1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * In-Memory Collection (IMC) Performance Monitor counter support.
4 *
5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6 * (C) 2017 Anju T Sudhakar, IBM Corporation.
7 * (C) 2017 Hemant K Shaw, IBM Corporation.
8 */
9 #include <linux/of.h>
10 #include <linux/perf_event.h>
11 #include <linux/slab.h>
12 #include <asm/opal.h>
13 #include <asm/imc-pmu.h>
14 #include <asm/cputhreads.h>
15 #include <asm/smp.h>
16 #include <linux/string.h>
17 #include <linux/spinlock.h>
18
19 /* Nest IMC data structures and variables */
20
21 /*
22 * Used to avoid races in counting the nest-pmu units during hotplug
23 * register and unregister
24 */
25 static DEFINE_MUTEX(nest_init_lock);
26 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
27 static struct imc_pmu **per_nest_pmu_arr;
28 static cpumask_t nest_imc_cpumask;
29 static struct imc_pmu_ref *nest_imc_refc;
30 static int nest_pmus;
31
32 /* Core IMC data structures and variables */
33
34 static cpumask_t core_imc_cpumask;
35 static struct imc_pmu_ref *core_imc_refc;
36 static struct imc_pmu *core_imc_pmu;
37
38 /* Thread IMC data structures and variables */
39
40 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
41 static struct imc_pmu *thread_imc_pmu;
42 static int thread_imc_mem_size;
43
44 /* Trace IMC data structures */
45 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
46 static struct imc_pmu_ref *trace_imc_refc;
47 static int trace_imc_mem_size;
48
49 /*
50 * Global data structure used to avoid races between thread,
51 * core and trace-imc
52 */
53 static struct imc_pmu_ref imc_global_refc = {
54 .lock = __SPIN_LOCK_INITIALIZER(imc_global_refc.lock),
55 .id = 0,
56 .refc = 0,
57 };
58
imc_event_to_pmu(struct perf_event * event)59 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
60 {
61 return container_of(event->pmu, struct imc_pmu, pmu);
62 }
63
64 PMU_FORMAT_ATTR(event, "config:0-61");
65 PMU_FORMAT_ATTR(offset, "config:0-31");
66 PMU_FORMAT_ATTR(rvalue, "config:32");
67 PMU_FORMAT_ATTR(mode, "config:33-40");
68 static struct attribute *imc_format_attrs[] = {
69 &format_attr_event.attr,
70 &format_attr_offset.attr,
71 &format_attr_rvalue.attr,
72 &format_attr_mode.attr,
73 NULL,
74 };
75
76 static const struct attribute_group imc_format_group = {
77 .name = "format",
78 .attrs = imc_format_attrs,
79 };
80
81 /* Format attribute for imc trace-mode */
82 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
83 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
84 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
85 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
86 static struct attribute *trace_imc_format_attrs[] = {
87 &format_attr_event.attr,
88 &format_attr_cpmc_reserved.attr,
89 &format_attr_cpmc_event.attr,
90 &format_attr_cpmc_samplesel.attr,
91 &format_attr_cpmc_load.attr,
92 NULL,
93 };
94
95 static const struct attribute_group trace_imc_format_group = {
96 .name = "format",
97 .attrs = trace_imc_format_attrs,
98 };
99
100 /* Get the cpumask printed to a buffer "buf" */
imc_pmu_cpumask_get_attr(struct device * dev,struct device_attribute * attr,char * buf)101 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
102 struct device_attribute *attr,
103 char *buf)
104 {
105 struct pmu *pmu = dev_get_drvdata(dev);
106 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
107 cpumask_t *active_mask;
108
109 switch(imc_pmu->domain){
110 case IMC_DOMAIN_NEST:
111 active_mask = &nest_imc_cpumask;
112 break;
113 case IMC_DOMAIN_CORE:
114 active_mask = &core_imc_cpumask;
115 break;
116 default:
117 return 0;
118 }
119
120 return cpumap_print_to_pagebuf(true, buf, active_mask);
121 }
122
123 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
124
125 static struct attribute *imc_pmu_cpumask_attrs[] = {
126 &dev_attr_cpumask.attr,
127 NULL,
128 };
129
130 static const struct attribute_group imc_pmu_cpumask_attr_group = {
131 .attrs = imc_pmu_cpumask_attrs,
132 };
133
134 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
device_str_attr_create(const char * name,const char * str)135 static struct attribute *device_str_attr_create(const char *name, const char *str)
136 {
137 struct perf_pmu_events_attr *attr;
138
139 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
140 if (!attr)
141 return NULL;
142 sysfs_attr_init(&attr->attr.attr);
143
144 attr->event_str = str;
145 attr->attr.attr.name = name;
146 attr->attr.attr.mode = 0444;
147 attr->attr.show = perf_event_sysfs_show;
148
149 return &attr->attr.attr;
150 }
151
imc_parse_event(struct device_node * np,const char * scale,const char * unit,const char * prefix,u32 base,struct imc_events * event)152 static int imc_parse_event(struct device_node *np, const char *scale,
153 const char *unit, const char *prefix,
154 u32 base, struct imc_events *event)
155 {
156 const char *s;
157 u32 reg;
158
159 if (of_property_read_u32(np, "reg", ®))
160 goto error;
161 /* Add the base_reg value to the "reg" */
162 event->value = base + reg;
163
164 if (of_property_read_string(np, "event-name", &s))
165 goto error;
166
167 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
168 if (!event->name)
169 goto error;
170
171 if (of_property_read_string(np, "scale", &s))
172 s = scale;
173
174 if (s) {
175 event->scale = kstrdup(s, GFP_KERNEL);
176 if (!event->scale)
177 goto error;
178 }
179
180 if (of_property_read_string(np, "unit", &s))
181 s = unit;
182
183 if (s) {
184 event->unit = kstrdup(s, GFP_KERNEL);
185 if (!event->unit)
186 goto error;
187 }
188
189 return 0;
190 error:
191 kfree(event->unit);
192 kfree(event->scale);
193 kfree(event->name);
194 return -EINVAL;
195 }
196
197 /*
198 * imc_free_events: Function to cleanup the events list, having
199 * "nr_entries".
200 */
imc_free_events(struct imc_events * events,int nr_entries)201 static void imc_free_events(struct imc_events *events, int nr_entries)
202 {
203 int i;
204
205 /* Nothing to clean, return */
206 if (!events)
207 return;
208 for (i = 0; i < nr_entries; i++) {
209 kfree(events[i].unit);
210 kfree(events[i].scale);
211 kfree(events[i].name);
212 }
213
214 kfree(events);
215 }
216
217 /*
218 * update_events_in_group: Update the "events" information in an attr_group
219 * and assign the attr_group to the pmu "pmu".
220 */
update_events_in_group(struct device_node * node,struct imc_pmu * pmu)221 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
222 {
223 struct attribute_group *attr_group;
224 struct attribute **attrs, *dev_str;
225 struct device_node *np, *pmu_events;
226 u32 handle, base_reg;
227 int i = 0, j = 0, ct, ret;
228 const char *prefix, *g_scale, *g_unit;
229 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
230
231 if (!of_property_read_u32(node, "events", &handle))
232 pmu_events = of_find_node_by_phandle(handle);
233 else
234 return 0;
235
236 /* Did not find any node with a given phandle */
237 if (!pmu_events)
238 return 0;
239
240 /* Get a count of number of child nodes */
241 ct = of_get_child_count(pmu_events);
242
243 /* Get the event prefix */
244 if (of_property_read_string(node, "events-prefix", &prefix)) {
245 of_node_put(pmu_events);
246 return 0;
247 }
248
249 /* Get a global unit and scale data if available */
250 if (of_property_read_string(node, "scale", &g_scale))
251 g_scale = NULL;
252
253 if (of_property_read_string(node, "unit", &g_unit))
254 g_unit = NULL;
255
256 /* "reg" property gives out the base offset of the counters data */
257 of_property_read_u32(node, "reg", &base_reg);
258
259 /* Allocate memory for the events */
260 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
261 if (!pmu->events) {
262 of_node_put(pmu_events);
263 return -ENOMEM;
264 }
265
266 ct = 0;
267 /* Parse the events and update the struct */
268 for_each_child_of_node(pmu_events, np) {
269 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
270 if (!ret)
271 ct++;
272 }
273
274 of_node_put(pmu_events);
275
276 /* Allocate memory for attribute group */
277 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
278 if (!attr_group) {
279 imc_free_events(pmu->events, ct);
280 return -ENOMEM;
281 }
282
283 /*
284 * Allocate memory for attributes.
285 * Since we have count of events for this pmu, we also allocate
286 * memory for the scale and unit attribute for now.
287 * "ct" has the total event structs added from the events-parent node.
288 * So allocate three times the "ct" (this includes event, event_scale and
289 * event_unit).
290 */
291 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
292 if (!attrs) {
293 kfree(attr_group);
294 imc_free_events(pmu->events, ct);
295 return -ENOMEM;
296 }
297
298 attr_group->name = "events";
299 attr_group->attrs = attrs;
300 do {
301 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
302 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
303 if (!dev_str)
304 continue;
305
306 attrs[j++] = dev_str;
307 if (pmu->events[i].scale) {
308 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
309 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
310 if (!dev_str)
311 continue;
312
313 attrs[j++] = dev_str;
314 }
315
316 if (pmu->events[i].unit) {
317 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
318 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
319 if (!dev_str)
320 continue;
321
322 attrs[j++] = dev_str;
323 }
324 } while (++i < ct);
325
326 /* Save the event attribute */
327 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
328
329 return 0;
330 }
331
332 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
get_nest_pmu_ref(int cpu)333 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
334 {
335 return per_cpu(local_nest_imc_refc, cpu);
336 }
337
nest_change_cpu_context(int old_cpu,int new_cpu)338 static void nest_change_cpu_context(int old_cpu, int new_cpu)
339 {
340 struct imc_pmu **pn = per_nest_pmu_arr;
341
342 if (old_cpu < 0 || new_cpu < 0)
343 return;
344
345 while (*pn) {
346 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
347 pn++;
348 }
349 }
350
ppc_nest_imc_cpu_offline(unsigned int cpu)351 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
352 {
353 int nid, target = -1;
354 const struct cpumask *l_cpumask;
355 struct imc_pmu_ref *ref;
356
357 /*
358 * Check in the designated list for this cpu. Dont bother
359 * if not one of them.
360 */
361 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
362 return 0;
363
364 /*
365 * Check whether nest_imc is registered. We could end up here if the
366 * cpuhotplug callback registration fails. i.e, callback invokes the
367 * offline path for all successfully registered nodes. At this stage,
368 * nest_imc pmu will not be registered and we should return here.
369 *
370 * We return with a zero since this is not an offline failure. And
371 * cpuhp_setup_state() returns the actual failure reason to the caller,
372 * which in turn will call the cleanup routine.
373 */
374 if (!nest_pmus)
375 return 0;
376
377 /*
378 * Now that this cpu is one of the designated,
379 * find a next cpu a) which is online and b) in same chip.
380 */
381 nid = cpu_to_node(cpu);
382 l_cpumask = cpumask_of_node(nid);
383 target = cpumask_last(l_cpumask);
384
385 /*
386 * If this(target) is the last cpu in the cpumask for this chip,
387 * check for any possible online cpu in the chip.
388 */
389 if (unlikely(target == cpu))
390 target = cpumask_any_but(l_cpumask, cpu);
391
392 /*
393 * Update the cpumask with the target cpu and
394 * migrate the context if needed
395 */
396 if (target >= 0 && target < nr_cpu_ids) {
397 cpumask_set_cpu(target, &nest_imc_cpumask);
398 nest_change_cpu_context(cpu, target);
399 } else {
400 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
401 get_hard_smp_processor_id(cpu));
402 /*
403 * If this is the last cpu in this chip then, skip the reference
404 * count lock and make the reference count on this chip zero.
405 */
406 ref = get_nest_pmu_ref(cpu);
407 if (!ref)
408 return -EINVAL;
409
410 ref->refc = 0;
411 }
412 return 0;
413 }
414
ppc_nest_imc_cpu_online(unsigned int cpu)415 static int ppc_nest_imc_cpu_online(unsigned int cpu)
416 {
417 const struct cpumask *l_cpumask;
418 static struct cpumask tmp_mask;
419 int res;
420
421 /* Get the cpumask of this node */
422 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
423
424 /*
425 * If this is not the first online CPU on this node, then
426 * just return.
427 */
428 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
429 return 0;
430
431 /*
432 * If this is the first online cpu on this node
433 * disable the nest counters by making an OPAL call.
434 */
435 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
436 get_hard_smp_processor_id(cpu));
437 if (res)
438 return res;
439
440 /* Make this CPU the designated target for counter collection */
441 cpumask_set_cpu(cpu, &nest_imc_cpumask);
442 return 0;
443 }
444
nest_pmu_cpumask_init(void)445 static int nest_pmu_cpumask_init(void)
446 {
447 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
448 "perf/powerpc/imc:online",
449 ppc_nest_imc_cpu_online,
450 ppc_nest_imc_cpu_offline);
451 }
452
nest_imc_counters_release(struct perf_event * event)453 static void nest_imc_counters_release(struct perf_event *event)
454 {
455 int rc, node_id;
456 struct imc_pmu_ref *ref;
457
458 if (event->cpu < 0)
459 return;
460
461 node_id = cpu_to_node(event->cpu);
462
463 /*
464 * See if we need to disable the nest PMU.
465 * If no events are currently in use, then we have to take a
466 * lock to ensure that we don't race with another task doing
467 * enable or disable the nest counters.
468 */
469 ref = get_nest_pmu_ref(event->cpu);
470 if (!ref)
471 return;
472
473 /* Take the lock for this node and then decrement the reference count */
474 spin_lock(&ref->lock);
475 if (ref->refc == 0) {
476 /*
477 * The scenario where this is true is, when perf session is
478 * started, followed by offlining of all cpus in a given node.
479 *
480 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
481 * function set the ref->count to zero, if the cpu which is
482 * about to offline is the last cpu in a given node and make
483 * an OPAL call to disable the engine in that node.
484 *
485 */
486 spin_unlock(&ref->lock);
487 return;
488 }
489 ref->refc--;
490 if (ref->refc == 0) {
491 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
492 get_hard_smp_processor_id(event->cpu));
493 if (rc) {
494 spin_unlock(&ref->lock);
495 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
496 return;
497 }
498 } else if (ref->refc < 0) {
499 WARN(1, "nest-imc: Invalid event reference count\n");
500 ref->refc = 0;
501 }
502 spin_unlock(&ref->lock);
503 }
504
nest_imc_event_init(struct perf_event * event)505 static int nest_imc_event_init(struct perf_event *event)
506 {
507 int chip_id, rc, node_id;
508 u32 l_config, config = event->attr.config;
509 struct imc_mem_info *pcni;
510 struct imc_pmu *pmu;
511 struct imc_pmu_ref *ref;
512 bool flag = false;
513
514 if (event->attr.type != event->pmu->type)
515 return -ENOENT;
516
517 /* Sampling not supported */
518 if (event->hw.sample_period)
519 return -EINVAL;
520
521 if (event->cpu < 0)
522 return -EINVAL;
523
524 pmu = imc_event_to_pmu(event);
525
526 /* Sanity check for config (event offset) */
527 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
528 return -EINVAL;
529
530 /*
531 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
532 * Get the base memory address for this cpu.
533 */
534 chip_id = cpu_to_chip_id(event->cpu);
535
536 /* Return, if chip_id is not valid */
537 if (chip_id < 0)
538 return -ENODEV;
539
540 pcni = pmu->mem_info;
541 do {
542 if (pcni->id == chip_id) {
543 flag = true;
544 break;
545 }
546 pcni++;
547 } while (pcni->vbase != 0);
548
549 if (!flag)
550 return -ENODEV;
551
552 /*
553 * Add the event offset to the base address.
554 */
555 l_config = config & IMC_EVENT_OFFSET_MASK;
556 event->hw.event_base = (u64)pcni->vbase + l_config;
557 node_id = cpu_to_node(event->cpu);
558
559 /*
560 * Get the imc_pmu_ref struct for this node.
561 * Take the lock and then increment the count of nest pmu events inited.
562 */
563 ref = get_nest_pmu_ref(event->cpu);
564 if (!ref)
565 return -EINVAL;
566
567 spin_lock(&ref->lock);
568 if (ref->refc == 0) {
569 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
570 get_hard_smp_processor_id(event->cpu));
571 if (rc) {
572 spin_unlock(&ref->lock);
573 pr_err("nest-imc: Unable to start the counters for node %d\n",
574 node_id);
575 return rc;
576 }
577 }
578 ++ref->refc;
579 spin_unlock(&ref->lock);
580
581 event->destroy = nest_imc_counters_release;
582 return 0;
583 }
584
585 /*
586 * core_imc_mem_init : Initializes memory for the current core.
587 *
588 * Uses alloc_pages_node() and uses the returned address as an argument to
589 * an opal call to configure the pdbar. The address sent as an argument is
590 * converted to physical address before the opal call is made. This is the
591 * base address at which the core imc counters are populated.
592 */
core_imc_mem_init(int cpu,int size)593 static int core_imc_mem_init(int cpu, int size)
594 {
595 int nid, rc = 0, core_id = (cpu / threads_per_core);
596 struct imc_mem_info *mem_info;
597 struct page *page;
598
599 /*
600 * alloc_pages_node() will allocate memory for core in the
601 * local node only.
602 */
603 nid = cpu_to_node(cpu);
604 mem_info = &core_imc_pmu->mem_info[core_id];
605 mem_info->id = core_id;
606
607 /* We need only vbase for core counters */
608 page = alloc_pages_node(nid,
609 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
610 __GFP_NOWARN, get_order(size));
611 if (!page)
612 return -ENOMEM;
613 mem_info->vbase = page_address(page);
614
615 core_imc_refc[core_id].id = core_id;
616 spin_lock_init(&core_imc_refc[core_id].lock);
617
618 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
619 __pa((void *)mem_info->vbase),
620 get_hard_smp_processor_id(cpu));
621 if (rc) {
622 free_pages((u64)mem_info->vbase, get_order(size));
623 mem_info->vbase = NULL;
624 }
625
626 return rc;
627 }
628
is_core_imc_mem_inited(int cpu)629 static bool is_core_imc_mem_inited(int cpu)
630 {
631 struct imc_mem_info *mem_info;
632 int core_id = (cpu / threads_per_core);
633
634 mem_info = &core_imc_pmu->mem_info[core_id];
635 if (!mem_info->vbase)
636 return false;
637
638 return true;
639 }
640
ppc_core_imc_cpu_online(unsigned int cpu)641 static int ppc_core_imc_cpu_online(unsigned int cpu)
642 {
643 const struct cpumask *l_cpumask;
644 static struct cpumask tmp_mask;
645 int ret = 0;
646
647 /* Get the cpumask for this core */
648 l_cpumask = cpu_sibling_mask(cpu);
649
650 /* If a cpu for this core is already set, then, don't do anything */
651 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
652 return 0;
653
654 if (!is_core_imc_mem_inited(cpu)) {
655 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
656 if (ret) {
657 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
658 return ret;
659 }
660 }
661
662 /* set the cpu in the mask */
663 cpumask_set_cpu(cpu, &core_imc_cpumask);
664 return 0;
665 }
666
ppc_core_imc_cpu_offline(unsigned int cpu)667 static int ppc_core_imc_cpu_offline(unsigned int cpu)
668 {
669 unsigned int core_id;
670 int ncpu;
671 struct imc_pmu_ref *ref;
672
673 /*
674 * clear this cpu out of the mask, if not present in the mask,
675 * don't bother doing anything.
676 */
677 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
678 return 0;
679
680 /*
681 * Check whether core_imc is registered. We could end up here
682 * if the cpuhotplug callback registration fails. i.e, callback
683 * invokes the offline path for all successfully registered cpus.
684 * At this stage, core_imc pmu will not be registered and we
685 * should return here.
686 *
687 * We return with a zero since this is not an offline failure.
688 * And cpuhp_setup_state() returns the actual failure reason
689 * to the caller, which inturn will call the cleanup routine.
690 */
691 if (!core_imc_pmu->pmu.event_init)
692 return 0;
693
694 /* Find any online cpu in that core except the current "cpu" */
695 ncpu = cpumask_last(cpu_sibling_mask(cpu));
696
697 if (unlikely(ncpu == cpu))
698 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
699
700 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
701 cpumask_set_cpu(ncpu, &core_imc_cpumask);
702 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
703 } else {
704 /*
705 * If this is the last cpu in this core then skip taking reference
706 * count lock for this core and directly zero "refc" for this core.
707 */
708 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
709 get_hard_smp_processor_id(cpu));
710 core_id = cpu / threads_per_core;
711 ref = &core_imc_refc[core_id];
712 if (!ref)
713 return -EINVAL;
714
715 ref->refc = 0;
716 /*
717 * Reduce the global reference count, if this is the
718 * last cpu in this core and core-imc event running
719 * in this cpu.
720 */
721 spin_lock(&imc_global_refc.lock);
722 if (imc_global_refc.id == IMC_DOMAIN_CORE)
723 imc_global_refc.refc--;
724
725 spin_unlock(&imc_global_refc.lock);
726 }
727 return 0;
728 }
729
core_imc_pmu_cpumask_init(void)730 static int core_imc_pmu_cpumask_init(void)
731 {
732 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
733 "perf/powerpc/imc_core:online",
734 ppc_core_imc_cpu_online,
735 ppc_core_imc_cpu_offline);
736 }
737
reset_global_refc(struct perf_event * event)738 static void reset_global_refc(struct perf_event *event)
739 {
740 spin_lock(&imc_global_refc.lock);
741 imc_global_refc.refc--;
742
743 /*
744 * If no other thread is running any
745 * event for this domain(thread/core/trace),
746 * set the global id to zero.
747 */
748 if (imc_global_refc.refc <= 0) {
749 imc_global_refc.refc = 0;
750 imc_global_refc.id = 0;
751 }
752 spin_unlock(&imc_global_refc.lock);
753 }
754
core_imc_counters_release(struct perf_event * event)755 static void core_imc_counters_release(struct perf_event *event)
756 {
757 int rc, core_id;
758 struct imc_pmu_ref *ref;
759
760 if (event->cpu < 0)
761 return;
762 /*
763 * See if we need to disable the IMC PMU.
764 * If no events are currently in use, then we have to take a
765 * lock to ensure that we don't race with another task doing
766 * enable or disable the core counters.
767 */
768 core_id = event->cpu / threads_per_core;
769
770 /* Take the lock and decrement the refernce count for this core */
771 ref = &core_imc_refc[core_id];
772 if (!ref)
773 return;
774
775 spin_lock(&ref->lock);
776 if (ref->refc == 0) {
777 /*
778 * The scenario where this is true is, when perf session is
779 * started, followed by offlining of all cpus in a given core.
780 *
781 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
782 * function set the ref->count to zero, if the cpu which is
783 * about to offline is the last cpu in a given core and make
784 * an OPAL call to disable the engine in that core.
785 *
786 */
787 spin_unlock(&ref->lock);
788 return;
789 }
790 ref->refc--;
791 if (ref->refc == 0) {
792 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
793 get_hard_smp_processor_id(event->cpu));
794 if (rc) {
795 spin_unlock(&ref->lock);
796 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
797 return;
798 }
799 } else if (ref->refc < 0) {
800 WARN(1, "core-imc: Invalid event reference count\n");
801 ref->refc = 0;
802 }
803 spin_unlock(&ref->lock);
804
805 reset_global_refc(event);
806 }
807
core_imc_event_init(struct perf_event * event)808 static int core_imc_event_init(struct perf_event *event)
809 {
810 int core_id, rc;
811 u64 config = event->attr.config;
812 struct imc_mem_info *pcmi;
813 struct imc_pmu *pmu;
814 struct imc_pmu_ref *ref;
815
816 if (event->attr.type != event->pmu->type)
817 return -ENOENT;
818
819 /* Sampling not supported */
820 if (event->hw.sample_period)
821 return -EINVAL;
822
823 if (event->cpu < 0)
824 return -EINVAL;
825
826 event->hw.idx = -1;
827 pmu = imc_event_to_pmu(event);
828
829 /* Sanity check for config (event offset) */
830 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
831 return -EINVAL;
832
833 if (!is_core_imc_mem_inited(event->cpu))
834 return -ENODEV;
835
836 core_id = event->cpu / threads_per_core;
837 pcmi = &core_imc_pmu->mem_info[core_id];
838 if ((!pcmi->vbase))
839 return -ENODEV;
840
841 ref = &core_imc_refc[core_id];
842 if (!ref)
843 return -EINVAL;
844
845 /*
846 * Core pmu units are enabled only when it is used.
847 * See if this is triggered for the first time.
848 * If yes, take the lock and enable the core counters.
849 * If not, just increment the count in core_imc_refc struct.
850 */
851 spin_lock(&ref->lock);
852 if (ref->refc == 0) {
853 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
854 get_hard_smp_processor_id(event->cpu));
855 if (rc) {
856 spin_unlock(&ref->lock);
857 pr_err("core-imc: Unable to start the counters for core %d\n",
858 core_id);
859 return rc;
860 }
861 }
862 ++ref->refc;
863 spin_unlock(&ref->lock);
864
865 /*
866 * Since the system can run either in accumulation or trace-mode
867 * of IMC at a time, core-imc events are allowed only if no other
868 * trace/thread imc events are enabled/monitored.
869 *
870 * Take the global lock, and check the refc.id
871 * to know whether any other trace/thread imc
872 * events are running.
873 */
874 spin_lock(&imc_global_refc.lock);
875 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
876 /*
877 * No other trace/thread imc events are running in
878 * the system, so set the refc.id to core-imc.
879 */
880 imc_global_refc.id = IMC_DOMAIN_CORE;
881 imc_global_refc.refc++;
882 } else {
883 spin_unlock(&imc_global_refc.lock);
884 return -EBUSY;
885 }
886 spin_unlock(&imc_global_refc.lock);
887
888 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
889 event->destroy = core_imc_counters_release;
890 return 0;
891 }
892
893 /*
894 * Allocates a page of memory for each of the online cpus, and load
895 * LDBAR with 0.
896 * The physical base address of the page allocated for a cpu will be
897 * written to the LDBAR for that cpu, when the thread-imc event
898 * is added.
899 *
900 * LDBAR Register Layout:
901 *
902 * 0 4 8 12 16 20 24 28
903 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
904 * | | [ ] [ Counter Address [8:50]
905 * | * Mode |
906 * | * PB Scope
907 * * Enable/Disable
908 *
909 * 32 36 40 44 48 52 56 60
910 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
911 * Counter Address [8:50] ]
912 *
913 */
thread_imc_mem_alloc(int cpu_id,int size)914 static int thread_imc_mem_alloc(int cpu_id, int size)
915 {
916 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
917 int nid = cpu_to_node(cpu_id);
918
919 if (!local_mem) {
920 struct page *page;
921 /*
922 * This case could happen only once at start, since we dont
923 * free the memory in cpu offline path.
924 */
925 page = alloc_pages_node(nid,
926 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
927 __GFP_NOWARN, get_order(size));
928 if (!page)
929 return -ENOMEM;
930 local_mem = page_address(page);
931
932 per_cpu(thread_imc_mem, cpu_id) = local_mem;
933 }
934
935 mtspr(SPRN_LDBAR, 0);
936 return 0;
937 }
938
ppc_thread_imc_cpu_online(unsigned int cpu)939 static int ppc_thread_imc_cpu_online(unsigned int cpu)
940 {
941 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
942 }
943
ppc_thread_imc_cpu_offline(unsigned int cpu)944 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
945 {
946 /*
947 * Set the bit 0 of LDBAR to zero.
948 *
949 * If bit 0 of LDBAR is unset, it will stop posting
950 * the counter data to memory.
951 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
952 * event_add function. So reset this bit here, to stop the updates
953 * to memory in the cpu_offline path.
954 */
955 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
956
957 /* Reduce the refc if thread-imc event running on this cpu */
958 spin_lock(&imc_global_refc.lock);
959 if (imc_global_refc.id == IMC_DOMAIN_THREAD)
960 imc_global_refc.refc--;
961 spin_unlock(&imc_global_refc.lock);
962
963 return 0;
964 }
965
thread_imc_cpu_init(void)966 static int thread_imc_cpu_init(void)
967 {
968 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
969 "perf/powerpc/imc_thread:online",
970 ppc_thread_imc_cpu_online,
971 ppc_thread_imc_cpu_offline);
972 }
973
thread_imc_event_init(struct perf_event * event)974 static int thread_imc_event_init(struct perf_event *event)
975 {
976 u32 config = event->attr.config;
977 struct task_struct *target;
978 struct imc_pmu *pmu;
979
980 if (event->attr.type != event->pmu->type)
981 return -ENOENT;
982
983 if (!perfmon_capable())
984 return -EACCES;
985
986 /* Sampling not supported */
987 if (event->hw.sample_period)
988 return -EINVAL;
989
990 event->hw.idx = -1;
991 pmu = imc_event_to_pmu(event);
992
993 /* Sanity check for config offset */
994 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
995 return -EINVAL;
996
997 target = event->hw.target;
998 if (!target)
999 return -EINVAL;
1000
1001 spin_lock(&imc_global_refc.lock);
1002 /*
1003 * Check if any other trace/core imc events are running in the
1004 * system, if not set the global id to thread-imc.
1005 */
1006 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1007 imc_global_refc.id = IMC_DOMAIN_THREAD;
1008 imc_global_refc.refc++;
1009 } else {
1010 spin_unlock(&imc_global_refc.lock);
1011 return -EBUSY;
1012 }
1013 spin_unlock(&imc_global_refc.lock);
1014
1015 event->pmu->task_ctx_nr = perf_sw_context;
1016 event->destroy = reset_global_refc;
1017 return 0;
1018 }
1019
is_thread_imc_pmu(struct perf_event * event)1020 static bool is_thread_imc_pmu(struct perf_event *event)
1021 {
1022 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1023 return true;
1024
1025 return false;
1026 }
1027
get_event_base_addr(struct perf_event * event)1028 static u64 * get_event_base_addr(struct perf_event *event)
1029 {
1030 u64 addr;
1031
1032 if (is_thread_imc_pmu(event)) {
1033 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1034 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1035 }
1036
1037 return (u64 *)event->hw.event_base;
1038 }
1039
thread_imc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1040 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1041 unsigned int txn_flags)
1042 {
1043 if (txn_flags & ~PERF_PMU_TXN_ADD)
1044 return;
1045 perf_pmu_disable(pmu);
1046 }
1047
thread_imc_pmu_cancel_txn(struct pmu * pmu)1048 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1049 {
1050 perf_pmu_enable(pmu);
1051 }
1052
thread_imc_pmu_commit_txn(struct pmu * pmu)1053 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1054 {
1055 perf_pmu_enable(pmu);
1056 return 0;
1057 }
1058
imc_read_counter(struct perf_event * event)1059 static u64 imc_read_counter(struct perf_event *event)
1060 {
1061 u64 *addr, data;
1062
1063 /*
1064 * In-Memory Collection (IMC) counters are free flowing counters.
1065 * So we take a snapshot of the counter value on enable and save it
1066 * to calculate the delta at later stage to present the event counter
1067 * value.
1068 */
1069 addr = get_event_base_addr(event);
1070 data = be64_to_cpu(READ_ONCE(*addr));
1071 local64_set(&event->hw.prev_count, data);
1072
1073 return data;
1074 }
1075
imc_event_update(struct perf_event * event)1076 static void imc_event_update(struct perf_event *event)
1077 {
1078 u64 counter_prev, counter_new, final_count;
1079
1080 counter_prev = local64_read(&event->hw.prev_count);
1081 counter_new = imc_read_counter(event);
1082 final_count = counter_new - counter_prev;
1083
1084 /* Update the delta to the event count */
1085 local64_add(final_count, &event->count);
1086 }
1087
imc_event_start(struct perf_event * event,int flags)1088 static void imc_event_start(struct perf_event *event, int flags)
1089 {
1090 /*
1091 * In Memory Counters are free flowing counters. HW or the microcode
1092 * keeps adding to the counter offset in memory. To get event
1093 * counter value, we snapshot the value here and we calculate
1094 * delta at later point.
1095 */
1096 imc_read_counter(event);
1097 }
1098
imc_event_stop(struct perf_event * event,int flags)1099 static void imc_event_stop(struct perf_event *event, int flags)
1100 {
1101 /*
1102 * Take a snapshot and calculate the delta and update
1103 * the event counter values.
1104 */
1105 imc_event_update(event);
1106 }
1107
imc_event_add(struct perf_event * event,int flags)1108 static int imc_event_add(struct perf_event *event, int flags)
1109 {
1110 if (flags & PERF_EF_START)
1111 imc_event_start(event, flags);
1112
1113 return 0;
1114 }
1115
thread_imc_event_add(struct perf_event * event,int flags)1116 static int thread_imc_event_add(struct perf_event *event, int flags)
1117 {
1118 int core_id;
1119 struct imc_pmu_ref *ref;
1120 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1121
1122 if (flags & PERF_EF_START)
1123 imc_event_start(event, flags);
1124
1125 if (!is_core_imc_mem_inited(smp_processor_id()))
1126 return -EINVAL;
1127
1128 core_id = smp_processor_id() / threads_per_core;
1129 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1130 mtspr(SPRN_LDBAR, ldbar_value);
1131
1132 /*
1133 * imc pmus are enabled only when it is used.
1134 * See if this is triggered for the first time.
1135 * If yes, take the lock and enable the counters.
1136 * If not, just increment the count in ref count struct.
1137 */
1138 ref = &core_imc_refc[core_id];
1139 if (!ref)
1140 return -EINVAL;
1141
1142 spin_lock(&ref->lock);
1143 if (ref->refc == 0) {
1144 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1145 get_hard_smp_processor_id(smp_processor_id()))) {
1146 spin_unlock(&ref->lock);
1147 pr_err("thread-imc: Unable to start the counter\
1148 for core %d\n", core_id);
1149 return -EINVAL;
1150 }
1151 }
1152 ++ref->refc;
1153 spin_unlock(&ref->lock);
1154 return 0;
1155 }
1156
thread_imc_event_del(struct perf_event * event,int flags)1157 static void thread_imc_event_del(struct perf_event *event, int flags)
1158 {
1159
1160 int core_id;
1161 struct imc_pmu_ref *ref;
1162
1163 core_id = smp_processor_id() / threads_per_core;
1164 ref = &core_imc_refc[core_id];
1165 if (!ref) {
1166 pr_debug("imc: Failed to get event reference count\n");
1167 return;
1168 }
1169
1170 spin_lock(&ref->lock);
1171 ref->refc--;
1172 if (ref->refc == 0) {
1173 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1174 get_hard_smp_processor_id(smp_processor_id()))) {
1175 spin_unlock(&ref->lock);
1176 pr_err("thread-imc: Unable to stop the counters\
1177 for core %d\n", core_id);
1178 return;
1179 }
1180 } else if (ref->refc < 0) {
1181 ref->refc = 0;
1182 }
1183 spin_unlock(&ref->lock);
1184
1185 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1186 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1187
1188 /*
1189 * Take a snapshot and calculate the delta and update
1190 * the event counter values.
1191 */
1192 imc_event_update(event);
1193 }
1194
1195 /*
1196 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1197 */
trace_imc_mem_alloc(int cpu_id,int size)1198 static int trace_imc_mem_alloc(int cpu_id, int size)
1199 {
1200 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1201 int phys_id = cpu_to_node(cpu_id), rc = 0;
1202 int core_id = (cpu_id / threads_per_core);
1203
1204 if (!local_mem) {
1205 struct page *page;
1206
1207 page = alloc_pages_node(phys_id,
1208 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1209 __GFP_NOWARN, get_order(size));
1210 if (!page)
1211 return -ENOMEM;
1212 local_mem = page_address(page);
1213 per_cpu(trace_imc_mem, cpu_id) = local_mem;
1214
1215 /* Initialise the counters for trace mode */
1216 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1217 get_hard_smp_processor_id(cpu_id));
1218 if (rc) {
1219 pr_info("IMC:opal init failed for trace imc\n");
1220 return rc;
1221 }
1222 }
1223
1224 trace_imc_refc[core_id].id = core_id;
1225 spin_lock_init(&trace_imc_refc[core_id].lock);
1226
1227 mtspr(SPRN_LDBAR, 0);
1228 return 0;
1229 }
1230
ppc_trace_imc_cpu_online(unsigned int cpu)1231 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1232 {
1233 return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1234 }
1235
ppc_trace_imc_cpu_offline(unsigned int cpu)1236 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1237 {
1238 /*
1239 * No need to set bit 0 of LDBAR to zero, as
1240 * it is set to zero for imc trace-mode
1241 *
1242 * Reduce the refc if any trace-imc event running
1243 * on this cpu.
1244 */
1245 spin_lock(&imc_global_refc.lock);
1246 if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1247 imc_global_refc.refc--;
1248 spin_unlock(&imc_global_refc.lock);
1249
1250 return 0;
1251 }
1252
trace_imc_cpu_init(void)1253 static int trace_imc_cpu_init(void)
1254 {
1255 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1256 "perf/powerpc/imc_trace:online",
1257 ppc_trace_imc_cpu_online,
1258 ppc_trace_imc_cpu_offline);
1259 }
1260
get_trace_imc_event_base_addr(void)1261 static u64 get_trace_imc_event_base_addr(void)
1262 {
1263 return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1264 }
1265
1266 /*
1267 * Function to parse trace-imc data obtained
1268 * and to prepare the perf sample.
1269 */
trace_imc_prepare_sample(struct trace_imc_data * mem,struct perf_sample_data * data,u64 * prev_tb,struct perf_event_header * header,struct perf_event * event)1270 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1271 struct perf_sample_data *data,
1272 u64 *prev_tb,
1273 struct perf_event_header *header,
1274 struct perf_event *event)
1275 {
1276 /* Sanity checks for a valid record */
1277 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1278 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1279 else
1280 return -EINVAL;
1281
1282 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1283 be64_to_cpu(READ_ONCE(mem->tb2)))
1284 return -EINVAL;
1285
1286 /* Prepare perf sample */
1287 data->ip = be64_to_cpu(READ_ONCE(mem->ip));
1288 data->period = event->hw.last_period;
1289
1290 header->type = PERF_RECORD_SAMPLE;
1291 header->size = sizeof(*header) + event->header_size;
1292 header->misc = 0;
1293
1294 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1295 switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1296 case 0:/* when MSR HV and PR not set in the trace-record */
1297 header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1298 break;
1299 case 1: /* MSR HV is 0 and PR is 1 */
1300 header->misc |= PERF_RECORD_MISC_GUEST_USER;
1301 break;
1302 case 2: /* MSR HV is 1 and PR is 0 */
1303 header->misc |= PERF_RECORD_MISC_KERNEL;
1304 break;
1305 case 3: /* MSR HV is 1 and PR is 1 */
1306 header->misc |= PERF_RECORD_MISC_USER;
1307 break;
1308 default:
1309 pr_info("IMC: Unable to set the flag based on MSR bits\n");
1310 break;
1311 }
1312 } else {
1313 if (is_kernel_addr(data->ip))
1314 header->misc |= PERF_RECORD_MISC_KERNEL;
1315 else
1316 header->misc |= PERF_RECORD_MISC_USER;
1317 }
1318 perf_event_header__init_id(header, data, event);
1319
1320 return 0;
1321 }
1322
dump_trace_imc_data(struct perf_event * event)1323 static void dump_trace_imc_data(struct perf_event *event)
1324 {
1325 struct trace_imc_data *mem;
1326 int i, ret;
1327 u64 prev_tb = 0;
1328
1329 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1330 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1331 i++, mem++) {
1332 struct perf_sample_data data;
1333 struct perf_event_header header;
1334
1335 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1336 if (ret) /* Exit, if not a valid record */
1337 break;
1338 else {
1339 /* If this is a valid record, create the sample */
1340 struct perf_output_handle handle;
1341
1342 if (perf_output_begin(&handle, &data, event, header.size))
1343 return;
1344
1345 perf_output_sample(&handle, &header, &data, event);
1346 perf_output_end(&handle);
1347 }
1348 }
1349 }
1350
trace_imc_event_add(struct perf_event * event,int flags)1351 static int trace_imc_event_add(struct perf_event *event, int flags)
1352 {
1353 int core_id = smp_processor_id() / threads_per_core;
1354 struct imc_pmu_ref *ref = NULL;
1355 u64 local_mem, ldbar_value;
1356
1357 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1358 local_mem = get_trace_imc_event_base_addr();
1359 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1360
1361 /* trace-imc reference count */
1362 if (trace_imc_refc)
1363 ref = &trace_imc_refc[core_id];
1364 if (!ref) {
1365 pr_debug("imc: Failed to get the event reference count\n");
1366 return -EINVAL;
1367 }
1368
1369 mtspr(SPRN_LDBAR, ldbar_value);
1370 spin_lock(&ref->lock);
1371 if (ref->refc == 0) {
1372 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1373 get_hard_smp_processor_id(smp_processor_id()))) {
1374 spin_unlock(&ref->lock);
1375 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1376 return -EINVAL;
1377 }
1378 }
1379 ++ref->refc;
1380 spin_unlock(&ref->lock);
1381 return 0;
1382 }
1383
trace_imc_event_read(struct perf_event * event)1384 static void trace_imc_event_read(struct perf_event *event)
1385 {
1386 return;
1387 }
1388
trace_imc_event_stop(struct perf_event * event,int flags)1389 static void trace_imc_event_stop(struct perf_event *event, int flags)
1390 {
1391 u64 local_mem = get_trace_imc_event_base_addr();
1392 dump_trace_imc_data(event);
1393 memset((void *)local_mem, 0, sizeof(u64));
1394 }
1395
trace_imc_event_start(struct perf_event * event,int flags)1396 static void trace_imc_event_start(struct perf_event *event, int flags)
1397 {
1398 return;
1399 }
1400
trace_imc_event_del(struct perf_event * event,int flags)1401 static void trace_imc_event_del(struct perf_event *event, int flags)
1402 {
1403 int core_id = smp_processor_id() / threads_per_core;
1404 struct imc_pmu_ref *ref = NULL;
1405
1406 if (trace_imc_refc)
1407 ref = &trace_imc_refc[core_id];
1408 if (!ref) {
1409 pr_debug("imc: Failed to get event reference count\n");
1410 return;
1411 }
1412
1413 spin_lock(&ref->lock);
1414 ref->refc--;
1415 if (ref->refc == 0) {
1416 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1417 get_hard_smp_processor_id(smp_processor_id()))) {
1418 spin_unlock(&ref->lock);
1419 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1420 return;
1421 }
1422 } else if (ref->refc < 0) {
1423 ref->refc = 0;
1424 }
1425 spin_unlock(&ref->lock);
1426
1427 trace_imc_event_stop(event, flags);
1428 }
1429
trace_imc_event_init(struct perf_event * event)1430 static int trace_imc_event_init(struct perf_event *event)
1431 {
1432 if (event->attr.type != event->pmu->type)
1433 return -ENOENT;
1434
1435 if (!perfmon_capable())
1436 return -EACCES;
1437
1438 /* Return if this is a couting event */
1439 if (event->attr.sample_period == 0)
1440 return -ENOENT;
1441
1442 /*
1443 * Take the global lock, and make sure
1444 * no other thread is running any core/thread imc
1445 * events
1446 */
1447 spin_lock(&imc_global_refc.lock);
1448 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1449 /*
1450 * No core/thread imc events are running in the
1451 * system, so set the refc.id to trace-imc.
1452 */
1453 imc_global_refc.id = IMC_DOMAIN_TRACE;
1454 imc_global_refc.refc++;
1455 } else {
1456 spin_unlock(&imc_global_refc.lock);
1457 return -EBUSY;
1458 }
1459 spin_unlock(&imc_global_refc.lock);
1460
1461 event->hw.idx = -1;
1462
1463 /*
1464 * There can only be a single PMU for perf_hw_context events which is assigned to
1465 * core PMU. Hence use "perf_sw_context" for trace_imc.
1466 */
1467 event->pmu->task_ctx_nr = perf_sw_context;
1468 event->destroy = reset_global_refc;
1469 return 0;
1470 }
1471
1472 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
update_pmu_ops(struct imc_pmu * pmu)1473 static int update_pmu_ops(struct imc_pmu *pmu)
1474 {
1475 pmu->pmu.task_ctx_nr = perf_invalid_context;
1476 pmu->pmu.add = imc_event_add;
1477 pmu->pmu.del = imc_event_stop;
1478 pmu->pmu.start = imc_event_start;
1479 pmu->pmu.stop = imc_event_stop;
1480 pmu->pmu.read = imc_event_update;
1481 pmu->pmu.attr_groups = pmu->attr_groups;
1482 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1483 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1484
1485 switch (pmu->domain) {
1486 case IMC_DOMAIN_NEST:
1487 pmu->pmu.event_init = nest_imc_event_init;
1488 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1489 break;
1490 case IMC_DOMAIN_CORE:
1491 pmu->pmu.event_init = core_imc_event_init;
1492 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1493 break;
1494 case IMC_DOMAIN_THREAD:
1495 pmu->pmu.event_init = thread_imc_event_init;
1496 pmu->pmu.add = thread_imc_event_add;
1497 pmu->pmu.del = thread_imc_event_del;
1498 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1499 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1500 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1501 break;
1502 case IMC_DOMAIN_TRACE:
1503 pmu->pmu.event_init = trace_imc_event_init;
1504 pmu->pmu.add = trace_imc_event_add;
1505 pmu->pmu.del = trace_imc_event_del;
1506 pmu->pmu.start = trace_imc_event_start;
1507 pmu->pmu.stop = trace_imc_event_stop;
1508 pmu->pmu.read = trace_imc_event_read;
1509 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1510 break;
1511 default:
1512 break;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
init_nest_pmu_ref(void)1519 static int init_nest_pmu_ref(void)
1520 {
1521 int nid, i, cpu;
1522
1523 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1524 GFP_KERNEL);
1525
1526 if (!nest_imc_refc)
1527 return -ENOMEM;
1528
1529 i = 0;
1530 for_each_node(nid) {
1531 /*
1532 * Take the lock to avoid races while tracking the number of
1533 * sessions using the chip's nest pmu units.
1534 */
1535 spin_lock_init(&nest_imc_refc[i].lock);
1536
1537 /*
1538 * Loop to init the "id" with the node_id. Variable "i" initialized to
1539 * 0 and will be used as index to the array. "i" will not go off the
1540 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1541 * nodes only.
1542 */
1543 nest_imc_refc[i++].id = nid;
1544 }
1545
1546 /*
1547 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1548 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1549 */
1550 for_each_possible_cpu(cpu) {
1551 nid = cpu_to_node(cpu);
1552 for (i = 0; i < num_possible_nodes(); i++) {
1553 if (nest_imc_refc[i].id == nid) {
1554 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1555 break;
1556 }
1557 }
1558 }
1559 return 0;
1560 }
1561
cleanup_all_core_imc_memory(void)1562 static void cleanup_all_core_imc_memory(void)
1563 {
1564 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1565 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1566 int size = core_imc_pmu->counter_mem_size;
1567
1568 /* mem_info will never be NULL */
1569 for (i = 0; i < nr_cores; i++) {
1570 if (ptr[i].vbase)
1571 free_pages((u64)ptr[i].vbase, get_order(size));
1572 }
1573
1574 kfree(ptr);
1575 kfree(core_imc_refc);
1576 }
1577
thread_imc_ldbar_disable(void * dummy)1578 static void thread_imc_ldbar_disable(void *dummy)
1579 {
1580 /*
1581 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1582 * updates to memory.
1583 */
1584 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1585 }
1586
thread_imc_disable(void)1587 void thread_imc_disable(void)
1588 {
1589 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1590 }
1591
cleanup_all_thread_imc_memory(void)1592 static void cleanup_all_thread_imc_memory(void)
1593 {
1594 int i, order = get_order(thread_imc_mem_size);
1595
1596 for_each_online_cpu(i) {
1597 if (per_cpu(thread_imc_mem, i))
1598 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1599
1600 }
1601 }
1602
cleanup_all_trace_imc_memory(void)1603 static void cleanup_all_trace_imc_memory(void)
1604 {
1605 int i, order = get_order(trace_imc_mem_size);
1606
1607 for_each_online_cpu(i) {
1608 if (per_cpu(trace_imc_mem, i))
1609 free_pages((u64)per_cpu(trace_imc_mem, i), order);
1610
1611 }
1612 kfree(trace_imc_refc);
1613 }
1614
1615 /* Function to free the attr_groups which are dynamically allocated */
imc_common_mem_free(struct imc_pmu * pmu_ptr)1616 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1617 {
1618 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1619 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1620 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1621 }
1622
1623 /*
1624 * Common function to unregister cpu hotplug callback and
1625 * free the memory.
1626 * TODO: Need to handle pmu unregistering, which will be
1627 * done in followup series.
1628 */
imc_common_cpuhp_mem_free(struct imc_pmu * pmu_ptr)1629 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1630 {
1631 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1632 mutex_lock(&nest_init_lock);
1633 if (nest_pmus == 1) {
1634 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1635 kfree(nest_imc_refc);
1636 kfree(per_nest_pmu_arr);
1637 per_nest_pmu_arr = NULL;
1638 }
1639
1640 if (nest_pmus > 0)
1641 nest_pmus--;
1642 mutex_unlock(&nest_init_lock);
1643 }
1644
1645 /* Free core_imc memory */
1646 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1647 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1648 cleanup_all_core_imc_memory();
1649 }
1650
1651 /* Free thread_imc memory */
1652 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1653 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1654 cleanup_all_thread_imc_memory();
1655 }
1656
1657 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1658 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1659 cleanup_all_trace_imc_memory();
1660 }
1661 }
1662
1663 /*
1664 * Function to unregister thread-imc if core-imc
1665 * is not registered.
1666 */
unregister_thread_imc(void)1667 void unregister_thread_imc(void)
1668 {
1669 imc_common_cpuhp_mem_free(thread_imc_pmu);
1670 imc_common_mem_free(thread_imc_pmu);
1671 perf_pmu_unregister(&thread_imc_pmu->pmu);
1672 }
1673
1674 /*
1675 * imc_mem_init : Function to support memory allocation for core imc.
1676 */
imc_mem_init(struct imc_pmu * pmu_ptr,struct device_node * parent,int pmu_index)1677 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1678 int pmu_index)
1679 {
1680 const char *s;
1681 int nr_cores, cpu, res = -ENOMEM;
1682
1683 if (of_property_read_string(parent, "name", &s))
1684 return -ENODEV;
1685
1686 switch (pmu_ptr->domain) {
1687 case IMC_DOMAIN_NEST:
1688 /* Update the pmu name */
1689 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1690 if (!pmu_ptr->pmu.name)
1691 goto err;
1692
1693 /* Needed for hotplug/migration */
1694 if (!per_nest_pmu_arr) {
1695 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1696 sizeof(struct imc_pmu *),
1697 GFP_KERNEL);
1698 if (!per_nest_pmu_arr)
1699 goto err;
1700 }
1701 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1702 break;
1703 case IMC_DOMAIN_CORE:
1704 /* Update the pmu name */
1705 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1706 if (!pmu_ptr->pmu.name)
1707 goto err;
1708
1709 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1710 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1711 GFP_KERNEL);
1712
1713 if (!pmu_ptr->mem_info)
1714 goto err;
1715
1716 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1717 GFP_KERNEL);
1718
1719 if (!core_imc_refc) {
1720 kfree(pmu_ptr->mem_info);
1721 goto err;
1722 }
1723
1724 core_imc_pmu = pmu_ptr;
1725 break;
1726 case IMC_DOMAIN_THREAD:
1727 /* Update the pmu name */
1728 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1729 if (!pmu_ptr->pmu.name)
1730 goto err;
1731
1732 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1733 for_each_online_cpu(cpu) {
1734 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1735 if (res) {
1736 cleanup_all_thread_imc_memory();
1737 goto err;
1738 }
1739 }
1740
1741 thread_imc_pmu = pmu_ptr;
1742 break;
1743 case IMC_DOMAIN_TRACE:
1744 /* Update the pmu name */
1745 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1746 if (!pmu_ptr->pmu.name)
1747 return -ENOMEM;
1748
1749 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1750 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1751 GFP_KERNEL);
1752 if (!trace_imc_refc)
1753 return -ENOMEM;
1754
1755 trace_imc_mem_size = pmu_ptr->counter_mem_size;
1756 for_each_online_cpu(cpu) {
1757 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1758 if (res) {
1759 cleanup_all_trace_imc_memory();
1760 goto err;
1761 }
1762 }
1763 break;
1764 default:
1765 return -EINVAL;
1766 }
1767
1768 return 0;
1769 err:
1770 return res;
1771 }
1772
1773 /*
1774 * init_imc_pmu : Setup and register the IMC pmu device.
1775 *
1776 * @parent: Device tree unit node
1777 * @pmu_ptr: memory allocated for this pmu
1778 * @pmu_idx: Count of nest pmc registered
1779 *
1780 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1781 * Handles failure cases and accordingly frees memory.
1782 */
init_imc_pmu(struct device_node * parent,struct imc_pmu * pmu_ptr,int pmu_idx)1783 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1784 {
1785 int ret;
1786
1787 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1788 if (ret)
1789 goto err_free_mem;
1790
1791 switch (pmu_ptr->domain) {
1792 case IMC_DOMAIN_NEST:
1793 /*
1794 * Nest imc pmu need only one cpu per chip, we initialize the
1795 * cpumask for the first nest imc pmu and use the same for the
1796 * rest. To handle the cpuhotplug callback unregister, we track
1797 * the number of nest pmus in "nest_pmus".
1798 */
1799 mutex_lock(&nest_init_lock);
1800 if (nest_pmus == 0) {
1801 ret = init_nest_pmu_ref();
1802 if (ret) {
1803 mutex_unlock(&nest_init_lock);
1804 kfree(per_nest_pmu_arr);
1805 per_nest_pmu_arr = NULL;
1806 goto err_free_mem;
1807 }
1808 /* Register for cpu hotplug notification. */
1809 ret = nest_pmu_cpumask_init();
1810 if (ret) {
1811 mutex_unlock(&nest_init_lock);
1812 kfree(nest_imc_refc);
1813 kfree(per_nest_pmu_arr);
1814 per_nest_pmu_arr = NULL;
1815 goto err_free_mem;
1816 }
1817 }
1818 nest_pmus++;
1819 mutex_unlock(&nest_init_lock);
1820 break;
1821 case IMC_DOMAIN_CORE:
1822 ret = core_imc_pmu_cpumask_init();
1823 if (ret) {
1824 cleanup_all_core_imc_memory();
1825 goto err_free_mem;
1826 }
1827
1828 break;
1829 case IMC_DOMAIN_THREAD:
1830 ret = thread_imc_cpu_init();
1831 if (ret) {
1832 cleanup_all_thread_imc_memory();
1833 goto err_free_mem;
1834 }
1835
1836 break;
1837 case IMC_DOMAIN_TRACE:
1838 ret = trace_imc_cpu_init();
1839 if (ret) {
1840 cleanup_all_trace_imc_memory();
1841 goto err_free_mem;
1842 }
1843
1844 break;
1845 default:
1846 return -EINVAL; /* Unknown domain */
1847 }
1848
1849 ret = update_events_in_group(parent, pmu_ptr);
1850 if (ret)
1851 goto err_free_cpuhp_mem;
1852
1853 ret = update_pmu_ops(pmu_ptr);
1854 if (ret)
1855 goto err_free_cpuhp_mem;
1856
1857 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1858 if (ret)
1859 goto err_free_cpuhp_mem;
1860
1861 pr_debug("%s performance monitor hardware support registered\n",
1862 pmu_ptr->pmu.name);
1863
1864 return 0;
1865
1866 err_free_cpuhp_mem:
1867 imc_common_cpuhp_mem_free(pmu_ptr);
1868 err_free_mem:
1869 imc_common_mem_free(pmu_ptr);
1870 return ret;
1871 }
1872