1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c -- Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/regulator/driver.h>
16
17 #include "internal.h"
18
19 /**
20 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
21 *
22 * @rdev: regulator to operate on
23 *
24 * Regulators that use regmap for their register I/O can set the
25 * enable_reg and enable_mask fields in their descriptor and then use
26 * this as their is_enabled operation, saving some code.
27 */
regulator_is_enabled_regmap(struct regulator_dev * rdev)28 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
29 {
30 unsigned int val;
31 int ret;
32
33 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
34 if (ret != 0)
35 return ret;
36
37 val &= rdev->desc->enable_mask;
38
39 if (rdev->desc->enable_is_inverted) {
40 if (rdev->desc->enable_val)
41 return val != rdev->desc->enable_val;
42 return val == 0;
43 } else {
44 if (rdev->desc->enable_val)
45 return val == rdev->desc->enable_val;
46 return val != 0;
47 }
48 }
49 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
50
51 /**
52 * regulator_enable_regmap - standard enable() for regmap users
53 *
54 * @rdev: regulator to operate on
55 *
56 * Regulators that use regmap for their register I/O can set the
57 * enable_reg and enable_mask fields in their descriptor and then use
58 * this as their enable() operation, saving some code.
59 */
regulator_enable_regmap(struct regulator_dev * rdev)60 int regulator_enable_regmap(struct regulator_dev *rdev)
61 {
62 unsigned int val;
63
64 if (rdev->desc->enable_is_inverted) {
65 val = rdev->desc->disable_val;
66 } else {
67 val = rdev->desc->enable_val;
68 if (!val)
69 val = rdev->desc->enable_mask;
70 }
71
72 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
73 rdev->desc->enable_mask, val);
74 }
75 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
76
77 /**
78 * regulator_disable_regmap - standard disable() for regmap users
79 *
80 * @rdev: regulator to operate on
81 *
82 * Regulators that use regmap for their register I/O can set the
83 * enable_reg and enable_mask fields in their descriptor and then use
84 * this as their disable() operation, saving some code.
85 */
regulator_disable_regmap(struct regulator_dev * rdev)86 int regulator_disable_regmap(struct regulator_dev *rdev)
87 {
88 unsigned int val;
89
90 if (rdev->desc->enable_is_inverted) {
91 val = rdev->desc->enable_val;
92 if (!val)
93 val = rdev->desc->enable_mask;
94 } else {
95 val = rdev->desc->disable_val;
96 }
97
98 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
99 rdev->desc->enable_mask, val);
100 }
101 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
102
regulator_range_selector_to_index(struct regulator_dev * rdev,unsigned int rval)103 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
104 unsigned int rval)
105 {
106 int i;
107
108 if (!rdev->desc->linear_range_selectors_bitfield)
109 return -EINVAL;
110
111 rval &= rdev->desc->vsel_range_mask;
112 rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
113
114 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
115 if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
116 return i;
117 }
118 return -EINVAL;
119 }
120
121 /**
122 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
123 *
124 * @rdev: regulator to operate on
125 *
126 * Regulators that use regmap for their register I/O and use pickable
127 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
128 * fields in their descriptor and then use this as their get_voltage_vsel
129 * operation, saving some code.
130 */
regulator_get_voltage_sel_pickable_regmap(struct regulator_dev * rdev)131 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
132 {
133 unsigned int r_val;
134 int range;
135 unsigned int val;
136 int ret;
137 unsigned int voltages = 0;
138 const struct linear_range *r = rdev->desc->linear_ranges;
139
140 if (!r)
141 return -EINVAL;
142
143 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
144 if (ret != 0)
145 return ret;
146
147 ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
148 if (ret != 0)
149 return ret;
150
151 val &= rdev->desc->vsel_mask;
152 val >>= ffs(rdev->desc->vsel_mask) - 1;
153
154 range = regulator_range_selector_to_index(rdev, r_val);
155 if (range < 0)
156 return -EINVAL;
157
158 voltages = linear_range_values_in_range_array(r, range);
159
160 return val + voltages;
161 }
162 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163
164 /**
165 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
166 *
167 * @rdev: regulator to operate on
168 * @sel: Selector to set
169 *
170 * Regulators that use regmap for their register I/O and use pickable
171 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
172 * fields in their descriptor and then use this as their set_voltage_vsel
173 * operation, saving some code.
174 */
regulator_set_voltage_sel_pickable_regmap(struct regulator_dev * rdev,unsigned int sel)175 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
176 unsigned int sel)
177 {
178 unsigned int range;
179 int ret, i;
180 unsigned int voltages_in_range = 0;
181
182 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
183 const struct linear_range *r;
184
185 r = &rdev->desc->linear_ranges[i];
186 voltages_in_range = linear_range_values_in_range(r);
187
188 if (sel < voltages_in_range)
189 break;
190 sel -= voltages_in_range;
191 }
192
193 if (i == rdev->desc->n_linear_ranges)
194 return -EINVAL;
195
196 sel <<= ffs(rdev->desc->vsel_mask) - 1;
197 sel += rdev->desc->linear_ranges[i].min_sel;
198
199 range = rdev->desc->linear_range_selectors_bitfield[i];
200 range <<= ffs(rdev->desc->vsel_range_mask) - 1;
201
202 if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
203 ret = regmap_update_bits(rdev->regmap,
204 rdev->desc->vsel_reg,
205 rdev->desc->vsel_range_mask |
206 rdev->desc->vsel_mask, sel | range);
207 } else {
208 ret = regmap_update_bits(rdev->regmap,
209 rdev->desc->vsel_range_reg,
210 rdev->desc->vsel_range_mask, range);
211 if (ret)
212 return ret;
213
214 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
215 rdev->desc->vsel_mask, sel);
216 }
217
218 if (ret)
219 return ret;
220
221 if (rdev->desc->apply_bit)
222 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
223 rdev->desc->apply_bit,
224 rdev->desc->apply_bit);
225 return ret;
226 }
227 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
228
229 /**
230 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
231 *
232 * @rdev: regulator to operate on
233 *
234 * Regulators that use regmap for their register I/O can set the
235 * vsel_reg and vsel_mask fields in their descriptor and then use this
236 * as their get_voltage_vsel operation, saving some code.
237 */
regulator_get_voltage_sel_regmap(struct regulator_dev * rdev)238 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
239 {
240 unsigned int val;
241 int ret;
242
243 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
244 if (ret != 0)
245 return ret;
246
247 val &= rdev->desc->vsel_mask;
248 val >>= ffs(rdev->desc->vsel_mask) - 1;
249
250 return val;
251 }
252 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
253
254 /**
255 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
256 *
257 * @rdev: regulator to operate on
258 * @sel: Selector to set
259 *
260 * Regulators that use regmap for their register I/O can set the
261 * vsel_reg and vsel_mask fields in their descriptor and then use this
262 * as their set_voltage_vsel operation, saving some code.
263 */
regulator_set_voltage_sel_regmap(struct regulator_dev * rdev,unsigned sel)264 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
265 {
266 int ret;
267
268 sel <<= ffs(rdev->desc->vsel_mask) - 1;
269
270 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
271 rdev->desc->vsel_mask, sel);
272 if (ret)
273 return ret;
274
275 if (rdev->desc->apply_bit)
276 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
277 rdev->desc->apply_bit,
278 rdev->desc->apply_bit);
279 return ret;
280 }
281 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
282
283 /**
284 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
285 *
286 * @rdev: Regulator to operate on
287 * @min_uV: Lower bound for voltage
288 * @max_uV: Upper bound for voltage
289 *
290 * Drivers implementing set_voltage_sel() and list_voltage() can use
291 * this as their map_voltage() operation. It will find a suitable
292 * voltage by calling list_voltage() until it gets something in bounds
293 * for the requested voltages.
294 */
regulator_map_voltage_iterate(struct regulator_dev * rdev,int min_uV,int max_uV)295 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
296 int min_uV, int max_uV)
297 {
298 int best_val = INT_MAX;
299 int selector = 0;
300 int i, ret;
301
302 /* Find the smallest voltage that falls within the specified
303 * range.
304 */
305 for (i = 0; i < rdev->desc->n_voltages; i++) {
306 ret = rdev->desc->ops->list_voltage(rdev, i);
307 if (ret < 0)
308 continue;
309
310 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
311 best_val = ret;
312 selector = i;
313 }
314 }
315
316 if (best_val != INT_MAX)
317 return selector;
318 else
319 return -EINVAL;
320 }
321 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
322
323 /**
324 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
325 *
326 * @rdev: Regulator to operate on
327 * @min_uV: Lower bound for voltage
328 * @max_uV: Upper bound for voltage
329 *
330 * Drivers that have ascendant voltage list can use this as their
331 * map_voltage() operation.
332 */
regulator_map_voltage_ascend(struct regulator_dev * rdev,int min_uV,int max_uV)333 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
334 int min_uV, int max_uV)
335 {
336 int i, ret;
337
338 for (i = 0; i < rdev->desc->n_voltages; i++) {
339 ret = rdev->desc->ops->list_voltage(rdev, i);
340 if (ret < 0)
341 continue;
342
343 if (ret > max_uV)
344 break;
345
346 if (ret >= min_uV && ret <= max_uV)
347 return i;
348 }
349
350 return -EINVAL;
351 }
352 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
353
354 /**
355 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
356 *
357 * @rdev: Regulator to operate on
358 * @min_uV: Lower bound for voltage
359 * @max_uV: Upper bound for voltage
360 *
361 * Drivers providing min_uV and uV_step in their regulator_desc can
362 * use this as their map_voltage() operation.
363 */
regulator_map_voltage_linear(struct regulator_dev * rdev,int min_uV,int max_uV)364 int regulator_map_voltage_linear(struct regulator_dev *rdev,
365 int min_uV, int max_uV)
366 {
367 int ret, voltage;
368
369 /* Allow uV_step to be 0 for fixed voltage */
370 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
371 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
372 return 0;
373 else
374 return -EINVAL;
375 }
376
377 if (!rdev->desc->uV_step) {
378 BUG_ON(!rdev->desc->uV_step);
379 return -EINVAL;
380 }
381
382 if (min_uV < rdev->desc->min_uV)
383 min_uV = rdev->desc->min_uV;
384
385 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
386 if (ret < 0)
387 return ret;
388
389 ret += rdev->desc->linear_min_sel;
390
391 /* Map back into a voltage to verify we're still in bounds */
392 voltage = rdev->desc->ops->list_voltage(rdev, ret);
393 if (voltage < min_uV || voltage > max_uV)
394 return -EINVAL;
395
396 return ret;
397 }
398 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
399
400 /**
401 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
402 *
403 * @rdev: Regulator to operate on
404 * @min_uV: Lower bound for voltage
405 * @max_uV: Upper bound for voltage
406 *
407 * Drivers providing linear_ranges in their descriptor can use this as
408 * their map_voltage() callback.
409 */
regulator_map_voltage_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)410 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
411 int min_uV, int max_uV)
412 {
413 const struct linear_range *range;
414 int ret = -EINVAL;
415 unsigned int sel;
416 bool found;
417 int voltage, i;
418
419 if (!rdev->desc->n_linear_ranges) {
420 BUG_ON(!rdev->desc->n_linear_ranges);
421 return -EINVAL;
422 }
423
424 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
425 range = &rdev->desc->linear_ranges[i];
426
427 ret = linear_range_get_selector_high(range, min_uV, &sel,
428 &found);
429 if (ret)
430 continue;
431 ret = sel;
432
433 /*
434 * Map back into a voltage to verify we're still in bounds.
435 * If we are not, then continue checking rest of the ranges.
436 */
437 voltage = rdev->desc->ops->list_voltage(rdev, sel);
438 if (voltage >= min_uV && voltage <= max_uV)
439 break;
440 }
441
442 if (i == rdev->desc->n_linear_ranges)
443 return -EINVAL;
444
445 return ret;
446 }
447 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
448
449 /**
450 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
451 *
452 * @rdev: Regulator to operate on
453 * @min_uV: Lower bound for voltage
454 * @max_uV: Upper bound for voltage
455 *
456 * Drivers providing pickable linear_ranges in their descriptor can use
457 * this as their map_voltage() callback.
458 */
regulator_map_voltage_pickable_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)459 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
460 int min_uV, int max_uV)
461 {
462 const struct linear_range *range;
463 int ret = -EINVAL;
464 int voltage, i;
465 unsigned int selector = 0;
466
467 if (!rdev->desc->n_linear_ranges) {
468 BUG_ON(!rdev->desc->n_linear_ranges);
469 return -EINVAL;
470 }
471
472 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
473 int linear_max_uV;
474 bool found;
475 unsigned int sel;
476
477 range = &rdev->desc->linear_ranges[i];
478 linear_max_uV = linear_range_get_max_value(range);
479
480 if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
481 selector += linear_range_values_in_range(range);
482 continue;
483 }
484
485 ret = linear_range_get_selector_high(range, min_uV, &sel,
486 &found);
487 if (ret) {
488 selector += linear_range_values_in_range(range);
489 continue;
490 }
491
492 ret = selector + sel - range->min_sel;
493
494 voltage = rdev->desc->ops->list_voltage(rdev, ret);
495
496 /*
497 * Map back into a voltage to verify we're still in bounds.
498 * We may have overlapping voltage ranges. Hence we don't
499 * exit but retry until we have checked all ranges.
500 */
501 if (voltage < min_uV || voltage > max_uV)
502 selector += linear_range_values_in_range(range);
503 else
504 break;
505 }
506
507 if (i == rdev->desc->n_linear_ranges)
508 return -EINVAL;
509
510 return ret;
511 }
512 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
513
514 /**
515 * regulator_desc_list_voltage_linear - List voltages with simple calculation
516 *
517 * @desc: Regulator desc for regulator which volatges are to be listed
518 * @selector: Selector to convert into a voltage
519 *
520 * Regulators with a simple linear mapping between voltages and
521 * selectors can set min_uV and uV_step in the regulator descriptor
522 * and then use this function prior regulator registration to list
523 * the voltages. This is useful when voltages need to be listed during
524 * device-tree parsing.
525 */
regulator_desc_list_voltage_linear(const struct regulator_desc * desc,unsigned int selector)526 int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
527 unsigned int selector)
528 {
529 if (selector >= desc->n_voltages)
530 return -EINVAL;
531
532 if (selector < desc->linear_min_sel)
533 return 0;
534
535 selector -= desc->linear_min_sel;
536
537 return desc->min_uV + (desc->uV_step * selector);
538 }
539 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
540
541 /**
542 * regulator_list_voltage_linear - List voltages with simple calculation
543 *
544 * @rdev: Regulator device
545 * @selector: Selector to convert into a voltage
546 *
547 * Regulators with a simple linear mapping between voltages and
548 * selectors can set min_uV and uV_step in the regulator descriptor
549 * and then use this function as their list_voltage() operation,
550 */
regulator_list_voltage_linear(struct regulator_dev * rdev,unsigned int selector)551 int regulator_list_voltage_linear(struct regulator_dev *rdev,
552 unsigned int selector)
553 {
554 return regulator_desc_list_voltage_linear(rdev->desc, selector);
555 }
556 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
557
558 /**
559 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
560 *
561 * @rdev: Regulator device
562 * @selector: Selector to convert into a voltage
563 *
564 * list_voltage() operation, intended to be used by drivers utilizing pickable
565 * ranges helpers.
566 */
regulator_list_voltage_pickable_linear_range(struct regulator_dev * rdev,unsigned int selector)567 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
568 unsigned int selector)
569 {
570 const struct linear_range *range;
571 int i;
572 unsigned int all_sels = 0;
573
574 if (!rdev->desc->n_linear_ranges) {
575 BUG_ON(!rdev->desc->n_linear_ranges);
576 return -EINVAL;
577 }
578
579 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
580 unsigned int sel_indexes;
581
582 range = &rdev->desc->linear_ranges[i];
583
584 sel_indexes = linear_range_values_in_range(range) - 1;
585
586 if (all_sels + sel_indexes >= selector) {
587 selector -= all_sels;
588 /*
589 * As we see here, pickable ranges work only as
590 * long as the first selector for each pickable
591 * range is 0, and the each subsequent range for
592 * this 'pick' follow immediately at next unused
593 * selector (Eg. there is no gaps between ranges).
594 * I think this is fine but it probably should be
595 * documented. OTOH, whole pickable range stuff
596 * might benefit from some documentation
597 */
598 return range->min + (range->step * selector);
599 }
600
601 all_sels += (sel_indexes + 1);
602 }
603
604 return -EINVAL;
605 }
606 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
607
608 /**
609 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
610 *
611 * @desc: Regulator desc for regulator which volatges are to be listed
612 * @selector: Selector to convert into a voltage
613 *
614 * Regulators with a series of simple linear mappings between voltages
615 * and selectors who have set linear_ranges in the regulator descriptor
616 * can use this function prior regulator registration to list voltages.
617 * This is useful when voltages need to be listed during device-tree
618 * parsing.
619 */
regulator_desc_list_voltage_linear_range(const struct regulator_desc * desc,unsigned int selector)620 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
621 unsigned int selector)
622 {
623 unsigned int val;
624 int ret;
625
626 BUG_ON(!desc->n_linear_ranges);
627
628 ret = linear_range_get_value_array(desc->linear_ranges,
629 desc->n_linear_ranges, selector,
630 &val);
631 if (ret)
632 return ret;
633
634 return val;
635 }
636 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
637
638 /**
639 * regulator_list_voltage_linear_range - List voltages for linear ranges
640 *
641 * @rdev: Regulator device
642 * @selector: Selector to convert into a voltage
643 *
644 * Regulators with a series of simple linear mappings between voltages
645 * and selectors can set linear_ranges in the regulator descriptor and
646 * then use this function as their list_voltage() operation,
647 */
regulator_list_voltage_linear_range(struct regulator_dev * rdev,unsigned int selector)648 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
649 unsigned int selector)
650 {
651 return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
652 }
653 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
654
655 /**
656 * regulator_list_voltage_table - List voltages with table based mapping
657 *
658 * @rdev: Regulator device
659 * @selector: Selector to convert into a voltage
660 *
661 * Regulators with table based mapping between voltages and
662 * selectors can set volt_table in the regulator descriptor
663 * and then use this function as their list_voltage() operation.
664 */
regulator_list_voltage_table(struct regulator_dev * rdev,unsigned int selector)665 int regulator_list_voltage_table(struct regulator_dev *rdev,
666 unsigned int selector)
667 {
668 if (!rdev->desc->volt_table) {
669 BUG_ON(!rdev->desc->volt_table);
670 return -EINVAL;
671 }
672
673 if (selector >= rdev->desc->n_voltages)
674 return -EINVAL;
675 if (selector < rdev->desc->linear_min_sel)
676 return 0;
677
678 return rdev->desc->volt_table[selector];
679 }
680 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
681
682 /**
683 * regulator_set_bypass_regmap - Default set_bypass() using regmap
684 *
685 * @rdev: device to operate on.
686 * @enable: state to set.
687 */
regulator_set_bypass_regmap(struct regulator_dev * rdev,bool enable)688 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
689 {
690 unsigned int val;
691
692 if (enable) {
693 val = rdev->desc->bypass_val_on;
694 if (!val)
695 val = rdev->desc->bypass_mask;
696 } else {
697 val = rdev->desc->bypass_val_off;
698 }
699
700 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
701 rdev->desc->bypass_mask, val);
702 }
703 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
704
705 /**
706 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
707 *
708 * @rdev: device to operate on.
709 */
regulator_set_soft_start_regmap(struct regulator_dev * rdev)710 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
711 {
712 unsigned int val;
713
714 val = rdev->desc->soft_start_val_on;
715 if (!val)
716 val = rdev->desc->soft_start_mask;
717
718 return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
719 rdev->desc->soft_start_mask, val);
720 }
721 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
722
723 /**
724 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
725 *
726 * @rdev: device to operate on.
727 */
regulator_set_pull_down_regmap(struct regulator_dev * rdev)728 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
729 {
730 unsigned int val;
731
732 val = rdev->desc->pull_down_val_on;
733 if (!val)
734 val = rdev->desc->pull_down_mask;
735
736 return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
737 rdev->desc->pull_down_mask, val);
738 }
739 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
740
741 /**
742 * regulator_get_bypass_regmap - Default get_bypass() using regmap
743 *
744 * @rdev: device to operate on.
745 * @enable: current state.
746 */
regulator_get_bypass_regmap(struct regulator_dev * rdev,bool * enable)747 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
748 {
749 unsigned int val;
750 unsigned int val_on = rdev->desc->bypass_val_on;
751 int ret;
752
753 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
754 if (ret != 0)
755 return ret;
756
757 if (!val_on)
758 val_on = rdev->desc->bypass_mask;
759
760 *enable = (val & rdev->desc->bypass_mask) == val_on;
761
762 return 0;
763 }
764 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
765
766 /**
767 * regulator_set_active_discharge_regmap - Default set_active_discharge()
768 * using regmap
769 *
770 * @rdev: device to operate on.
771 * @enable: state to set, 0 to disable and 1 to enable.
772 */
regulator_set_active_discharge_regmap(struct regulator_dev * rdev,bool enable)773 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
774 bool enable)
775 {
776 unsigned int val;
777
778 if (enable)
779 val = rdev->desc->active_discharge_on;
780 else
781 val = rdev->desc->active_discharge_off;
782
783 return regmap_update_bits(rdev->regmap,
784 rdev->desc->active_discharge_reg,
785 rdev->desc->active_discharge_mask, val);
786 }
787 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
788
789 /**
790 * regulator_set_current_limit_regmap - set_current_limit for regmap users
791 *
792 * @rdev: regulator to operate on
793 * @min_uA: Lower bound for current limit
794 * @max_uA: Upper bound for current limit
795 *
796 * Regulators that use regmap for their register I/O can set curr_table,
797 * csel_reg and csel_mask fields in their descriptor and then use this
798 * as their set_current_limit operation, saving some code.
799 */
regulator_set_current_limit_regmap(struct regulator_dev * rdev,int min_uA,int max_uA)800 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
801 int min_uA, int max_uA)
802 {
803 unsigned int n_currents = rdev->desc->n_current_limits;
804 int i, sel = -1;
805
806 if (n_currents == 0)
807 return -EINVAL;
808
809 if (rdev->desc->curr_table) {
810 const unsigned int *curr_table = rdev->desc->curr_table;
811 bool ascend = curr_table[n_currents - 1] > curr_table[0];
812
813 /* search for closest to maximum */
814 if (ascend) {
815 for (i = n_currents - 1; i >= 0; i--) {
816 if (min_uA <= curr_table[i] &&
817 curr_table[i] <= max_uA) {
818 sel = i;
819 break;
820 }
821 }
822 } else {
823 for (i = 0; i < n_currents; i++) {
824 if (min_uA <= curr_table[i] &&
825 curr_table[i] <= max_uA) {
826 sel = i;
827 break;
828 }
829 }
830 }
831 }
832
833 if (sel < 0)
834 return -EINVAL;
835
836 sel <<= ffs(rdev->desc->csel_mask) - 1;
837
838 return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
839 rdev->desc->csel_mask, sel);
840 }
841 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
842
843 /**
844 * regulator_get_current_limit_regmap - get_current_limit for regmap users
845 *
846 * @rdev: regulator to operate on
847 *
848 * Regulators that use regmap for their register I/O can set the
849 * csel_reg and csel_mask fields in their descriptor and then use this
850 * as their get_current_limit operation, saving some code.
851 */
regulator_get_current_limit_regmap(struct regulator_dev * rdev)852 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
853 {
854 unsigned int val;
855 int ret;
856
857 ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
858 if (ret != 0)
859 return ret;
860
861 val &= rdev->desc->csel_mask;
862 val >>= ffs(rdev->desc->csel_mask) - 1;
863
864 if (rdev->desc->curr_table) {
865 if (val >= rdev->desc->n_current_limits)
866 return -EINVAL;
867
868 return rdev->desc->curr_table[val];
869 }
870
871 return -EINVAL;
872 }
873 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
874
875 /**
876 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
877 * of regulator_bulk_data structs
878 *
879 * @consumers: array of regulator_bulk_data entries to initialize
880 * @supply_names: array of supply name strings
881 * @num_supplies: number of supply names to initialize
882 *
883 * Note: the 'consumers' array must be the size of 'num_supplies'.
884 */
regulator_bulk_set_supply_names(struct regulator_bulk_data * consumers,const char * const * supply_names,unsigned int num_supplies)885 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
886 const char *const *supply_names,
887 unsigned int num_supplies)
888 {
889 unsigned int i;
890
891 for (i = 0; i < num_supplies; i++)
892 consumers[i].supply = supply_names[i];
893 }
894 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
895
896 /**
897 * regulator_is_equal - test whether two regulators are the same
898 *
899 * @reg1: first regulator to operate on
900 * @reg2: second regulator to operate on
901 */
regulator_is_equal(struct regulator * reg1,struct regulator * reg2)902 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
903 {
904 return reg1->rdev == reg2->rdev;
905 }
906 EXPORT_SYMBOL_GPL(regulator_is_equal);
907
908 /**
909 * regulator_find_closest_bigger - helper to find offset in ramp delay table
910 *
911 * @target: targeted ramp_delay
912 * @table: table with supported ramp delays
913 * @num_sel: number of entries in the table
914 * @sel: Pointer to store table offset
915 *
916 * This is the internal helper used by regulator_set_ramp_delay_regmap to
917 * map ramp delay to register value. It should only be used directly if
918 * regulator_set_ramp_delay_regmap cannot handle a specific device setup
919 * (e.g. because the value is split over multiple registers).
920 */
regulator_find_closest_bigger(unsigned int target,const unsigned int * table,unsigned int num_sel,unsigned int * sel)921 int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
922 unsigned int num_sel, unsigned int *sel)
923 {
924 unsigned int s, tmp, max, maxsel = 0;
925 bool found = false;
926
927 max = table[0];
928
929 for (s = 0; s < num_sel; s++) {
930 if (table[s] > max) {
931 max = table[s];
932 maxsel = s;
933 }
934 if (table[s] >= target) {
935 if (!found || table[s] - target < tmp - target) {
936 tmp = table[s];
937 *sel = s;
938 found = true;
939 if (tmp == target)
940 break;
941 }
942 }
943 }
944
945 if (!found) {
946 *sel = maxsel;
947 return -EINVAL;
948 }
949
950 return 0;
951 }
952 EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
953
954 /**
955 * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
956 *
957 * @rdev: regulator to operate on
958 * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
959 *
960 * Regulators that use regmap for their register I/O can set the ramp_reg
961 * and ramp_mask fields in their descriptor and then use this as their
962 * set_ramp_delay operation, saving some code.
963 */
regulator_set_ramp_delay_regmap(struct regulator_dev * rdev,int ramp_delay)964 int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
965 {
966 int ret;
967 unsigned int sel;
968
969 if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
970 return -EINVAL;
971
972 ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
973 rdev->desc->n_ramp_values, &sel);
974
975 if (ret) {
976 dev_warn(rdev_get_dev(rdev),
977 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
978 rdev->desc->ramp_delay_table[sel]);
979 }
980
981 sel <<= ffs(rdev->desc->ramp_mask) - 1;
982
983 return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
984 rdev->desc->ramp_mask, sel);
985 }
986 EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
987