1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44
45 #define UART_NR 14
46
47 #define SERIAL_AMBA_MAJOR 204
48 #define SERIAL_AMBA_MINOR 64
49 #define SERIAL_AMBA_NR UART_NR
50
51 #define AMBA_ISR_PASS_LIMIT 256
52
53 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX (1 << 16)
55
56 enum {
57 REG_DR,
58 REG_ST_DMAWM,
59 REG_ST_TIMEOUT,
60 REG_FR,
61 REG_LCRH_RX,
62 REG_LCRH_TX,
63 REG_IBRD,
64 REG_FBRD,
65 REG_CR,
66 REG_IFLS,
67 REG_IMSC,
68 REG_RIS,
69 REG_MIS,
70 REG_ICR,
71 REG_DMACR,
72 REG_ST_XFCR,
73 REG_ST_XON1,
74 REG_ST_XON2,
75 REG_ST_XOFF1,
76 REG_ST_XOFF2,
77 REG_ST_ITCR,
78 REG_ST_ITIP,
79 REG_ST_ABCR,
80 REG_ST_ABIMSC,
81
82 /* The size of the array - must be last */
83 REG_ARRAY_SIZE,
84 };
85
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
100 };
101
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 const u16 *reg_offset;
105 unsigned int ifls;
106 unsigned int fr_busy;
107 unsigned int fr_dsr;
108 unsigned int fr_cts;
109 unsigned int fr_ri;
110 unsigned int inv_fr;
111 bool access_32b;
112 bool oversampling;
113 bool dma_threshold;
114 bool cts_event_workaround;
115 bool always_enabled;
116 bool fixed_options;
117
118 unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120
get_fifosize_arm(struct amba_device * dev)121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 return amba_rev(dev) < 3 ? 16 : 32;
124 }
125
126 static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
139 };
140
141 static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
147 .access_32b = true,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
153 };
154
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
163 .access_32b = true,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169 };
170 #endif
171
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198
get_fifosize_st(struct amba_device * dev)199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 return 64;
202 }
203
204 static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
217 };
218
219 /* Deals with DMA transactions */
220
221 struct pl011_sgbuf {
222 struct scatterlist sg;
223 char *buf;
224 };
225
226 struct pl011_dmarx_data {
227 struct dma_chan *chan;
228 struct completion complete;
229 bool use_buf_b;
230 struct pl011_sgbuf sgbuf_a;
231 struct pl011_sgbuf sgbuf_b;
232 dma_cookie_t cookie;
233 bool running;
234 struct timer_list timer;
235 unsigned int last_residue;
236 unsigned long last_jiffies;
237 bool auto_poll_rate;
238 unsigned int poll_rate;
239 unsigned int poll_timeout;
240 };
241
242 struct pl011_dmatx_data {
243 struct dma_chan *chan;
244 struct scatterlist sg;
245 char *buf;
246 bool queued;
247 };
248
249 /*
250 * We wrap our port structure around the generic uart_port.
251 */
252 struct uart_amba_port {
253 struct uart_port port;
254 const u16 *reg_offset;
255 struct clk *clk;
256 const struct vendor_data *vendor;
257 unsigned int dmacr; /* dma control reg */
258 unsigned int im; /* interrupt mask */
259 unsigned int old_status;
260 unsigned int fifosize; /* vendor-specific */
261 unsigned int fixed_baud; /* vendor-set fixed baud rate */
262 char type[12];
263 bool rs485_tx_started;
264 unsigned int rs485_tx_drain_interval; /* usecs */
265 #ifdef CONFIG_DMA_ENGINE
266 /* DMA stuff */
267 bool using_tx_dma;
268 bool using_rx_dma;
269 struct pl011_dmarx_data dmarx;
270 struct pl011_dmatx_data dmatx;
271 bool dma_probed;
272 #endif
273 };
274
275 static unsigned int pl011_tx_empty(struct uart_port *port);
276
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
278 unsigned int reg)
279 {
280 return uap->reg_offset[reg];
281 }
282
pl011_read(const struct uart_amba_port * uap,unsigned int reg)283 static unsigned int pl011_read(const struct uart_amba_port *uap,
284 unsigned int reg)
285 {
286 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
287
288 return (uap->port.iotype == UPIO_MEM32) ?
289 readl_relaxed(addr) : readw_relaxed(addr);
290 }
291
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
293 unsigned int reg)
294 {
295 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
296
297 if (uap->port.iotype == UPIO_MEM32)
298 writel_relaxed(val, addr);
299 else
300 writew_relaxed(val, addr);
301 }
302
303 /*
304 * Reads up to 256 characters from the FIFO or until it's empty and
305 * inserts them into the TTY layer. Returns the number of characters
306 * read from the FIFO.
307 */
pl011_fifo_to_tty(struct uart_amba_port * uap)308 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
309 {
310 unsigned int ch, flag, fifotaken;
311 int sysrq;
312 u16 status;
313
314 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
315 status = pl011_read(uap, REG_FR);
316 if (status & UART01x_FR_RXFE)
317 break;
318
319 /* Take chars from the FIFO and update status */
320 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
321 flag = TTY_NORMAL;
322 uap->port.icount.rx++;
323
324 if (unlikely(ch & UART_DR_ERROR)) {
325 if (ch & UART011_DR_BE) {
326 ch &= ~(UART011_DR_FE | UART011_DR_PE);
327 uap->port.icount.brk++;
328 if (uart_handle_break(&uap->port))
329 continue;
330 } else if (ch & UART011_DR_PE)
331 uap->port.icount.parity++;
332 else if (ch & UART011_DR_FE)
333 uap->port.icount.frame++;
334 if (ch & UART011_DR_OE)
335 uap->port.icount.overrun++;
336
337 ch &= uap->port.read_status_mask;
338
339 if (ch & UART011_DR_BE)
340 flag = TTY_BREAK;
341 else if (ch & UART011_DR_PE)
342 flag = TTY_PARITY;
343 else if (ch & UART011_DR_FE)
344 flag = TTY_FRAME;
345 }
346
347 spin_unlock(&uap->port.lock);
348 sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
349 spin_lock(&uap->port.lock);
350
351 if (!sysrq)
352 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
353 }
354
355 return fifotaken;
356 }
357
358
359 /*
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
363 */
364 #ifdef CONFIG_DMA_ENGINE
365
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367
pl011_sgbuf_init(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)368 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
369 enum dma_data_direction dir)
370 {
371 dma_addr_t dma_addr;
372
373 sg->buf = dma_alloc_coherent(chan->device->dev,
374 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
375 if (!sg->buf)
376 return -ENOMEM;
377
378 sg_init_table(&sg->sg, 1);
379 sg_set_page(&sg->sg, phys_to_page(dma_addr),
380 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
381 sg_dma_address(&sg->sg) = dma_addr;
382 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
383
384 return 0;
385 }
386
pl011_sgbuf_free(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)387 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 enum dma_data_direction dir)
389 {
390 if (sg->buf) {
391 dma_free_coherent(chan->device->dev,
392 PL011_DMA_BUFFER_SIZE, sg->buf,
393 sg_dma_address(&sg->sg));
394 }
395 }
396
pl011_dma_probe(struct uart_amba_port * uap)397 static void pl011_dma_probe(struct uart_amba_port *uap)
398 {
399 /* DMA is the sole user of the platform data right now */
400 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
401 struct device *dev = uap->port.dev;
402 struct dma_slave_config tx_conf = {
403 .dst_addr = uap->port.mapbase +
404 pl011_reg_to_offset(uap, REG_DR),
405 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
406 .direction = DMA_MEM_TO_DEV,
407 .dst_maxburst = uap->fifosize >> 1,
408 .device_fc = false,
409 };
410 struct dma_chan *chan;
411 dma_cap_mask_t mask;
412
413 uap->dma_probed = true;
414 chan = dma_request_chan(dev, "tx");
415 if (IS_ERR(chan)) {
416 if (PTR_ERR(chan) == -EPROBE_DEFER) {
417 uap->dma_probed = false;
418 return;
419 }
420
421 /* We need platform data */
422 if (!plat || !plat->dma_filter) {
423 dev_info(uap->port.dev, "no DMA platform data\n");
424 return;
425 }
426
427 /* Try to acquire a generic DMA engine slave TX channel */
428 dma_cap_zero(mask);
429 dma_cap_set(DMA_SLAVE, mask);
430
431 chan = dma_request_channel(mask, plat->dma_filter,
432 plat->dma_tx_param);
433 if (!chan) {
434 dev_err(uap->port.dev, "no TX DMA channel!\n");
435 return;
436 }
437 }
438
439 dmaengine_slave_config(chan, &tx_conf);
440 uap->dmatx.chan = chan;
441
442 dev_info(uap->port.dev, "DMA channel TX %s\n",
443 dma_chan_name(uap->dmatx.chan));
444
445 /* Optionally make use of an RX channel as well */
446 chan = dma_request_slave_channel(dev, "rx");
447
448 if (!chan && plat && plat->dma_rx_param) {
449 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
450
451 if (!chan) {
452 dev_err(uap->port.dev, "no RX DMA channel!\n");
453 return;
454 }
455 }
456
457 if (chan) {
458 struct dma_slave_config rx_conf = {
459 .src_addr = uap->port.mapbase +
460 pl011_reg_to_offset(uap, REG_DR),
461 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
462 .direction = DMA_DEV_TO_MEM,
463 .src_maxburst = uap->fifosize >> 2,
464 .device_fc = false,
465 };
466 struct dma_slave_caps caps;
467
468 /*
469 * Some DMA controllers provide information on their capabilities.
470 * If the controller does, check for suitable residue processing
471 * otherwise assime all is well.
472 */
473 if (0 == dma_get_slave_caps(chan, &caps)) {
474 if (caps.residue_granularity ==
475 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
476 dma_release_channel(chan);
477 dev_info(uap->port.dev,
478 "RX DMA disabled - no residue processing\n");
479 return;
480 }
481 }
482 dmaengine_slave_config(chan, &rx_conf);
483 uap->dmarx.chan = chan;
484
485 uap->dmarx.auto_poll_rate = false;
486 if (plat && plat->dma_rx_poll_enable) {
487 /* Set poll rate if specified. */
488 if (plat->dma_rx_poll_rate) {
489 uap->dmarx.auto_poll_rate = false;
490 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
491 } else {
492 /*
493 * 100 ms defaults to poll rate if not
494 * specified. This will be adjusted with
495 * the baud rate at set_termios.
496 */
497 uap->dmarx.auto_poll_rate = true;
498 uap->dmarx.poll_rate = 100;
499 }
500 /* 3 secs defaults poll_timeout if not specified. */
501 if (plat->dma_rx_poll_timeout)
502 uap->dmarx.poll_timeout =
503 plat->dma_rx_poll_timeout;
504 else
505 uap->dmarx.poll_timeout = 3000;
506 } else if (!plat && dev->of_node) {
507 uap->dmarx.auto_poll_rate = of_property_read_bool(
508 dev->of_node, "auto-poll");
509 if (uap->dmarx.auto_poll_rate) {
510 u32 x;
511
512 if (0 == of_property_read_u32(dev->of_node,
513 "poll-rate-ms", &x))
514 uap->dmarx.poll_rate = x;
515 else
516 uap->dmarx.poll_rate = 100;
517 if (0 == of_property_read_u32(dev->of_node,
518 "poll-timeout-ms", &x))
519 uap->dmarx.poll_timeout = x;
520 else
521 uap->dmarx.poll_timeout = 3000;
522 }
523 }
524 dev_info(uap->port.dev, "DMA channel RX %s\n",
525 dma_chan_name(uap->dmarx.chan));
526 }
527 }
528
pl011_dma_remove(struct uart_amba_port * uap)529 static void pl011_dma_remove(struct uart_amba_port *uap)
530 {
531 if (uap->dmatx.chan)
532 dma_release_channel(uap->dmatx.chan);
533 if (uap->dmarx.chan)
534 dma_release_channel(uap->dmarx.chan);
535 }
536
537 /* Forward declare these for the refill routine */
538 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
539 static void pl011_start_tx_pio(struct uart_amba_port *uap);
540
541 /*
542 * The current DMA TX buffer has been sent.
543 * Try to queue up another DMA buffer.
544 */
pl011_dma_tx_callback(void * data)545 static void pl011_dma_tx_callback(void *data)
546 {
547 struct uart_amba_port *uap = data;
548 struct pl011_dmatx_data *dmatx = &uap->dmatx;
549 unsigned long flags;
550 u16 dmacr;
551
552 spin_lock_irqsave(&uap->port.lock, flags);
553 if (uap->dmatx.queued)
554 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
555 DMA_TO_DEVICE);
556
557 dmacr = uap->dmacr;
558 uap->dmacr = dmacr & ~UART011_TXDMAE;
559 pl011_write(uap->dmacr, uap, REG_DMACR);
560
561 /*
562 * If TX DMA was disabled, it means that we've stopped the DMA for
563 * some reason (eg, XOFF received, or we want to send an X-char.)
564 *
565 * Note: we need to be careful here of a potential race between DMA
566 * and the rest of the driver - if the driver disables TX DMA while
567 * a TX buffer completing, we must update the tx queued status to
568 * get further refills (hence we check dmacr).
569 */
570 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
571 uart_circ_empty(&uap->port.state->xmit)) {
572 uap->dmatx.queued = false;
573 spin_unlock_irqrestore(&uap->port.lock, flags);
574 return;
575 }
576
577 if (pl011_dma_tx_refill(uap) <= 0)
578 /*
579 * We didn't queue a DMA buffer for some reason, but we
580 * have data pending to be sent. Re-enable the TX IRQ.
581 */
582 pl011_start_tx_pio(uap);
583
584 spin_unlock_irqrestore(&uap->port.lock, flags);
585 }
586
587 /*
588 * Try to refill the TX DMA buffer.
589 * Locking: called with port lock held and IRQs disabled.
590 * Returns:
591 * 1 if we queued up a TX DMA buffer.
592 * 0 if we didn't want to handle this by DMA
593 * <0 on error
594 */
pl011_dma_tx_refill(struct uart_amba_port * uap)595 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
596 {
597 struct pl011_dmatx_data *dmatx = &uap->dmatx;
598 struct dma_chan *chan = dmatx->chan;
599 struct dma_device *dma_dev = chan->device;
600 struct dma_async_tx_descriptor *desc;
601 struct circ_buf *xmit = &uap->port.state->xmit;
602 unsigned int count;
603
604 /*
605 * Try to avoid the overhead involved in using DMA if the
606 * transaction fits in the first half of the FIFO, by using
607 * the standard interrupt handling. This ensures that we
608 * issue a uart_write_wakeup() at the appropriate time.
609 */
610 count = uart_circ_chars_pending(xmit);
611 if (count < (uap->fifosize >> 1)) {
612 uap->dmatx.queued = false;
613 return 0;
614 }
615
616 /*
617 * Bodge: don't send the last character by DMA, as this
618 * will prevent XON from notifying us to restart DMA.
619 */
620 count -= 1;
621
622 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
623 if (count > PL011_DMA_BUFFER_SIZE)
624 count = PL011_DMA_BUFFER_SIZE;
625
626 if (xmit->tail < xmit->head)
627 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
628 else {
629 size_t first = UART_XMIT_SIZE - xmit->tail;
630 size_t second;
631
632 if (first > count)
633 first = count;
634 second = count - first;
635
636 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
637 if (second)
638 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
639 }
640
641 dmatx->sg.length = count;
642
643 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
644 uap->dmatx.queued = false;
645 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
646 return -EBUSY;
647 }
648
649 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
650 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
651 if (!desc) {
652 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
653 uap->dmatx.queued = false;
654 /*
655 * If DMA cannot be used right now, we complete this
656 * transaction via IRQ and let the TTY layer retry.
657 */
658 dev_dbg(uap->port.dev, "TX DMA busy\n");
659 return -EBUSY;
660 }
661
662 /* Some data to go along to the callback */
663 desc->callback = pl011_dma_tx_callback;
664 desc->callback_param = uap;
665
666 /* All errors should happen at prepare time */
667 dmaengine_submit(desc);
668
669 /* Fire the DMA transaction */
670 dma_dev->device_issue_pending(chan);
671
672 uap->dmacr |= UART011_TXDMAE;
673 pl011_write(uap->dmacr, uap, REG_DMACR);
674 uap->dmatx.queued = true;
675
676 /*
677 * Now we know that DMA will fire, so advance the ring buffer
678 * with the stuff we just dispatched.
679 */
680 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
681 uap->port.icount.tx += count;
682
683 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
684 uart_write_wakeup(&uap->port);
685
686 return 1;
687 }
688
689 /*
690 * We received a transmit interrupt without a pending X-char but with
691 * pending characters.
692 * Locking: called with port lock held and IRQs disabled.
693 * Returns:
694 * false if we want to use PIO to transmit
695 * true if we queued a DMA buffer
696 */
pl011_dma_tx_irq(struct uart_amba_port * uap)697 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
698 {
699 if (!uap->using_tx_dma)
700 return false;
701
702 /*
703 * If we already have a TX buffer queued, but received a
704 * TX interrupt, it will be because we've just sent an X-char.
705 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
706 */
707 if (uap->dmatx.queued) {
708 uap->dmacr |= UART011_TXDMAE;
709 pl011_write(uap->dmacr, uap, REG_DMACR);
710 uap->im &= ~UART011_TXIM;
711 pl011_write(uap->im, uap, REG_IMSC);
712 return true;
713 }
714
715 /*
716 * We don't have a TX buffer queued, so try to queue one.
717 * If we successfully queued a buffer, mask the TX IRQ.
718 */
719 if (pl011_dma_tx_refill(uap) > 0) {
720 uap->im &= ~UART011_TXIM;
721 pl011_write(uap->im, uap, REG_IMSC);
722 return true;
723 }
724 return false;
725 }
726
727 /*
728 * Stop the DMA transmit (eg, due to received XOFF).
729 * Locking: called with port lock held and IRQs disabled.
730 */
pl011_dma_tx_stop(struct uart_amba_port * uap)731 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
732 {
733 if (uap->dmatx.queued) {
734 uap->dmacr &= ~UART011_TXDMAE;
735 pl011_write(uap->dmacr, uap, REG_DMACR);
736 }
737 }
738
739 /*
740 * Try to start a DMA transmit, or in the case of an XON/OFF
741 * character queued for send, try to get that character out ASAP.
742 * Locking: called with port lock held and IRQs disabled.
743 * Returns:
744 * false if we want the TX IRQ to be enabled
745 * true if we have a buffer queued
746 */
pl011_dma_tx_start(struct uart_amba_port * uap)747 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
748 {
749 u16 dmacr;
750
751 if (!uap->using_tx_dma)
752 return false;
753
754 if (!uap->port.x_char) {
755 /* no X-char, try to push chars out in DMA mode */
756 bool ret = true;
757
758 if (!uap->dmatx.queued) {
759 if (pl011_dma_tx_refill(uap) > 0) {
760 uap->im &= ~UART011_TXIM;
761 pl011_write(uap->im, uap, REG_IMSC);
762 } else
763 ret = false;
764 } else if (!(uap->dmacr & UART011_TXDMAE)) {
765 uap->dmacr |= UART011_TXDMAE;
766 pl011_write(uap->dmacr, uap, REG_DMACR);
767 }
768 return ret;
769 }
770
771 /*
772 * We have an X-char to send. Disable DMA to prevent it loading
773 * the TX fifo, and then see if we can stuff it into the FIFO.
774 */
775 dmacr = uap->dmacr;
776 uap->dmacr &= ~UART011_TXDMAE;
777 pl011_write(uap->dmacr, uap, REG_DMACR);
778
779 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
780 /*
781 * No space in the FIFO, so enable the transmit interrupt
782 * so we know when there is space. Note that once we've
783 * loaded the character, we should just re-enable DMA.
784 */
785 return false;
786 }
787
788 pl011_write(uap->port.x_char, uap, REG_DR);
789 uap->port.icount.tx++;
790 uap->port.x_char = 0;
791
792 /* Success - restore the DMA state */
793 uap->dmacr = dmacr;
794 pl011_write(dmacr, uap, REG_DMACR);
795
796 return true;
797 }
798
799 /*
800 * Flush the transmit buffer.
801 * Locking: called with port lock held and IRQs disabled.
802 */
pl011_dma_flush_buffer(struct uart_port * port)803 static void pl011_dma_flush_buffer(struct uart_port *port)
804 __releases(&uap->port.lock)
805 __acquires(&uap->port.lock)
806 {
807 struct uart_amba_port *uap =
808 container_of(port, struct uart_amba_port, port);
809
810 if (!uap->using_tx_dma)
811 return;
812
813 dmaengine_terminate_async(uap->dmatx.chan);
814
815 if (uap->dmatx.queued) {
816 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
817 DMA_TO_DEVICE);
818 uap->dmatx.queued = false;
819 uap->dmacr &= ~UART011_TXDMAE;
820 pl011_write(uap->dmacr, uap, REG_DMACR);
821 }
822 }
823
824 static void pl011_dma_rx_callback(void *data);
825
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)826 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
827 {
828 struct dma_chan *rxchan = uap->dmarx.chan;
829 struct pl011_dmarx_data *dmarx = &uap->dmarx;
830 struct dma_async_tx_descriptor *desc;
831 struct pl011_sgbuf *sgbuf;
832
833 if (!rxchan)
834 return -EIO;
835
836 /* Start the RX DMA job */
837 sgbuf = uap->dmarx.use_buf_b ?
838 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
839 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
840 DMA_DEV_TO_MEM,
841 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
842 /*
843 * If the DMA engine is busy and cannot prepare a
844 * channel, no big deal, the driver will fall back
845 * to interrupt mode as a result of this error code.
846 */
847 if (!desc) {
848 uap->dmarx.running = false;
849 dmaengine_terminate_all(rxchan);
850 return -EBUSY;
851 }
852
853 /* Some data to go along to the callback */
854 desc->callback = pl011_dma_rx_callback;
855 desc->callback_param = uap;
856 dmarx->cookie = dmaengine_submit(desc);
857 dma_async_issue_pending(rxchan);
858
859 uap->dmacr |= UART011_RXDMAE;
860 pl011_write(uap->dmacr, uap, REG_DMACR);
861 uap->dmarx.running = true;
862
863 uap->im &= ~UART011_RXIM;
864 pl011_write(uap->im, uap, REG_IMSC);
865
866 return 0;
867 }
868
869 /*
870 * This is called when either the DMA job is complete, or
871 * the FIFO timeout interrupt occurred. This must be called
872 * with the port spinlock uap->port.lock held.
873 */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)874 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
875 u32 pending, bool use_buf_b,
876 bool readfifo)
877 {
878 struct tty_port *port = &uap->port.state->port;
879 struct pl011_sgbuf *sgbuf = use_buf_b ?
880 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
881 int dma_count = 0;
882 u32 fifotaken = 0; /* only used for vdbg() */
883
884 struct pl011_dmarx_data *dmarx = &uap->dmarx;
885 int dmataken = 0;
886
887 if (uap->dmarx.poll_rate) {
888 /* The data can be taken by polling */
889 dmataken = sgbuf->sg.length - dmarx->last_residue;
890 /* Recalculate the pending size */
891 if (pending >= dmataken)
892 pending -= dmataken;
893 }
894
895 /* Pick the remain data from the DMA */
896 if (pending) {
897
898 /*
899 * First take all chars in the DMA pipe, then look in the FIFO.
900 * Note that tty_insert_flip_buf() tries to take as many chars
901 * as it can.
902 */
903 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
904 pending);
905
906 uap->port.icount.rx += dma_count;
907 if (dma_count < pending)
908 dev_warn(uap->port.dev,
909 "couldn't insert all characters (TTY is full?)\n");
910 }
911
912 /* Reset the last_residue for Rx DMA poll */
913 if (uap->dmarx.poll_rate)
914 dmarx->last_residue = sgbuf->sg.length;
915
916 /*
917 * Only continue with trying to read the FIFO if all DMA chars have
918 * been taken first.
919 */
920 if (dma_count == pending && readfifo) {
921 /* Clear any error flags */
922 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
923 UART011_FEIS, uap, REG_ICR);
924
925 /*
926 * If we read all the DMA'd characters, and we had an
927 * incomplete buffer, that could be due to an rx error, or
928 * maybe we just timed out. Read any pending chars and check
929 * the error status.
930 *
931 * Error conditions will only occur in the FIFO, these will
932 * trigger an immediate interrupt and stop the DMA job, so we
933 * will always find the error in the FIFO, never in the DMA
934 * buffer.
935 */
936 fifotaken = pl011_fifo_to_tty(uap);
937 }
938
939 dev_vdbg(uap->port.dev,
940 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
941 dma_count, fifotaken);
942 tty_flip_buffer_push(port);
943 }
944
pl011_dma_rx_irq(struct uart_amba_port * uap)945 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
946 {
947 struct pl011_dmarx_data *dmarx = &uap->dmarx;
948 struct dma_chan *rxchan = dmarx->chan;
949 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
950 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
951 size_t pending;
952 struct dma_tx_state state;
953 enum dma_status dmastat;
954
955 /*
956 * Pause the transfer so we can trust the current counter,
957 * do this before we pause the PL011 block, else we may
958 * overflow the FIFO.
959 */
960 if (dmaengine_pause(rxchan))
961 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
962 dmastat = rxchan->device->device_tx_status(rxchan,
963 dmarx->cookie, &state);
964 if (dmastat != DMA_PAUSED)
965 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
966
967 /* Disable RX DMA - incoming data will wait in the FIFO */
968 uap->dmacr &= ~UART011_RXDMAE;
969 pl011_write(uap->dmacr, uap, REG_DMACR);
970 uap->dmarx.running = false;
971
972 pending = sgbuf->sg.length - state.residue;
973 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
974 /* Then we terminate the transfer - we now know our residue */
975 dmaengine_terminate_all(rxchan);
976
977 /*
978 * This will take the chars we have so far and insert
979 * into the framework.
980 */
981 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
982
983 /* Switch buffer & re-trigger DMA job */
984 dmarx->use_buf_b = !dmarx->use_buf_b;
985 if (pl011_dma_rx_trigger_dma(uap)) {
986 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
987 "fall back to interrupt mode\n");
988 uap->im |= UART011_RXIM;
989 pl011_write(uap->im, uap, REG_IMSC);
990 }
991 }
992
pl011_dma_rx_callback(void * data)993 static void pl011_dma_rx_callback(void *data)
994 {
995 struct uart_amba_port *uap = data;
996 struct pl011_dmarx_data *dmarx = &uap->dmarx;
997 struct dma_chan *rxchan = dmarx->chan;
998 bool lastbuf = dmarx->use_buf_b;
999 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001 size_t pending;
1002 struct dma_tx_state state;
1003 int ret;
1004
1005 /*
1006 * This completion interrupt occurs typically when the
1007 * RX buffer is totally stuffed but no timeout has yet
1008 * occurred. When that happens, we just want the RX
1009 * routine to flush out the secondary DMA buffer while
1010 * we immediately trigger the next DMA job.
1011 */
1012 spin_lock_irq(&uap->port.lock);
1013 /*
1014 * Rx data can be taken by the UART interrupts during
1015 * the DMA irq handler. So we check the residue here.
1016 */
1017 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018 pending = sgbuf->sg.length - state.residue;
1019 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020 /* Then we terminate the transfer - we now know our residue */
1021 dmaengine_terminate_all(rxchan);
1022
1023 uap->dmarx.running = false;
1024 dmarx->use_buf_b = !lastbuf;
1025 ret = pl011_dma_rx_trigger_dma(uap);
1026
1027 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028 spin_unlock_irq(&uap->port.lock);
1029 /*
1030 * Do this check after we picked the DMA chars so we don't
1031 * get some IRQ immediately from RX.
1032 */
1033 if (ret) {
1034 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035 "fall back to interrupt mode\n");
1036 uap->im |= UART011_RXIM;
1037 pl011_write(uap->im, uap, REG_IMSC);
1038 }
1039 }
1040
1041 /*
1042 * Stop accepting received characters, when we're shutting down or
1043 * suspending this port.
1044 * Locking: called with port lock held and IRQs disabled.
1045 */
pl011_dma_rx_stop(struct uart_amba_port * uap)1046 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047 {
1048 /* FIXME. Just disable the DMA enable */
1049 uap->dmacr &= ~UART011_RXDMAE;
1050 pl011_write(uap->dmacr, uap, REG_DMACR);
1051 }
1052
1053 /*
1054 * Timer handler for Rx DMA polling.
1055 * Every polling, It checks the residue in the dma buffer and transfer
1056 * data to the tty. Also, last_residue is updated for the next polling.
1057 */
pl011_dma_rx_poll(struct timer_list * t)1058 static void pl011_dma_rx_poll(struct timer_list *t)
1059 {
1060 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1061 struct tty_port *port = &uap->port.state->port;
1062 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1063 struct dma_chan *rxchan = uap->dmarx.chan;
1064 unsigned long flags;
1065 unsigned int dmataken = 0;
1066 unsigned int size = 0;
1067 struct pl011_sgbuf *sgbuf;
1068 int dma_count;
1069 struct dma_tx_state state;
1070
1071 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1072 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1073 if (likely(state.residue < dmarx->last_residue)) {
1074 dmataken = sgbuf->sg.length - dmarx->last_residue;
1075 size = dmarx->last_residue - state.residue;
1076 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1077 size);
1078 if (dma_count == size)
1079 dmarx->last_residue = state.residue;
1080 dmarx->last_jiffies = jiffies;
1081 }
1082 tty_flip_buffer_push(port);
1083
1084 /*
1085 * If no data is received in poll_timeout, the driver will fall back
1086 * to interrupt mode. We will retrigger DMA at the first interrupt.
1087 */
1088 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1089 > uap->dmarx.poll_timeout) {
1090
1091 spin_lock_irqsave(&uap->port.lock, flags);
1092 pl011_dma_rx_stop(uap);
1093 uap->im |= UART011_RXIM;
1094 pl011_write(uap->im, uap, REG_IMSC);
1095 spin_unlock_irqrestore(&uap->port.lock, flags);
1096
1097 uap->dmarx.running = false;
1098 dmaengine_terminate_all(rxchan);
1099 del_timer(&uap->dmarx.timer);
1100 } else {
1101 mod_timer(&uap->dmarx.timer,
1102 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1103 }
1104 }
1105
pl011_dma_startup(struct uart_amba_port * uap)1106 static void pl011_dma_startup(struct uart_amba_port *uap)
1107 {
1108 int ret;
1109
1110 if (!uap->dma_probed)
1111 pl011_dma_probe(uap);
1112
1113 if (!uap->dmatx.chan)
1114 return;
1115
1116 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1117 if (!uap->dmatx.buf) {
1118 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1119 uap->port.fifosize = uap->fifosize;
1120 return;
1121 }
1122
1123 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1124
1125 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1126 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1127 uap->using_tx_dma = true;
1128
1129 if (!uap->dmarx.chan)
1130 goto skip_rx;
1131
1132 /* Allocate and map DMA RX buffers */
1133 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1134 DMA_FROM_DEVICE);
1135 if (ret) {
1136 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1137 "RX buffer A", ret);
1138 goto skip_rx;
1139 }
1140
1141 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1142 DMA_FROM_DEVICE);
1143 if (ret) {
1144 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1145 "RX buffer B", ret);
1146 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1147 DMA_FROM_DEVICE);
1148 goto skip_rx;
1149 }
1150
1151 uap->using_rx_dma = true;
1152
1153 skip_rx:
1154 /* Turn on DMA error (RX/TX will be enabled on demand) */
1155 uap->dmacr |= UART011_DMAONERR;
1156 pl011_write(uap->dmacr, uap, REG_DMACR);
1157
1158 /*
1159 * ST Micro variants has some specific dma burst threshold
1160 * compensation. Set this to 16 bytes, so burst will only
1161 * be issued above/below 16 bytes.
1162 */
1163 if (uap->vendor->dma_threshold)
1164 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1165 uap, REG_ST_DMAWM);
1166
1167 if (uap->using_rx_dma) {
1168 if (pl011_dma_rx_trigger_dma(uap))
1169 dev_dbg(uap->port.dev, "could not trigger initial "
1170 "RX DMA job, fall back to interrupt mode\n");
1171 if (uap->dmarx.poll_rate) {
1172 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1173 mod_timer(&uap->dmarx.timer,
1174 jiffies +
1175 msecs_to_jiffies(uap->dmarx.poll_rate));
1176 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1177 uap->dmarx.last_jiffies = jiffies;
1178 }
1179 }
1180 }
1181
pl011_dma_shutdown(struct uart_amba_port * uap)1182 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1183 {
1184 if (!(uap->using_tx_dma || uap->using_rx_dma))
1185 return;
1186
1187 /* Disable RX and TX DMA */
1188 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1189 cpu_relax();
1190
1191 spin_lock_irq(&uap->port.lock);
1192 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1193 pl011_write(uap->dmacr, uap, REG_DMACR);
1194 spin_unlock_irq(&uap->port.lock);
1195
1196 if (uap->using_tx_dma) {
1197 /* In theory, this should already be done by pl011_dma_flush_buffer */
1198 dmaengine_terminate_all(uap->dmatx.chan);
1199 if (uap->dmatx.queued) {
1200 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1201 DMA_TO_DEVICE);
1202 uap->dmatx.queued = false;
1203 }
1204
1205 kfree(uap->dmatx.buf);
1206 uap->using_tx_dma = false;
1207 }
1208
1209 if (uap->using_rx_dma) {
1210 dmaengine_terminate_all(uap->dmarx.chan);
1211 /* Clean up the RX DMA */
1212 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1213 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1214 if (uap->dmarx.poll_rate)
1215 del_timer_sync(&uap->dmarx.timer);
1216 uap->using_rx_dma = false;
1217 }
1218 }
1219
pl011_dma_rx_available(struct uart_amba_port * uap)1220 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1221 {
1222 return uap->using_rx_dma;
1223 }
1224
pl011_dma_rx_running(struct uart_amba_port * uap)1225 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1226 {
1227 return uap->using_rx_dma && uap->dmarx.running;
1228 }
1229
1230 #else
1231 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1232 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1233 {
1234 }
1235
pl011_dma_startup(struct uart_amba_port * uap)1236 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1237 {
1238 }
1239
pl011_dma_shutdown(struct uart_amba_port * uap)1240 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1241 {
1242 }
1243
pl011_dma_tx_irq(struct uart_amba_port * uap)1244 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1245 {
1246 return false;
1247 }
1248
pl011_dma_tx_stop(struct uart_amba_port * uap)1249 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1250 {
1251 }
1252
pl011_dma_tx_start(struct uart_amba_port * uap)1253 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1254 {
1255 return false;
1256 }
1257
pl011_dma_rx_irq(struct uart_amba_port * uap)1258 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1259 {
1260 }
1261
pl011_dma_rx_stop(struct uart_amba_port * uap)1262 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1263 {
1264 }
1265
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1266 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1267 {
1268 return -EIO;
1269 }
1270
pl011_dma_rx_available(struct uart_amba_port * uap)1271 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1272 {
1273 return false;
1274 }
1275
pl011_dma_rx_running(struct uart_amba_port * uap)1276 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1277 {
1278 return false;
1279 }
1280
1281 #define pl011_dma_flush_buffer NULL
1282 #endif
1283
pl011_rs485_tx_stop(struct uart_amba_port * uap)1284 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1285 {
1286 /*
1287 * To be on the safe side only time out after twice as many iterations
1288 * as fifo size.
1289 */
1290 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1291 struct uart_port *port = &uap->port;
1292 int i = 0;
1293 u32 cr;
1294
1295 /* Wait until hardware tx queue is empty */
1296 while (!pl011_tx_empty(port)) {
1297 if (i > MAX_TX_DRAIN_ITERS) {
1298 dev_warn(port->dev,
1299 "timeout while draining hardware tx queue\n");
1300 break;
1301 }
1302
1303 udelay(uap->rs485_tx_drain_interval);
1304 i++;
1305 }
1306
1307 if (port->rs485.delay_rts_after_send)
1308 mdelay(port->rs485.delay_rts_after_send);
1309
1310 cr = pl011_read(uap, REG_CR);
1311
1312 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1313 cr &= ~UART011_CR_RTS;
1314 else
1315 cr |= UART011_CR_RTS;
1316
1317 /* Disable the transmitter and reenable the transceiver */
1318 cr &= ~UART011_CR_TXE;
1319 cr |= UART011_CR_RXE;
1320 pl011_write(cr, uap, REG_CR);
1321
1322 uap->rs485_tx_started = false;
1323 }
1324
pl011_stop_tx(struct uart_port * port)1325 static void pl011_stop_tx(struct uart_port *port)
1326 {
1327 struct uart_amba_port *uap =
1328 container_of(port, struct uart_amba_port, port);
1329
1330 uap->im &= ~UART011_TXIM;
1331 pl011_write(uap->im, uap, REG_IMSC);
1332 pl011_dma_tx_stop(uap);
1333
1334 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1335 pl011_rs485_tx_stop(uap);
1336 }
1337
1338 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1339
1340 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1341 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1342 {
1343 if (pl011_tx_chars(uap, false)) {
1344 uap->im |= UART011_TXIM;
1345 pl011_write(uap->im, uap, REG_IMSC);
1346 }
1347 }
1348
pl011_start_tx(struct uart_port * port)1349 static void pl011_start_tx(struct uart_port *port)
1350 {
1351 struct uart_amba_port *uap =
1352 container_of(port, struct uart_amba_port, port);
1353
1354 if (!pl011_dma_tx_start(uap))
1355 pl011_start_tx_pio(uap);
1356 }
1357
pl011_stop_rx(struct uart_port * port)1358 static void pl011_stop_rx(struct uart_port *port)
1359 {
1360 struct uart_amba_port *uap =
1361 container_of(port, struct uart_amba_port, port);
1362
1363 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1364 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1365 pl011_write(uap->im, uap, REG_IMSC);
1366
1367 pl011_dma_rx_stop(uap);
1368 }
1369
pl011_throttle_rx(struct uart_port * port)1370 static void pl011_throttle_rx(struct uart_port *port)
1371 {
1372 unsigned long flags;
1373
1374 spin_lock_irqsave(&port->lock, flags);
1375 pl011_stop_rx(port);
1376 spin_unlock_irqrestore(&port->lock, flags);
1377 }
1378
pl011_enable_ms(struct uart_port * port)1379 static void pl011_enable_ms(struct uart_port *port)
1380 {
1381 struct uart_amba_port *uap =
1382 container_of(port, struct uart_amba_port, port);
1383
1384 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1385 pl011_write(uap->im, uap, REG_IMSC);
1386 }
1387
pl011_rx_chars(struct uart_amba_port * uap)1388 static void pl011_rx_chars(struct uart_amba_port *uap)
1389 __releases(&uap->port.lock)
1390 __acquires(&uap->port.lock)
1391 {
1392 pl011_fifo_to_tty(uap);
1393
1394 spin_unlock(&uap->port.lock);
1395 tty_flip_buffer_push(&uap->port.state->port);
1396 /*
1397 * If we were temporarily out of DMA mode for a while,
1398 * attempt to switch back to DMA mode again.
1399 */
1400 if (pl011_dma_rx_available(uap)) {
1401 if (pl011_dma_rx_trigger_dma(uap)) {
1402 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1403 "fall back to interrupt mode again\n");
1404 uap->im |= UART011_RXIM;
1405 pl011_write(uap->im, uap, REG_IMSC);
1406 } else {
1407 #ifdef CONFIG_DMA_ENGINE
1408 /* Start Rx DMA poll */
1409 if (uap->dmarx.poll_rate) {
1410 uap->dmarx.last_jiffies = jiffies;
1411 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1412 mod_timer(&uap->dmarx.timer,
1413 jiffies +
1414 msecs_to_jiffies(uap->dmarx.poll_rate));
1415 }
1416 #endif
1417 }
1418 }
1419 spin_lock(&uap->port.lock);
1420 }
1421
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1422 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1423 bool from_irq)
1424 {
1425 if (unlikely(!from_irq) &&
1426 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1427 return false; /* unable to transmit character */
1428
1429 pl011_write(c, uap, REG_DR);
1430 uap->port.icount.tx++;
1431
1432 return true;
1433 }
1434
pl011_rs485_tx_start(struct uart_amba_port * uap)1435 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1436 {
1437 struct uart_port *port = &uap->port;
1438 u32 cr;
1439
1440 /* Enable transmitter */
1441 cr = pl011_read(uap, REG_CR);
1442 cr |= UART011_CR_TXE;
1443
1444 /* Disable receiver if half-duplex */
1445 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1446 cr &= ~UART011_CR_RXE;
1447
1448 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1449 cr &= ~UART011_CR_RTS;
1450 else
1451 cr |= UART011_CR_RTS;
1452
1453 pl011_write(cr, uap, REG_CR);
1454
1455 if (port->rs485.delay_rts_before_send)
1456 mdelay(port->rs485.delay_rts_before_send);
1457
1458 uap->rs485_tx_started = true;
1459 }
1460
1461 /* Returns true if tx interrupts have to be (kept) enabled */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1462 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1463 {
1464 struct circ_buf *xmit = &uap->port.state->xmit;
1465 int count = uap->fifosize >> 1;
1466
1467 if (uap->port.x_char) {
1468 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1469 return true;
1470 uap->port.x_char = 0;
1471 --count;
1472 }
1473 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1474 pl011_stop_tx(&uap->port);
1475 return false;
1476 }
1477
1478 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1479 !uap->rs485_tx_started)
1480 pl011_rs485_tx_start(uap);
1481
1482 /* If we are using DMA mode, try to send some characters. */
1483 if (pl011_dma_tx_irq(uap))
1484 return true;
1485
1486 do {
1487 if (likely(from_irq) && count-- == 0)
1488 break;
1489
1490 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1491 break;
1492
1493 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1494 } while (!uart_circ_empty(xmit));
1495
1496 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1497 uart_write_wakeup(&uap->port);
1498
1499 if (uart_circ_empty(xmit)) {
1500 pl011_stop_tx(&uap->port);
1501 return false;
1502 }
1503 return true;
1504 }
1505
pl011_modem_status(struct uart_amba_port * uap)1506 static void pl011_modem_status(struct uart_amba_port *uap)
1507 {
1508 unsigned int status, delta;
1509
1510 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1511
1512 delta = status ^ uap->old_status;
1513 uap->old_status = status;
1514
1515 if (!delta)
1516 return;
1517
1518 if (delta & UART01x_FR_DCD)
1519 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1520
1521 if (delta & uap->vendor->fr_dsr)
1522 uap->port.icount.dsr++;
1523
1524 if (delta & uap->vendor->fr_cts)
1525 uart_handle_cts_change(&uap->port,
1526 status & uap->vendor->fr_cts);
1527
1528 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1529 }
1530
check_apply_cts_event_workaround(struct uart_amba_port * uap)1531 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1532 {
1533 if (!uap->vendor->cts_event_workaround)
1534 return;
1535
1536 /* workaround to make sure that all bits are unlocked.. */
1537 pl011_write(0x00, uap, REG_ICR);
1538
1539 /*
1540 * WA: introduce 26ns(1 uart clk) delay before W1C;
1541 * single apb access will incur 2 pclk(133.12Mhz) delay,
1542 * so add 2 dummy reads
1543 */
1544 pl011_read(uap, REG_ICR);
1545 pl011_read(uap, REG_ICR);
1546 }
1547
pl011_int(int irq,void * dev_id)1548 static irqreturn_t pl011_int(int irq, void *dev_id)
1549 {
1550 struct uart_amba_port *uap = dev_id;
1551 unsigned long flags;
1552 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1553 int handled = 0;
1554
1555 spin_lock_irqsave(&uap->port.lock, flags);
1556 status = pl011_read(uap, REG_RIS) & uap->im;
1557 if (status) {
1558 do {
1559 check_apply_cts_event_workaround(uap);
1560
1561 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1562 UART011_RXIS),
1563 uap, REG_ICR);
1564
1565 if (status & (UART011_RTIS|UART011_RXIS)) {
1566 if (pl011_dma_rx_running(uap))
1567 pl011_dma_rx_irq(uap);
1568 else
1569 pl011_rx_chars(uap);
1570 }
1571 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1572 UART011_CTSMIS|UART011_RIMIS))
1573 pl011_modem_status(uap);
1574 if (status & UART011_TXIS)
1575 pl011_tx_chars(uap, true);
1576
1577 if (pass_counter-- == 0)
1578 break;
1579
1580 status = pl011_read(uap, REG_RIS) & uap->im;
1581 } while (status != 0);
1582 handled = 1;
1583 }
1584
1585 spin_unlock_irqrestore(&uap->port.lock, flags);
1586
1587 return IRQ_RETVAL(handled);
1588 }
1589
pl011_tx_empty(struct uart_port * port)1590 static unsigned int pl011_tx_empty(struct uart_port *port)
1591 {
1592 struct uart_amba_port *uap =
1593 container_of(port, struct uart_amba_port, port);
1594
1595 /* Allow feature register bits to be inverted to work around errata */
1596 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1597
1598 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1599 0 : TIOCSER_TEMT;
1600 }
1601
pl011_get_mctrl(struct uart_port * port)1602 static unsigned int pl011_get_mctrl(struct uart_port *port)
1603 {
1604 struct uart_amba_port *uap =
1605 container_of(port, struct uart_amba_port, port);
1606 unsigned int result = 0;
1607 unsigned int status = pl011_read(uap, REG_FR);
1608
1609 #define TIOCMBIT(uartbit, tiocmbit) \
1610 if (status & uartbit) \
1611 result |= tiocmbit
1612
1613 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1614 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1615 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1616 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1617 #undef TIOCMBIT
1618 return result;
1619 }
1620
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1621 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1622 {
1623 struct uart_amba_port *uap =
1624 container_of(port, struct uart_amba_port, port);
1625 unsigned int cr;
1626
1627 cr = pl011_read(uap, REG_CR);
1628
1629 #define TIOCMBIT(tiocmbit, uartbit) \
1630 if (mctrl & tiocmbit) \
1631 cr |= uartbit; \
1632 else \
1633 cr &= ~uartbit
1634
1635 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1636 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1637 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1638 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1639 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1640
1641 if (port->status & UPSTAT_AUTORTS) {
1642 /* We need to disable auto-RTS if we want to turn RTS off */
1643 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1644 }
1645 #undef TIOCMBIT
1646
1647 pl011_write(cr, uap, REG_CR);
1648 }
1649
pl011_break_ctl(struct uart_port * port,int break_state)1650 static void pl011_break_ctl(struct uart_port *port, int break_state)
1651 {
1652 struct uart_amba_port *uap =
1653 container_of(port, struct uart_amba_port, port);
1654 unsigned long flags;
1655 unsigned int lcr_h;
1656
1657 spin_lock_irqsave(&uap->port.lock, flags);
1658 lcr_h = pl011_read(uap, REG_LCRH_TX);
1659 if (break_state == -1)
1660 lcr_h |= UART01x_LCRH_BRK;
1661 else
1662 lcr_h &= ~UART01x_LCRH_BRK;
1663 pl011_write(lcr_h, uap, REG_LCRH_TX);
1664 spin_unlock_irqrestore(&uap->port.lock, flags);
1665 }
1666
1667 #ifdef CONFIG_CONSOLE_POLL
1668
pl011_quiesce_irqs(struct uart_port * port)1669 static void pl011_quiesce_irqs(struct uart_port *port)
1670 {
1671 struct uart_amba_port *uap =
1672 container_of(port, struct uart_amba_port, port);
1673
1674 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1675 /*
1676 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1677 * we simply mask it. start_tx() will unmask it.
1678 *
1679 * Note we can race with start_tx(), and if the race happens, the
1680 * polling user might get another interrupt just after we clear it.
1681 * But it should be OK and can happen even w/o the race, e.g.
1682 * controller immediately got some new data and raised the IRQ.
1683 *
1684 * And whoever uses polling routines assumes that it manages the device
1685 * (including tx queue), so we're also fine with start_tx()'s caller
1686 * side.
1687 */
1688 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1689 REG_IMSC);
1690 }
1691
pl011_get_poll_char(struct uart_port * port)1692 static int pl011_get_poll_char(struct uart_port *port)
1693 {
1694 struct uart_amba_port *uap =
1695 container_of(port, struct uart_amba_port, port);
1696 unsigned int status;
1697
1698 /*
1699 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1700 * debugger.
1701 */
1702 pl011_quiesce_irqs(port);
1703
1704 status = pl011_read(uap, REG_FR);
1705 if (status & UART01x_FR_RXFE)
1706 return NO_POLL_CHAR;
1707
1708 return pl011_read(uap, REG_DR);
1709 }
1710
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1711 static void pl011_put_poll_char(struct uart_port *port,
1712 unsigned char ch)
1713 {
1714 struct uart_amba_port *uap =
1715 container_of(port, struct uart_amba_port, port);
1716
1717 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1718 cpu_relax();
1719
1720 pl011_write(ch, uap, REG_DR);
1721 }
1722
1723 #endif /* CONFIG_CONSOLE_POLL */
1724
pl011_hwinit(struct uart_port * port)1725 static int pl011_hwinit(struct uart_port *port)
1726 {
1727 struct uart_amba_port *uap =
1728 container_of(port, struct uart_amba_port, port);
1729 int retval;
1730
1731 /* Optionaly enable pins to be muxed in and configured */
1732 pinctrl_pm_select_default_state(port->dev);
1733
1734 /*
1735 * Try to enable the clock producer.
1736 */
1737 retval = clk_prepare_enable(uap->clk);
1738 if (retval)
1739 return retval;
1740
1741 uap->port.uartclk = clk_get_rate(uap->clk);
1742
1743 /* Clear pending error and receive interrupts */
1744 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1745 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1746 uap, REG_ICR);
1747
1748 /*
1749 * Save interrupts enable mask, and enable RX interrupts in case if
1750 * the interrupt is used for NMI entry.
1751 */
1752 uap->im = pl011_read(uap, REG_IMSC);
1753 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1754
1755 if (dev_get_platdata(uap->port.dev)) {
1756 struct amba_pl011_data *plat;
1757
1758 plat = dev_get_platdata(uap->port.dev);
1759 if (plat->init)
1760 plat->init();
1761 }
1762 return 0;
1763 }
1764
pl011_split_lcrh(const struct uart_amba_port * uap)1765 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1766 {
1767 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1768 pl011_reg_to_offset(uap, REG_LCRH_TX);
1769 }
1770
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1771 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1772 {
1773 pl011_write(lcr_h, uap, REG_LCRH_RX);
1774 if (pl011_split_lcrh(uap)) {
1775 int i;
1776 /*
1777 * Wait 10 PCLKs before writing LCRH_TX register,
1778 * to get this delay write read only register 10 times
1779 */
1780 for (i = 0; i < 10; ++i)
1781 pl011_write(0xff, uap, REG_MIS);
1782 pl011_write(lcr_h, uap, REG_LCRH_TX);
1783 }
1784 }
1785
pl011_allocate_irq(struct uart_amba_port * uap)1786 static int pl011_allocate_irq(struct uart_amba_port *uap)
1787 {
1788 pl011_write(uap->im, uap, REG_IMSC);
1789
1790 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1791 }
1792
1793 /*
1794 * Enable interrupts, only timeouts when using DMA
1795 * if initial RX DMA job failed, start in interrupt mode
1796 * as well.
1797 */
pl011_enable_interrupts(struct uart_amba_port * uap)1798 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1799 {
1800 unsigned long flags;
1801 unsigned int i;
1802
1803 spin_lock_irqsave(&uap->port.lock, flags);
1804
1805 /* Clear out any spuriously appearing RX interrupts */
1806 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1807
1808 /*
1809 * RXIS is asserted only when the RX FIFO transitions from below
1810 * to above the trigger threshold. If the RX FIFO is already
1811 * full to the threshold this can't happen and RXIS will now be
1812 * stuck off. Drain the RX FIFO explicitly to fix this:
1813 */
1814 for (i = 0; i < uap->fifosize * 2; ++i) {
1815 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1816 break;
1817
1818 pl011_read(uap, REG_DR);
1819 }
1820
1821 uap->im = UART011_RTIM;
1822 if (!pl011_dma_rx_running(uap))
1823 uap->im |= UART011_RXIM;
1824 pl011_write(uap->im, uap, REG_IMSC);
1825 spin_unlock_irqrestore(&uap->port.lock, flags);
1826 }
1827
pl011_unthrottle_rx(struct uart_port * port)1828 static void pl011_unthrottle_rx(struct uart_port *port)
1829 {
1830 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1831
1832 pl011_enable_interrupts(uap);
1833 }
1834
pl011_startup(struct uart_port * port)1835 static int pl011_startup(struct uart_port *port)
1836 {
1837 struct uart_amba_port *uap =
1838 container_of(port, struct uart_amba_port, port);
1839 unsigned int cr;
1840 int retval;
1841
1842 retval = pl011_hwinit(port);
1843 if (retval)
1844 goto clk_dis;
1845
1846 retval = pl011_allocate_irq(uap);
1847 if (retval)
1848 goto clk_dis;
1849
1850 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1851
1852 spin_lock_irq(&uap->port.lock);
1853
1854 cr = pl011_read(uap, REG_CR);
1855 cr &= UART011_CR_RTS | UART011_CR_DTR;
1856 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1857
1858 if (!(port->rs485.flags & SER_RS485_ENABLED))
1859 cr |= UART011_CR_TXE;
1860
1861 pl011_write(cr, uap, REG_CR);
1862
1863 spin_unlock_irq(&uap->port.lock);
1864
1865 /*
1866 * initialise the old status of the modem signals
1867 */
1868 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1869
1870 /* Startup DMA */
1871 pl011_dma_startup(uap);
1872
1873 pl011_enable_interrupts(uap);
1874
1875 return 0;
1876
1877 clk_dis:
1878 clk_disable_unprepare(uap->clk);
1879 return retval;
1880 }
1881
sbsa_uart_startup(struct uart_port * port)1882 static int sbsa_uart_startup(struct uart_port *port)
1883 {
1884 struct uart_amba_port *uap =
1885 container_of(port, struct uart_amba_port, port);
1886 int retval;
1887
1888 retval = pl011_hwinit(port);
1889 if (retval)
1890 return retval;
1891
1892 retval = pl011_allocate_irq(uap);
1893 if (retval)
1894 return retval;
1895
1896 /* The SBSA UART does not support any modem status lines. */
1897 uap->old_status = 0;
1898
1899 pl011_enable_interrupts(uap);
1900
1901 return 0;
1902 }
1903
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1904 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1905 unsigned int lcrh)
1906 {
1907 unsigned long val;
1908
1909 val = pl011_read(uap, lcrh);
1910 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1911 pl011_write(val, uap, lcrh);
1912 }
1913
1914 /*
1915 * disable the port. It should not disable RTS and DTR.
1916 * Also RTS and DTR state should be preserved to restore
1917 * it during startup().
1918 */
pl011_disable_uart(struct uart_amba_port * uap)1919 static void pl011_disable_uart(struct uart_amba_port *uap)
1920 {
1921 unsigned int cr;
1922
1923 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1924 spin_lock_irq(&uap->port.lock);
1925 cr = pl011_read(uap, REG_CR);
1926 cr &= UART011_CR_RTS | UART011_CR_DTR;
1927 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1928 pl011_write(cr, uap, REG_CR);
1929 spin_unlock_irq(&uap->port.lock);
1930
1931 /*
1932 * disable break condition and fifos
1933 */
1934 pl011_shutdown_channel(uap, REG_LCRH_RX);
1935 if (pl011_split_lcrh(uap))
1936 pl011_shutdown_channel(uap, REG_LCRH_TX);
1937 }
1938
pl011_disable_interrupts(struct uart_amba_port * uap)1939 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1940 {
1941 spin_lock_irq(&uap->port.lock);
1942
1943 /* mask all interrupts and clear all pending ones */
1944 uap->im = 0;
1945 pl011_write(uap->im, uap, REG_IMSC);
1946 pl011_write(0xffff, uap, REG_ICR);
1947
1948 spin_unlock_irq(&uap->port.lock);
1949 }
1950
pl011_shutdown(struct uart_port * port)1951 static void pl011_shutdown(struct uart_port *port)
1952 {
1953 struct uart_amba_port *uap =
1954 container_of(port, struct uart_amba_port, port);
1955
1956 pl011_disable_interrupts(uap);
1957
1958 pl011_dma_shutdown(uap);
1959
1960 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1961 pl011_rs485_tx_stop(uap);
1962
1963 free_irq(uap->port.irq, uap);
1964
1965 pl011_disable_uart(uap);
1966
1967 /*
1968 * Shut down the clock producer
1969 */
1970 clk_disable_unprepare(uap->clk);
1971 /* Optionally let pins go into sleep states */
1972 pinctrl_pm_select_sleep_state(port->dev);
1973
1974 if (dev_get_platdata(uap->port.dev)) {
1975 struct amba_pl011_data *plat;
1976
1977 plat = dev_get_platdata(uap->port.dev);
1978 if (plat->exit)
1979 plat->exit();
1980 }
1981
1982 if (uap->port.ops->flush_buffer)
1983 uap->port.ops->flush_buffer(port);
1984 }
1985
sbsa_uart_shutdown(struct uart_port * port)1986 static void sbsa_uart_shutdown(struct uart_port *port)
1987 {
1988 struct uart_amba_port *uap =
1989 container_of(port, struct uart_amba_port, port);
1990
1991 pl011_disable_interrupts(uap);
1992
1993 free_irq(uap->port.irq, uap);
1994
1995 if (uap->port.ops->flush_buffer)
1996 uap->port.ops->flush_buffer(port);
1997 }
1998
1999 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)2000 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2001 {
2002 port->read_status_mask = UART011_DR_OE | 255;
2003 if (termios->c_iflag & INPCK)
2004 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2005 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2006 port->read_status_mask |= UART011_DR_BE;
2007
2008 /*
2009 * Characters to ignore
2010 */
2011 port->ignore_status_mask = 0;
2012 if (termios->c_iflag & IGNPAR)
2013 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2014 if (termios->c_iflag & IGNBRK) {
2015 port->ignore_status_mask |= UART011_DR_BE;
2016 /*
2017 * If we're ignoring parity and break indicators,
2018 * ignore overruns too (for real raw support).
2019 */
2020 if (termios->c_iflag & IGNPAR)
2021 port->ignore_status_mask |= UART011_DR_OE;
2022 }
2023
2024 /*
2025 * Ignore all characters if CREAD is not set.
2026 */
2027 if ((termios->c_cflag & CREAD) == 0)
2028 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2029 }
2030
2031 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2032 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2033 const struct ktermios *old)
2034 {
2035 struct uart_amba_port *uap =
2036 container_of(port, struct uart_amba_port, port);
2037 unsigned int lcr_h, old_cr;
2038 unsigned long flags;
2039 unsigned int baud, quot, clkdiv;
2040 unsigned int bits;
2041
2042 if (uap->vendor->oversampling)
2043 clkdiv = 8;
2044 else
2045 clkdiv = 16;
2046
2047 /*
2048 * Ask the core to calculate the divisor for us.
2049 */
2050 baud = uart_get_baud_rate(port, termios, old, 0,
2051 port->uartclk / clkdiv);
2052 #ifdef CONFIG_DMA_ENGINE
2053 /*
2054 * Adjust RX DMA polling rate with baud rate if not specified.
2055 */
2056 if (uap->dmarx.auto_poll_rate)
2057 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2058 #endif
2059
2060 if (baud > port->uartclk/16)
2061 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2062 else
2063 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2064
2065 switch (termios->c_cflag & CSIZE) {
2066 case CS5:
2067 lcr_h = UART01x_LCRH_WLEN_5;
2068 break;
2069 case CS6:
2070 lcr_h = UART01x_LCRH_WLEN_6;
2071 break;
2072 case CS7:
2073 lcr_h = UART01x_LCRH_WLEN_7;
2074 break;
2075 default: // CS8
2076 lcr_h = UART01x_LCRH_WLEN_8;
2077 break;
2078 }
2079 if (termios->c_cflag & CSTOPB)
2080 lcr_h |= UART01x_LCRH_STP2;
2081 if (termios->c_cflag & PARENB) {
2082 lcr_h |= UART01x_LCRH_PEN;
2083 if (!(termios->c_cflag & PARODD))
2084 lcr_h |= UART01x_LCRH_EPS;
2085 if (termios->c_cflag & CMSPAR)
2086 lcr_h |= UART011_LCRH_SPS;
2087 }
2088 if (uap->fifosize > 1)
2089 lcr_h |= UART01x_LCRH_FEN;
2090
2091 bits = tty_get_frame_size(termios->c_cflag);
2092
2093 spin_lock_irqsave(&port->lock, flags);
2094
2095 /*
2096 * Update the per-port timeout.
2097 */
2098 uart_update_timeout(port, termios->c_cflag, baud);
2099
2100 /*
2101 * Calculate the approximated time it takes to transmit one character
2102 * with the given baud rate. We use this as the poll interval when we
2103 * wait for the tx queue to empty.
2104 */
2105 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2106
2107 pl011_setup_status_masks(port, termios);
2108
2109 if (UART_ENABLE_MS(port, termios->c_cflag))
2110 pl011_enable_ms(port);
2111
2112 if (port->rs485.flags & SER_RS485_ENABLED)
2113 termios->c_cflag &= ~CRTSCTS;
2114
2115 old_cr = pl011_read(uap, REG_CR);
2116
2117 if (termios->c_cflag & CRTSCTS) {
2118 if (old_cr & UART011_CR_RTS)
2119 old_cr |= UART011_CR_RTSEN;
2120
2121 old_cr |= UART011_CR_CTSEN;
2122 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2123 } else {
2124 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2125 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2126 }
2127
2128 if (uap->vendor->oversampling) {
2129 if (baud > port->uartclk / 16)
2130 old_cr |= ST_UART011_CR_OVSFACT;
2131 else
2132 old_cr &= ~ST_UART011_CR_OVSFACT;
2133 }
2134
2135 /*
2136 * Workaround for the ST Micro oversampling variants to
2137 * increase the bitrate slightly, by lowering the divisor,
2138 * to avoid delayed sampling of start bit at high speeds,
2139 * else we see data corruption.
2140 */
2141 if (uap->vendor->oversampling) {
2142 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2143 quot -= 1;
2144 else if ((baud > 3250000) && (quot > 2))
2145 quot -= 2;
2146 }
2147 /* Set baud rate */
2148 pl011_write(quot & 0x3f, uap, REG_FBRD);
2149 pl011_write(quot >> 6, uap, REG_IBRD);
2150
2151 /*
2152 * ----------v----------v----------v----------v-----
2153 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2154 * REG_FBRD & REG_IBRD.
2155 * ----------^----------^----------^----------^-----
2156 */
2157 pl011_write_lcr_h(uap, lcr_h);
2158 pl011_write(old_cr, uap, REG_CR);
2159
2160 spin_unlock_irqrestore(&port->lock, flags);
2161 }
2162
2163 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2164 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2165 const struct ktermios *old)
2166 {
2167 struct uart_amba_port *uap =
2168 container_of(port, struct uart_amba_port, port);
2169 unsigned long flags;
2170
2171 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2172
2173 /* The SBSA UART only supports 8n1 without hardware flow control. */
2174 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2175 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2176 termios->c_cflag |= CS8 | CLOCAL;
2177
2178 spin_lock_irqsave(&port->lock, flags);
2179 uart_update_timeout(port, CS8, uap->fixed_baud);
2180 pl011_setup_status_masks(port, termios);
2181 spin_unlock_irqrestore(&port->lock, flags);
2182 }
2183
pl011_type(struct uart_port * port)2184 static const char *pl011_type(struct uart_port *port)
2185 {
2186 struct uart_amba_port *uap =
2187 container_of(port, struct uart_amba_port, port);
2188 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2189 }
2190
2191 /*
2192 * Configure/autoconfigure the port.
2193 */
pl011_config_port(struct uart_port * port,int flags)2194 static void pl011_config_port(struct uart_port *port, int flags)
2195 {
2196 if (flags & UART_CONFIG_TYPE)
2197 port->type = PORT_AMBA;
2198 }
2199
2200 /*
2201 * verify the new serial_struct (for TIOCSSERIAL).
2202 */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2203 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2204 {
2205 int ret = 0;
2206 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2207 ret = -EINVAL;
2208 if (ser->irq < 0 || ser->irq >= nr_irqs)
2209 ret = -EINVAL;
2210 if (ser->baud_base < 9600)
2211 ret = -EINVAL;
2212 if (port->mapbase != (unsigned long) ser->iomem_base)
2213 ret = -EINVAL;
2214 return ret;
2215 }
2216
pl011_rs485_config(struct uart_port * port,struct ktermios * termios,struct serial_rs485 * rs485)2217 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2218 struct serial_rs485 *rs485)
2219 {
2220 struct uart_amba_port *uap =
2221 container_of(port, struct uart_amba_port, port);
2222
2223 if (port->rs485.flags & SER_RS485_ENABLED)
2224 pl011_rs485_tx_stop(uap);
2225
2226 /* Make sure auto RTS is disabled */
2227 if (rs485->flags & SER_RS485_ENABLED) {
2228 u32 cr = pl011_read(uap, REG_CR);
2229
2230 cr &= ~UART011_CR_RTSEN;
2231 pl011_write(cr, uap, REG_CR);
2232 port->status &= ~UPSTAT_AUTORTS;
2233 }
2234
2235 return 0;
2236 }
2237
2238 static const struct uart_ops amba_pl011_pops = {
2239 .tx_empty = pl011_tx_empty,
2240 .set_mctrl = pl011_set_mctrl,
2241 .get_mctrl = pl011_get_mctrl,
2242 .stop_tx = pl011_stop_tx,
2243 .start_tx = pl011_start_tx,
2244 .stop_rx = pl011_stop_rx,
2245 .throttle = pl011_throttle_rx,
2246 .unthrottle = pl011_unthrottle_rx,
2247 .enable_ms = pl011_enable_ms,
2248 .break_ctl = pl011_break_ctl,
2249 .startup = pl011_startup,
2250 .shutdown = pl011_shutdown,
2251 .flush_buffer = pl011_dma_flush_buffer,
2252 .set_termios = pl011_set_termios,
2253 .type = pl011_type,
2254 .config_port = pl011_config_port,
2255 .verify_port = pl011_verify_port,
2256 #ifdef CONFIG_CONSOLE_POLL
2257 .poll_init = pl011_hwinit,
2258 .poll_get_char = pl011_get_poll_char,
2259 .poll_put_char = pl011_put_poll_char,
2260 #endif
2261 };
2262
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2263 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2264 {
2265 }
2266
sbsa_uart_get_mctrl(struct uart_port * port)2267 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2268 {
2269 return 0;
2270 }
2271
2272 static const struct uart_ops sbsa_uart_pops = {
2273 .tx_empty = pl011_tx_empty,
2274 .set_mctrl = sbsa_uart_set_mctrl,
2275 .get_mctrl = sbsa_uart_get_mctrl,
2276 .stop_tx = pl011_stop_tx,
2277 .start_tx = pl011_start_tx,
2278 .stop_rx = pl011_stop_rx,
2279 .startup = sbsa_uart_startup,
2280 .shutdown = sbsa_uart_shutdown,
2281 .set_termios = sbsa_uart_set_termios,
2282 .type = pl011_type,
2283 .config_port = pl011_config_port,
2284 .verify_port = pl011_verify_port,
2285 #ifdef CONFIG_CONSOLE_POLL
2286 .poll_init = pl011_hwinit,
2287 .poll_get_char = pl011_get_poll_char,
2288 .poll_put_char = pl011_put_poll_char,
2289 #endif
2290 };
2291
2292 static struct uart_amba_port *amba_ports[UART_NR];
2293
2294 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2295
pl011_console_putchar(struct uart_port * port,unsigned char ch)2296 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2297 {
2298 struct uart_amba_port *uap =
2299 container_of(port, struct uart_amba_port, port);
2300
2301 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2302 cpu_relax();
2303 pl011_write(ch, uap, REG_DR);
2304 }
2305
2306 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2307 pl011_console_write(struct console *co, const char *s, unsigned int count)
2308 {
2309 struct uart_amba_port *uap = amba_ports[co->index];
2310 unsigned int old_cr = 0, new_cr;
2311 unsigned long flags;
2312 int locked = 1;
2313
2314 clk_enable(uap->clk);
2315
2316 local_irq_save(flags);
2317 if (uap->port.sysrq)
2318 locked = 0;
2319 else if (oops_in_progress)
2320 locked = spin_trylock(&uap->port.lock);
2321 else
2322 spin_lock(&uap->port.lock);
2323
2324 /*
2325 * First save the CR then disable the interrupts
2326 */
2327 if (!uap->vendor->always_enabled) {
2328 old_cr = pl011_read(uap, REG_CR);
2329 new_cr = old_cr & ~UART011_CR_CTSEN;
2330 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2331 pl011_write(new_cr, uap, REG_CR);
2332 }
2333
2334 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2335
2336 /*
2337 * Finally, wait for transmitter to become empty and restore the
2338 * TCR. Allow feature register bits to be inverted to work around
2339 * errata.
2340 */
2341 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2342 & uap->vendor->fr_busy)
2343 cpu_relax();
2344 if (!uap->vendor->always_enabled)
2345 pl011_write(old_cr, uap, REG_CR);
2346
2347 if (locked)
2348 spin_unlock(&uap->port.lock);
2349 local_irq_restore(flags);
2350
2351 clk_disable(uap->clk);
2352 }
2353
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2354 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2355 int *parity, int *bits)
2356 {
2357 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2358 unsigned int lcr_h, ibrd, fbrd;
2359
2360 lcr_h = pl011_read(uap, REG_LCRH_TX);
2361
2362 *parity = 'n';
2363 if (lcr_h & UART01x_LCRH_PEN) {
2364 if (lcr_h & UART01x_LCRH_EPS)
2365 *parity = 'e';
2366 else
2367 *parity = 'o';
2368 }
2369
2370 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2371 *bits = 7;
2372 else
2373 *bits = 8;
2374
2375 ibrd = pl011_read(uap, REG_IBRD);
2376 fbrd = pl011_read(uap, REG_FBRD);
2377
2378 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2379
2380 if (uap->vendor->oversampling) {
2381 if (pl011_read(uap, REG_CR)
2382 & ST_UART011_CR_OVSFACT)
2383 *baud *= 2;
2384 }
2385 }
2386 }
2387
pl011_console_setup(struct console * co,char * options)2388 static int pl011_console_setup(struct console *co, char *options)
2389 {
2390 struct uart_amba_port *uap;
2391 int baud = 38400;
2392 int bits = 8;
2393 int parity = 'n';
2394 int flow = 'n';
2395 int ret;
2396
2397 /*
2398 * Check whether an invalid uart number has been specified, and
2399 * if so, search for the first available port that does have
2400 * console support.
2401 */
2402 if (co->index >= UART_NR)
2403 co->index = 0;
2404 uap = amba_ports[co->index];
2405 if (!uap)
2406 return -ENODEV;
2407
2408 /* Allow pins to be muxed in and configured */
2409 pinctrl_pm_select_default_state(uap->port.dev);
2410
2411 ret = clk_prepare(uap->clk);
2412 if (ret)
2413 return ret;
2414
2415 if (dev_get_platdata(uap->port.dev)) {
2416 struct amba_pl011_data *plat;
2417
2418 plat = dev_get_platdata(uap->port.dev);
2419 if (plat->init)
2420 plat->init();
2421 }
2422
2423 uap->port.uartclk = clk_get_rate(uap->clk);
2424
2425 if (uap->vendor->fixed_options) {
2426 baud = uap->fixed_baud;
2427 } else {
2428 if (options)
2429 uart_parse_options(options,
2430 &baud, &parity, &bits, &flow);
2431 else
2432 pl011_console_get_options(uap, &baud, &parity, &bits);
2433 }
2434
2435 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2436 }
2437
2438 /**
2439 * pl011_console_match - non-standard console matching
2440 * @co: registering console
2441 * @name: name from console command line
2442 * @idx: index from console command line
2443 * @options: ptr to option string from console command line
2444 *
2445 * Only attempts to match console command lines of the form:
2446 * console=pl011,mmio|mmio32,<addr>[,<options>]
2447 * console=pl011,0x<addr>[,<options>]
2448 * This form is used to register an initial earlycon boot console and
2449 * replace it with the amba_console at pl011 driver init.
2450 *
2451 * Performs console setup for a match (as required by interface)
2452 * If no <options> are specified, then assume the h/w is already setup.
2453 *
2454 * Returns 0 if console matches; otherwise non-zero to use default matching
2455 */
pl011_console_match(struct console * co,char * name,int idx,char * options)2456 static int pl011_console_match(struct console *co, char *name, int idx,
2457 char *options)
2458 {
2459 unsigned char iotype;
2460 resource_size_t addr;
2461 int i;
2462
2463 /*
2464 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2465 * have a distinct console name, so make sure we check for that.
2466 * The actual implementation of the erratum occurs in the probe
2467 * function.
2468 */
2469 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2470 return -ENODEV;
2471
2472 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2473 return -ENODEV;
2474
2475 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2476 return -ENODEV;
2477
2478 /* try to match the port specified on the command line */
2479 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2480 struct uart_port *port;
2481
2482 if (!amba_ports[i])
2483 continue;
2484
2485 port = &amba_ports[i]->port;
2486
2487 if (port->mapbase != addr)
2488 continue;
2489
2490 co->index = i;
2491 port->cons = co;
2492 return pl011_console_setup(co, options);
2493 }
2494
2495 return -ENODEV;
2496 }
2497
2498 static struct uart_driver amba_reg;
2499 static struct console amba_console = {
2500 .name = "ttyAMA",
2501 .write = pl011_console_write,
2502 .device = uart_console_device,
2503 .setup = pl011_console_setup,
2504 .match = pl011_console_match,
2505 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2506 .index = -1,
2507 .data = &amba_reg,
2508 };
2509
2510 #define AMBA_CONSOLE (&amba_console)
2511
qdf2400_e44_putc(struct uart_port * port,unsigned char c)2512 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2513 {
2514 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2515 cpu_relax();
2516 writel(c, port->membase + UART01x_DR);
2517 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2518 cpu_relax();
2519 }
2520
qdf2400_e44_early_write(struct console * con,const char * s,unsigned n)2521 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2522 {
2523 struct earlycon_device *dev = con->data;
2524
2525 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2526 }
2527
pl011_putc(struct uart_port * port,unsigned char c)2528 static void pl011_putc(struct uart_port *port, unsigned char c)
2529 {
2530 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2531 cpu_relax();
2532 if (port->iotype == UPIO_MEM32)
2533 writel(c, port->membase + UART01x_DR);
2534 else
2535 writeb(c, port->membase + UART01x_DR);
2536 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2537 cpu_relax();
2538 }
2539
pl011_early_write(struct console * con,const char * s,unsigned n)2540 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2541 {
2542 struct earlycon_device *dev = con->data;
2543
2544 uart_console_write(&dev->port, s, n, pl011_putc);
2545 }
2546
2547 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2548 static int pl011_getc(struct uart_port *port)
2549 {
2550 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2551 return NO_POLL_CHAR;
2552
2553 if (port->iotype == UPIO_MEM32)
2554 return readl(port->membase + UART01x_DR);
2555 else
2556 return readb(port->membase + UART01x_DR);
2557 }
2558
pl011_early_read(struct console * con,char * s,unsigned int n)2559 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2560 {
2561 struct earlycon_device *dev = con->data;
2562 int ch, num_read = 0;
2563
2564 while (num_read < n) {
2565 ch = pl011_getc(&dev->port);
2566 if (ch == NO_POLL_CHAR)
2567 break;
2568
2569 s[num_read++] = ch;
2570 }
2571
2572 return num_read;
2573 }
2574 #else
2575 #define pl011_early_read NULL
2576 #endif
2577
2578 /*
2579 * On non-ACPI systems, earlycon is enabled by specifying
2580 * "earlycon=pl011,<address>" on the kernel command line.
2581 *
2582 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2583 * by specifying only "earlycon" on the command line. Because it requires
2584 * SPCR, the console starts after ACPI is parsed, which is later than a
2585 * traditional early console.
2586 *
2587 * To get the traditional early console that starts before ACPI is parsed,
2588 * specify the full "earlycon=pl011,<address>" option.
2589 */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2590 static int __init pl011_early_console_setup(struct earlycon_device *device,
2591 const char *opt)
2592 {
2593 if (!device->port.membase)
2594 return -ENODEV;
2595
2596 device->con->write = pl011_early_write;
2597 device->con->read = pl011_early_read;
2598
2599 return 0;
2600 }
2601 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2602 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2603
2604 /*
2605 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2606 * Erratum 44, traditional earlycon can be enabled by specifying
2607 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2608 *
2609 * Alternatively, you can just specify "earlycon", and the early console
2610 * will be enabled with the information from the SPCR table. In this
2611 * case, the SPCR code will detect the need for the E44 work-around,
2612 * and set the console name to "qdf2400_e44".
2613 */
2614 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2615 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2616 const char *opt)
2617 {
2618 if (!device->port.membase)
2619 return -ENODEV;
2620
2621 device->con->write = qdf2400_e44_early_write;
2622 return 0;
2623 }
2624 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2625
2626 #else
2627 #define AMBA_CONSOLE NULL
2628 #endif
2629
2630 static struct uart_driver amba_reg = {
2631 .owner = THIS_MODULE,
2632 .driver_name = "ttyAMA",
2633 .dev_name = "ttyAMA",
2634 .major = SERIAL_AMBA_MAJOR,
2635 .minor = SERIAL_AMBA_MINOR,
2636 .nr = UART_NR,
2637 .cons = AMBA_CONSOLE,
2638 };
2639
pl011_probe_dt_alias(int index,struct device * dev)2640 static int pl011_probe_dt_alias(int index, struct device *dev)
2641 {
2642 struct device_node *np;
2643 static bool seen_dev_with_alias = false;
2644 static bool seen_dev_without_alias = false;
2645 int ret = index;
2646
2647 if (!IS_ENABLED(CONFIG_OF))
2648 return ret;
2649
2650 np = dev->of_node;
2651 if (!np)
2652 return ret;
2653
2654 ret = of_alias_get_id(np, "serial");
2655 if (ret < 0) {
2656 seen_dev_without_alias = true;
2657 ret = index;
2658 } else {
2659 seen_dev_with_alias = true;
2660 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2661 dev_warn(dev, "requested serial port %d not available.\n", ret);
2662 ret = index;
2663 }
2664 }
2665
2666 if (seen_dev_with_alias && seen_dev_without_alias)
2667 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2668
2669 return ret;
2670 }
2671
2672 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2673 static void pl011_unregister_port(struct uart_amba_port *uap)
2674 {
2675 int i;
2676 bool busy = false;
2677
2678 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2679 if (amba_ports[i] == uap)
2680 amba_ports[i] = NULL;
2681 else if (amba_ports[i])
2682 busy = true;
2683 }
2684 pl011_dma_remove(uap);
2685 if (!busy)
2686 uart_unregister_driver(&amba_reg);
2687 }
2688
pl011_find_free_port(void)2689 static int pl011_find_free_port(void)
2690 {
2691 int i;
2692
2693 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2694 if (amba_ports[i] == NULL)
2695 return i;
2696
2697 return -EBUSY;
2698 }
2699
pl011_get_rs485_mode(struct uart_amba_port * uap)2700 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2701 {
2702 struct uart_port *port = &uap->port;
2703 int ret;
2704
2705 ret = uart_get_rs485_mode(port);
2706 if (ret)
2707 return ret;
2708
2709 return 0;
2710 }
2711
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2712 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2713 struct resource *mmiobase, int index)
2714 {
2715 void __iomem *base;
2716 int ret;
2717
2718 base = devm_ioremap_resource(dev, mmiobase);
2719 if (IS_ERR(base))
2720 return PTR_ERR(base);
2721
2722 index = pl011_probe_dt_alias(index, dev);
2723
2724 uap->port.dev = dev;
2725 uap->port.mapbase = mmiobase->start;
2726 uap->port.membase = base;
2727 uap->port.fifosize = uap->fifosize;
2728 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2729 uap->port.flags = UPF_BOOT_AUTOCONF;
2730 uap->port.line = index;
2731
2732 ret = pl011_get_rs485_mode(uap);
2733 if (ret)
2734 return ret;
2735
2736 amba_ports[index] = uap;
2737
2738 return 0;
2739 }
2740
pl011_register_port(struct uart_amba_port * uap)2741 static int pl011_register_port(struct uart_amba_port *uap)
2742 {
2743 int ret, i;
2744
2745 /* Ensure interrupts from this UART are masked and cleared */
2746 pl011_write(0, uap, REG_IMSC);
2747 pl011_write(0xffff, uap, REG_ICR);
2748
2749 if (!amba_reg.state) {
2750 ret = uart_register_driver(&amba_reg);
2751 if (ret < 0) {
2752 dev_err(uap->port.dev,
2753 "Failed to register AMBA-PL011 driver\n");
2754 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2755 if (amba_ports[i] == uap)
2756 amba_ports[i] = NULL;
2757 return ret;
2758 }
2759 }
2760
2761 ret = uart_add_one_port(&amba_reg, &uap->port);
2762 if (ret)
2763 pl011_unregister_port(uap);
2764
2765 return ret;
2766 }
2767
2768 static const struct serial_rs485 pl011_rs485_supported = {
2769 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2770 SER_RS485_RX_DURING_TX,
2771 .delay_rts_before_send = 1,
2772 .delay_rts_after_send = 1,
2773 };
2774
pl011_probe(struct amba_device * dev,const struct amba_id * id)2775 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2776 {
2777 struct uart_amba_port *uap;
2778 struct vendor_data *vendor = id->data;
2779 int portnr, ret;
2780 u32 val;
2781
2782 portnr = pl011_find_free_port();
2783 if (portnr < 0)
2784 return portnr;
2785
2786 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2787 GFP_KERNEL);
2788 if (!uap)
2789 return -ENOMEM;
2790
2791 uap->clk = devm_clk_get(&dev->dev, NULL);
2792 if (IS_ERR(uap->clk))
2793 return PTR_ERR(uap->clk);
2794
2795 uap->reg_offset = vendor->reg_offset;
2796 uap->vendor = vendor;
2797 uap->fifosize = vendor->get_fifosize(dev);
2798 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2799 uap->port.irq = dev->irq[0];
2800 uap->port.ops = &amba_pl011_pops;
2801 uap->port.rs485_config = pl011_rs485_config;
2802 uap->port.rs485_supported = pl011_rs485_supported;
2803 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2804
2805 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2806 switch (val) {
2807 case 1:
2808 uap->port.iotype = UPIO_MEM;
2809 break;
2810 case 4:
2811 uap->port.iotype = UPIO_MEM32;
2812 break;
2813 default:
2814 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2815 val);
2816 return -EINVAL;
2817 }
2818 }
2819
2820 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2821 if (ret)
2822 return ret;
2823
2824 amba_set_drvdata(dev, uap);
2825
2826 return pl011_register_port(uap);
2827 }
2828
pl011_remove(struct amba_device * dev)2829 static void pl011_remove(struct amba_device *dev)
2830 {
2831 struct uart_amba_port *uap = amba_get_drvdata(dev);
2832
2833 uart_remove_one_port(&amba_reg, &uap->port);
2834 pl011_unregister_port(uap);
2835 }
2836
2837 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2838 static int pl011_suspend(struct device *dev)
2839 {
2840 struct uart_amba_port *uap = dev_get_drvdata(dev);
2841
2842 if (!uap)
2843 return -EINVAL;
2844
2845 return uart_suspend_port(&amba_reg, &uap->port);
2846 }
2847
pl011_resume(struct device * dev)2848 static int pl011_resume(struct device *dev)
2849 {
2850 struct uart_amba_port *uap = dev_get_drvdata(dev);
2851
2852 if (!uap)
2853 return -EINVAL;
2854
2855 return uart_resume_port(&amba_reg, &uap->port);
2856 }
2857 #endif
2858
2859 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2860
sbsa_uart_probe(struct platform_device * pdev)2861 static int sbsa_uart_probe(struct platform_device *pdev)
2862 {
2863 struct uart_amba_port *uap;
2864 struct resource *r;
2865 int portnr, ret;
2866 int baudrate;
2867
2868 /*
2869 * Check the mandatory baud rate parameter in the DT node early
2870 * so that we can easily exit with the error.
2871 */
2872 if (pdev->dev.of_node) {
2873 struct device_node *np = pdev->dev.of_node;
2874
2875 ret = of_property_read_u32(np, "current-speed", &baudrate);
2876 if (ret)
2877 return ret;
2878 } else {
2879 baudrate = 115200;
2880 }
2881
2882 portnr = pl011_find_free_port();
2883 if (portnr < 0)
2884 return portnr;
2885
2886 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2887 GFP_KERNEL);
2888 if (!uap)
2889 return -ENOMEM;
2890
2891 ret = platform_get_irq(pdev, 0);
2892 if (ret < 0)
2893 return ret;
2894 uap->port.irq = ret;
2895
2896 #ifdef CONFIG_ACPI_SPCR_TABLE
2897 if (qdf2400_e44_present) {
2898 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2899 uap->vendor = &vendor_qdt_qdf2400_e44;
2900 } else
2901 #endif
2902 uap->vendor = &vendor_sbsa;
2903
2904 uap->reg_offset = uap->vendor->reg_offset;
2905 uap->fifosize = 32;
2906 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2907 uap->port.ops = &sbsa_uart_pops;
2908 uap->fixed_baud = baudrate;
2909
2910 snprintf(uap->type, sizeof(uap->type), "SBSA");
2911
2912 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2913
2914 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2915 if (ret)
2916 return ret;
2917
2918 platform_set_drvdata(pdev, uap);
2919
2920 return pl011_register_port(uap);
2921 }
2922
sbsa_uart_remove(struct platform_device * pdev)2923 static int sbsa_uart_remove(struct platform_device *pdev)
2924 {
2925 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2926
2927 uart_remove_one_port(&amba_reg, &uap->port);
2928 pl011_unregister_port(uap);
2929 return 0;
2930 }
2931
2932 static const struct of_device_id sbsa_uart_of_match[] = {
2933 { .compatible = "arm,sbsa-uart", },
2934 {},
2935 };
2936 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2937
2938 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2939 { "ARMH0011", 0 },
2940 { "ARMHB000", 0 },
2941 {},
2942 };
2943 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2944
2945 static struct platform_driver arm_sbsa_uart_platform_driver = {
2946 .probe = sbsa_uart_probe,
2947 .remove = sbsa_uart_remove,
2948 .driver = {
2949 .name = "sbsa-uart",
2950 .pm = &pl011_dev_pm_ops,
2951 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2952 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2953 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2954 },
2955 };
2956
2957 static const struct amba_id pl011_ids[] = {
2958 {
2959 .id = 0x00041011,
2960 .mask = 0x000fffff,
2961 .data = &vendor_arm,
2962 },
2963 {
2964 .id = 0x00380802,
2965 .mask = 0x00ffffff,
2966 .data = &vendor_st,
2967 },
2968 { 0, 0 },
2969 };
2970
2971 MODULE_DEVICE_TABLE(amba, pl011_ids);
2972
2973 static struct amba_driver pl011_driver = {
2974 .drv = {
2975 .name = "uart-pl011",
2976 .pm = &pl011_dev_pm_ops,
2977 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2978 },
2979 .id_table = pl011_ids,
2980 .probe = pl011_probe,
2981 .remove = pl011_remove,
2982 };
2983
pl011_init(void)2984 static int __init pl011_init(void)
2985 {
2986 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2987
2988 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2989 pr_warn("could not register SBSA UART platform driver\n");
2990 return amba_driver_register(&pl011_driver);
2991 }
2992
pl011_exit(void)2993 static void __exit pl011_exit(void)
2994 {
2995 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2996 amba_driver_unregister(&pl011_driver);
2997 }
2998
2999 /*
3000 * While this can be a module, if builtin it's most likely the console
3001 * So let's leave module_exit but move module_init to an earlier place
3002 */
3003 arch_initcall(pl011_init);
3004 module_exit(pl011_exit);
3005
3006 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3007 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3008 MODULE_LICENSE("GPL");
3009