1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct inode * inode,int nr)26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 unsigned int size = sizeof(struct page *) * nr;
30
31 if (likely(size <= sbi->page_array_slab_size))
32 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
page_array_free(struct inode * inode,void * pages,int nr)37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 unsigned int size = sizeof(struct page *) * nr;
41
42 if (!pages)
43 return;
44
45 if (likely(size <= sbi->page_array_slab_size))
46 kmem_cache_free(sbi->page_array_slab, pages);
47 else
48 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52 int (*init_compress_ctx)(struct compress_ctx *cc);
53 void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 int (*compress_pages)(struct compress_ctx *cc);
55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 return index & (cc->cluster_size - 1);
63 }
64
cluster_idx(struct compress_ctx * cc,pgoff_t index)65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 return index >> cc->log_cluster_size;
68 }
69
start_idx_of_cluster(struct compress_ctx * cc)70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 return cc->cluster_idx << cc->log_cluster_size;
73 }
74
f2fs_is_compressed_page(struct page * page)75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 if (!PagePrivate(page))
78 return false;
79 if (!page_private(page))
80 return false;
81 if (page_private_nonpointer(page))
82 return false;
83
84 f2fs_bug_on(F2FS_M_SB(page->mapping),
85 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 return true;
87 }
88
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)89 static void f2fs_set_compressed_page(struct page *page,
90 struct inode *inode, pgoff_t index, void *data)
91 {
92 attach_page_private(page, (void *)data);
93
94 /* i_crypto_info and iv index */
95 page->index = index;
96 page->mapping = inode->i_mapping;
97 }
98
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 int i;
102
103 for (i = 0; i < len; i++) {
104 if (!cc->rpages[i])
105 continue;
106 if (unlock)
107 unlock_page(cc->rpages[i]);
108 else
109 put_page(cc->rpages[i]);
110 }
111 }
112
f2fs_put_rpages(struct compress_ctx * cc)113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117
f2fs_unlock_rpages(struct compress_ctx * cc,int len)118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 f2fs_drop_rpages(cc, len, true);
121 }
122
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 unsigned int i;
127
128 for (i = 0; i < cc->cluster_size; i++) {
129 if (!cc->rpages[i])
130 continue;
131 if (redirty)
132 redirty_page_for_writepage(wbc, cc->rpages[i]);
133 f2fs_put_page(cc->rpages[i], unlock);
134 }
135 }
136
f2fs_compress_control_page(struct page * page)137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141
f2fs_init_compress_ctx(struct compress_ctx * cc)142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 if (cc->rpages)
145 return 0;
146
147 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 return cc->rpages ? 0 : -ENOMEM;
149 }
150
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 cc->rpages = NULL;
155 cc->nr_rpages = 0;
156 cc->nr_cpages = 0;
157 cc->valid_nr_cpages = 0;
158 if (!reuse)
159 cc->cluster_idx = NULL_CLUSTER;
160 }
161
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164 unsigned int cluster_ofs;
165
166 if (!f2fs_cluster_can_merge_page(cc, page->index))
167 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168
169 cluster_ofs = offset_in_cluster(cc, page->index);
170 cc->rpages[cluster_ofs] = page;
171 cc->nr_rpages++;
172 cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174
175 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179 LZO1X_MEM_COMPRESS, GFP_NOFS);
180 if (!cc->private)
181 return -ENOMEM;
182
183 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184 return 0;
185 }
186
lzo_destroy_compress_ctx(struct compress_ctx * cc)187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189 kvfree(cc->private);
190 cc->private = NULL;
191 }
192
lzo_compress_pages(struct compress_ctx * cc)193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195 int ret;
196
197 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198 &cc->clen, cc->private);
199 if (ret != LZO_E_OK) {
200 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202 return -EIO;
203 }
204 return 0;
205 }
206
lzo_decompress_pages(struct decompress_io_ctx * dic)207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209 int ret;
210
211 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212 dic->rbuf, &dic->rlen);
213 if (ret != LZO_E_OK) {
214 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216 return -EIO;
217 }
218
219 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221 "expected:%lu\n", KERN_ERR,
222 F2FS_I_SB(dic->inode)->sb->s_id,
223 dic->rlen,
224 PAGE_SIZE << dic->log_cluster_size);
225 return -EIO;
226 }
227 return 0;
228 }
229
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231 .init_compress_ctx = lzo_init_compress_ctx,
232 .destroy_compress_ctx = lzo_destroy_compress_ctx,
233 .compress_pages = lzo_compress_pages,
234 .decompress_pages = lzo_decompress_pages,
235 };
236 #endif
237
238 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241 unsigned int size = LZ4_MEM_COMPRESS;
242
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245 size = LZ4HC_MEM_COMPRESS;
246 #endif
247
248 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249 if (!cc->private)
250 return -ENOMEM;
251
252 /*
253 * we do not change cc->clen to LZ4_compressBound(inputsize) to
254 * adapt worst compress case, because lz4 compressor can handle
255 * output budget properly.
256 */
257 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258 return 0;
259 }
260
lz4_destroy_compress_ctx(struct compress_ctx * cc)261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263 kvfree(cc->private);
264 cc->private = NULL;
265 }
266
267 #ifdef CONFIG_F2FS_FS_LZ4HC
lz4hc_compress_pages(struct compress_ctx * cc)268 static int lz4hc_compress_pages(struct compress_ctx *cc)
269 {
270 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271 COMPRESS_LEVEL_OFFSET;
272 int len;
273
274 if (level)
275 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276 cc->clen, level, cc->private);
277 else
278 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 cc->clen, cc->private);
280 if (!len)
281 return -EAGAIN;
282
283 cc->clen = len;
284 return 0;
285 }
286 #endif
287
lz4_compress_pages(struct compress_ctx * cc)288 static int lz4_compress_pages(struct compress_ctx *cc)
289 {
290 int len;
291
292 #ifdef CONFIG_F2FS_FS_LZ4HC
293 return lz4hc_compress_pages(cc);
294 #endif
295 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296 cc->clen, cc->private);
297 if (!len)
298 return -EAGAIN;
299
300 cc->clen = len;
301 return 0;
302 }
303
lz4_decompress_pages(struct decompress_io_ctx * dic)304 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305 {
306 int ret;
307
308 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309 dic->clen, dic->rlen);
310 if (ret < 0) {
311 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313 return -EIO;
314 }
315
316 if (ret != PAGE_SIZE << dic->log_cluster_size) {
317 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
318 "expected:%lu\n", KERN_ERR,
319 F2FS_I_SB(dic->inode)->sb->s_id, ret,
320 PAGE_SIZE << dic->log_cluster_size);
321 return -EIO;
322 }
323 return 0;
324 }
325
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327 .init_compress_ctx = lz4_init_compress_ctx,
328 .destroy_compress_ctx = lz4_destroy_compress_ctx,
329 .compress_pages = lz4_compress_pages,
330 .decompress_pages = lz4_decompress_pages,
331 };
332 #endif
333
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
336
zstd_init_compress_ctx(struct compress_ctx * cc)337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339 zstd_parameters params;
340 zstd_cstream *stream;
341 void *workspace;
342 unsigned int workspace_size;
343 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344 COMPRESS_LEVEL_OFFSET;
345
346 if (!level)
347 level = F2FS_ZSTD_DEFAULT_CLEVEL;
348
349 params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen);
350 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
351
352 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353 workspace_size, GFP_NOFS);
354 if (!workspace)
355 return -ENOMEM;
356
357 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
358 if (!stream) {
359 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361 __func__);
362 kvfree(workspace);
363 return -EIO;
364 }
365
366 cc->private = workspace;
367 cc->private2 = stream;
368
369 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 return 0;
371 }
372
zstd_destroy_compress_ctx(struct compress_ctx * cc)373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375 kvfree(cc->private);
376 cc->private = NULL;
377 cc->private2 = NULL;
378 }
379
zstd_compress_pages(struct compress_ctx * cc)380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382 zstd_cstream *stream = cc->private2;
383 zstd_in_buffer inbuf;
384 zstd_out_buffer outbuf;
385 int src_size = cc->rlen;
386 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387 int ret;
388
389 inbuf.pos = 0;
390 inbuf.src = cc->rbuf;
391 inbuf.size = src_size;
392
393 outbuf.pos = 0;
394 outbuf.dst = cc->cbuf->cdata;
395 outbuf.size = dst_size;
396
397 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398 if (zstd_is_error(ret)) {
399 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401 __func__, zstd_get_error_code(ret));
402 return -EIO;
403 }
404
405 ret = zstd_end_stream(stream, &outbuf);
406 if (zstd_is_error(ret)) {
407 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409 __func__, zstd_get_error_code(ret));
410 return -EIO;
411 }
412
413 /*
414 * there is compressed data remained in intermediate buffer due to
415 * no more space in cbuf.cdata
416 */
417 if (ret)
418 return -EAGAIN;
419
420 cc->clen = outbuf.pos;
421 return 0;
422 }
423
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426 zstd_dstream *stream;
427 void *workspace;
428 unsigned int workspace_size;
429 unsigned int max_window_size =
430 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431
432 workspace_size = zstd_dstream_workspace_bound(max_window_size);
433
434 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435 workspace_size, GFP_NOFS);
436 if (!workspace)
437 return -ENOMEM;
438
439 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440 if (!stream) {
441 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443 __func__);
444 kvfree(workspace);
445 return -EIO;
446 }
447
448 dic->private = workspace;
449 dic->private2 = stream;
450
451 return 0;
452 }
453
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456 kvfree(dic->private);
457 dic->private = NULL;
458 dic->private2 = NULL;
459 }
460
zstd_decompress_pages(struct decompress_io_ctx * dic)461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463 zstd_dstream *stream = dic->private2;
464 zstd_in_buffer inbuf;
465 zstd_out_buffer outbuf;
466 int ret;
467
468 inbuf.pos = 0;
469 inbuf.src = dic->cbuf->cdata;
470 inbuf.size = dic->clen;
471
472 outbuf.pos = 0;
473 outbuf.dst = dic->rbuf;
474 outbuf.size = dic->rlen;
475
476 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477 if (zstd_is_error(ret)) {
478 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480 __func__, zstd_get_error_code(ret));
481 return -EIO;
482 }
483
484 if (dic->rlen != outbuf.pos) {
485 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486 "expected:%lu\n", KERN_ERR,
487 F2FS_I_SB(dic->inode)->sb->s_id,
488 __func__, dic->rlen,
489 PAGE_SIZE << dic->log_cluster_size);
490 return -EIO;
491 }
492
493 return 0;
494 }
495
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497 .init_compress_ctx = zstd_init_compress_ctx,
498 .destroy_compress_ctx = zstd_destroy_compress_ctx,
499 .compress_pages = zstd_compress_pages,
500 .init_decompress_ctx = zstd_init_decompress_ctx,
501 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
502 .decompress_pages = zstd_decompress_pages,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 int ret;
511
512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 &cc->clen, cc->private);
514 if (ret != LZO_E_OK) {
515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 return -EIO;
518 }
519 return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 .init_compress_ctx = lzo_init_compress_ctx,
524 .destroy_compress_ctx = lzo_destroy_compress_ctx,
525 .compress_pages = lzorle_compress_pages,
526 .decompress_pages = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 &f2fs_lzo_ops,
534 #else
535 NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 &f2fs_lz4_ops,
539 #else
540 NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 &f2fs_zstd_ops,
544 #else
545 NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 &f2fs_lzorle_ops,
549 #else
550 NULL,
551 #endif
552 };
553
f2fs_is_compress_backend_ready(struct inode * inode)554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 if (!f2fs_compressed_file(inode))
557 return true;
558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565 "Number of intermediate compress pages to preallocate");
566
f2fs_init_compress_mempool(void)567 int f2fs_init_compress_mempool(void)
568 {
569 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570 if (!compress_page_pool)
571 return -ENOMEM;
572
573 return 0;
574 }
575
f2fs_destroy_compress_mempool(void)576 void f2fs_destroy_compress_mempool(void)
577 {
578 mempool_destroy(compress_page_pool);
579 }
580
f2fs_compress_alloc_page(void)581 static struct page *f2fs_compress_alloc_page(void)
582 {
583 struct page *page;
584
585 page = mempool_alloc(compress_page_pool, GFP_NOFS);
586 lock_page(page);
587
588 return page;
589 }
590
f2fs_compress_free_page(struct page * page)591 static void f2fs_compress_free_page(struct page *page)
592 {
593 if (!page)
594 return;
595 detach_page_private(page);
596 page->mapping = NULL;
597 unlock_page(page);
598 mempool_free(page, compress_page_pool);
599 }
600
601 #define MAX_VMAP_RETRIES 3
602
f2fs_vmap(struct page ** pages,unsigned int count)603 static void *f2fs_vmap(struct page **pages, unsigned int count)
604 {
605 int i;
606 void *buf = NULL;
607
608 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
609 buf = vm_map_ram(pages, count, -1);
610 if (buf)
611 break;
612 vm_unmap_aliases();
613 }
614 return buf;
615 }
616
f2fs_compress_pages(struct compress_ctx * cc)617 static int f2fs_compress_pages(struct compress_ctx *cc)
618 {
619 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
620 const struct f2fs_compress_ops *cops =
621 f2fs_cops[fi->i_compress_algorithm];
622 unsigned int max_len, new_nr_cpages;
623 u32 chksum = 0;
624 int i, ret;
625
626 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
627 cc->cluster_size, fi->i_compress_algorithm);
628
629 if (cops->init_compress_ctx) {
630 ret = cops->init_compress_ctx(cc);
631 if (ret)
632 goto out;
633 }
634
635 max_len = COMPRESS_HEADER_SIZE + cc->clen;
636 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
637 cc->valid_nr_cpages = cc->nr_cpages;
638
639 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
640 if (!cc->cpages) {
641 ret = -ENOMEM;
642 goto destroy_compress_ctx;
643 }
644
645 for (i = 0; i < cc->nr_cpages; i++) {
646 cc->cpages[i] = f2fs_compress_alloc_page();
647 if (!cc->cpages[i]) {
648 ret = -ENOMEM;
649 goto out_free_cpages;
650 }
651 }
652
653 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
654 if (!cc->rbuf) {
655 ret = -ENOMEM;
656 goto out_free_cpages;
657 }
658
659 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
660 if (!cc->cbuf) {
661 ret = -ENOMEM;
662 goto out_vunmap_rbuf;
663 }
664
665 ret = cops->compress_pages(cc);
666 if (ret)
667 goto out_vunmap_cbuf;
668
669 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
670
671 if (cc->clen > max_len) {
672 ret = -EAGAIN;
673 goto out_vunmap_cbuf;
674 }
675
676 cc->cbuf->clen = cpu_to_le32(cc->clen);
677
678 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
679 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
680 cc->cbuf->cdata, cc->clen);
681 cc->cbuf->chksum = cpu_to_le32(chksum);
682
683 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
684 cc->cbuf->reserved[i] = cpu_to_le32(0);
685
686 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
687
688 /* zero out any unused part of the last page */
689 memset(&cc->cbuf->cdata[cc->clen], 0,
690 (new_nr_cpages * PAGE_SIZE) -
691 (cc->clen + COMPRESS_HEADER_SIZE));
692
693 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
694 vm_unmap_ram(cc->rbuf, cc->cluster_size);
695
696 for (i = 0; i < cc->nr_cpages; i++) {
697 if (i < new_nr_cpages)
698 continue;
699 f2fs_compress_free_page(cc->cpages[i]);
700 cc->cpages[i] = NULL;
701 }
702
703 if (cops->destroy_compress_ctx)
704 cops->destroy_compress_ctx(cc);
705
706 cc->valid_nr_cpages = new_nr_cpages;
707
708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709 cc->clen, ret);
710 return 0;
711
712 out_vunmap_cbuf:
713 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715 vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717 for (i = 0; i < cc->nr_cpages; i++) {
718 if (cc->cpages[i])
719 f2fs_compress_free_page(cc->cpages[i]);
720 }
721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722 cc->cpages = NULL;
723 destroy_compress_ctx:
724 if (cops->destroy_compress_ctx)
725 cops->destroy_compress_ctx(cc);
726 out:
727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728 cc->clen, ret);
729 return ret;
730 }
731
732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733 bool pre_alloc);
734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735 bool bypass_destroy_callback, bool pre_alloc);
736
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738 {
739 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741 const struct f2fs_compress_ops *cops =
742 f2fs_cops[fi->i_compress_algorithm];
743 bool bypass_callback = false;
744 int ret;
745
746 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747 dic->cluster_size, fi->i_compress_algorithm);
748
749 if (dic->failed) {
750 ret = -EIO;
751 goto out_end_io;
752 }
753
754 ret = f2fs_prepare_decomp_mem(dic, false);
755 if (ret) {
756 bypass_callback = true;
757 goto out_release;
758 }
759
760 dic->clen = le32_to_cpu(dic->cbuf->clen);
761 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762
763 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764 ret = -EFSCORRUPTED;
765 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
766 goto out_release;
767 }
768
769 ret = cops->decompress_pages(dic);
770
771 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
772 u32 provided = le32_to_cpu(dic->cbuf->chksum);
773 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
774
775 if (provided != calculated) {
776 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
777 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
778 printk_ratelimited(
779 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
780 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
781 provided, calculated);
782 }
783 set_sbi_flag(sbi, SBI_NEED_FSCK);
784 }
785 }
786
787 out_release:
788 f2fs_release_decomp_mem(dic, bypass_callback, false);
789
790 out_end_io:
791 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
792 dic->clen, ret);
793 f2fs_decompress_end_io(dic, ret, in_task);
794 }
795
796 /*
797 * This is called when a page of a compressed cluster has been read from disk
798 * (or failed to be read from disk). It checks whether this page was the last
799 * page being waited on in the cluster, and if so, it decompresses the cluster
800 * (or in the case of a failure, cleans up without actually decompressing).
801 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)802 void f2fs_end_read_compressed_page(struct page *page, bool failed,
803 block_t blkaddr, bool in_task)
804 {
805 struct decompress_io_ctx *dic =
806 (struct decompress_io_ctx *)page_private(page);
807 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
808
809 dec_page_count(sbi, F2FS_RD_DATA);
810
811 if (failed)
812 WRITE_ONCE(dic->failed, true);
813 else if (blkaddr && in_task)
814 f2fs_cache_compressed_page(sbi, page,
815 dic->inode->i_ino, blkaddr);
816
817 if (atomic_dec_and_test(&dic->remaining_pages))
818 f2fs_decompress_cluster(dic, in_task);
819 }
820
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)821 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
822 {
823 if (cc->cluster_idx == NULL_CLUSTER)
824 return true;
825 return cc->cluster_idx == cluster_idx(cc, index);
826 }
827
f2fs_cluster_is_empty(struct compress_ctx * cc)828 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
829 {
830 return cc->nr_rpages == 0;
831 }
832
f2fs_cluster_is_full(struct compress_ctx * cc)833 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
834 {
835 return cc->cluster_size == cc->nr_rpages;
836 }
837
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)838 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
839 {
840 if (f2fs_cluster_is_empty(cc))
841 return true;
842 return is_page_in_cluster(cc, index);
843 }
844
f2fs_all_cluster_page_ready(struct compress_ctx * cc,struct page ** pages,int index,int nr_pages,bool uptodate)845 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
846 int index, int nr_pages, bool uptodate)
847 {
848 unsigned long pgidx = pages[index]->index;
849 int i = uptodate ? 0 : 1;
850
851 /*
852 * when uptodate set to true, try to check all pages in cluster is
853 * uptodate or not.
854 */
855 if (uptodate && (pgidx % cc->cluster_size))
856 return false;
857
858 if (nr_pages - index < cc->cluster_size)
859 return false;
860
861 for (; i < cc->cluster_size; i++) {
862 if (pages[index + i]->index != pgidx + i)
863 return false;
864 if (uptodate && !PageUptodate(pages[index + i]))
865 return false;
866 }
867
868 return true;
869 }
870
cluster_has_invalid_data(struct compress_ctx * cc)871 static bool cluster_has_invalid_data(struct compress_ctx *cc)
872 {
873 loff_t i_size = i_size_read(cc->inode);
874 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
875 int i;
876
877 for (i = 0; i < cc->cluster_size; i++) {
878 struct page *page = cc->rpages[i];
879
880 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
881
882 /* beyond EOF */
883 if (page->index >= nr_pages)
884 return true;
885 }
886 return false;
887 }
888
f2fs_sanity_check_cluster(struct dnode_of_data * dn)889 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
890 {
891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
893 bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
894 int cluster_end = 0;
895 int i;
896 char *reason = "";
897
898 if (!compressed)
899 return false;
900
901 /* [..., COMPR_ADDR, ...] */
902 if (dn->ofs_in_node % cluster_size) {
903 reason = "[*|C|*|*]";
904 goto out;
905 }
906
907 for (i = 1; i < cluster_size; i++) {
908 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
909 dn->ofs_in_node + i);
910
911 /* [COMPR_ADDR, ..., COMPR_ADDR] */
912 if (blkaddr == COMPRESS_ADDR) {
913 reason = "[C|*|C|*]";
914 goto out;
915 }
916 if (!__is_valid_data_blkaddr(blkaddr)) {
917 if (!cluster_end)
918 cluster_end = i;
919 continue;
920 }
921 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
922 if (cluster_end) {
923 reason = "[C|N|N|V]";
924 goto out;
925 }
926 }
927 return false;
928 out:
929 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
930 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
931 set_sbi_flag(sbi, SBI_NEED_FSCK);
932 return true;
933 }
934
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)935 static int __f2fs_cluster_blocks(struct inode *inode,
936 unsigned int cluster_idx, bool compr)
937 {
938 struct dnode_of_data dn;
939 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
940 unsigned int start_idx = cluster_idx <<
941 F2FS_I(inode)->i_log_cluster_size;
942 int ret;
943
944 set_new_dnode(&dn, inode, NULL, NULL, 0);
945 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
946 if (ret) {
947 if (ret == -ENOENT)
948 ret = 0;
949 goto fail;
950 }
951
952 if (f2fs_sanity_check_cluster(&dn)) {
953 ret = -EFSCORRUPTED;
954 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
955 goto fail;
956 }
957
958 if (dn.data_blkaddr == COMPRESS_ADDR) {
959 int i;
960
961 ret = 1;
962 for (i = 1; i < cluster_size; i++) {
963 block_t blkaddr;
964
965 blkaddr = data_blkaddr(dn.inode,
966 dn.node_page, dn.ofs_in_node + i);
967 if (compr) {
968 if (__is_valid_data_blkaddr(blkaddr))
969 ret++;
970 } else {
971 if (blkaddr != NULL_ADDR)
972 ret++;
973 }
974 }
975
976 f2fs_bug_on(F2FS_I_SB(inode),
977 !compr && ret != cluster_size &&
978 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
979 }
980 fail:
981 f2fs_put_dnode(&dn);
982 return ret;
983 }
984
985 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)986 static int f2fs_compressed_blocks(struct compress_ctx *cc)
987 {
988 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
989 }
990
991 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)992 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
993 {
994 return __f2fs_cluster_blocks(inode,
995 index >> F2FS_I(inode)->i_log_cluster_size,
996 false);
997 }
998
cluster_may_compress(struct compress_ctx * cc)999 static bool cluster_may_compress(struct compress_ctx *cc)
1000 {
1001 if (!f2fs_need_compress_data(cc->inode))
1002 return false;
1003 if (f2fs_is_atomic_file(cc->inode))
1004 return false;
1005 if (!f2fs_cluster_is_full(cc))
1006 return false;
1007 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1008 return false;
1009 return !cluster_has_invalid_data(cc);
1010 }
1011
set_cluster_writeback(struct compress_ctx * cc)1012 static void set_cluster_writeback(struct compress_ctx *cc)
1013 {
1014 int i;
1015
1016 for (i = 0; i < cc->cluster_size; i++) {
1017 if (cc->rpages[i])
1018 set_page_writeback(cc->rpages[i]);
1019 }
1020 }
1021
set_cluster_dirty(struct compress_ctx * cc)1022 static void set_cluster_dirty(struct compress_ctx *cc)
1023 {
1024 int i;
1025
1026 for (i = 0; i < cc->cluster_size; i++)
1027 if (cc->rpages[i])
1028 set_page_dirty(cc->rpages[i]);
1029 }
1030
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1031 static int prepare_compress_overwrite(struct compress_ctx *cc,
1032 struct page **pagep, pgoff_t index, void **fsdata)
1033 {
1034 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1035 struct address_space *mapping = cc->inode->i_mapping;
1036 struct page *page;
1037 sector_t last_block_in_bio;
1038 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1039 pgoff_t start_idx = start_idx_of_cluster(cc);
1040 int i, ret;
1041
1042 retry:
1043 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1044 if (ret <= 0)
1045 return ret;
1046
1047 ret = f2fs_init_compress_ctx(cc);
1048 if (ret)
1049 return ret;
1050
1051 /* keep page reference to avoid page reclaim */
1052 for (i = 0; i < cc->cluster_size; i++) {
1053 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1054 fgp_flag, GFP_NOFS);
1055 if (!page) {
1056 ret = -ENOMEM;
1057 goto unlock_pages;
1058 }
1059
1060 if (PageUptodate(page))
1061 f2fs_put_page(page, 1);
1062 else
1063 f2fs_compress_ctx_add_page(cc, page);
1064 }
1065
1066 if (!f2fs_cluster_is_empty(cc)) {
1067 struct bio *bio = NULL;
1068
1069 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1070 &last_block_in_bio, false, true);
1071 f2fs_put_rpages(cc);
1072 f2fs_destroy_compress_ctx(cc, true);
1073 if (ret)
1074 goto out;
1075 if (bio)
1076 f2fs_submit_bio(sbi, bio, DATA);
1077
1078 ret = f2fs_init_compress_ctx(cc);
1079 if (ret)
1080 goto out;
1081 }
1082
1083 for (i = 0; i < cc->cluster_size; i++) {
1084 f2fs_bug_on(sbi, cc->rpages[i]);
1085
1086 page = find_lock_page(mapping, start_idx + i);
1087 if (!page) {
1088 /* page can be truncated */
1089 goto release_and_retry;
1090 }
1091
1092 f2fs_wait_on_page_writeback(page, DATA, true, true);
1093 f2fs_compress_ctx_add_page(cc, page);
1094
1095 if (!PageUptodate(page)) {
1096 release_and_retry:
1097 f2fs_put_rpages(cc);
1098 f2fs_unlock_rpages(cc, i + 1);
1099 f2fs_destroy_compress_ctx(cc, true);
1100 goto retry;
1101 }
1102 }
1103
1104 if (likely(!ret)) {
1105 *fsdata = cc->rpages;
1106 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1107 return cc->cluster_size;
1108 }
1109
1110 unlock_pages:
1111 f2fs_put_rpages(cc);
1112 f2fs_unlock_rpages(cc, i);
1113 f2fs_destroy_compress_ctx(cc, true);
1114 out:
1115 return ret;
1116 }
1117
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1118 int f2fs_prepare_compress_overwrite(struct inode *inode,
1119 struct page **pagep, pgoff_t index, void **fsdata)
1120 {
1121 struct compress_ctx cc = {
1122 .inode = inode,
1123 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1124 .cluster_size = F2FS_I(inode)->i_cluster_size,
1125 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1126 .rpages = NULL,
1127 .nr_rpages = 0,
1128 };
1129
1130 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1131 }
1132
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1133 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1134 pgoff_t index, unsigned copied)
1135
1136 {
1137 struct compress_ctx cc = {
1138 .inode = inode,
1139 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1140 .cluster_size = F2FS_I(inode)->i_cluster_size,
1141 .rpages = fsdata,
1142 };
1143 bool first_index = (index == cc.rpages[0]->index);
1144
1145 if (copied)
1146 set_cluster_dirty(&cc);
1147
1148 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1149 f2fs_destroy_compress_ctx(&cc, false);
1150
1151 return first_index;
1152 }
1153
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1154 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1155 {
1156 void *fsdata = NULL;
1157 struct page *pagep;
1158 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1159 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1160 log_cluster_size;
1161 int err;
1162
1163 err = f2fs_is_compressed_cluster(inode, start_idx);
1164 if (err < 0)
1165 return err;
1166
1167 /* truncate normal cluster */
1168 if (!err)
1169 return f2fs_do_truncate_blocks(inode, from, lock);
1170
1171 /* truncate compressed cluster */
1172 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1173 start_idx, &fsdata);
1174
1175 /* should not be a normal cluster */
1176 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1177
1178 if (err <= 0)
1179 return err;
1180
1181 if (err > 0) {
1182 struct page **rpages = fsdata;
1183 int cluster_size = F2FS_I(inode)->i_cluster_size;
1184 int i;
1185
1186 for (i = cluster_size - 1; i >= 0; i--) {
1187 loff_t start = rpages[i]->index << PAGE_SHIFT;
1188
1189 if (from <= start) {
1190 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1191 } else {
1192 zero_user_segment(rpages[i], from - start,
1193 PAGE_SIZE);
1194 break;
1195 }
1196 }
1197
1198 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1199 }
1200 return 0;
1201 }
1202
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1203 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1204 int *submitted,
1205 struct writeback_control *wbc,
1206 enum iostat_type io_type)
1207 {
1208 struct inode *inode = cc->inode;
1209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1210 struct f2fs_inode_info *fi = F2FS_I(inode);
1211 struct f2fs_io_info fio = {
1212 .sbi = sbi,
1213 .ino = cc->inode->i_ino,
1214 .type = DATA,
1215 .op = REQ_OP_WRITE,
1216 .op_flags = wbc_to_write_flags(wbc),
1217 .old_blkaddr = NEW_ADDR,
1218 .page = NULL,
1219 .encrypted_page = NULL,
1220 .compressed_page = NULL,
1221 .submitted = false,
1222 .io_type = io_type,
1223 .io_wbc = wbc,
1224 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1225 };
1226 struct dnode_of_data dn;
1227 struct node_info ni;
1228 struct compress_io_ctx *cic;
1229 pgoff_t start_idx = start_idx_of_cluster(cc);
1230 unsigned int last_index = cc->cluster_size - 1;
1231 loff_t psize;
1232 int i, err;
1233
1234 /* we should bypass data pages to proceed the kworkder jobs */
1235 if (unlikely(f2fs_cp_error(sbi))) {
1236 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1237 goto out_free;
1238 }
1239
1240 if (IS_NOQUOTA(inode)) {
1241 /*
1242 * We need to wait for node_write to avoid block allocation during
1243 * checkpoint. This can only happen to quota writes which can cause
1244 * the below discard race condition.
1245 */
1246 f2fs_down_read(&sbi->node_write);
1247 } else if (!f2fs_trylock_op(sbi)) {
1248 goto out_free;
1249 }
1250
1251 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1252
1253 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1254 if (err)
1255 goto out_unlock_op;
1256
1257 for (i = 0; i < cc->cluster_size; i++) {
1258 if (data_blkaddr(dn.inode, dn.node_page,
1259 dn.ofs_in_node + i) == NULL_ADDR)
1260 goto out_put_dnode;
1261 }
1262
1263 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1264
1265 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1266 if (err)
1267 goto out_put_dnode;
1268
1269 fio.version = ni.version;
1270
1271 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1272 if (!cic)
1273 goto out_put_dnode;
1274
1275 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1276 cic->inode = inode;
1277 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1278 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1279 if (!cic->rpages)
1280 goto out_put_cic;
1281
1282 cic->nr_rpages = cc->cluster_size;
1283
1284 for (i = 0; i < cc->valid_nr_cpages; i++) {
1285 f2fs_set_compressed_page(cc->cpages[i], inode,
1286 cc->rpages[i + 1]->index, cic);
1287 fio.compressed_page = cc->cpages[i];
1288
1289 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1290 dn.ofs_in_node + i + 1);
1291
1292 /* wait for GCed page writeback via META_MAPPING */
1293 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1294
1295 if (fio.encrypted) {
1296 fio.page = cc->rpages[i + 1];
1297 err = f2fs_encrypt_one_page(&fio);
1298 if (err)
1299 goto out_destroy_crypt;
1300 cc->cpages[i] = fio.encrypted_page;
1301 }
1302 }
1303
1304 set_cluster_writeback(cc);
1305
1306 for (i = 0; i < cc->cluster_size; i++)
1307 cic->rpages[i] = cc->rpages[i];
1308
1309 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1310 block_t blkaddr;
1311
1312 blkaddr = f2fs_data_blkaddr(&dn);
1313 fio.page = cc->rpages[i];
1314 fio.old_blkaddr = blkaddr;
1315
1316 /* cluster header */
1317 if (i == 0) {
1318 if (blkaddr == COMPRESS_ADDR)
1319 fio.compr_blocks++;
1320 if (__is_valid_data_blkaddr(blkaddr))
1321 f2fs_invalidate_blocks(sbi, blkaddr);
1322 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1323 goto unlock_continue;
1324 }
1325
1326 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1327 fio.compr_blocks++;
1328
1329 if (i > cc->valid_nr_cpages) {
1330 if (__is_valid_data_blkaddr(blkaddr)) {
1331 f2fs_invalidate_blocks(sbi, blkaddr);
1332 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1333 }
1334 goto unlock_continue;
1335 }
1336
1337 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1338
1339 if (fio.encrypted)
1340 fio.encrypted_page = cc->cpages[i - 1];
1341 else
1342 fio.compressed_page = cc->cpages[i - 1];
1343
1344 cc->cpages[i - 1] = NULL;
1345 f2fs_outplace_write_data(&dn, &fio);
1346 (*submitted)++;
1347 unlock_continue:
1348 inode_dec_dirty_pages(cc->inode);
1349 unlock_page(fio.page);
1350 }
1351
1352 if (fio.compr_blocks)
1353 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1354 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1355 add_compr_block_stat(inode, cc->valid_nr_cpages);
1356
1357 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1358 if (cc->cluster_idx == 0)
1359 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1360
1361 f2fs_put_dnode(&dn);
1362 if (IS_NOQUOTA(inode))
1363 f2fs_up_read(&sbi->node_write);
1364 else
1365 f2fs_unlock_op(sbi);
1366
1367 spin_lock(&fi->i_size_lock);
1368 if (fi->last_disk_size < psize)
1369 fi->last_disk_size = psize;
1370 spin_unlock(&fi->i_size_lock);
1371
1372 f2fs_put_rpages(cc);
1373 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1374 cc->cpages = NULL;
1375 f2fs_destroy_compress_ctx(cc, false);
1376 return 0;
1377
1378 out_destroy_crypt:
1379 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1380
1381 for (--i; i >= 0; i--)
1382 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1383 out_put_cic:
1384 kmem_cache_free(cic_entry_slab, cic);
1385 out_put_dnode:
1386 f2fs_put_dnode(&dn);
1387 out_unlock_op:
1388 if (IS_NOQUOTA(inode))
1389 f2fs_up_read(&sbi->node_write);
1390 else
1391 f2fs_unlock_op(sbi);
1392 out_free:
1393 for (i = 0; i < cc->valid_nr_cpages; i++) {
1394 f2fs_compress_free_page(cc->cpages[i]);
1395 cc->cpages[i] = NULL;
1396 }
1397 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1398 cc->cpages = NULL;
1399 return -EAGAIN;
1400 }
1401
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1402 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1403 {
1404 struct f2fs_sb_info *sbi = bio->bi_private;
1405 struct compress_io_ctx *cic =
1406 (struct compress_io_ctx *)page_private(page);
1407 int i;
1408
1409 if (unlikely(bio->bi_status))
1410 mapping_set_error(cic->inode->i_mapping, -EIO);
1411
1412 f2fs_compress_free_page(page);
1413
1414 dec_page_count(sbi, F2FS_WB_DATA);
1415
1416 if (atomic_dec_return(&cic->pending_pages))
1417 return;
1418
1419 for (i = 0; i < cic->nr_rpages; i++) {
1420 WARN_ON(!cic->rpages[i]);
1421 clear_page_private_gcing(cic->rpages[i]);
1422 end_page_writeback(cic->rpages[i]);
1423 }
1424
1425 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1426 kmem_cache_free(cic_entry_slab, cic);
1427 }
1428
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1429 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1430 int *submitted,
1431 struct writeback_control *wbc,
1432 enum iostat_type io_type)
1433 {
1434 struct address_space *mapping = cc->inode->i_mapping;
1435 int _submitted, compr_blocks, ret, i;
1436
1437 compr_blocks = f2fs_compressed_blocks(cc);
1438
1439 for (i = 0; i < cc->cluster_size; i++) {
1440 if (!cc->rpages[i])
1441 continue;
1442
1443 redirty_page_for_writepage(wbc, cc->rpages[i]);
1444 unlock_page(cc->rpages[i]);
1445 }
1446
1447 if (compr_blocks < 0)
1448 return compr_blocks;
1449
1450 for (i = 0; i < cc->cluster_size; i++) {
1451 if (!cc->rpages[i])
1452 continue;
1453 retry_write:
1454 lock_page(cc->rpages[i]);
1455
1456 if (cc->rpages[i]->mapping != mapping) {
1457 continue_unlock:
1458 unlock_page(cc->rpages[i]);
1459 continue;
1460 }
1461
1462 if (!PageDirty(cc->rpages[i]))
1463 goto continue_unlock;
1464
1465 if (!clear_page_dirty_for_io(cc->rpages[i]))
1466 goto continue_unlock;
1467
1468 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1469 NULL, NULL, wbc, io_type,
1470 compr_blocks, false);
1471 if (ret) {
1472 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1473 unlock_page(cc->rpages[i]);
1474 ret = 0;
1475 } else if (ret == -EAGAIN) {
1476 /*
1477 * for quota file, just redirty left pages to
1478 * avoid deadlock caused by cluster update race
1479 * from foreground operation.
1480 */
1481 if (IS_NOQUOTA(cc->inode))
1482 return 0;
1483 ret = 0;
1484 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1485 goto retry_write;
1486 }
1487 return ret;
1488 }
1489
1490 *submitted += _submitted;
1491 }
1492
1493 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1494
1495 return 0;
1496 }
1497
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1498 int f2fs_write_multi_pages(struct compress_ctx *cc,
1499 int *submitted,
1500 struct writeback_control *wbc,
1501 enum iostat_type io_type)
1502 {
1503 int err;
1504
1505 *submitted = 0;
1506 if (cluster_may_compress(cc)) {
1507 err = f2fs_compress_pages(cc);
1508 if (err == -EAGAIN) {
1509 add_compr_block_stat(cc->inode, cc->cluster_size);
1510 goto write;
1511 } else if (err) {
1512 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1513 goto destroy_out;
1514 }
1515
1516 err = f2fs_write_compressed_pages(cc, submitted,
1517 wbc, io_type);
1518 if (!err)
1519 return 0;
1520 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1521 }
1522 write:
1523 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1524
1525 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1526 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1527 destroy_out:
1528 f2fs_destroy_compress_ctx(cc, false);
1529 return err;
1530 }
1531
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1532 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1533 bool pre_alloc)
1534 {
1535 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1536 }
1537
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1538 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1539 bool pre_alloc)
1540 {
1541 const struct f2fs_compress_ops *cops =
1542 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1543 int i;
1544
1545 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1546 return 0;
1547
1548 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1549 if (!dic->tpages)
1550 return -ENOMEM;
1551
1552 for (i = 0; i < dic->cluster_size; i++) {
1553 if (dic->rpages[i]) {
1554 dic->tpages[i] = dic->rpages[i];
1555 continue;
1556 }
1557
1558 dic->tpages[i] = f2fs_compress_alloc_page();
1559 if (!dic->tpages[i])
1560 return -ENOMEM;
1561 }
1562
1563 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1564 if (!dic->rbuf)
1565 return -ENOMEM;
1566
1567 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1568 if (!dic->cbuf)
1569 return -ENOMEM;
1570
1571 if (cops->init_decompress_ctx)
1572 return cops->init_decompress_ctx(dic);
1573
1574 return 0;
1575 }
1576
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1577 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1578 bool bypass_destroy_callback, bool pre_alloc)
1579 {
1580 const struct f2fs_compress_ops *cops =
1581 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1582
1583 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1584 return;
1585
1586 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1587 cops->destroy_decompress_ctx(dic);
1588
1589 if (dic->cbuf)
1590 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1591
1592 if (dic->rbuf)
1593 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1594 }
1595
1596 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1597 bool bypass_destroy_callback);
1598
f2fs_alloc_dic(struct compress_ctx * cc)1599 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1600 {
1601 struct decompress_io_ctx *dic;
1602 pgoff_t start_idx = start_idx_of_cluster(cc);
1603 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1604 int i, ret;
1605
1606 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1607 if (!dic)
1608 return ERR_PTR(-ENOMEM);
1609
1610 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1611 if (!dic->rpages) {
1612 kmem_cache_free(dic_entry_slab, dic);
1613 return ERR_PTR(-ENOMEM);
1614 }
1615
1616 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1617 dic->inode = cc->inode;
1618 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1619 dic->cluster_idx = cc->cluster_idx;
1620 dic->cluster_size = cc->cluster_size;
1621 dic->log_cluster_size = cc->log_cluster_size;
1622 dic->nr_cpages = cc->nr_cpages;
1623 refcount_set(&dic->refcnt, 1);
1624 dic->failed = false;
1625 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1626
1627 for (i = 0; i < dic->cluster_size; i++)
1628 dic->rpages[i] = cc->rpages[i];
1629 dic->nr_rpages = cc->cluster_size;
1630
1631 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1632 if (!dic->cpages) {
1633 ret = -ENOMEM;
1634 goto out_free;
1635 }
1636
1637 for (i = 0; i < dic->nr_cpages; i++) {
1638 struct page *page;
1639
1640 page = f2fs_compress_alloc_page();
1641 if (!page) {
1642 ret = -ENOMEM;
1643 goto out_free;
1644 }
1645
1646 f2fs_set_compressed_page(page, cc->inode,
1647 start_idx + i + 1, dic);
1648 dic->cpages[i] = page;
1649 }
1650
1651 ret = f2fs_prepare_decomp_mem(dic, true);
1652 if (ret)
1653 goto out_free;
1654
1655 return dic;
1656
1657 out_free:
1658 f2fs_free_dic(dic, true);
1659 return ERR_PTR(ret);
1660 }
1661
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1662 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1663 bool bypass_destroy_callback)
1664 {
1665 int i;
1666
1667 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1668
1669 if (dic->tpages) {
1670 for (i = 0; i < dic->cluster_size; i++) {
1671 if (dic->rpages[i])
1672 continue;
1673 if (!dic->tpages[i])
1674 continue;
1675 f2fs_compress_free_page(dic->tpages[i]);
1676 }
1677 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1678 }
1679
1680 if (dic->cpages) {
1681 for (i = 0; i < dic->nr_cpages; i++) {
1682 if (!dic->cpages[i])
1683 continue;
1684 f2fs_compress_free_page(dic->cpages[i]);
1685 }
1686 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1687 }
1688
1689 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1690 kmem_cache_free(dic_entry_slab, dic);
1691 }
1692
f2fs_late_free_dic(struct work_struct * work)1693 static void f2fs_late_free_dic(struct work_struct *work)
1694 {
1695 struct decompress_io_ctx *dic =
1696 container_of(work, struct decompress_io_ctx, free_work);
1697
1698 f2fs_free_dic(dic, false);
1699 }
1700
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1701 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1702 {
1703 if (refcount_dec_and_test(&dic->refcnt)) {
1704 if (in_task) {
1705 f2fs_free_dic(dic, false);
1706 } else {
1707 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1708 queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1709 &dic->free_work);
1710 }
1711 }
1712 }
1713
1714 /*
1715 * Update and unlock the cluster's pagecache pages, and release the reference to
1716 * the decompress_io_ctx that was being held for I/O completion.
1717 */
__f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1718 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1719 bool in_task)
1720 {
1721 int i;
1722
1723 for (i = 0; i < dic->cluster_size; i++) {
1724 struct page *rpage = dic->rpages[i];
1725
1726 if (!rpage)
1727 continue;
1728
1729 /* PG_error was set if verity failed. */
1730 if (failed || PageError(rpage)) {
1731 ClearPageUptodate(rpage);
1732 /* will re-read again later */
1733 ClearPageError(rpage);
1734 } else {
1735 SetPageUptodate(rpage);
1736 }
1737 unlock_page(rpage);
1738 }
1739
1740 f2fs_put_dic(dic, in_task);
1741 }
1742
f2fs_verify_cluster(struct work_struct * work)1743 static void f2fs_verify_cluster(struct work_struct *work)
1744 {
1745 struct decompress_io_ctx *dic =
1746 container_of(work, struct decompress_io_ctx, verity_work);
1747 int i;
1748
1749 /* Verify the cluster's decompressed pages with fs-verity. */
1750 for (i = 0; i < dic->cluster_size; i++) {
1751 struct page *rpage = dic->rpages[i];
1752
1753 if (rpage && !fsverity_verify_page(rpage))
1754 SetPageError(rpage);
1755 }
1756
1757 __f2fs_decompress_end_io(dic, false, true);
1758 }
1759
1760 /*
1761 * This is called when a compressed cluster has been decompressed
1762 * (or failed to be read and/or decompressed).
1763 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1764 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1765 bool in_task)
1766 {
1767 if (!failed && dic->need_verity) {
1768 /*
1769 * Note that to avoid deadlocks, the verity work can't be done
1770 * on the decompression workqueue. This is because verifying
1771 * the data pages can involve reading metadata pages from the
1772 * file, and these metadata pages may be compressed.
1773 */
1774 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1775 fsverity_enqueue_verify_work(&dic->verity_work);
1776 } else {
1777 __f2fs_decompress_end_io(dic, failed, in_task);
1778 }
1779 }
1780
1781 /*
1782 * Put a reference to a compressed page's decompress_io_ctx.
1783 *
1784 * This is called when the page is no longer needed and can be freed.
1785 */
f2fs_put_page_dic(struct page * page,bool in_task)1786 void f2fs_put_page_dic(struct page *page, bool in_task)
1787 {
1788 struct decompress_io_ctx *dic =
1789 (struct decompress_io_ctx *)page_private(page);
1790
1791 f2fs_put_dic(dic, in_task);
1792 }
1793
1794 /*
1795 * check whether cluster blocks are contiguous, and add extent cache entry
1796 * only if cluster blocks are logically and physically contiguous.
1797 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1798 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1799 {
1800 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1801 int i = compressed ? 1 : 0;
1802 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1803 dn->ofs_in_node + i);
1804
1805 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1806 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1807 dn->ofs_in_node + i);
1808
1809 if (!__is_valid_data_blkaddr(blkaddr))
1810 break;
1811 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1812 return 0;
1813 }
1814
1815 return compressed ? i - 1 : i;
1816 }
1817
1818 const struct address_space_operations f2fs_compress_aops = {
1819 .release_folio = f2fs_release_folio,
1820 .invalidate_folio = f2fs_invalidate_folio,
1821 };
1822
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1823 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1824 {
1825 return sbi->compress_inode->i_mapping;
1826 }
1827
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1828 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1829 {
1830 if (!sbi->compress_inode)
1831 return;
1832 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1833 }
1834
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1835 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1836 nid_t ino, block_t blkaddr)
1837 {
1838 struct page *cpage;
1839 int ret;
1840
1841 if (!test_opt(sbi, COMPRESS_CACHE))
1842 return;
1843
1844 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1845 return;
1846
1847 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1848 return;
1849
1850 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1851 if (cpage) {
1852 f2fs_put_page(cpage, 0);
1853 return;
1854 }
1855
1856 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1857 if (!cpage)
1858 return;
1859
1860 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1861 blkaddr, GFP_NOFS);
1862 if (ret) {
1863 f2fs_put_page(cpage, 0);
1864 return;
1865 }
1866
1867 set_page_private_data(cpage, ino);
1868
1869 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1870 goto out;
1871
1872 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1873 SetPageUptodate(cpage);
1874 out:
1875 f2fs_put_page(cpage, 1);
1876 }
1877
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1878 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1879 block_t blkaddr)
1880 {
1881 struct page *cpage;
1882 bool hitted = false;
1883
1884 if (!test_opt(sbi, COMPRESS_CACHE))
1885 return false;
1886
1887 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1888 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1889 if (cpage) {
1890 if (PageUptodate(cpage)) {
1891 atomic_inc(&sbi->compress_page_hit);
1892 memcpy(page_address(page),
1893 page_address(cpage), PAGE_SIZE);
1894 hitted = true;
1895 }
1896 f2fs_put_page(cpage, 1);
1897 }
1898
1899 return hitted;
1900 }
1901
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1902 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1903 {
1904 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1905 struct folio_batch fbatch;
1906 pgoff_t index = 0;
1907 pgoff_t end = MAX_BLKADDR(sbi);
1908
1909 if (!mapping->nrpages)
1910 return;
1911
1912 folio_batch_init(&fbatch);
1913
1914 do {
1915 unsigned int nr, i;
1916
1917 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1918 if (!nr)
1919 break;
1920
1921 for (i = 0; i < nr; i++) {
1922 struct folio *folio = fbatch.folios[i];
1923
1924 folio_lock(folio);
1925 if (folio->mapping != mapping) {
1926 folio_unlock(folio);
1927 continue;
1928 }
1929
1930 if (ino != get_page_private_data(&folio->page)) {
1931 folio_unlock(folio);
1932 continue;
1933 }
1934
1935 generic_error_remove_page(mapping, &folio->page);
1936 folio_unlock(folio);
1937 }
1938 folio_batch_release(&fbatch);
1939 cond_resched();
1940 } while (index < end);
1941 }
1942
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1943 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1944 {
1945 struct inode *inode;
1946
1947 if (!test_opt(sbi, COMPRESS_CACHE))
1948 return 0;
1949
1950 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1951 if (IS_ERR(inode))
1952 return PTR_ERR(inode);
1953 sbi->compress_inode = inode;
1954
1955 sbi->compress_percent = COMPRESS_PERCENT;
1956 sbi->compress_watermark = COMPRESS_WATERMARK;
1957
1958 atomic_set(&sbi->compress_page_hit, 0);
1959
1960 return 0;
1961 }
1962
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1963 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1964 {
1965 if (!sbi->compress_inode)
1966 return;
1967 iput(sbi->compress_inode);
1968 sbi->compress_inode = NULL;
1969 }
1970
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1971 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1972 {
1973 dev_t dev = sbi->sb->s_bdev->bd_dev;
1974 char slab_name[32];
1975
1976 if (!f2fs_sb_has_compression(sbi))
1977 return 0;
1978
1979 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1980
1981 sbi->page_array_slab_size = sizeof(struct page *) <<
1982 F2FS_OPTION(sbi).compress_log_size;
1983
1984 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1985 sbi->page_array_slab_size);
1986 if (!sbi->page_array_slab)
1987 return -ENOMEM;
1988 return 0;
1989 }
1990
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1991 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1992 {
1993 kmem_cache_destroy(sbi->page_array_slab);
1994 }
1995
f2fs_init_cic_cache(void)1996 static int __init f2fs_init_cic_cache(void)
1997 {
1998 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1999 sizeof(struct compress_io_ctx));
2000 if (!cic_entry_slab)
2001 return -ENOMEM;
2002 return 0;
2003 }
2004
f2fs_destroy_cic_cache(void)2005 static void f2fs_destroy_cic_cache(void)
2006 {
2007 kmem_cache_destroy(cic_entry_slab);
2008 }
2009
f2fs_init_dic_cache(void)2010 static int __init f2fs_init_dic_cache(void)
2011 {
2012 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2013 sizeof(struct decompress_io_ctx));
2014 if (!dic_entry_slab)
2015 return -ENOMEM;
2016 return 0;
2017 }
2018
f2fs_destroy_dic_cache(void)2019 static void f2fs_destroy_dic_cache(void)
2020 {
2021 kmem_cache_destroy(dic_entry_slab);
2022 }
2023
f2fs_init_compress_cache(void)2024 int __init f2fs_init_compress_cache(void)
2025 {
2026 int err;
2027
2028 err = f2fs_init_cic_cache();
2029 if (err)
2030 goto out;
2031 err = f2fs_init_dic_cache();
2032 if (err)
2033 goto free_cic;
2034 return 0;
2035 free_cic:
2036 f2fs_destroy_cic_cache();
2037 out:
2038 return -ENOMEM;
2039 }
2040
f2fs_destroy_compress_cache(void)2041 void f2fs_destroy_compress_cache(void)
2042 {
2043 f2fs_destroy_dic_cache();
2044 f2fs_destroy_cic_cache();
2045 }
2046