1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46
47 enum {
48 MAX_PENDING_REG_MR = 8,
49 };
50
51 #define MLX5_UMR_ALIGN 2048
52
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 u64 iova, int access_flags,
57 unsigned int page_size, bool populate);
58
set_mkc_access_pd_addr_fields(void * mkc,int acc,u64 start_addr,struct ib_pd * pd)59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 struct ib_pd *pd)
61 {
62 struct mlx5_ib_dev *dev = to_mdev(pd->device);
63
64 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 MLX5_SET(mkc, mkc, lr, 1);
69
70 if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
73
74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 (MLX5_CAP_GEN(dev->mdev,
76 relaxed_ordering_read_pci_enabled) &&
77 pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
79 }
80
81 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 MLX5_SET64(mkc, mkc, start_addr, start_addr);
84 }
85
assign_mkey_variant(struct mlx5_ib_dev * dev,u32 * mkey,u32 * in)86 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
87 {
88 u8 key = atomic_inc_return(&dev->mkey_var);
89 void *mkc;
90
91 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 MLX5_SET(mkc, mkc, mkey_7_0, key);
93 *mkey = key;
94 }
95
mlx5_ib_create_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mkey * mkey,u32 * in,int inlen)96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98 {
99 int ret;
100
101 assign_mkey_variant(dev, &mkey->key, in);
102 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 if (!ret)
104 init_waitqueue_head(&mkey->wait);
105
106 return ret;
107 }
108
mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey * async_create)109 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
110 {
111 struct mlx5_ib_dev *dev = async_create->ent->dev;
112 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
114
115 MLX5_SET(create_mkey_in, async_create->in, opcode,
116 MLX5_CMD_OP_CREATE_MKEY);
117 assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 async_create->out, outlen, create_mkey_callback,
120 &async_create->cb_work);
121 }
122
123 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125
destroy_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)126 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
127 {
128 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
129
130 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
131 }
132
create_mkey_warn(struct mlx5_ib_dev * dev,int status,void * out)133 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
134 {
135 if (status == -ENXIO) /* core driver is not available */
136 return;
137
138 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 if (status != -EREMOTEIO) /* driver specific failure */
140 return;
141
142 /* Failed in FW, print cmd out failure details */
143 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
144 }
145
push_mkey_locked(struct mlx5_cache_ent * ent,bool limit_pendings,void * to_store)146 static int push_mkey_locked(struct mlx5_cache_ent *ent, bool limit_pendings,
147 void *to_store)
148 {
149 XA_STATE(xas, &ent->mkeys, 0);
150 void *curr;
151
152 if (limit_pendings &&
153 (ent->reserved - ent->stored) > MAX_PENDING_REG_MR)
154 return -EAGAIN;
155
156 while (1) {
157 /*
158 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
159 * doesn't transparently unlock. Instead we set the xas index to
160 * the current value of reserved every iteration.
161 */
162 xas_set(&xas, ent->reserved);
163 curr = xas_load(&xas);
164 if (!curr) {
165 if (to_store && ent->stored == ent->reserved)
166 xas_store(&xas, to_store);
167 else
168 xas_store(&xas, XA_ZERO_ENTRY);
169 if (xas_valid(&xas)) {
170 ent->reserved++;
171 if (to_store) {
172 if (ent->stored != ent->reserved)
173 __xa_store(&ent->mkeys,
174 ent->stored,
175 to_store,
176 GFP_KERNEL);
177 ent->stored++;
178 queue_adjust_cache_locked(ent);
179 WRITE_ONCE(ent->dev->cache.last_add,
180 jiffies);
181 }
182 }
183 }
184 xa_unlock_irq(&ent->mkeys);
185
186 /*
187 * Notice xas_nomem() must always be called as it cleans
188 * up any cached allocation.
189 */
190 if (!xas_nomem(&xas, GFP_KERNEL))
191 break;
192 xa_lock_irq(&ent->mkeys);
193 }
194 xa_lock_irq(&ent->mkeys);
195 if (xas_error(&xas))
196 return xas_error(&xas);
197 if (WARN_ON(curr))
198 return -EINVAL;
199 return 0;
200 }
201
push_mkey(struct mlx5_cache_ent * ent,bool limit_pendings,void * to_store)202 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
203 void *to_store)
204 {
205 int ret;
206
207 xa_lock_irq(&ent->mkeys);
208 ret = push_mkey_locked(ent, limit_pendings, to_store);
209 xa_unlock_irq(&ent->mkeys);
210 return ret;
211 }
212
undo_push_reserve_mkey(struct mlx5_cache_ent * ent)213 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
214 {
215 void *old;
216
217 ent->reserved--;
218 old = __xa_erase(&ent->mkeys, ent->reserved);
219 WARN_ON(old);
220 }
221
push_to_reserved(struct mlx5_cache_ent * ent,u32 mkey)222 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
223 {
224 void *old;
225
226 old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
227 WARN_ON(old);
228 ent->stored++;
229 }
230
pop_stored_mkey(struct mlx5_cache_ent * ent)231 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
232 {
233 void *old, *xa_mkey;
234
235 ent->stored--;
236 ent->reserved--;
237
238 if (ent->stored == ent->reserved) {
239 xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
240 WARN_ON(!xa_mkey);
241 return (u32)xa_to_value(xa_mkey);
242 }
243
244 xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
245 GFP_KERNEL);
246 WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
247 old = __xa_erase(&ent->mkeys, ent->reserved);
248 WARN_ON(old);
249 return (u32)xa_to_value(xa_mkey);
250 }
251
create_mkey_callback(int status,struct mlx5_async_work * context)252 static void create_mkey_callback(int status, struct mlx5_async_work *context)
253 {
254 struct mlx5r_async_create_mkey *mkey_out =
255 container_of(context, struct mlx5r_async_create_mkey, cb_work);
256 struct mlx5_cache_ent *ent = mkey_out->ent;
257 struct mlx5_ib_dev *dev = ent->dev;
258 unsigned long flags;
259
260 if (status) {
261 create_mkey_warn(dev, status, mkey_out->out);
262 kfree(mkey_out);
263 xa_lock_irqsave(&ent->mkeys, flags);
264 undo_push_reserve_mkey(ent);
265 WRITE_ONCE(dev->fill_delay, 1);
266 xa_unlock_irqrestore(&ent->mkeys, flags);
267 mod_timer(&dev->delay_timer, jiffies + HZ);
268 return;
269 }
270
271 mkey_out->mkey |= mlx5_idx_to_mkey(
272 MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
273 WRITE_ONCE(dev->cache.last_add, jiffies);
274
275 xa_lock_irqsave(&ent->mkeys, flags);
276 push_to_reserved(ent, mkey_out->mkey);
277 /* If we are doing fill_to_high_water then keep going. */
278 queue_adjust_cache_locked(ent);
279 xa_unlock_irqrestore(&ent->mkeys, flags);
280 kfree(mkey_out);
281 }
282
get_mkc_octo_size(unsigned int access_mode,unsigned int ndescs)283 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
284 {
285 int ret = 0;
286
287 switch (access_mode) {
288 case MLX5_MKC_ACCESS_MODE_MTT:
289 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
290 sizeof(struct mlx5_mtt));
291 break;
292 case MLX5_MKC_ACCESS_MODE_KSM:
293 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
294 sizeof(struct mlx5_klm));
295 break;
296 default:
297 WARN_ON(1);
298 }
299 return ret;
300 }
301
set_cache_mkc(struct mlx5_cache_ent * ent,void * mkc)302 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
303 {
304 set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
305 ent->dev->umrc.pd);
306 MLX5_SET(mkc, mkc, free, 1);
307 MLX5_SET(mkc, mkc, umr_en, 1);
308 MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
309 MLX5_SET(mkc, mkc, access_mode_4_2,
310 (ent->rb_key.access_mode >> 2) & 0x7);
311
312 MLX5_SET(mkc, mkc, translations_octword_size,
313 get_mkc_octo_size(ent->rb_key.access_mode,
314 ent->rb_key.ndescs));
315 MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
316 }
317
318 /* Asynchronously schedule new MRs to be populated in the cache. */
add_keys(struct mlx5_cache_ent * ent,unsigned int num)319 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
320 {
321 struct mlx5r_async_create_mkey *async_create;
322 void *mkc;
323 int err = 0;
324 int i;
325
326 for (i = 0; i < num; i++) {
327 async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
328 GFP_KERNEL);
329 if (!async_create)
330 return -ENOMEM;
331 mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
332 memory_key_mkey_entry);
333 set_cache_mkc(ent, mkc);
334 async_create->ent = ent;
335
336 err = push_mkey(ent, true, NULL);
337 if (err)
338 goto free_async_create;
339
340 err = mlx5_ib_create_mkey_cb(async_create);
341 if (err) {
342 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
343 goto err_undo_reserve;
344 }
345 }
346
347 return 0;
348
349 err_undo_reserve:
350 xa_lock_irq(&ent->mkeys);
351 undo_push_reserve_mkey(ent);
352 xa_unlock_irq(&ent->mkeys);
353 free_async_create:
354 kfree(async_create);
355 return err;
356 }
357
358 /* Synchronously create a MR in the cache */
create_cache_mkey(struct mlx5_cache_ent * ent,u32 * mkey)359 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
360 {
361 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
362 void *mkc;
363 u32 *in;
364 int err;
365
366 in = kzalloc(inlen, GFP_KERNEL);
367 if (!in)
368 return -ENOMEM;
369 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
370 set_cache_mkc(ent, mkc);
371
372 err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
373 if (err)
374 goto free_in;
375
376 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
377 free_in:
378 kfree(in);
379 return err;
380 }
381
remove_cache_mr_locked(struct mlx5_cache_ent * ent)382 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
383 {
384 u32 mkey;
385
386 lockdep_assert_held(&ent->mkeys.xa_lock);
387 if (!ent->stored)
388 return;
389 mkey = pop_stored_mkey(ent);
390 xa_unlock_irq(&ent->mkeys);
391 mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
392 xa_lock_irq(&ent->mkeys);
393 }
394
resize_available_mrs(struct mlx5_cache_ent * ent,unsigned int target,bool limit_fill)395 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
396 bool limit_fill)
397 __acquires(&ent->mkeys) __releases(&ent->mkeys)
398 {
399 int err;
400
401 lockdep_assert_held(&ent->mkeys.xa_lock);
402
403 while (true) {
404 if (limit_fill)
405 target = ent->limit * 2;
406 if (target == ent->reserved)
407 return 0;
408 if (target > ent->reserved) {
409 u32 todo = target - ent->reserved;
410
411 xa_unlock_irq(&ent->mkeys);
412 err = add_keys(ent, todo);
413 if (err == -EAGAIN)
414 usleep_range(3000, 5000);
415 xa_lock_irq(&ent->mkeys);
416 if (err) {
417 if (err != -EAGAIN)
418 return err;
419 } else
420 return 0;
421 } else {
422 remove_cache_mr_locked(ent);
423 }
424 }
425 }
426
size_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)427 static ssize_t size_write(struct file *filp, const char __user *buf,
428 size_t count, loff_t *pos)
429 {
430 struct mlx5_cache_ent *ent = filp->private_data;
431 u32 target;
432 int err;
433
434 err = kstrtou32_from_user(buf, count, 0, &target);
435 if (err)
436 return err;
437
438 /*
439 * Target is the new value of total_mrs the user requests, however we
440 * cannot free MRs that are in use. Compute the target value for stored
441 * mkeys.
442 */
443 xa_lock_irq(&ent->mkeys);
444 if (target < ent->in_use) {
445 err = -EINVAL;
446 goto err_unlock;
447 }
448 target = target - ent->in_use;
449 if (target < ent->limit || target > ent->limit*2) {
450 err = -EINVAL;
451 goto err_unlock;
452 }
453 err = resize_available_mrs(ent, target, false);
454 if (err)
455 goto err_unlock;
456 xa_unlock_irq(&ent->mkeys);
457
458 return count;
459
460 err_unlock:
461 xa_unlock_irq(&ent->mkeys);
462 return err;
463 }
464
size_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)465 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
466 loff_t *pos)
467 {
468 struct mlx5_cache_ent *ent = filp->private_data;
469 char lbuf[20];
470 int err;
471
472 err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
473 if (err < 0)
474 return err;
475
476 return simple_read_from_buffer(buf, count, pos, lbuf, err);
477 }
478
479 static const struct file_operations size_fops = {
480 .owner = THIS_MODULE,
481 .open = simple_open,
482 .write = size_write,
483 .read = size_read,
484 };
485
limit_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)486 static ssize_t limit_write(struct file *filp, const char __user *buf,
487 size_t count, loff_t *pos)
488 {
489 struct mlx5_cache_ent *ent = filp->private_data;
490 u32 var;
491 int err;
492
493 err = kstrtou32_from_user(buf, count, 0, &var);
494 if (err)
495 return err;
496
497 /*
498 * Upon set we immediately fill the cache to high water mark implied by
499 * the limit.
500 */
501 xa_lock_irq(&ent->mkeys);
502 ent->limit = var;
503 err = resize_available_mrs(ent, 0, true);
504 xa_unlock_irq(&ent->mkeys);
505 if (err)
506 return err;
507 return count;
508 }
509
limit_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)510 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
511 loff_t *pos)
512 {
513 struct mlx5_cache_ent *ent = filp->private_data;
514 char lbuf[20];
515 int err;
516
517 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
518 if (err < 0)
519 return err;
520
521 return simple_read_from_buffer(buf, count, pos, lbuf, err);
522 }
523
524 static const struct file_operations limit_fops = {
525 .owner = THIS_MODULE,
526 .open = simple_open,
527 .write = limit_write,
528 .read = limit_read,
529 };
530
someone_adding(struct mlx5_mkey_cache * cache)531 static bool someone_adding(struct mlx5_mkey_cache *cache)
532 {
533 struct mlx5_cache_ent *ent;
534 struct rb_node *node;
535 bool ret;
536
537 mutex_lock(&cache->rb_lock);
538 for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
539 ent = rb_entry(node, struct mlx5_cache_ent, node);
540 xa_lock_irq(&ent->mkeys);
541 ret = ent->stored < ent->limit;
542 xa_unlock_irq(&ent->mkeys);
543 if (ret) {
544 mutex_unlock(&cache->rb_lock);
545 return true;
546 }
547 }
548 mutex_unlock(&cache->rb_lock);
549 return false;
550 }
551
552 /*
553 * Check if the bucket is outside the high/low water mark and schedule an async
554 * update. The cache refill has hysteresis, once the low water mark is hit it is
555 * refilled up to the high mark.
556 */
queue_adjust_cache_locked(struct mlx5_cache_ent * ent)557 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
558 {
559 lockdep_assert_held(&ent->mkeys.xa_lock);
560
561 if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
562 return;
563 if (ent->stored < ent->limit) {
564 ent->fill_to_high_water = true;
565 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
566 } else if (ent->fill_to_high_water &&
567 ent->reserved < 2 * ent->limit) {
568 /*
569 * Once we start populating due to hitting a low water mark
570 * continue until we pass the high water mark.
571 */
572 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
573 } else if (ent->stored == 2 * ent->limit) {
574 ent->fill_to_high_water = false;
575 } else if (ent->stored > 2 * ent->limit) {
576 /* Queue deletion of excess entries */
577 ent->fill_to_high_water = false;
578 if (ent->stored != ent->reserved)
579 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
580 msecs_to_jiffies(1000));
581 else
582 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
583 }
584 }
585
__cache_work_func(struct mlx5_cache_ent * ent)586 static void __cache_work_func(struct mlx5_cache_ent *ent)
587 {
588 struct mlx5_ib_dev *dev = ent->dev;
589 struct mlx5_mkey_cache *cache = &dev->cache;
590 int err;
591
592 xa_lock_irq(&ent->mkeys);
593 if (ent->disabled)
594 goto out;
595
596 if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
597 !READ_ONCE(dev->fill_delay)) {
598 xa_unlock_irq(&ent->mkeys);
599 err = add_keys(ent, 1);
600 xa_lock_irq(&ent->mkeys);
601 if (ent->disabled)
602 goto out;
603 if (err) {
604 /*
605 * EAGAIN only happens if there are pending MRs, so we
606 * will be rescheduled when storing them. The only
607 * failure path here is ENOMEM.
608 */
609 if (err != -EAGAIN) {
610 mlx5_ib_warn(
611 dev,
612 "add keys command failed, err %d\n",
613 err);
614 queue_delayed_work(cache->wq, &ent->dwork,
615 msecs_to_jiffies(1000));
616 }
617 }
618 } else if (ent->stored > 2 * ent->limit) {
619 bool need_delay;
620
621 /*
622 * The remove_cache_mr() logic is performed as garbage
623 * collection task. Such task is intended to be run when no
624 * other active processes are running.
625 *
626 * The need_resched() will return TRUE if there are user tasks
627 * to be activated in near future.
628 *
629 * In such case, we don't execute remove_cache_mr() and postpone
630 * the garbage collection work to try to run in next cycle, in
631 * order to free CPU resources to other tasks.
632 */
633 xa_unlock_irq(&ent->mkeys);
634 need_delay = need_resched() || someone_adding(cache) ||
635 !time_after(jiffies,
636 READ_ONCE(cache->last_add) + 300 * HZ);
637 xa_lock_irq(&ent->mkeys);
638 if (ent->disabled)
639 goto out;
640 if (need_delay) {
641 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
642 goto out;
643 }
644 remove_cache_mr_locked(ent);
645 queue_adjust_cache_locked(ent);
646 }
647 out:
648 xa_unlock_irq(&ent->mkeys);
649 }
650
delayed_cache_work_func(struct work_struct * work)651 static void delayed_cache_work_func(struct work_struct *work)
652 {
653 struct mlx5_cache_ent *ent;
654
655 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
656 __cache_work_func(ent);
657 }
658
cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,struct mlx5r_cache_rb_key key2)659 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
660 struct mlx5r_cache_rb_key key2)
661 {
662 int res;
663
664 res = key1.ats - key2.ats;
665 if (res)
666 return res;
667
668 res = key1.access_mode - key2.access_mode;
669 if (res)
670 return res;
671
672 res = key1.access_flags - key2.access_flags;
673 if (res)
674 return res;
675
676 /*
677 * keep ndescs the last in the compare table since the find function
678 * searches for an exact match on all properties and only closest
679 * match in size.
680 */
681 return key1.ndescs - key2.ndescs;
682 }
683
mlx5_cache_ent_insert(struct mlx5_mkey_cache * cache,struct mlx5_cache_ent * ent)684 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
685 struct mlx5_cache_ent *ent)
686 {
687 struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
688 struct mlx5_cache_ent *cur;
689 int cmp;
690
691 /* Figure out where to put new node */
692 while (*new) {
693 cur = rb_entry(*new, struct mlx5_cache_ent, node);
694 parent = *new;
695 cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
696 if (cmp > 0)
697 new = &((*new)->rb_left);
698 if (cmp < 0)
699 new = &((*new)->rb_right);
700 if (cmp == 0) {
701 mutex_unlock(&cache->rb_lock);
702 return -EEXIST;
703 }
704 }
705
706 /* Add new node and rebalance tree. */
707 rb_link_node(&ent->node, parent, new);
708 rb_insert_color(&ent->node, &cache->rb_root);
709
710 return 0;
711 }
712
713 static struct mlx5_cache_ent *
mkey_cache_ent_from_rb_key(struct mlx5_ib_dev * dev,struct mlx5r_cache_rb_key rb_key)714 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
715 struct mlx5r_cache_rb_key rb_key)
716 {
717 struct rb_node *node = dev->cache.rb_root.rb_node;
718 struct mlx5_cache_ent *cur, *smallest = NULL;
719 int cmp;
720
721 /*
722 * Find the smallest ent with order >= requested_order.
723 */
724 while (node) {
725 cur = rb_entry(node, struct mlx5_cache_ent, node);
726 cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
727 if (cmp > 0) {
728 smallest = cur;
729 node = node->rb_left;
730 }
731 if (cmp < 0)
732 node = node->rb_right;
733 if (cmp == 0)
734 return cur;
735 }
736
737 return (smallest &&
738 smallest->rb_key.access_mode == rb_key.access_mode &&
739 smallest->rb_key.access_flags == rb_key.access_flags &&
740 smallest->rb_key.ats == rb_key.ats) ?
741 smallest :
742 NULL;
743 }
744
_mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,struct mlx5_cache_ent * ent,int access_flags)745 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
746 struct mlx5_cache_ent *ent,
747 int access_flags)
748 {
749 struct mlx5_ib_mr *mr;
750 int err;
751
752 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
753 if (!mr)
754 return ERR_PTR(-ENOMEM);
755
756 xa_lock_irq(&ent->mkeys);
757 ent->in_use++;
758
759 if (!ent->stored) {
760 queue_adjust_cache_locked(ent);
761 ent->miss++;
762 xa_unlock_irq(&ent->mkeys);
763 err = create_cache_mkey(ent, &mr->mmkey.key);
764 if (err) {
765 xa_lock_irq(&ent->mkeys);
766 ent->in_use--;
767 xa_unlock_irq(&ent->mkeys);
768 kfree(mr);
769 return ERR_PTR(err);
770 }
771 } else {
772 mr->mmkey.key = pop_stored_mkey(ent);
773 queue_adjust_cache_locked(ent);
774 xa_unlock_irq(&ent->mkeys);
775 }
776 mr->mmkey.cache_ent = ent;
777 mr->mmkey.type = MLX5_MKEY_MR;
778 init_waitqueue_head(&mr->mmkey.wait);
779 return mr;
780 }
781
get_unchangeable_access_flags(struct mlx5_ib_dev * dev,int access_flags)782 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
783 int access_flags)
784 {
785 int ret = 0;
786
787 if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
788 MLX5_CAP_GEN(dev->mdev, atomic) &&
789 MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
790 ret |= IB_ACCESS_REMOTE_ATOMIC;
791
792 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
793 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
794 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
795 ret |= IB_ACCESS_RELAXED_ORDERING;
796
797 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
798 (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
799 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
800 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
801 ret |= IB_ACCESS_RELAXED_ORDERING;
802
803 return ret;
804 }
805
mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,int access_flags,int access_mode,int ndescs)806 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
807 int access_flags, int access_mode,
808 int ndescs)
809 {
810 struct mlx5r_cache_rb_key rb_key = {
811 .ndescs = ndescs,
812 .access_mode = access_mode,
813 .access_flags = get_unchangeable_access_flags(dev, access_flags)
814 };
815 struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
816
817 if (!ent)
818 return ERR_PTR(-EOPNOTSUPP);
819
820 return _mlx5_mr_cache_alloc(dev, ent, access_flags);
821 }
822
clean_keys(struct mlx5_ib_dev * dev,struct mlx5_cache_ent * ent)823 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
824 {
825 u32 mkey;
826
827 cancel_delayed_work(&ent->dwork);
828 xa_lock_irq(&ent->mkeys);
829 while (ent->stored) {
830 mkey = pop_stored_mkey(ent);
831 xa_unlock_irq(&ent->mkeys);
832 mlx5_core_destroy_mkey(dev->mdev, mkey);
833 xa_lock_irq(&ent->mkeys);
834 }
835 xa_unlock_irq(&ent->mkeys);
836 }
837
mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev * dev)838 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
839 {
840 if (!mlx5_debugfs_root || dev->is_rep)
841 return;
842
843 debugfs_remove_recursive(dev->cache.fs_root);
844 dev->cache.fs_root = NULL;
845 }
846
mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev * dev,struct mlx5_cache_ent * ent)847 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
848 struct mlx5_cache_ent *ent)
849 {
850 int order = order_base_2(ent->rb_key.ndescs);
851 struct dentry *dir;
852
853 if (!mlx5_debugfs_root || dev->is_rep)
854 return;
855
856 if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
857 order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
858
859 sprintf(ent->name, "%d", order);
860 dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
861 debugfs_create_file("size", 0600, dir, ent, &size_fops);
862 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
863 debugfs_create_ulong("cur", 0400, dir, &ent->stored);
864 debugfs_create_u32("miss", 0600, dir, &ent->miss);
865 }
866
mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev * dev)867 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
868 {
869 struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
870 struct mlx5_mkey_cache *cache = &dev->cache;
871
872 if (!mlx5_debugfs_root || dev->is_rep)
873 return;
874
875 cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
876 }
877
delay_time_func(struct timer_list * t)878 static void delay_time_func(struct timer_list *t)
879 {
880 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
881
882 WRITE_ONCE(dev->fill_delay, 0);
883 }
884
885 struct mlx5_cache_ent *
mlx5r_cache_create_ent_locked(struct mlx5_ib_dev * dev,struct mlx5r_cache_rb_key rb_key,bool persistent_entry)886 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
887 struct mlx5r_cache_rb_key rb_key,
888 bool persistent_entry)
889 {
890 struct mlx5_cache_ent *ent;
891 int order;
892 int ret;
893
894 ent = kzalloc(sizeof(*ent), GFP_KERNEL);
895 if (!ent)
896 return ERR_PTR(-ENOMEM);
897
898 xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
899 ent->rb_key = rb_key;
900 ent->dev = dev;
901 ent->is_tmp = !persistent_entry;
902
903 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
904
905 ret = mlx5_cache_ent_insert(&dev->cache, ent);
906 if (ret) {
907 kfree(ent);
908 return ERR_PTR(ret);
909 }
910
911 if (persistent_entry) {
912 if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
913 order = MLX5_IMR_KSM_CACHE_ENTRY;
914 else
915 order = order_base_2(rb_key.ndescs) - 2;
916
917 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
918 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
919 mlx5r_umr_can_load_pas(dev, 0))
920 ent->limit = dev->mdev->profile.mr_cache[order].limit;
921 else
922 ent->limit = 0;
923
924 mlx5_mkey_cache_debugfs_add_ent(dev, ent);
925 } else {
926 mod_delayed_work(ent->dev->cache.wq,
927 &ent->dev->cache.remove_ent_dwork,
928 msecs_to_jiffies(30 * 1000));
929 }
930
931 return ent;
932 }
933
remove_ent_work_func(struct work_struct * work)934 static void remove_ent_work_func(struct work_struct *work)
935 {
936 struct mlx5_mkey_cache *cache;
937 struct mlx5_cache_ent *ent;
938 struct rb_node *cur;
939
940 cache = container_of(work, struct mlx5_mkey_cache,
941 remove_ent_dwork.work);
942 mutex_lock(&cache->rb_lock);
943 cur = rb_last(&cache->rb_root);
944 while (cur) {
945 ent = rb_entry(cur, struct mlx5_cache_ent, node);
946 cur = rb_prev(cur);
947 mutex_unlock(&cache->rb_lock);
948
949 xa_lock_irq(&ent->mkeys);
950 if (!ent->is_tmp) {
951 xa_unlock_irq(&ent->mkeys);
952 mutex_lock(&cache->rb_lock);
953 continue;
954 }
955 xa_unlock_irq(&ent->mkeys);
956
957 clean_keys(ent->dev, ent);
958 mutex_lock(&cache->rb_lock);
959 }
960 mutex_unlock(&cache->rb_lock);
961 }
962
mlx5_mkey_cache_init(struct mlx5_ib_dev * dev)963 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
964 {
965 struct mlx5_mkey_cache *cache = &dev->cache;
966 struct rb_root *root = &dev->cache.rb_root;
967 struct mlx5r_cache_rb_key rb_key = {
968 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
969 };
970 struct mlx5_cache_ent *ent;
971 struct rb_node *node;
972 int ret;
973 int i;
974
975 mutex_init(&dev->slow_path_mutex);
976 mutex_init(&dev->cache.rb_lock);
977 dev->cache.rb_root = RB_ROOT;
978 INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
979 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
980 if (!cache->wq) {
981 mlx5_ib_warn(dev, "failed to create work queue\n");
982 return -ENOMEM;
983 }
984
985 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
986 timer_setup(&dev->delay_timer, delay_time_func, 0);
987 mlx5_mkey_cache_debugfs_init(dev);
988 mutex_lock(&cache->rb_lock);
989 for (i = 0; i <= mkey_cache_max_order(dev); i++) {
990 rb_key.ndescs = 1 << (i + 2);
991 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
992 if (IS_ERR(ent)) {
993 ret = PTR_ERR(ent);
994 goto err;
995 }
996 }
997
998 ret = mlx5_odp_init_mkey_cache(dev);
999 if (ret)
1000 goto err;
1001
1002 mutex_unlock(&cache->rb_lock);
1003 for (node = rb_first(root); node; node = rb_next(node)) {
1004 ent = rb_entry(node, struct mlx5_cache_ent, node);
1005 xa_lock_irq(&ent->mkeys);
1006 queue_adjust_cache_locked(ent);
1007 xa_unlock_irq(&ent->mkeys);
1008 }
1009
1010 return 0;
1011
1012 err:
1013 mutex_unlock(&cache->rb_lock);
1014 mlx5_mkey_cache_debugfs_cleanup(dev);
1015 mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
1016 return ret;
1017 }
1018
mlx5_mkey_cache_cleanup(struct mlx5_ib_dev * dev)1019 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
1020 {
1021 struct rb_root *root = &dev->cache.rb_root;
1022 struct mlx5_cache_ent *ent;
1023 struct rb_node *node;
1024
1025 if (!dev->cache.wq)
1026 return;
1027
1028 mutex_lock(&dev->cache.rb_lock);
1029 for (node = rb_first(root); node; node = rb_next(node)) {
1030 ent = rb_entry(node, struct mlx5_cache_ent, node);
1031 xa_lock_irq(&ent->mkeys);
1032 ent->disabled = true;
1033 xa_unlock_irq(&ent->mkeys);
1034 }
1035 mutex_unlock(&dev->cache.rb_lock);
1036
1037 /*
1038 * After all entries are disabled and will not reschedule on WQ,
1039 * flush it and all async commands.
1040 */
1041 flush_workqueue(dev->cache.wq);
1042
1043 mlx5_mkey_cache_debugfs_cleanup(dev);
1044 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1045
1046 /* At this point all entries are disabled and have no concurrent work. */
1047 mutex_lock(&dev->cache.rb_lock);
1048 node = rb_first(root);
1049 while (node) {
1050 ent = rb_entry(node, struct mlx5_cache_ent, node);
1051 node = rb_next(node);
1052 clean_keys(dev, ent);
1053 rb_erase(&ent->node, root);
1054 kfree(ent);
1055 }
1056 mutex_unlock(&dev->cache.rb_lock);
1057
1058 destroy_workqueue(dev->cache.wq);
1059 del_timer_sync(&dev->delay_timer);
1060 }
1061
mlx5_ib_get_dma_mr(struct ib_pd * pd,int acc)1062 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1063 {
1064 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1065 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1066 struct mlx5_ib_mr *mr;
1067 void *mkc;
1068 u32 *in;
1069 int err;
1070
1071 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1072 if (!mr)
1073 return ERR_PTR(-ENOMEM);
1074
1075 in = kzalloc(inlen, GFP_KERNEL);
1076 if (!in) {
1077 err = -ENOMEM;
1078 goto err_free;
1079 }
1080
1081 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1082
1083 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1084 MLX5_SET(mkc, mkc, length64, 1);
1085 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1086 pd);
1087
1088 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1089 if (err)
1090 goto err_in;
1091
1092 kfree(in);
1093 mr->mmkey.type = MLX5_MKEY_MR;
1094 mr->ibmr.lkey = mr->mmkey.key;
1095 mr->ibmr.rkey = mr->mmkey.key;
1096 mr->umem = NULL;
1097
1098 return &mr->ibmr;
1099
1100 err_in:
1101 kfree(in);
1102
1103 err_free:
1104 kfree(mr);
1105
1106 return ERR_PTR(err);
1107 }
1108
get_octo_len(u64 addr,u64 len,int page_shift)1109 static int get_octo_len(u64 addr, u64 len, int page_shift)
1110 {
1111 u64 page_size = 1ULL << page_shift;
1112 u64 offset;
1113 int npages;
1114
1115 offset = addr & (page_size - 1);
1116 npages = ALIGN(len + offset, page_size) >> page_shift;
1117 return (npages + 1) / 2;
1118 }
1119
mkey_cache_max_order(struct mlx5_ib_dev * dev)1120 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1121 {
1122 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1123 return MKEY_CACHE_LAST_STD_ENTRY;
1124 return MLX5_MAX_UMR_SHIFT;
1125 }
1126
set_mr_fields(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,u64 length,int access_flags,u64 iova)1127 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1128 u64 length, int access_flags, u64 iova)
1129 {
1130 mr->ibmr.lkey = mr->mmkey.key;
1131 mr->ibmr.rkey = mr->mmkey.key;
1132 mr->ibmr.length = length;
1133 mr->ibmr.device = &dev->ib_dev;
1134 mr->ibmr.iova = iova;
1135 mr->access_flags = access_flags;
1136 }
1137
mlx5_umem_dmabuf_default_pgsz(struct ib_umem * umem,u64 iova)1138 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1139 u64 iova)
1140 {
1141 /*
1142 * The alignment of iova has already been checked upon entering
1143 * UVERBS_METHOD_REG_DMABUF_MR
1144 */
1145 umem->iova = iova;
1146 return PAGE_SIZE;
1147 }
1148
alloc_cacheable_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags)1149 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1150 struct ib_umem *umem, u64 iova,
1151 int access_flags)
1152 {
1153 struct mlx5r_cache_rb_key rb_key = {
1154 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1155 };
1156 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1157 struct mlx5_cache_ent *ent;
1158 struct mlx5_ib_mr *mr;
1159 unsigned int page_size;
1160
1161 if (umem->is_dmabuf)
1162 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1163 else
1164 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1165 0, iova);
1166 if (WARN_ON(!page_size))
1167 return ERR_PTR(-EINVAL);
1168
1169 rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1170 rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1171 rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1172 ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1173 /*
1174 * If the MR can't come from the cache then synchronously create an uncached
1175 * one.
1176 */
1177 if (!ent) {
1178 mutex_lock(&dev->slow_path_mutex);
1179 mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1180 mutex_unlock(&dev->slow_path_mutex);
1181 if (IS_ERR(mr))
1182 return mr;
1183 mr->mmkey.rb_key = rb_key;
1184 return mr;
1185 }
1186
1187 mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1188 if (IS_ERR(mr))
1189 return mr;
1190
1191 mr->ibmr.pd = pd;
1192 mr->umem = umem;
1193 mr->page_shift = order_base_2(page_size);
1194 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1195
1196 return mr;
1197 }
1198
1199 /*
1200 * If ibmr is NULL it will be allocated by reg_create.
1201 * Else, the given ibmr will be used.
1202 */
reg_create(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags,unsigned int page_size,bool populate)1203 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1204 u64 iova, int access_flags,
1205 unsigned int page_size, bool populate)
1206 {
1207 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1208 struct mlx5_ib_mr *mr;
1209 __be64 *pas;
1210 void *mkc;
1211 int inlen;
1212 u32 *in;
1213 int err;
1214 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1215
1216 if (!page_size)
1217 return ERR_PTR(-EINVAL);
1218 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1219 if (!mr)
1220 return ERR_PTR(-ENOMEM);
1221
1222 mr->ibmr.pd = pd;
1223 mr->access_flags = access_flags;
1224 mr->page_shift = order_base_2(page_size);
1225
1226 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1227 if (populate)
1228 inlen += sizeof(*pas) *
1229 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1230 in = kvzalloc(inlen, GFP_KERNEL);
1231 if (!in) {
1232 err = -ENOMEM;
1233 goto err_1;
1234 }
1235 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1236 if (populate) {
1237 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1238 err = -EINVAL;
1239 goto err_2;
1240 }
1241 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1242 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1243 }
1244
1245 /* The pg_access bit allows setting the access flags
1246 * in the page list submitted with the command.
1247 */
1248 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1249
1250 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1251 set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1252 populate ? pd : dev->umrc.pd);
1253 MLX5_SET(mkc, mkc, free, !populate);
1254 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1255 MLX5_SET(mkc, mkc, umr_en, 1);
1256
1257 MLX5_SET64(mkc, mkc, len, umem->length);
1258 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1259 MLX5_SET(mkc, mkc, translations_octword_size,
1260 get_octo_len(iova, umem->length, mr->page_shift));
1261 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1262 if (mlx5_umem_needs_ats(dev, umem, access_flags))
1263 MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1264 if (populate) {
1265 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1266 get_octo_len(iova, umem->length, mr->page_shift));
1267 }
1268
1269 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1270 if (err) {
1271 mlx5_ib_warn(dev, "create mkey failed\n");
1272 goto err_2;
1273 }
1274 mr->mmkey.type = MLX5_MKEY_MR;
1275 mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1276 mr->umem = umem;
1277 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1278 kvfree(in);
1279
1280 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1281
1282 return mr;
1283
1284 err_2:
1285 kvfree(in);
1286 err_1:
1287 kfree(mr);
1288 return ERR_PTR(err);
1289 }
1290
mlx5_ib_get_dm_mr(struct ib_pd * pd,u64 start_addr,u64 length,int acc,int mode)1291 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1292 u64 length, int acc, int mode)
1293 {
1294 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1295 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1296 struct mlx5_ib_mr *mr;
1297 void *mkc;
1298 u32 *in;
1299 int err;
1300
1301 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1302 if (!mr)
1303 return ERR_PTR(-ENOMEM);
1304
1305 in = kzalloc(inlen, GFP_KERNEL);
1306 if (!in) {
1307 err = -ENOMEM;
1308 goto err_free;
1309 }
1310
1311 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1312
1313 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1314 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1315 MLX5_SET64(mkc, mkc, len, length);
1316 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1317
1318 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1319 if (err)
1320 goto err_in;
1321
1322 kfree(in);
1323
1324 set_mr_fields(dev, mr, length, acc, start_addr);
1325
1326 return &mr->ibmr;
1327
1328 err_in:
1329 kfree(in);
1330
1331 err_free:
1332 kfree(mr);
1333
1334 return ERR_PTR(err);
1335 }
1336
mlx5_ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge,struct uverbs_attr_bundle * attrs)1337 int mlx5_ib_advise_mr(struct ib_pd *pd,
1338 enum ib_uverbs_advise_mr_advice advice,
1339 u32 flags,
1340 struct ib_sge *sg_list,
1341 u32 num_sge,
1342 struct uverbs_attr_bundle *attrs)
1343 {
1344 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1345 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1346 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1347 return -EOPNOTSUPP;
1348
1349 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1350 sg_list, num_sge);
1351 }
1352
mlx5_ib_reg_dm_mr(struct ib_pd * pd,struct ib_dm * dm,struct ib_dm_mr_attr * attr,struct uverbs_attr_bundle * attrs)1353 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1354 struct ib_dm_mr_attr *attr,
1355 struct uverbs_attr_bundle *attrs)
1356 {
1357 struct mlx5_ib_dm *mdm = to_mdm(dm);
1358 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1359 u64 start_addr = mdm->dev_addr + attr->offset;
1360 int mode;
1361
1362 switch (mdm->type) {
1363 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1364 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1365 return ERR_PTR(-EINVAL);
1366
1367 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1368 start_addr -= pci_resource_start(dev->pdev, 0);
1369 break;
1370 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1371 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1372 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1373 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1374 return ERR_PTR(-EINVAL);
1375
1376 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1377 break;
1378 default:
1379 return ERR_PTR(-EINVAL);
1380 }
1381
1382 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1383 attr->access_flags, mode);
1384 }
1385
create_real_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags)1386 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1387 u64 iova, int access_flags)
1388 {
1389 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1390 struct mlx5_ib_mr *mr = NULL;
1391 bool xlt_with_umr;
1392 int err;
1393
1394 xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1395 if (xlt_with_umr) {
1396 mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1397 } else {
1398 unsigned int page_size = mlx5_umem_find_best_pgsz(
1399 umem, mkc, log_page_size, 0, iova);
1400
1401 mutex_lock(&dev->slow_path_mutex);
1402 mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1403 mutex_unlock(&dev->slow_path_mutex);
1404 }
1405 if (IS_ERR(mr)) {
1406 ib_umem_release(umem);
1407 return ERR_CAST(mr);
1408 }
1409
1410 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1411
1412 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1413
1414 if (xlt_with_umr) {
1415 /*
1416 * If the MR was created with reg_create then it will be
1417 * configured properly but left disabled. It is safe to go ahead
1418 * and configure it again via UMR while enabling it.
1419 */
1420 err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1421 if (err) {
1422 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1423 return ERR_PTR(err);
1424 }
1425 }
1426 return &mr->ibmr;
1427 }
1428
create_user_odp_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1429 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1430 u64 iova, int access_flags,
1431 struct ib_udata *udata)
1432 {
1433 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1434 struct ib_umem_odp *odp;
1435 struct mlx5_ib_mr *mr;
1436 int err;
1437
1438 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1439 return ERR_PTR(-EOPNOTSUPP);
1440
1441 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1442 if (err)
1443 return ERR_PTR(err);
1444 if (!start && length == U64_MAX) {
1445 if (iova != 0)
1446 return ERR_PTR(-EINVAL);
1447 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1448 return ERR_PTR(-EINVAL);
1449
1450 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1451 if (IS_ERR(mr))
1452 return ERR_CAST(mr);
1453 return &mr->ibmr;
1454 }
1455
1456 /* ODP requires xlt update via umr to work. */
1457 if (!mlx5r_umr_can_load_pas(dev, length))
1458 return ERR_PTR(-EINVAL);
1459
1460 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1461 &mlx5_mn_ops);
1462 if (IS_ERR(odp))
1463 return ERR_CAST(odp);
1464
1465 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1466 if (IS_ERR(mr)) {
1467 ib_umem_release(&odp->umem);
1468 return ERR_CAST(mr);
1469 }
1470 xa_init(&mr->implicit_children);
1471
1472 odp->private = mr;
1473 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1474 if (err)
1475 goto err_dereg_mr;
1476
1477 err = mlx5_ib_init_odp_mr(mr);
1478 if (err)
1479 goto err_dereg_mr;
1480 return &mr->ibmr;
1481
1482 err_dereg_mr:
1483 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1484 return ERR_PTR(err);
1485 }
1486
mlx5_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1487 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1488 u64 iova, int access_flags,
1489 struct ib_udata *udata)
1490 {
1491 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1492 struct ib_umem *umem;
1493
1494 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1495 return ERR_PTR(-EOPNOTSUPP);
1496
1497 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1498 start, iova, length, access_flags);
1499
1500 if (access_flags & IB_ACCESS_ON_DEMAND)
1501 return create_user_odp_mr(pd, start, length, iova, access_flags,
1502 udata);
1503 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1504 if (IS_ERR(umem))
1505 return ERR_CAST(umem);
1506 return create_real_mr(pd, umem, iova, access_flags);
1507 }
1508
mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment * attach)1509 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1510 {
1511 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1512 struct mlx5_ib_mr *mr = umem_dmabuf->private;
1513
1514 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1515
1516 if (!umem_dmabuf->sgt)
1517 return;
1518
1519 mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1520 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1521 }
1522
1523 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1524 .allow_peer2peer = 1,
1525 .move_notify = mlx5_ib_dmabuf_invalidate_cb,
1526 };
1527
mlx5_ib_reg_user_mr_dmabuf(struct ib_pd * pd,u64 offset,u64 length,u64 virt_addr,int fd,int access_flags,struct ib_udata * udata)1528 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1529 u64 length, u64 virt_addr,
1530 int fd, int access_flags,
1531 struct ib_udata *udata)
1532 {
1533 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1534 struct mlx5_ib_mr *mr = NULL;
1535 struct ib_umem_dmabuf *umem_dmabuf;
1536 int err;
1537
1538 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1539 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1540 return ERR_PTR(-EOPNOTSUPP);
1541
1542 mlx5_ib_dbg(dev,
1543 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1544 offset, virt_addr, length, fd, access_flags);
1545
1546 /* dmabuf requires xlt update via umr to work. */
1547 if (!mlx5r_umr_can_load_pas(dev, length))
1548 return ERR_PTR(-EINVAL);
1549
1550 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1551 access_flags,
1552 &mlx5_ib_dmabuf_attach_ops);
1553 if (IS_ERR(umem_dmabuf)) {
1554 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1555 PTR_ERR(umem_dmabuf));
1556 return ERR_CAST(umem_dmabuf);
1557 }
1558
1559 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1560 access_flags);
1561 if (IS_ERR(mr)) {
1562 ib_umem_release(&umem_dmabuf->umem);
1563 return ERR_CAST(mr);
1564 }
1565
1566 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1567
1568 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1569 umem_dmabuf->private = mr;
1570 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1571 if (err)
1572 goto err_dereg_mr;
1573
1574 err = mlx5_ib_init_dmabuf_mr(mr);
1575 if (err)
1576 goto err_dereg_mr;
1577 return &mr->ibmr;
1578
1579 err_dereg_mr:
1580 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1581 return ERR_PTR(err);
1582 }
1583
1584 /*
1585 * True if the change in access flags can be done via UMR, only some access
1586 * flags can be updated.
1587 */
can_use_umr_rereg_access(struct mlx5_ib_dev * dev,unsigned int current_access_flags,unsigned int target_access_flags)1588 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1589 unsigned int current_access_flags,
1590 unsigned int target_access_flags)
1591 {
1592 unsigned int diffs = current_access_flags ^ target_access_flags;
1593
1594 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1595 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1596 return false;
1597 return mlx5r_umr_can_reconfig(dev, current_access_flags,
1598 target_access_flags);
1599 }
1600
can_use_umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_umem * new_umem,int new_access_flags,u64 iova,unsigned long * page_size)1601 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1602 struct ib_umem *new_umem,
1603 int new_access_flags, u64 iova,
1604 unsigned long *page_size)
1605 {
1606 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1607
1608 /* We only track the allocated sizes of MRs from the cache */
1609 if (!mr->mmkey.cache_ent)
1610 return false;
1611 if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1612 return false;
1613
1614 *page_size =
1615 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1616 if (WARN_ON(!*page_size))
1617 return false;
1618 return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1619 ib_umem_num_dma_blocks(new_umem, *page_size);
1620 }
1621
umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_pd * pd,int access_flags,int flags,struct ib_umem * new_umem,u64 iova,unsigned long page_size)1622 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1623 int access_flags, int flags, struct ib_umem *new_umem,
1624 u64 iova, unsigned long page_size)
1625 {
1626 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1627 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1628 struct ib_umem *old_umem = mr->umem;
1629 int err;
1630
1631 /*
1632 * To keep everything simple the MR is revoked before we start to mess
1633 * with it. This ensure the change is atomic relative to any use of the
1634 * MR.
1635 */
1636 err = mlx5r_umr_revoke_mr(mr);
1637 if (err)
1638 return err;
1639
1640 if (flags & IB_MR_REREG_PD) {
1641 mr->ibmr.pd = pd;
1642 upd_flags |= MLX5_IB_UPD_XLT_PD;
1643 }
1644 if (flags & IB_MR_REREG_ACCESS) {
1645 mr->access_flags = access_flags;
1646 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1647 }
1648
1649 mr->ibmr.iova = iova;
1650 mr->ibmr.length = new_umem->length;
1651 mr->page_shift = order_base_2(page_size);
1652 mr->umem = new_umem;
1653 err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1654 if (err) {
1655 /*
1656 * The MR is revoked at this point so there is no issue to free
1657 * new_umem.
1658 */
1659 mr->umem = old_umem;
1660 return err;
1661 }
1662
1663 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1664 ib_umem_release(old_umem);
1665 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1666 return 0;
1667 }
1668
mlx5_ib_rereg_user_mr(struct ib_mr * ib_mr,int flags,u64 start,u64 length,u64 iova,int new_access_flags,struct ib_pd * new_pd,struct ib_udata * udata)1669 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1670 u64 length, u64 iova, int new_access_flags,
1671 struct ib_pd *new_pd,
1672 struct ib_udata *udata)
1673 {
1674 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1675 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1676 int err;
1677
1678 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1679 return ERR_PTR(-EOPNOTSUPP);
1680
1681 mlx5_ib_dbg(
1682 dev,
1683 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1684 start, iova, length, new_access_flags);
1685
1686 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1687 return ERR_PTR(-EOPNOTSUPP);
1688
1689 if (!(flags & IB_MR_REREG_ACCESS))
1690 new_access_flags = mr->access_flags;
1691 if (!(flags & IB_MR_REREG_PD))
1692 new_pd = ib_mr->pd;
1693
1694 if (!(flags & IB_MR_REREG_TRANS)) {
1695 struct ib_umem *umem;
1696
1697 /* Fast path for PD/access change */
1698 if (can_use_umr_rereg_access(dev, mr->access_flags,
1699 new_access_flags)) {
1700 err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1701 new_access_flags);
1702 if (err)
1703 return ERR_PTR(err);
1704 return NULL;
1705 }
1706 /* DM or ODP MR's don't have a normal umem so we can't re-use it */
1707 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1708 goto recreate;
1709
1710 /*
1711 * Only one active MR can refer to a umem at one time, revoke
1712 * the old MR before assigning the umem to the new one.
1713 */
1714 err = mlx5r_umr_revoke_mr(mr);
1715 if (err)
1716 return ERR_PTR(err);
1717 umem = mr->umem;
1718 mr->umem = NULL;
1719 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1720
1721 return create_real_mr(new_pd, umem, mr->ibmr.iova,
1722 new_access_flags);
1723 }
1724
1725 /*
1726 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1727 * but the logic around releasing the umem is different
1728 */
1729 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1730 goto recreate;
1731
1732 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1733 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1734 struct ib_umem *new_umem;
1735 unsigned long page_size;
1736
1737 new_umem = ib_umem_get(&dev->ib_dev, start, length,
1738 new_access_flags);
1739 if (IS_ERR(new_umem))
1740 return ERR_CAST(new_umem);
1741
1742 /* Fast path for PAS change */
1743 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1744 &page_size)) {
1745 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1746 new_umem, iova, page_size);
1747 if (err) {
1748 ib_umem_release(new_umem);
1749 return ERR_PTR(err);
1750 }
1751 return NULL;
1752 }
1753 return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1754 }
1755
1756 /*
1757 * Everything else has no state we can preserve, just create a new MR
1758 * from scratch
1759 */
1760 recreate:
1761 return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1762 new_access_flags, udata);
1763 }
1764
1765 static int
mlx5_alloc_priv_descs(struct ib_device * device,struct mlx5_ib_mr * mr,int ndescs,int desc_size)1766 mlx5_alloc_priv_descs(struct ib_device *device,
1767 struct mlx5_ib_mr *mr,
1768 int ndescs,
1769 int desc_size)
1770 {
1771 struct mlx5_ib_dev *dev = to_mdev(device);
1772 struct device *ddev = &dev->mdev->pdev->dev;
1773 int size = ndescs * desc_size;
1774 int add_size;
1775 int ret;
1776
1777 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1778 if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1779 int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1780
1781 add_size = min_t(int, end - size, add_size);
1782 }
1783
1784 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1785 if (!mr->descs_alloc)
1786 return -ENOMEM;
1787
1788 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1789
1790 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1791 if (dma_mapping_error(ddev, mr->desc_map)) {
1792 ret = -ENOMEM;
1793 goto err;
1794 }
1795
1796 return 0;
1797 err:
1798 kfree(mr->descs_alloc);
1799
1800 return ret;
1801 }
1802
1803 static void
mlx5_free_priv_descs(struct mlx5_ib_mr * mr)1804 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1805 {
1806 if (!mr->umem && mr->descs) {
1807 struct ib_device *device = mr->ibmr.device;
1808 int size = mr->max_descs * mr->desc_size;
1809 struct mlx5_ib_dev *dev = to_mdev(device);
1810
1811 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1812 DMA_TO_DEVICE);
1813 kfree(mr->descs_alloc);
1814 mr->descs = NULL;
1815 }
1816 }
1817
cache_ent_find_and_store(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1818 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1819 struct mlx5_ib_mr *mr)
1820 {
1821 struct mlx5_mkey_cache *cache = &dev->cache;
1822 struct mlx5_cache_ent *ent;
1823 int ret;
1824
1825 if (mr->mmkey.cache_ent) {
1826 xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1827 mr->mmkey.cache_ent->in_use--;
1828 goto end;
1829 }
1830
1831 mutex_lock(&cache->rb_lock);
1832 ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1833 if (ent) {
1834 if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1835 if (ent->disabled) {
1836 mutex_unlock(&cache->rb_lock);
1837 return -EOPNOTSUPP;
1838 }
1839 mr->mmkey.cache_ent = ent;
1840 xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1841 mutex_unlock(&cache->rb_lock);
1842 goto end;
1843 }
1844 }
1845
1846 ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1847 mutex_unlock(&cache->rb_lock);
1848 if (IS_ERR(ent))
1849 return PTR_ERR(ent);
1850
1851 mr->mmkey.cache_ent = ent;
1852 xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1853
1854 end:
1855 ret = push_mkey_locked(mr->mmkey.cache_ent, false,
1856 xa_mk_value(mr->mmkey.key));
1857 xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1858 return ret;
1859 }
1860
mlx5_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)1861 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1862 {
1863 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1864 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1865 int rc;
1866
1867 /*
1868 * Any async use of the mr must hold the refcount, once the refcount
1869 * goes to zero no other thread, such as ODP page faults, prefetch, any
1870 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1871 */
1872 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1873 refcount_read(&mr->mmkey.usecount) != 0 &&
1874 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1875 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1876
1877 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1878 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1879 mr->sig, NULL, GFP_KERNEL);
1880
1881 if (mr->mtt_mr) {
1882 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1883 if (rc)
1884 return rc;
1885 mr->mtt_mr = NULL;
1886 }
1887 if (mr->klm_mr) {
1888 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1889 if (rc)
1890 return rc;
1891 mr->klm_mr = NULL;
1892 }
1893
1894 if (mlx5_core_destroy_psv(dev->mdev,
1895 mr->sig->psv_memory.psv_idx))
1896 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1897 mr->sig->psv_memory.psv_idx);
1898 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1899 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1900 mr->sig->psv_wire.psv_idx);
1901 kfree(mr->sig);
1902 mr->sig = NULL;
1903 }
1904
1905 /* Stop DMA */
1906 if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1907 if (mlx5r_umr_revoke_mr(mr) ||
1908 cache_ent_find_and_store(dev, mr))
1909 mr->mmkey.cache_ent = NULL;
1910
1911 if (!mr->mmkey.cache_ent) {
1912 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1913 if (rc)
1914 return rc;
1915 }
1916
1917 if (mr->umem) {
1918 bool is_odp = is_odp_mr(mr);
1919
1920 if (!is_odp)
1921 atomic_sub(ib_umem_num_pages(mr->umem),
1922 &dev->mdev->priv.reg_pages);
1923 ib_umem_release(mr->umem);
1924 if (is_odp)
1925 mlx5_ib_free_odp_mr(mr);
1926 }
1927
1928 if (!mr->mmkey.cache_ent)
1929 mlx5_free_priv_descs(mr);
1930
1931 kfree(mr);
1932 return 0;
1933 }
1934
mlx5_set_umr_free_mkey(struct ib_pd * pd,u32 * in,int ndescs,int access_mode,int page_shift)1935 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1936 int access_mode, int page_shift)
1937 {
1938 void *mkc;
1939
1940 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1941
1942 /* This is only used from the kernel, so setting the PD is OK. */
1943 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1944 MLX5_SET(mkc, mkc, free, 1);
1945 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1946 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1947 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1948 MLX5_SET(mkc, mkc, umr_en, 1);
1949 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1950 }
1951
_mlx5_alloc_mkey_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,int desc_size,int page_shift,int access_mode,u32 * in,int inlen)1952 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1953 int ndescs, int desc_size, int page_shift,
1954 int access_mode, u32 *in, int inlen)
1955 {
1956 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1957 int err;
1958
1959 mr->access_mode = access_mode;
1960 mr->desc_size = desc_size;
1961 mr->max_descs = ndescs;
1962
1963 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1964 if (err)
1965 return err;
1966
1967 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1968
1969 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1970 if (err)
1971 goto err_free_descs;
1972
1973 mr->mmkey.type = MLX5_MKEY_MR;
1974 mr->ibmr.lkey = mr->mmkey.key;
1975 mr->ibmr.rkey = mr->mmkey.key;
1976
1977 return 0;
1978
1979 err_free_descs:
1980 mlx5_free_priv_descs(mr);
1981 return err;
1982 }
1983
mlx5_ib_alloc_pi_mr(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg,int desc_size,int access_mode)1984 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1985 u32 max_num_sg, u32 max_num_meta_sg,
1986 int desc_size, int access_mode)
1987 {
1988 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1989 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1990 int page_shift = 0;
1991 struct mlx5_ib_mr *mr;
1992 u32 *in;
1993 int err;
1994
1995 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1996 if (!mr)
1997 return ERR_PTR(-ENOMEM);
1998
1999 mr->ibmr.pd = pd;
2000 mr->ibmr.device = pd->device;
2001
2002 in = kzalloc(inlen, GFP_KERNEL);
2003 if (!in) {
2004 err = -ENOMEM;
2005 goto err_free;
2006 }
2007
2008 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2009 page_shift = PAGE_SHIFT;
2010
2011 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2012 access_mode, in, inlen);
2013 if (err)
2014 goto err_free_in;
2015
2016 mr->umem = NULL;
2017 kfree(in);
2018
2019 return mr;
2020
2021 err_free_in:
2022 kfree(in);
2023 err_free:
2024 kfree(mr);
2025 return ERR_PTR(err);
2026 }
2027
mlx5_alloc_mem_reg_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)2028 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2029 int ndescs, u32 *in, int inlen)
2030 {
2031 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2032 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2033 inlen);
2034 }
2035
mlx5_alloc_sg_gaps_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)2036 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2037 int ndescs, u32 *in, int inlen)
2038 {
2039 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2040 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2041 }
2042
mlx5_alloc_integrity_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int max_num_sg,int max_num_meta_sg,u32 * in,int inlen)2043 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2044 int max_num_sg, int max_num_meta_sg,
2045 u32 *in, int inlen)
2046 {
2047 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2048 u32 psv_index[2];
2049 void *mkc;
2050 int err;
2051
2052 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2053 if (!mr->sig)
2054 return -ENOMEM;
2055
2056 /* create mem & wire PSVs */
2057 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2058 if (err)
2059 goto err_free_sig;
2060
2061 mr->sig->psv_memory.psv_idx = psv_index[0];
2062 mr->sig->psv_wire.psv_idx = psv_index[1];
2063
2064 mr->sig->sig_status_checked = true;
2065 mr->sig->sig_err_exists = false;
2066 /* Next UMR, Arm SIGERR */
2067 ++mr->sig->sigerr_count;
2068 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2069 sizeof(struct mlx5_klm),
2070 MLX5_MKC_ACCESS_MODE_KLMS);
2071 if (IS_ERR(mr->klm_mr)) {
2072 err = PTR_ERR(mr->klm_mr);
2073 goto err_destroy_psv;
2074 }
2075 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2076 sizeof(struct mlx5_mtt),
2077 MLX5_MKC_ACCESS_MODE_MTT);
2078 if (IS_ERR(mr->mtt_mr)) {
2079 err = PTR_ERR(mr->mtt_mr);
2080 goto err_free_klm_mr;
2081 }
2082
2083 /* Set bsf descriptors for mkey */
2084 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2085 MLX5_SET(mkc, mkc, bsf_en, 1);
2086 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2087
2088 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2089 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2090 if (err)
2091 goto err_free_mtt_mr;
2092
2093 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2094 mr->sig, GFP_KERNEL));
2095 if (err)
2096 goto err_free_descs;
2097 return 0;
2098
2099 err_free_descs:
2100 destroy_mkey(dev, mr);
2101 mlx5_free_priv_descs(mr);
2102 err_free_mtt_mr:
2103 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2104 mr->mtt_mr = NULL;
2105 err_free_klm_mr:
2106 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2107 mr->klm_mr = NULL;
2108 err_destroy_psv:
2109 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2110 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2111 mr->sig->psv_memory.psv_idx);
2112 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2113 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2114 mr->sig->psv_wire.psv_idx);
2115 err_free_sig:
2116 kfree(mr->sig);
2117
2118 return err;
2119 }
2120
__mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,u32 max_num_meta_sg)2121 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2122 enum ib_mr_type mr_type, u32 max_num_sg,
2123 u32 max_num_meta_sg)
2124 {
2125 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2126 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2127 int ndescs = ALIGN(max_num_sg, 4);
2128 struct mlx5_ib_mr *mr;
2129 u32 *in;
2130 int err;
2131
2132 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2133 if (!mr)
2134 return ERR_PTR(-ENOMEM);
2135
2136 in = kzalloc(inlen, GFP_KERNEL);
2137 if (!in) {
2138 err = -ENOMEM;
2139 goto err_free;
2140 }
2141
2142 mr->ibmr.device = pd->device;
2143 mr->umem = NULL;
2144
2145 switch (mr_type) {
2146 case IB_MR_TYPE_MEM_REG:
2147 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2148 break;
2149 case IB_MR_TYPE_SG_GAPS:
2150 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2151 break;
2152 case IB_MR_TYPE_INTEGRITY:
2153 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2154 max_num_meta_sg, in, inlen);
2155 break;
2156 default:
2157 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2158 err = -EINVAL;
2159 }
2160
2161 if (err)
2162 goto err_free_in;
2163
2164 kfree(in);
2165
2166 return &mr->ibmr;
2167
2168 err_free_in:
2169 kfree(in);
2170 err_free:
2171 kfree(mr);
2172 return ERR_PTR(err);
2173 }
2174
mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2175 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2176 u32 max_num_sg)
2177 {
2178 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2179 }
2180
mlx5_ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg)2181 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2182 u32 max_num_sg, u32 max_num_meta_sg)
2183 {
2184 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2185 max_num_meta_sg);
2186 }
2187
mlx5_ib_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)2188 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2189 {
2190 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2191 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2192 struct mlx5_ib_mw *mw = to_mmw(ibmw);
2193 unsigned int ndescs;
2194 u32 *in = NULL;
2195 void *mkc;
2196 int err;
2197 struct mlx5_ib_alloc_mw req = {};
2198 struct {
2199 __u32 comp_mask;
2200 __u32 response_length;
2201 } resp = {};
2202
2203 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2204 if (err)
2205 return err;
2206
2207 if (req.comp_mask || req.reserved1 || req.reserved2)
2208 return -EOPNOTSUPP;
2209
2210 if (udata->inlen > sizeof(req) &&
2211 !ib_is_udata_cleared(udata, sizeof(req),
2212 udata->inlen - sizeof(req)))
2213 return -EOPNOTSUPP;
2214
2215 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2216
2217 in = kzalloc(inlen, GFP_KERNEL);
2218 if (!in)
2219 return -ENOMEM;
2220
2221 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2222
2223 MLX5_SET(mkc, mkc, free, 1);
2224 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2225 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2226 MLX5_SET(mkc, mkc, umr_en, 1);
2227 MLX5_SET(mkc, mkc, lr, 1);
2228 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2229 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2230 MLX5_SET(mkc, mkc, qpn, 0xffffff);
2231
2232 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2233 if (err)
2234 goto free;
2235
2236 mw->mmkey.type = MLX5_MKEY_MW;
2237 ibmw->rkey = mw->mmkey.key;
2238 mw->mmkey.ndescs = ndescs;
2239
2240 resp.response_length =
2241 min(offsetofend(typeof(resp), response_length), udata->outlen);
2242 if (resp.response_length) {
2243 err = ib_copy_to_udata(udata, &resp, resp.response_length);
2244 if (err)
2245 goto free_mkey;
2246 }
2247
2248 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2249 err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2250 if (err)
2251 goto free_mkey;
2252 }
2253
2254 kfree(in);
2255 return 0;
2256
2257 free_mkey:
2258 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2259 free:
2260 kfree(in);
2261 return err;
2262 }
2263
mlx5_ib_dealloc_mw(struct ib_mw * mw)2264 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2265 {
2266 struct mlx5_ib_dev *dev = to_mdev(mw->device);
2267 struct mlx5_ib_mw *mmw = to_mmw(mw);
2268
2269 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2270 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2271 /*
2272 * pagefault_single_data_segment() may be accessing mmw
2273 * if the user bound an ODP MR to this MW.
2274 */
2275 mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2276
2277 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2278 }
2279
mlx5_ib_check_mr_status(struct ib_mr * ibmr,u32 check_mask,struct ib_mr_status * mr_status)2280 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2281 struct ib_mr_status *mr_status)
2282 {
2283 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2284 int ret = 0;
2285
2286 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2287 pr_err("Invalid status check mask\n");
2288 ret = -EINVAL;
2289 goto done;
2290 }
2291
2292 mr_status->fail_status = 0;
2293 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2294 if (!mmr->sig) {
2295 ret = -EINVAL;
2296 pr_err("signature status check requested on a non-signature enabled MR\n");
2297 goto done;
2298 }
2299
2300 mmr->sig->sig_status_checked = true;
2301 if (!mmr->sig->sig_err_exists)
2302 goto done;
2303
2304 if (ibmr->lkey == mmr->sig->err_item.key)
2305 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2306 sizeof(mr_status->sig_err));
2307 else {
2308 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2309 mr_status->sig_err.sig_err_offset = 0;
2310 mr_status->sig_err.key = mmr->sig->err_item.key;
2311 }
2312
2313 mmr->sig->sig_err_exists = false;
2314 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2315 }
2316
2317 done:
2318 return ret;
2319 }
2320
2321 static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2322 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2323 int data_sg_nents, unsigned int *data_sg_offset,
2324 struct scatterlist *meta_sg, int meta_sg_nents,
2325 unsigned int *meta_sg_offset)
2326 {
2327 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2328 unsigned int sg_offset = 0;
2329 int n = 0;
2330
2331 mr->meta_length = 0;
2332 if (data_sg_nents == 1) {
2333 n++;
2334 mr->mmkey.ndescs = 1;
2335 if (data_sg_offset)
2336 sg_offset = *data_sg_offset;
2337 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2338 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2339 if (meta_sg_nents == 1) {
2340 n++;
2341 mr->meta_ndescs = 1;
2342 if (meta_sg_offset)
2343 sg_offset = *meta_sg_offset;
2344 else
2345 sg_offset = 0;
2346 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2347 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2348 }
2349 ibmr->length = mr->data_length + mr->meta_length;
2350 }
2351
2352 return n;
2353 }
2354
2355 static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr * mr,struct scatterlist * sgl,unsigned short sg_nents,unsigned int * sg_offset_p,struct scatterlist * meta_sgl,unsigned short meta_sg_nents,unsigned int * meta_sg_offset_p)2356 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2357 struct scatterlist *sgl,
2358 unsigned short sg_nents,
2359 unsigned int *sg_offset_p,
2360 struct scatterlist *meta_sgl,
2361 unsigned short meta_sg_nents,
2362 unsigned int *meta_sg_offset_p)
2363 {
2364 struct scatterlist *sg = sgl;
2365 struct mlx5_klm *klms = mr->descs;
2366 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2367 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2368 int i, j = 0;
2369
2370 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2371 mr->ibmr.length = 0;
2372
2373 for_each_sg(sgl, sg, sg_nents, i) {
2374 if (unlikely(i >= mr->max_descs))
2375 break;
2376 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2377 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2378 klms[i].key = cpu_to_be32(lkey);
2379 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2380
2381 sg_offset = 0;
2382 }
2383
2384 if (sg_offset_p)
2385 *sg_offset_p = sg_offset;
2386
2387 mr->mmkey.ndescs = i;
2388 mr->data_length = mr->ibmr.length;
2389
2390 if (meta_sg_nents) {
2391 sg = meta_sgl;
2392 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2393 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2394 if (unlikely(i + j >= mr->max_descs))
2395 break;
2396 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2397 sg_offset);
2398 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2399 sg_offset);
2400 klms[i + j].key = cpu_to_be32(lkey);
2401 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2402
2403 sg_offset = 0;
2404 }
2405 if (meta_sg_offset_p)
2406 *meta_sg_offset_p = sg_offset;
2407
2408 mr->meta_ndescs = j;
2409 mr->meta_length = mr->ibmr.length - mr->data_length;
2410 }
2411
2412 return i + j;
2413 }
2414
mlx5_set_page(struct ib_mr * ibmr,u64 addr)2415 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2416 {
2417 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2418 __be64 *descs;
2419
2420 if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2421 return -ENOMEM;
2422
2423 descs = mr->descs;
2424 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2425
2426 return 0;
2427 }
2428
mlx5_set_page_pi(struct ib_mr * ibmr,u64 addr)2429 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2430 {
2431 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2432 __be64 *descs;
2433
2434 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2435 return -ENOMEM;
2436
2437 descs = mr->descs;
2438 descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2439 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2440
2441 return 0;
2442 }
2443
2444 static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2445 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2446 int data_sg_nents, unsigned int *data_sg_offset,
2447 struct scatterlist *meta_sg, int meta_sg_nents,
2448 unsigned int *meta_sg_offset)
2449 {
2450 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2451 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2452 int n;
2453
2454 pi_mr->mmkey.ndescs = 0;
2455 pi_mr->meta_ndescs = 0;
2456 pi_mr->meta_length = 0;
2457
2458 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2459 pi_mr->desc_size * pi_mr->max_descs,
2460 DMA_TO_DEVICE);
2461
2462 pi_mr->ibmr.page_size = ibmr->page_size;
2463 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2464 mlx5_set_page);
2465 if (n != data_sg_nents)
2466 return n;
2467
2468 pi_mr->data_iova = pi_mr->ibmr.iova;
2469 pi_mr->data_length = pi_mr->ibmr.length;
2470 pi_mr->ibmr.length = pi_mr->data_length;
2471 ibmr->length = pi_mr->data_length;
2472
2473 if (meta_sg_nents) {
2474 u64 page_mask = ~((u64)ibmr->page_size - 1);
2475 u64 iova = pi_mr->data_iova;
2476
2477 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2478 meta_sg_offset, mlx5_set_page_pi);
2479
2480 pi_mr->meta_length = pi_mr->ibmr.length;
2481 /*
2482 * PI address for the HW is the offset of the metadata address
2483 * relative to the first data page address.
2484 * It equals to first data page address + size of data pages +
2485 * metadata offset at the first metadata page
2486 */
2487 pi_mr->pi_iova = (iova & page_mask) +
2488 pi_mr->mmkey.ndescs * ibmr->page_size +
2489 (pi_mr->ibmr.iova & ~page_mask);
2490 /*
2491 * In order to use one MTT MR for data and metadata, we register
2492 * also the gaps between the end of the data and the start of
2493 * the metadata (the sig MR will verify that the HW will access
2494 * to right addresses). This mapping is safe because we use
2495 * internal mkey for the registration.
2496 */
2497 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2498 pi_mr->ibmr.iova = iova;
2499 ibmr->length += pi_mr->meta_length;
2500 }
2501
2502 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2503 pi_mr->desc_size * pi_mr->max_descs,
2504 DMA_TO_DEVICE);
2505
2506 return n;
2507 }
2508
2509 static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2510 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2511 int data_sg_nents, unsigned int *data_sg_offset,
2512 struct scatterlist *meta_sg, int meta_sg_nents,
2513 unsigned int *meta_sg_offset)
2514 {
2515 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2516 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2517 int n;
2518
2519 pi_mr->mmkey.ndescs = 0;
2520 pi_mr->meta_ndescs = 0;
2521 pi_mr->meta_length = 0;
2522
2523 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2524 pi_mr->desc_size * pi_mr->max_descs,
2525 DMA_TO_DEVICE);
2526
2527 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2528 meta_sg, meta_sg_nents, meta_sg_offset);
2529
2530 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2531 pi_mr->desc_size * pi_mr->max_descs,
2532 DMA_TO_DEVICE);
2533
2534 /* This is zero-based memory region */
2535 pi_mr->data_iova = 0;
2536 pi_mr->ibmr.iova = 0;
2537 pi_mr->pi_iova = pi_mr->data_length;
2538 ibmr->length = pi_mr->ibmr.length;
2539
2540 return n;
2541 }
2542
mlx5_ib_map_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2543 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2544 int data_sg_nents, unsigned int *data_sg_offset,
2545 struct scatterlist *meta_sg, int meta_sg_nents,
2546 unsigned int *meta_sg_offset)
2547 {
2548 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2549 struct mlx5_ib_mr *pi_mr = NULL;
2550 int n;
2551
2552 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2553
2554 mr->mmkey.ndescs = 0;
2555 mr->data_length = 0;
2556 mr->data_iova = 0;
2557 mr->meta_ndescs = 0;
2558 mr->pi_iova = 0;
2559 /*
2560 * As a performance optimization, if possible, there is no need to
2561 * perform UMR operation to register the data/metadata buffers.
2562 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2563 * Fallback to UMR only in case of a failure.
2564 */
2565 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2566 data_sg_offset, meta_sg, meta_sg_nents,
2567 meta_sg_offset);
2568 if (n == data_sg_nents + meta_sg_nents)
2569 goto out;
2570 /*
2571 * As a performance optimization, if possible, there is no need to map
2572 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2573 * descriptors and fallback to KLM only in case of a failure.
2574 * It's more efficient for the HW to work with MTT descriptors
2575 * (especially in high load).
2576 * Use KLM (indirect access) only if it's mandatory.
2577 */
2578 pi_mr = mr->mtt_mr;
2579 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2580 data_sg_offset, meta_sg, meta_sg_nents,
2581 meta_sg_offset);
2582 if (n == data_sg_nents + meta_sg_nents)
2583 goto out;
2584
2585 pi_mr = mr->klm_mr;
2586 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2587 data_sg_offset, meta_sg, meta_sg_nents,
2588 meta_sg_offset);
2589 if (unlikely(n != data_sg_nents + meta_sg_nents))
2590 return -ENOMEM;
2591
2592 out:
2593 /* This is zero-based memory region */
2594 ibmr->iova = 0;
2595 mr->pi_mr = pi_mr;
2596 if (pi_mr)
2597 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2598 else
2599 ibmr->sig_attrs->meta_length = mr->meta_length;
2600
2601 return 0;
2602 }
2603
mlx5_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)2604 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2605 unsigned int *sg_offset)
2606 {
2607 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2608 int n;
2609
2610 mr->mmkey.ndescs = 0;
2611
2612 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2613 mr->desc_size * mr->max_descs,
2614 DMA_TO_DEVICE);
2615
2616 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2617 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2618 NULL);
2619 else
2620 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2621 mlx5_set_page);
2622
2623 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2624 mr->desc_size * mr->max_descs,
2625 DMA_TO_DEVICE);
2626
2627 return n;
2628 }
2629