could let `gap` clean up with its Drop, but
1919 * when `same_bucket` is guaranteed to not panic, this bloats a little
1920 * the codegen, so we just do it manually */
1921 gap.vec.set_len(gap.write);
1922 mem::forget(gap);
1923 }
1924 }
1925
1926 /// Appends an element to the back of a collection.
1927 ///
1928 /// # Panics
1929 ///
1930 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1931 ///
1932 /// # Examples
1933 ///
1934 /// ```
1935 /// let mut vec = vec![1, 2];
1936 /// vec.push(3);
1937 /// assert_eq!(vec, [1, 2, 3]);
1938 /// ```
1939 #[cfg(not(no_global_oom_handling))]
1940 #[inline]
1941 #[stable(feature = "rust1", since = "1.0.0")]
push(&mut self, value: T)1942 pub fn push(&mut self, value: T) {
1943 // This will panic or abort if we would allocate > isize::MAX bytes
1944 // or if the length increment would overflow for zero-sized types.
1945 if self.len == self.buf.capacity() {
1946 self.buf.reserve_for_push(self.len);
1947 }
1948 unsafe {
1949 let end = self.as_mut_ptr().add(self.len);
1950 ptr::write(end, value);
1951 self.len += 1;
1952 }
1953 }
1954
1955 /// Tries to append an element to the back of a collection.
1956 ///
1957 /// # Examples
1958 ///
1959 /// ```
1960 /// let mut vec = vec![1, 2];
1961 /// vec.try_push(3).unwrap();
1962 /// assert_eq!(vec, [1, 2, 3]);
1963 /// ```
1964 #[inline]
1965 #[stable(feature = "kernel", since = "1.0.0")]
try_push(&mut self, value: T) -> Result<(), TryReserveError>1966 pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1967 if self.len == self.buf.capacity() {
1968 self.buf.try_reserve_for_push(self.len)?;
1969 }
1970 unsafe {
1971 let end = self.as_mut_ptr().add(self.len);
1972 ptr::write(end, value);
1973 self.len += 1;
1974 }
1975 Ok(())
1976 }
1977
1978 /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
1979 /// with the element.
1980 ///
1981 /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
1982 /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
1983 ///
1984 /// [`push`]: Vec::push
1985 /// [`reserve`]: Vec::reserve
1986 /// [`try_reserve`]: Vec::try_reserve
1987 ///
1988 /// # Examples
1989 ///
1990 /// A manual, panic-free alternative to [`FromIterator`]:
1991 ///
1992 /// ```
1993 /// #![feature(vec_push_within_capacity)]
1994 ///
1995 /// use std::collections::TryReserveError;
1996 /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
1997 /// let mut vec = Vec::new();
1998 /// for value in iter {
1999 /// if let Err(value) = vec.push_within_capacity(value) {
2000 /// vec.try_reserve(1)?;
2001 /// // this cannot fail, the previous line either returned or added at least 1 free slot
2002 /// let _ = vec.push_within_capacity(value);
2003 /// }
2004 /// }
2005 /// Ok(vec)
2006 /// }
2007 /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2008 /// ```
2009 #[inline]
2010 #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
push_within_capacity(&mut self, value: T) -> Result<(), T>2011 pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2012 if self.len == self.buf.capacity() {
2013 return Err(value);
2014 }
2015 unsafe {
2016 let end = self.as_mut_ptr().add(self.len);
2017 ptr::write(end, value);
2018 self.len += 1;
2019 }
2020 Ok(())
2021 }
2022
2023 /// Removes the last element from a vector and returns it, or [`None`] if it
2024 /// is empty.
2025 ///
2026 /// If you'd like to pop the first element, consider using
2027 /// [`VecDeque::pop_front`] instead.
2028 ///
2029 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2030 ///
2031 /// # Examples
2032 ///
2033 /// ```
2034 /// let mut vec = vec![1, 2, 3];
2035 /// assert_eq!(vec.pop(), Some(3));
2036 /// assert_eq!(vec, [1, 2]);
2037 /// ```
2038 #[inline]
2039 #[stable(feature = "rust1", since = "1.0.0")]
pop(&mut self) -> Option<T>2040 pub fn pop(&mut self) -> Option<T> {
2041 if self.len == 0 {
2042 None
2043 } else {
2044 unsafe {
2045 self.len -= 1;
2046 Some(ptr::read(self.as_ptr().add(self.len())))
2047 }
2048 }
2049 }
2050
2051 /// Moves all the elements of `other` into `self`, leaving `other` empty.
2052 ///
2053 /// # Panics
2054 ///
2055 /// Panics if the new capacity exceeds `isize::MAX` bytes.
2056 ///
2057 /// # Examples
2058 ///
2059 /// ```
2060 /// let mut vec = vec![1, 2, 3];
2061 /// let mut vec2 = vec![4, 5, 6];
2062 /// vec.append(&mut vec2);
2063 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2064 /// assert_eq!(vec2, []);
2065 /// ```
2066 #[cfg(not(no_global_oom_handling))]
2067 #[inline]
2068 #[stable(feature = "append", since = "1.4.0")]
append(&mut self, other: &mut Self)2069 pub fn append(&mut self, other: &mut Self) {
2070 unsafe {
2071 self.append_elements(other.as_slice() as _);
2072 other.set_len(0);
2073 }
2074 }
2075
2076 /// Appends elements to `self` from other buffer.
2077 #[cfg(not(no_global_oom_handling))]
2078 #[inline]
append_elements(&mut self, other: *const [T])2079 unsafe fn append_elements(&mut self, other: *const [T]) {
2080 let count = unsafe { (*other).len() };
2081 self.reserve(count);
2082 let len = self.len();
2083 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2084 self.len += count;
2085 }
2086
2087 /// Tries to append elements to `self` from other buffer.
2088 #[inline]
try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError>2089 unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
2090 let count = unsafe { (*other).len() };
2091 self.try_reserve(count)?;
2092 let len = self.len();
2093 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2094 self.len += count;
2095 Ok(())
2096 }
2097
2098 /// Removes the specified range from the vector in bulk, returning all
2099 /// removed elements as an iterator. If the iterator is dropped before
2100 /// being fully consumed, it drops the remaining removed elements.
2101 ///
2102 /// The returned iterator keeps a mutable borrow on the vector to optimize
2103 /// its implementation.
2104 ///
2105 /// # Panics
2106 ///
2107 /// Panics if the starting point is greater than the end point or if
2108 /// the end point is greater than the length of the vector.
2109 ///
2110 /// # Leaking
2111 ///
2112 /// If the returned iterator goes out of scope without being dropped (due to
2113 /// [`mem::forget`], for example), the vector may have lost and leaked
2114 /// elements arbitrarily, including elements outside the range.
2115 ///
2116 /// # Examples
2117 ///
2118 /// ```
2119 /// let mut v = vec![1, 2, 3];
2120 /// let u: Vec<_> = v.drain(1..).collect();
2121 /// assert_eq!(v, &[1]);
2122 /// assert_eq!(u, &[2, 3]);
2123 ///
2124 /// // A full range clears the vector, like `clear()` does
2125 /// v.drain(..);
2126 /// assert_eq!(v, &[]);
2127 /// ```
2128 #[stable(feature = "drain", since = "1.6.0")]
drain<R>(&mut self, range: R) -> Drain<'_, T, A> where R: RangeBounds<usize>,2129 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2130 where
2131 R: RangeBounds<usize>,
2132 {
2133 // Memory safety
2134 //
2135 // When the Drain is first created, it shortens the length of
2136 // the source vector to make sure no uninitialized or moved-from elements
2137 // are accessible at all if the Drain's destructor never gets to run.
2138 //
2139 // Drain will ptr::read out the values to remove.
2140 // When finished, remaining tail of the vec is copied back to cover
2141 // the hole, and the vector length is restored to the new length.
2142 //
2143 let len = self.len();
2144 let Range { start, end } = slice::range(range, ..len);
2145
2146 unsafe {
2147 // set self.vec length's to start, to be safe in case Drain is leaked
2148 self.set_len(start);
2149 let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2150 Drain {
2151 tail_start: end,
2152 tail_len: len - end,
2153 iter: range_slice.iter(),
2154 vec: NonNull::from(self),
2155 }
2156 }
2157 }
2158
2159 /// Clears the vector, removing all values.
2160 ///
2161 /// Note that this method has no effect on the allocated capacity
2162 /// of the vector.
2163 ///
2164 /// # Examples
2165 ///
2166 /// ```
2167 /// let mut v = vec![1, 2, 3];
2168 ///
2169 /// v.clear();
2170 ///
2171 /// assert!(v.is_empty());
2172 /// ```
2173 #[inline]
2174 #[stable(feature = "rust1", since = "1.0.0")]
clear(&mut self)2175 pub fn clear(&mut self) {
2176 let elems: *mut [T] = self.as_mut_slice();
2177
2178 // SAFETY:
2179 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2180 // - Setting `self.len` before calling `drop_in_place` means that,
2181 // if an element's `Drop` impl panics, the vector's `Drop` impl will
2182 // do nothing (leaking the rest of the elements) instead of dropping
2183 // some twice.
2184 unsafe {
2185 self.len = 0;
2186 ptr::drop_in_place(elems);
2187 }
2188 }
2189
2190 /// Returns the number of elements in the vector, also referred to
2191 /// as its 'length'.
2192 ///
2193 /// # Examples
2194 ///
2195 /// ```
2196 /// let a = vec![1, 2, 3];
2197 /// assert_eq!(a.len(), 3);
2198 /// ```
2199 #[inline]
2200 #[stable(feature = "rust1", since = "1.0.0")]
len(&self) -> usize2201 pub fn len(&self) -> usize {
2202 self.len
2203 }
2204
2205 /// Returns `true` if the vector contains no elements.
2206 ///
2207 /// # Examples
2208 ///
2209 /// ```
2210 /// let mut v = Vec::new();
2211 /// assert!(v.is_empty());
2212 ///
2213 /// v.push(1);
2214 /// assert!(!v.is_empty());
2215 /// ```
2216 #[stable(feature = "rust1", since = "1.0.0")]
is_empty(&self) -> bool2217 pub fn is_empty(&self) -> bool {
2218 self.len() == 0
2219 }
2220
2221 /// Splits the collection into two at the given index.
2222 ///
2223 /// Returns a newly allocated vector containing the elements in the range
2224 /// `[at, len)`. After the call, the original vector will be left containing
2225 /// the elements `[0, at)` with its previous capacity unchanged.
2226 ///
2227 /// # Panics
2228 ///
2229 /// Panics if `at > len`.
2230 ///
2231 /// # Examples
2232 ///
2233 /// ```
2234 /// let mut vec = vec![1, 2, 3];
2235 /// let vec2 = vec.split_off(1);
2236 /// assert_eq!(vec, [1]);
2237 /// assert_eq!(vec2, [2, 3]);
2238 /// ```
2239 #[cfg(not(no_global_oom_handling))]
2240 #[inline]
2241 #[must_use = "use `.truncate()` if you don't need the other half"]
2242 #[stable(feature = "split_off", since = "1.4.0")]
split_off(&mut self, at: usize) -> Self where A: Clone,2243 pub fn split_off(&mut self, at: usize) -> Self
2244 where
2245 A: Clone,
2246 {
2247 #[cold]
2248 #[inline(never)]
2249 fn assert_failed(at: usize, len: usize) -> ! {
2250 panic!("`at` split index (is {at}) should be <= len (is {len})");
2251 }
2252
2253 if at > self.len() {
2254 assert_failed(at, self.len());
2255 }
2256
2257 if at == 0 {
2258 // the new vector can take over the original buffer and avoid the copy
2259 return mem::replace(
2260 self,
2261 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2262 );
2263 }
2264
2265 let other_len = self.len - at;
2266 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2267
2268 // Unsafely `set_len` and copy items to `other`.
2269 unsafe {
2270 self.set_len(at);
2271 other.set_len(other_len);
2272
2273 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2274 }
2275 other
2276 }
2277
2278 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2279 ///
2280 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2281 /// difference, with each additional slot filled with the result of
2282 /// calling the closure `f`. The return values from `f` will end up
2283 /// in the `Vec` in the order they have been generated.
2284 ///
2285 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2286 ///
2287 /// This method uses a closure to create new values on every push. If
2288 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2289 /// want to use the [`Default`] trait to generate values, you can
2290 /// pass [`Default::default`] as the second argument.
2291 ///
2292 /// # Examples
2293 ///
2294 /// ```
2295 /// let mut vec = vec![1, 2, 3];
2296 /// vec.resize_with(5, Default::default);
2297 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2298 ///
2299 /// let mut vec = vec![];
2300 /// let mut p = 1;
2301 /// vec.resize_with(4, || { p *= 2; p });
2302 /// assert_eq!(vec, [2, 4, 8, 16]);
2303 /// ```
2304 #[cfg(not(no_global_oom_handling))]
2305 #[stable(feature = "vec_resize_with", since = "1.33.0")]
resize_with<F>(&mut self, new_len: usize, f: F) where F: FnMut() -> T,2306 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2307 where
2308 F: FnMut() -> T,
2309 {
2310 let len = self.len();
2311 if new_len > len {
2312 self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2313 } else {
2314 self.truncate(new_len);
2315 }
2316 }
2317
2318 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2319 /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2320 /// `'a`. If the type has only static references, or none at all, then this
2321 /// may be chosen to be `'static`.
2322 ///
2323 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2324 /// so the leaked allocation may include unused capacity that is not part
2325 /// of the returned slice.
2326 ///
2327 /// This function is mainly useful for data that lives for the remainder of
2328 /// the program's life. Dropping the returned reference will cause a memory
2329 /// leak.
2330 ///
2331 /// # Examples
2332 ///
2333 /// Simple usage:
2334 ///
2335 /// ```
2336 /// let x = vec![1, 2, 3];
2337 /// let static_ref: &'static mut [usize] = x.leak();
2338 /// static_ref[0] += 1;
2339 /// assert_eq!(static_ref, &[2, 2, 3]);
2340 /// ```
2341 #[stable(feature = "vec_leak", since = "1.47.0")]
2342 #[inline]
leak<'a>(self) -> &'a mut [T] where A: 'a,2343 pub fn leak<'a>(self) -> &'a mut [T]
2344 where
2345 A: 'a,
2346 {
2347 let mut me = ManuallyDrop::new(self);
2348 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2349 }
2350
2351 /// Returns the remaining spare capacity of the vector as a slice of
2352 /// `MaybeUninit<T>`.
2353 ///
2354 /// The returned slice can be used to fill the vector with data (e.g. by
2355 /// reading from a file) before marking the data as initialized using the
2356 /// [`set_len`] method.
2357 ///
2358 /// [`set_len`]: Vec::set_len
2359 ///
2360 /// # Examples
2361 ///
2362 /// ```
2363 /// // Allocate vector big enough for 10 elements.
2364 /// let mut v = Vec::with_capacity(10);
2365 ///
2366 /// // Fill in the first 3 elements.
2367 /// let uninit = v.spare_capacity_mut();
2368 /// uninit[0].write(0);
2369 /// uninit[1].write(1);
2370 /// uninit[2].write(2);
2371 ///
2372 /// // Mark the first 3 elements of the vector as being initialized.
2373 /// unsafe {
2374 /// v.set_len(3);
2375 /// }
2376 ///
2377 /// assert_eq!(&v, &[0, 1, 2]);
2378 /// ```
2379 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2380 #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]2381 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2382 // Note:
2383 // This method is not implemented in terms of `split_at_spare_mut`,
2384 // to prevent invalidation of pointers to the buffer.
2385 unsafe {
2386 slice::from_raw_parts_mut(
2387 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2388 self.buf.capacity() - self.len,
2389 )
2390 }
2391 }
2392
2393 /// Returns vector content as a slice of `T`, along with the remaining spare
2394 /// capacity of the vector as a slice of `MaybeUninit<T>`.
2395 ///
2396 /// The returned spare capacity slice can be used to fill the vector with data
2397 /// (e.g. by reading from a file) before marking the data as initialized using
2398 /// the [`set_len`] method.
2399 ///
2400 /// [`set_len`]: Vec::set_len
2401 ///
2402 /// Note that this is a low-level API, which should be used with care for
2403 /// optimization purposes. If you need to append data to a `Vec`
2404 /// you can use [`push`], [`extend`], [`extend_from_slice`],
2405 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2406 /// [`resize_with`], depending on your exact needs.
2407 ///
2408 /// [`push`]: Vec::push
2409 /// [`extend`]: Vec::extend
2410 /// [`extend_from_slice`]: Vec::extend_from_slice
2411 /// [`extend_from_within`]: Vec::extend_from_within
2412 /// [`insert`]: Vec::insert
2413 /// [`append`]: Vec::append
2414 /// [`resize`]: Vec::resize
2415 /// [`resize_with`]: Vec::resize_with
2416 ///
2417 /// # Examples
2418 ///
2419 /// ```
2420 /// #![feature(vec_split_at_spare)]
2421 ///
2422 /// let mut v = vec![1, 1, 2];
2423 ///
2424 /// // Reserve additional space big enough for 10 elements.
2425 /// v.reserve(10);
2426 ///
2427 /// let (init, uninit) = v.split_at_spare_mut();
2428 /// let sum = init.iter().copied().sum::<u32>();
2429 ///
2430 /// // Fill in the next 4 elements.
2431 /// uninit[0].write(sum);
2432 /// uninit[1].write(sum * 2);
2433 /// uninit[2].write(sum * 3);
2434 /// uninit[3].write(sum * 4);
2435 ///
2436 /// // Mark the 4 elements of the vector as being initialized.
2437 /// unsafe {
2438 /// let len = v.len();
2439 /// v.set_len(len + 4);
2440 /// }
2441 ///
2442 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2443 /// ```
2444 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2445 #[inline]
split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])2446 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2447 // SAFETY:
2448 // - len is ignored and so never changed
2449 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2450 (init, spare)
2451 }
2452
2453 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2454 ///
2455 /// This method provides unique access to all vec parts at once in `extend_from_within`.
split_at_spare_mut_with_len( &mut self, ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize)2456 unsafe fn split_at_spare_mut_with_len(
2457 &mut self,
2458 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2459 let ptr = self.as_mut_ptr();
2460 // SAFETY:
2461 // - `ptr` is guaranteed to be valid for `self.len` elements
2462 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2463 // uninitialized
2464 let spare_ptr = unsafe { ptr.add(self.len) };
2465 let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2466 let spare_len = self.buf.capacity() - self.len;
2467
2468 // SAFETY:
2469 // - `ptr` is guaranteed to be valid for `self.len` elements
2470 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2471 unsafe {
2472 let initialized = slice::from_raw_parts_mut(ptr, self.len);
2473 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2474
2475 (initialized, spare, &mut self.len)
2476 }
2477 }
2478 }
2479
2480 impl<T: Clone, A: Allocator> Vec<T, A> {
2481 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2482 ///
2483 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2484 /// difference, with each additional slot filled with `value`.
2485 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2486 ///
2487 /// This method requires `T` to implement [`Clone`],
2488 /// in order to be able to clone the passed value.
2489 /// If you need more flexibility (or want to rely on [`Default`] instead of
2490 /// [`Clone`]), use [`Vec::resize_with`].
2491 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2492 ///
2493 /// # Examples
2494 ///
2495 /// ```
2496 /// let mut vec = vec!["hello"];
2497 /// vec.resize(3, "world");
2498 /// assert_eq!(vec, ["hello", "world", "world"]);
2499 ///
2500 /// let mut vec = vec![1, 2, 3, 4];
2501 /// vec.resize(2, 0);
2502 /// assert_eq!(vec, [1, 2]);
2503 /// ```
2504 #[cfg(not(no_global_oom_handling))]
2505 #[stable(feature = "vec_resize", since = "1.5.0")]
resize(&mut self, new_len: usize, value: T)2506 pub fn resize(&mut self, new_len: usize, value: T) {
2507 let len = self.len();
2508
2509 if new_len > len {
2510 self.extend_with(new_len - len, ExtendElement(value))
2511 } else {
2512 self.truncate(new_len);
2513 }
2514 }
2515
2516 /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
2517 ///
2518 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2519 /// difference, with each additional slot filled with `value`.
2520 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2521 ///
2522 /// This method requires `T` to implement [`Clone`],
2523 /// in order to be able to clone the passed value.
2524 /// If you need more flexibility (or want to rely on [`Default`] instead of
2525 /// [`Clone`]), use [`Vec::resize_with`].
2526 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2527 ///
2528 /// # Examples
2529 ///
2530 /// ```
2531 /// let mut vec = vec!["hello"];
2532 /// vec.try_resize(3, "world").unwrap();
2533 /// assert_eq!(vec, ["hello", "world", "world"]);
2534 ///
2535 /// let mut vec = vec![1, 2, 3, 4];
2536 /// vec.try_resize(2, 0).unwrap();
2537 /// assert_eq!(vec, [1, 2]);
2538 ///
2539 /// let mut vec = vec![42];
2540 /// let result = vec.try_resize(usize::MAX, 0);
2541 /// assert!(result.is_err());
2542 /// ```
2543 #[stable(feature = "kernel", since = "1.0.0")]
try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError>2544 pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
2545 let len = self.len();
2546
2547 if new_len > len {
2548 self.try_extend_with(new_len - len, ExtendElement(value))
2549 } else {
2550 self.truncate(new_len);
2551 Ok(())
2552 }
2553 }
2554
2555 /// Clones and appends all elements in a slice to the `Vec`.
2556 ///
2557 /// Iterates over the slice `other`, clones each element, and then appends
2558 /// it to this `Vec`. The `other` slice is traversed in-order.
2559 ///
2560 /// Note that this function is same as [`extend`] except that it is
2561 /// specialized to work with slices instead. If and when Rust gets
2562 /// specialization this function will likely be deprecated (but still
2563 /// available).
2564 ///
2565 /// # Examples
2566 ///
2567 /// ```
2568 /// let mut vec = vec![1];
2569 /// vec.extend_from_slice(&[2, 3, 4]);
2570 /// assert_eq!(vec, [1, 2, 3, 4]);
2571 /// ```
2572 ///
2573 /// [`extend`]: Vec::extend
2574 #[cfg(not(no_global_oom_handling))]
2575 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
extend_from_slice(&mut self, other: &[T])2576 pub fn extend_from_slice(&mut self, other: &[T]) {
2577 self.spec_extend(other.iter())
2578 }
2579
2580 /// Tries to clone and append all elements in a slice to the `Vec`.
2581 ///
2582 /// Iterates over the slice `other`, clones each element, and then appends
2583 /// it to this `Vec`. The `other` slice is traversed in-order.
2584 ///
2585 /// Note that this function is same as [`extend`] except that it is
2586 /// specialized to work with slices instead. If and when Rust gets
2587 /// specialization this function will likely be deprecated (but still
2588 /// available).
2589 ///
2590 /// # Examples
2591 ///
2592 /// ```
2593 /// let mut vec = vec![1];
2594 /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
2595 /// assert_eq!(vec, [1, 2, 3, 4]);
2596 /// ```
2597 ///
2598 /// [`extend`]: Vec::extend
2599 #[stable(feature = "kernel", since = "1.0.0")]
try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError>2600 pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
2601 self.try_spec_extend(other.iter())
2602 }
2603
2604 /// Copies elements from `src` range to the end of the vector.
2605 ///
2606 /// # Panics
2607 ///
2608 /// Panics if the starting point is greater than the end point or if
2609 /// the end point is greater than the length of the vector.
2610 ///
2611 /// # Examples
2612 ///
2613 /// ```
2614 /// let mut vec = vec![0, 1, 2, 3, 4];
2615 ///
2616 /// vec.extend_from_within(2..);
2617 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2618 ///
2619 /// vec.extend_from_within(..2);
2620 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2621 ///
2622 /// vec.extend_from_within(4..8);
2623 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2624 /// ```
2625 #[cfg(not(no_global_oom_handling))]
2626 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
extend_from_within<R>(&mut self, src: R) where R: RangeBounds<usize>,2627 pub fn extend_from_within<R>(&mut self, src: R)
2628 where
2629 R: RangeBounds<usize>,
2630 {
2631 let range = slice::range(src, ..self.len());
2632 self.reserve(range.len());
2633
2634 // SAFETY:
2635 // - `slice::range` guarantees that the given range is valid for indexing self
2636 unsafe {
2637 self.spec_extend_from_within(range);
2638 }
2639 }
2640 }
2641
2642 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2643 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2644 ///
2645 /// # Panics
2646 ///
2647 /// Panics if the length of the resulting vector would overflow a `usize`.
2648 ///
2649 /// This is only possible when flattening a vector of arrays of zero-sized
2650 /// types, and thus tends to be irrelevant in practice. If
2651 /// `size_of::<T>() > 0`, this will never panic.
2652 ///
2653 /// # Examples
2654 ///
2655 /// ```
2656 /// #![feature(slice_flatten)]
2657 ///
2658 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2659 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2660 ///
2661 /// let mut flattened = vec.into_flattened();
2662 /// assert_eq!(flattened.pop(), Some(6));
2663 /// ```
2664 #[unstable(feature = "slice_flatten", issue = "95629")]
into_flattened(self) -> Vec<T, A>2665 pub fn into_flattened(self) -> Vec<T, A> {
2666 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2667 let (new_len, new_cap) = if T::IS_ZST {
2668 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2669 } else {
2670 // SAFETY:
2671 // - `cap * N` cannot overflow because the allocation is already in
2672 // the address space.
2673 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2674 // valid elements in the allocation.
2675 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2676 };
2677 // SAFETY:
2678 // - `ptr` was allocated by `self`
2679 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2680 // - `new_cap` refers to the same sized allocation as `cap` because
2681 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2682 // - `len` <= `cap`, so `len * N` <= `cap * N`.
2683 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2684 }
2685 }
2686
2687 // This code generalizes `extend_with_{element,default}`.
2688 trait ExtendWith<T> {
next(&mut self) -> T2689 fn next(&mut self) -> T;
last(self) -> T2690 fn last(self) -> T;
2691 }
2692
2693 struct ExtendElement<T>(T);
2694 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
next(&mut self) -> T2695 fn next(&mut self) -> T {
2696 self.0.clone()
2697 }
last(self) -> T2698 fn last(self) -> T {
2699 self.0
2700 }
2701 }
2702
2703 impl<T, A: Allocator> Vec<T, A> {
2704 #[cfg(not(no_global_oom_handling))]
2705 /// Extend the vector by `n` values, using the given generator.
extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E)2706 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2707 self.reserve(n);
2708
2709 unsafe {
2710 let mut ptr = self.as_mut_ptr().add(self.len());
2711 // Use SetLenOnDrop to work around bug where compiler
2712 // might not realize the store through `ptr` through self.set_len()
2713 // don't alias.
2714 let mut local_len = SetLenOnDrop::new(&mut self.len);
2715
2716 // Write all elements except the last one
2717 for _ in 1..n {
2718 ptr::write(ptr, value.next());
2719 ptr = ptr.add(1);
2720 // Increment the length in every step in case next() panics
2721 local_len.increment_len(1);
2722 }
2723
2724 if n > 0 {
2725 // We can write the last element directly without cloning needlessly
2726 ptr::write(ptr, value.last());
2727 local_len.increment_len(1);
2728 }
2729
2730 // len set by scope guard
2731 }
2732 }
2733
2734 /// Try to extend the vector by `n` values, using the given generator.
try_extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) -> Result<(), TryReserveError>2735 fn try_extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) -> Result<(), TryReserveError> {
2736 self.try_reserve(n)?;
2737
2738 unsafe {
2739 let mut ptr = self.as_mut_ptr().add(self.len());
2740 // Use SetLenOnDrop to work around bug where compiler
2741 // might not realize the store through `ptr` through self.set_len()
2742 // don't alias.
2743 let mut local_len = SetLenOnDrop::new(&mut self.len);
2744
2745 // Write all elements except the last one
2746 for _ in 1..n {
2747 ptr::write(ptr, value.next());
2748 ptr = ptr.add(1);
2749 // Increment the length in every step in case next() panics
2750 local_len.increment_len(1);
2751 }
2752
2753 if n > 0 {
2754 // We can write the last element directly without cloning needlessly
2755 ptr::write(ptr, value.last());
2756 local_len.increment_len(1);
2757 }
2758
2759 // len set by scope guard
2760 Ok(())
2761 }
2762 }
2763 }
2764
2765 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2766 /// Removes consecutive repeated elements in the vector according to the
2767 /// [`PartialEq`] trait implementation.
2768 ///
2769 /// If the vector is sorted, this removes all duplicates.
2770 ///
2771 /// # Examples
2772 ///
2773 /// ```
2774 /// let mut vec = vec![1, 2, 2, 3, 2];
2775 ///
2776 /// vec.dedup();
2777 ///
2778 /// assert_eq!(vec, [1, 2, 3, 2]);
2779 /// ```
2780 #[stable(feature = "rust1", since = "1.0.0")]
2781 #[inline]
dedup(&mut self)2782 pub fn dedup(&mut self) {
2783 self.dedup_by(|a, b| a == b)
2784 }
2785 }
2786
2787 ////////////////////////////////////////////////////////////////////////////////
2788 // Internal methods and functions
2789 ////////////////////////////////////////////////////////////////////////////////
2790
2791 #[doc(hidden)]
2792 #[cfg(not(no_global_oom_handling))]
2793 #[stable(feature = "rust1", since = "1.0.0")]
from_elem<T: Clone>(elem: T, n: usize) -> Vec<T>2794 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2795 <T as SpecFromElem>::from_elem(elem, n, Global)
2796 }
2797
2798 #[doc(hidden)]
2799 #[cfg(not(no_global_oom_handling))]
2800 #[unstable(feature = "allocator_api", issue = "32838")]
from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A>2801 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2802 <T as SpecFromElem>::from_elem(elem, n, alloc)
2803 }
2804
2805 trait ExtendFromWithinSpec {
2806 /// # Safety
2807 ///
2808 /// - `src` needs to be valid index
2809 /// - `self.capacity() - self.len()` must be `>= src.len()`
spec_extend_from_within(&mut self, src: Range<usize>)2810 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2811 }
2812
2813 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2814 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2815 // SAFETY:
2816 // - len is increased only after initializing elements
2817 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2818
2819 // SAFETY:
2820 // - caller guarantees that src is a valid index
2821 let to_clone = unsafe { this.get_unchecked(src) };
2822
2823 iter::zip(to_clone, spare)
2824 .map(|(src, dst)| dst.write(src.clone()))
2825 // Note:
2826 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2827 // - len is increased after each element to prevent leaks (see issue #82533)
2828 .for_each(|_| *len += 1);
2829 }
2830 }
2831
2832 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2833 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2834 let count = src.len();
2835 {
2836 let (init, spare) = self.split_at_spare_mut();
2837
2838 // SAFETY:
2839 // - caller guarantees that `src` is a valid index
2840 let source = unsafe { init.get_unchecked(src) };
2841
2842 // SAFETY:
2843 // - Both pointers are created from unique slice references (`&mut [_]`)
2844 // so they are valid and do not overlap.
2845 // - Elements are :Copy so it's OK to copy them, without doing
2846 // anything with the original values
2847 // - `count` is equal to the len of `source`, so source is valid for
2848 // `count` reads
2849 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2850 // is valid for `count` writes
2851 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2852 }
2853
2854 // SAFETY:
2855 // - The elements were just initialized by `copy_nonoverlapping`
2856 self.len += count;
2857 }
2858 }
2859
2860 ////////////////////////////////////////////////////////////////////////////////
2861 // Common trait implementations for Vec
2862 ////////////////////////////////////////////////////////////////////////////////
2863
2864 #[stable(feature = "rust1", since = "1.0.0")]
2865 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2866 type Target = [T];
2867
2868 #[inline]
deref(&self) -> &[T]2869 fn deref(&self) -> &[T] {
2870 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2871 }
2872 }
2873
2874 #[stable(feature = "rust1", since = "1.0.0")]
2875 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2876 #[inline]
deref_mut(&mut self) -> &mut [T]2877 fn deref_mut(&mut self) -> &mut [T] {
2878 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2879 }
2880 }
2881
2882 #[cfg(not(no_global_oom_handling))]
2883 #[stable(feature = "rust1", since = "1.0.0")]
2884 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2885 #[cfg(not(test))]
clone(&self) -> Self2886 fn clone(&self) -> Self {
2887 let alloc = self.allocator().clone();
2888 <[T]>::to_vec_in(&**self, alloc)
2889 }
2890
2891 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2892 // required for this method definition, is not available. Instead use the
2893 // `slice::to_vec` function which is only available with cfg(test)
2894 // NB see the slice::hack module in slice.rs for more information
2895 #[cfg(test)]
clone(&self) -> Self2896 fn clone(&self) -> Self {
2897 let alloc = self.allocator().clone();
2898 crate::slice::to_vec(&**self, alloc)
2899 }
2900
clone_from(&mut self, other: &Self)2901 fn clone_from(&mut self, other: &Self) {
2902 crate::slice::SpecCloneIntoVec::clone_into(other.as_slice(), self);
2903 }
2904 }
2905
2906 /// The hash of a vector is the same as that of the corresponding slice,
2907 /// as required by the `core::borrow::Borrow` implementation.
2908 ///
2909 /// ```
2910 /// use std::hash::BuildHasher;
2911 ///
2912 /// let b = std::collections::hash_map::RandomState::new();
2913 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2914 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2915 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2916 /// ```
2917 #[stable(feature = "rust1", since = "1.0.0")]
2918 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2919 #[inline]
hash<H: Hasher>(&self, state: &mut H)2920 fn hash<H: Hasher>(&self, state: &mut H) {
2921 Hash::hash(&**self, state)
2922 }
2923 }
2924
2925 #[stable(feature = "rust1", since = "1.0.0")]
2926 #[rustc_on_unimplemented(
2927 message = "vector indices are of type `usize` or ranges of `usize`",
2928 label = "vector indices are of type `usize` or ranges of `usize`"
2929 )]
2930 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2931 type Output = I::Output;
2932
2933 #[inline]
index(&self, index: I) -> &Self::Output2934 fn index(&self, index: I) -> &Self::Output {
2935 Index::index(&**self, index)
2936 }
2937 }
2938
2939 #[stable(feature = "rust1", since = "1.0.0")]
2940 #[rustc_on_unimplemented(
2941 message = "vector indices are of type `usize` or ranges of `usize`",
2942 label = "vector indices are of type `usize` or ranges of `usize`"
2943 )]
2944 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2945 #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output2946 fn index_mut(&mut self, index: I) -> &mut Self::Output {
2947 IndexMut::index_mut(&mut **self, index)
2948 }
2949 }
2950
2951 #[cfg(not(no_global_oom_handling))]
2952 #[stable(feature = "rust1", since = "1.0.0")]
2953 impl<T> FromIterator<T> for Vec<T> {
2954 #[inline]
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>2955 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2956 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2957 }
2958 }
2959
2960 #[stable(feature = "rust1", since = "1.0.0")]
2961 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2962 type Item = T;
2963 type IntoIter = IntoIter<T, A>;
2964
2965 /// Creates a consuming iterator, that is, one that moves each value out of
2966 /// the vector (from start to end). The vector cannot be used after calling
2967 /// this.
2968 ///
2969 /// # Examples
2970 ///
2971 /// ```
2972 /// let v = vec!["a".to_string(), "b".to_string()];
2973 /// let mut v_iter = v.into_iter();
2974 ///
2975 /// let first_element: Option<String> = v_iter.next();
2976 ///
2977 /// assert_eq!(first_element, Some("a".to_string()));
2978 /// assert_eq!(v_iter.next(), Some("b".to_string()));
2979 /// assert_eq!(v_iter.next(), None);
2980 /// ```
2981 #[inline]
into_iter(self) -> Self::IntoIter2982 fn into_iter(self) -> Self::IntoIter {
2983 unsafe {
2984 let mut me = ManuallyDrop::new(self);
2985 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2986 let begin = me.as_mut_ptr();
2987 let end = if T::IS_ZST {
2988 begin.wrapping_byte_add(me.len())
2989 } else {
2990 begin.add(me.len()) as *const T
2991 };
2992 let cap = me.buf.capacity();
2993 IntoIter {
2994 buf: NonNull::new_unchecked(begin),
2995 phantom: PhantomData,
2996 cap,
2997 alloc,
2998 ptr: begin,
2999 end,
3000 }
3001 }
3002 }
3003 }
3004
3005 #[stable(feature = "rust1", since = "1.0.0")]
3006 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3007 type Item = &'a T;
3008 type IntoIter = slice::Iter<'a, T>;
3009
into_iter(self) -> Self::IntoIter3010 fn into_iter(self) -> Self::IntoIter {
3011 self.iter()
3012 }
3013 }
3014
3015 #[stable(feature = "rust1", since = "1.0.0")]
3016 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3017 type Item = &'a mut T;
3018 type IntoIter = slice::IterMut<'a, T>;
3019
into_iter(self) -> Self::IntoIter3020 fn into_iter(self) -> Self::IntoIter {
3021 self.iter_mut()
3022 }
3023 }
3024
3025 #[cfg(not(no_global_oom_handling))]
3026 #[stable(feature = "rust1", since = "1.0.0")]
3027 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3028 #[inline]
extend<I: IntoIterator<Item = T>>(&mut self, iter: I)3029 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3030 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3031 }
3032
3033 #[inline]
extend_one(&mut self, item: T)3034 fn extend_one(&mut self, item: T) {
3035 self.push(item);
3036 }
3037
3038 #[inline]
extend_reserve(&mut self, additional: usize)3039 fn extend_reserve(&mut self, additional: usize) {
3040 self.reserve(additional);
3041 }
3042 }
3043
3044 impl<T, A: Allocator> Vec<T, A> {
3045 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3046 // they have no further optimizations to apply
3047 #[cfg(not(no_global_oom_handling))]
extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I)3048 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3049 // This is the case for a general iterator.
3050 //
3051 // This function should be the moral equivalent of:
3052 //
3053 // for item in iterator {
3054 // self.push(item);
3055 // }
3056 while let Some(element) = iterator.next() {
3057 let len = self.len();
3058 if len == self.capacity() {
3059 let (lower, _) = iterator.size_hint();
3060 self.reserve(lower.saturating_add(1));
3061 }
3062 unsafe {
3063 ptr::write(self.as_mut_ptr().add(len), element);
3064 // Since next() executes user code which can panic we have to bump the length
3065 // after each step.
3066 // NB can't overflow since we would have had to alloc the address space
3067 self.set_len(len + 1);
3068 }
3069 }
3070 }
3071
3072 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3073 // they have no further optimizations to apply
try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError>3074 fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
3075 // This is the case for a general iterator.
3076 //
3077 // This function should be the moral equivalent of:
3078 //
3079 // for item in iterator {
3080 // self.push(item);
3081 // }
3082 while let Some(element) = iterator.next() {
3083 let len = self.len();
3084 if len == self.capacity() {
3085 let (lower, _) = iterator.size_hint();
3086 self.try_reserve(lower.saturating_add(1))?;
3087 }
3088 unsafe {
3089 ptr::write(self.as_mut_ptr().add(len), element);
3090 // Since next() executes user code which can panic we have to bump the length
3091 // after each step.
3092 // NB can't overflow since we would have had to alloc the address space
3093 self.set_len(len + 1);
3094 }
3095 }
3096
3097 Ok(())
3098 }
3099
3100 // specific extend for `TrustedLen` iterators, called both by the specializations
3101 // and internal places where resolving specialization makes compilation slower
3102 #[cfg(not(no_global_oom_handling))]
extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>)3103 fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3104 let (low, high) = iterator.size_hint();
3105 if let Some(additional) = high {
3106 debug_assert_eq!(
3107 low,
3108 additional,
3109 "TrustedLen iterator's size hint is not exact: {:?}",
3110 (low, high)
3111 );
3112 self.reserve(additional);
3113 unsafe {
3114 let ptr = self.as_mut_ptr();
3115 let mut local_len = SetLenOnDrop::new(&mut self.len);
3116 iterator.for_each(move |element| {
3117 ptr::write(ptr.add(local_len.current_len()), element);
3118 // Since the loop executes user code which can panic we have to update
3119 // the length every step to correctly drop what we've written.
3120 // NB can't overflow since we would have had to alloc the address space
3121 local_len.increment_len(1);
3122 });
3123 }
3124 } else {
3125 // Per TrustedLen contract a `None` upper bound means that the iterator length
3126 // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3127 // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3128 // This avoids additional codegen for a fallback code path which would eventually
3129 // panic anyway.
3130 panic!("capacity overflow");
3131 }
3132 }
3133
3134 // specific extend for `TrustedLen` iterators, called both by the specializations
3135 // and internal places where resolving specialization makes compilation slower
try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError>3136 fn try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError> {
3137 let (low, high) = iterator.size_hint();
3138 if let Some(additional) = high {
3139 debug_assert_eq!(
3140 low,
3141 additional,
3142 "TrustedLen iterator's size hint is not exact: {:?}",
3143 (low, high)
3144 );
3145 self.try_reserve(additional)?;
3146 unsafe {
3147 let ptr = self.as_mut_ptr();
3148 let mut local_len = SetLenOnDrop::new(&mut self.len);
3149 iterator.for_each(move |element| {
3150 ptr::write(ptr.add(local_len.current_len()), element);
3151 // Since the loop executes user code which can panic we have to update
3152 // the length every step to correctly drop what we've written.
3153 // NB can't overflow since we would have had to alloc the address space
3154 local_len.increment_len(1);
3155 });
3156 }
3157 Ok(())
3158 } else {
3159 Err(TryReserveErrorKind::CapacityOverflow.into())
3160 }
3161 }
3162
3163 /// Creates a splicing iterator that replaces the specified range in the vector
3164 /// with the given `replace_with` iterator and yields the removed items.
3165 /// `replace_with` does not need to be the same length as `range`.
3166 ///
3167 /// `range` is removed even if the iterator is not consumed until the end.
3168 ///
3169 /// It is unspecified how many elements are removed from the vector
3170 /// if the `Splice` value is leaked.
3171 ///
3172 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3173 ///
3174 /// This is optimal if:
3175 ///
3176 /// * The tail (elements in the vector after `range`) is empty,
3177 /// * or `replace_with` yields fewer or equal elements than `range`’s length
3178 /// * or the lower bound of its `size_hint()` is exact.
3179 ///
3180 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3181 ///
3182 /// # Panics
3183 ///
3184 /// Panics if the starting point is greater than the end point or if
3185 /// the end point is greater than the length of the vector.
3186 ///
3187 /// # Examples
3188 ///
3189 /// ```
3190 /// let mut v = vec![1, 2, 3, 4];
3191 /// let new = [7, 8, 9];
3192 /// let u: Vec<_> = v.splice(1..3, new).collect();
3193 /// assert_eq!(v, &[1, 7, 8, 9, 4]);
3194 /// assert_eq!(u, &[2, 3]);
3195 /// ```
3196 #[cfg(not(no_global_oom_handling))]
3197 #[inline]
3198 #[stable(feature = "vec_splice", since = "1.21.0")]
splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> where R: RangeBounds<usize>, I: IntoIterator<Item = T>,3199 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3200 where
3201 R: RangeBounds<usize>,
3202 I: IntoIterator<Item = T>,
3203 {
3204 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3205 }
3206
3207 /// Creates an iterator which uses a closure to determine if an element should be removed.
3208 ///
3209 /// If the closure returns true, then the element is removed and yielded.
3210 /// If the closure returns false, the element will remain in the vector and will not be yielded
3211 /// by the iterator.
3212 ///
3213 /// Using this method is equivalent to the following code:
3214 ///
3215 /// ```
3216 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3217 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3218 /// let mut i = 0;
3219 /// while i < vec.len() {
3220 /// if some_predicate(&mut vec[i]) {
3221 /// let val = vec.remove(i);
3222 /// // your code here
3223 /// } else {
3224 /// i += 1;
3225 /// }
3226 /// }
3227 ///
3228 /// # assert_eq!(vec, vec![1, 4, 5]);
3229 /// ```
3230 ///
3231 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
3232 /// because it can backshift the elements of the array in bulk.
3233 ///
3234 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
3235 /// regardless of whether you choose to keep or remove it.
3236 ///
3237 /// # Examples
3238 ///
3239 /// Splitting an array into evens and odds, reusing the original allocation:
3240 ///
3241 /// ```
3242 /// #![feature(drain_filter)]
3243 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3244 ///
3245 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
3246 /// let odds = numbers;
3247 ///
3248 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3249 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3250 /// ```
3251 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A> where F: FnMut(&mut T) -> bool,3252 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
3253 where
3254 F: FnMut(&mut T) -> bool,
3255 {
3256 let old_len = self.len();
3257
3258 // Guard against us getting leaked (leak amplification)
3259 unsafe {
3260 self.set_len(0);
3261 }
3262
3263 DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
3264 }
3265 }
3266
3267 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
3268 ///
3269 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3270 /// append the entire slice at once.
3271 ///
3272 /// [`copy_from_slice`]: slice::copy_from_slice
3273 #[cfg(not(no_global_oom_handling))]
3274 #[stable(feature = "extend_ref", since = "1.2.0")]
3275 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)3276 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3277 self.spec_extend(iter.into_iter())
3278 }
3279
3280 #[inline]
extend_one(&mut self, &item: &'a T)3281 fn extend_one(&mut self, &item: &'a T) {
3282 self.push(item);
3283 }
3284
3285 #[inline]
extend_reserve(&mut self, additional: usize)3286 fn extend_reserve(&mut self, additional: usize) {
3287 self.reserve(additional);
3288 }
3289 }
3290
3291 /// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3292 #[stable(feature = "rust1", since = "1.0.0")]
3293 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
3294 #[inline]
partial_cmp(&self, other: &Self) -> Option<Ordering>3295 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
3296 PartialOrd::partial_cmp(&**self, &**other)
3297 }
3298 }
3299
3300 #[stable(feature = "rust1", since = "1.0.0")]
3301 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3302
3303 /// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3304 #[stable(feature = "rust1", since = "1.0.0")]
3305 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3306 #[inline]
cmp(&self, other: &Self) -> Ordering3307 fn cmp(&self, other: &Self) -> Ordering {
3308 Ord::cmp(&**self, &**other)
3309 }
3310 }
3311
3312 #[stable(feature = "rust1", since = "1.0.0")]
3313 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
drop(&mut self)3314 fn drop(&mut self) {
3315 unsafe {
3316 // use drop for [T]
3317 // use a raw slice to refer to the elements of the vector as weakest necessary type;
3318 // could avoid questions of validity in certain cases
3319 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3320 }
3321 // RawVec handles deallocation
3322 }
3323 }
3324
3325 #[stable(feature = "rust1", since = "1.0.0")]
3326 impl<T> Default for Vec<T> {
3327 /// Creates an empty `Vec<T>`.
3328 ///
3329 /// The vector will not allocate until elements are pushed onto it.
default() -> Vec<T>3330 fn default() -> Vec<T> {
3331 Vec::new()
3332 }
3333 }
3334
3335 #[stable(feature = "rust1", since = "1.0.0")]
3336 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3337 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3338 fmt::Debug::fmt(&**self, f)
3339 }
3340 }
3341
3342 #[stable(feature = "rust1", since = "1.0.0")]
3343 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
as_ref(&self) -> &Vec<T, A>3344 fn as_ref(&self) -> &Vec<T, A> {
3345 self
3346 }
3347 }
3348
3349 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3350 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
as_mut(&mut self) -> &mut Vec<T, A>3351 fn as_mut(&mut self) -> &mut Vec<T, A> {
3352 self
3353 }
3354 }
3355
3356 #[stable(feature = "rust1", since = "1.0.0")]
3357 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
as_ref(&self) -> &[T]3358 fn as_ref(&self) -> &[T] {
3359 self
3360 }
3361 }
3362
3363 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3364 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
as_mut(&mut self) -> &mut [T]3365 fn as_mut(&mut self) -> &mut [T] {
3366 self
3367 }
3368 }
3369
3370 #[cfg(not(no_global_oom_handling))]
3371 #[stable(feature = "rust1", since = "1.0.0")]
3372 impl<T: Clone> From<&[T]> for Vec<T> {
3373 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3374 ///
3375 /// # Examples
3376 ///
3377 /// ```
3378 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3379 /// ```
3380 #[cfg(not(test))]
from(s: &[T]) -> Vec<T>3381 fn from(s: &[T]) -> Vec<T> {
3382 s.to_vec()
3383 }
3384 #[cfg(test)]
from(s: &[T]) -> Vec<T>3385 fn from(s: &[T]) -> Vec<T> {
3386 crate::slice::to_vec(s, Global)
3387 }
3388 }
3389
3390 #[cfg(not(no_global_oom_handling))]
3391 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3392 impl<T: Clone> From<&mut [T]> for Vec<T> {
3393 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3394 ///
3395 /// # Examples
3396 ///
3397 /// ```
3398 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3399 /// ```
3400 #[cfg(not(test))]
from(s: &mut [T]) -> Vec<T>3401 fn from(s: &mut [T]) -> Vec<T> {
3402 s.to_vec()
3403 }
3404 #[cfg(test)]
from(s: &mut [T]) -> Vec<T>3405 fn from(s: &mut [T]) -> Vec<T> {
3406 crate::slice::to_vec(s, Global)
3407 }
3408 }
3409
3410 #[cfg(not(no_global_oom_handling))]
3411 #[stable(feature = "vec_from_array", since = "1.44.0")]
3412 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3413 /// Allocate a `Vec<T>` and move `s`'s items into it.
3414 ///
3415 /// # Examples
3416 ///
3417 /// ```
3418 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3419 /// ```
3420 #[cfg(not(test))]
from(s: [T; N]) -> Vec<T>3421 fn from(s: [T; N]) -> Vec<T> {
3422 <[T]>::into_vec(Box::new(s))
3423 }
3424
3425 #[cfg(test)]
from(s: [T; N]) -> Vec<T>3426 fn from(s: [T; N]) -> Vec<T> {
3427 crate::slice::into_vec(Box::new(s))
3428 }
3429 }
3430
3431 #[cfg(not(no_borrow))]
3432 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3433 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3434 where
3435 [T]: ToOwned<Owned = Vec<T>>,
3436 {
3437 /// Convert a clone-on-write slice into a vector.
3438 ///
3439 /// If `s` already owns a `Vec<T>`, it will be returned directly.
3440 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3441 /// filled by cloning `s`'s items into it.
3442 ///
3443 /// # Examples
3444 ///
3445 /// ```
3446 /// # use std::borrow::Cow;
3447 /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3448 /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3449 /// assert_eq!(Vec::from(o), Vec::from(b));
3450 /// ```
from(s: Cow<'a, [T]>) -> Vec<T>3451 fn from(s: Cow<'a, [T]>) -> Vec<T> {
3452 s.into_owned()
3453 }
3454 }
3455
3456 // note: test pulls in std, which causes errors here
3457 #[cfg(not(test))]
3458 #[stable(feature = "vec_from_box", since = "1.18.0")]
3459 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3460 /// Convert a boxed slice into a vector by transferring ownership of
3461 /// the existing heap allocation.
3462 ///
3463 /// # Examples
3464 ///
3465 /// ```
3466 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3467 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3468 /// ```
from(s: Box<[T], A>) -> Self3469 fn from(s: Box<[T], A>) -> Self {
3470 s.into_vec()
3471 }
3472 }
3473
3474 // note: test pulls in std, which causes errors here
3475 #[cfg(not(no_global_oom_handling))]
3476 #[cfg(not(test))]
3477 #[stable(feature = "box_from_vec", since = "1.20.0")]
3478 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3479 /// Convert a vector into a boxed slice.
3480 ///
3481 /// If `v` has excess capacity, its items will be moved into a
3482 /// newly-allocated buffer with exactly the right capacity.
3483 ///
3484 /// # Examples
3485 ///
3486 /// ```
3487 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3488 /// ```
3489 ///
3490 /// Any excess capacity is removed:
3491 /// ```
3492 /// let mut vec = Vec::with_capacity(10);
3493 /// vec.extend([1, 2, 3]);
3494 ///
3495 /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
3496 /// ```
from(v: Vec<T, A>) -> Self3497 fn from(v: Vec<T, A>) -> Self {
3498 v.into_boxed_slice()
3499 }
3500 }
3501
3502 #[cfg(not(no_global_oom_handling))]
3503 #[stable(feature = "rust1", since = "1.0.0")]
3504 impl From<&str> for Vec<u8> {
3505 /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3506 ///
3507 /// # Examples
3508 ///
3509 /// ```
3510 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3511 /// ```
from(s: &str) -> Vec<u8>3512 fn from(s: &str) -> Vec<u8> {
3513 From::from(s.as_bytes())
3514 }
3515 }
3516
3517 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3518 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3519 type Error = Vec<T, A>;
3520
3521 /// Gets the entire contents of the `Vec<T>` as an array,
3522 /// if its size exactly matches that of the requested array.
3523 ///
3524 /// # Examples
3525 ///
3526 /// ```
3527 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3528 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3529 /// ```
3530 ///
3531 /// If the length doesn't match, the input comes back in `Err`:
3532 /// ```
3533 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3534 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3535 /// ```
3536 ///
3537 /// If you're fine with just getting a prefix of the `Vec<T>`,
3538 /// you can call [`.truncate(N)`](Vec::truncate) first.
3539 /// ```
3540 /// let mut v = String::from("hello world").into_bytes();
3541 /// v.sort();
3542 /// v.truncate(2);
3543 /// let [a, b]: [_; 2] = v.try_into().unwrap();
3544 /// assert_eq!(a, b' ');
3545 /// assert_eq!(b, b'd');
3546 /// ```
try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>>3547 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3548 if vec.len() != N {
3549 return Err(vec);
3550 }
3551
3552 // SAFETY: `.set_len(0)` is always sound.
3553 unsafe { vec.set_len(0) };
3554
3555 // SAFETY: A `Vec`'s pointer is always aligned properly, and
3556 // the alignment the array needs is the same as the items.
3557 // We checked earlier that we have sufficient items.
3558 // The items will not double-drop as the `set_len`
3559 // tells the `Vec` not to also drop them.
3560 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3561 Ok(array)
3562 }
3563 }
3564