1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36 * because dependencies are tracked for both nvme-tcp and user contexts. Using
37 * a separate class prevents lockdep from conflating nvme-tcp socket use with
38 * user-space socket API use.
39 */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42
nvme_tcp_reclassify_socket(struct socket * sock)43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 struct sock *sk = sock->sk;
46
47 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 return;
49
50 switch (sk->sk_family) {
51 case AF_INET:
52 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 &nvme_tcp_slock_key[0],
54 "sk_lock-AF_INET-NVME",
55 &nvme_tcp_sk_key[0]);
56 break;
57 case AF_INET6:
58 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 &nvme_tcp_slock_key[1],
60 "sk_lock-AF_INET6-NVME",
61 &nvme_tcp_sk_key[1]);
62 break;
63 default:
64 WARN_ON_ONCE(1);
65 }
66 }
67 #else
nvme_tcp_reclassify_socket(struct socket * sock)68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70
71 enum nvme_tcp_send_state {
72 NVME_TCP_SEND_CMD_PDU = 0,
73 NVME_TCP_SEND_H2C_PDU,
74 NVME_TCP_SEND_DATA,
75 NVME_TCP_SEND_DDGST,
76 };
77
78 struct nvme_tcp_request {
79 struct nvme_request req;
80 void *pdu;
81 struct nvme_tcp_queue *queue;
82 u32 data_len;
83 u32 pdu_len;
84 u32 pdu_sent;
85 u32 h2cdata_left;
86 u32 h2cdata_offset;
87 u16 ttag;
88 __le16 status;
89 struct list_head entry;
90 struct llist_node lentry;
91 __le32 ddgst;
92
93 struct bio *curr_bio;
94 struct iov_iter iter;
95
96 /* send state */
97 size_t offset;
98 size_t data_sent;
99 enum nvme_tcp_send_state state;
100 };
101
102 enum nvme_tcp_queue_flags {
103 NVME_TCP_Q_ALLOCATED = 0,
104 NVME_TCP_Q_LIVE = 1,
105 NVME_TCP_Q_POLLING = 2,
106 };
107
108 enum nvme_tcp_recv_state {
109 NVME_TCP_RECV_PDU = 0,
110 NVME_TCP_RECV_DATA,
111 NVME_TCP_RECV_DDGST,
112 };
113
114 struct nvme_tcp_ctrl;
115 struct nvme_tcp_queue {
116 struct socket *sock;
117 struct work_struct io_work;
118 int io_cpu;
119
120 struct mutex queue_lock;
121 struct mutex send_mutex;
122 struct llist_head req_list;
123 struct list_head send_list;
124
125 /* recv state */
126 void *pdu;
127 int pdu_remaining;
128 int pdu_offset;
129 size_t data_remaining;
130 size_t ddgst_remaining;
131 unsigned int nr_cqe;
132
133 /* send state */
134 struct nvme_tcp_request *request;
135
136 u32 maxh2cdata;
137 size_t cmnd_capsule_len;
138 struct nvme_tcp_ctrl *ctrl;
139 unsigned long flags;
140 bool rd_enabled;
141
142 bool hdr_digest;
143 bool data_digest;
144 struct ahash_request *rcv_hash;
145 struct ahash_request *snd_hash;
146 __le32 exp_ddgst;
147 __le32 recv_ddgst;
148
149 struct page_frag_cache pf_cache;
150
151 void (*state_change)(struct sock *);
152 void (*data_ready)(struct sock *);
153 void (*write_space)(struct sock *);
154 };
155
156 struct nvme_tcp_ctrl {
157 /* read only in the hot path */
158 struct nvme_tcp_queue *queues;
159 struct blk_mq_tag_set tag_set;
160
161 /* other member variables */
162 struct list_head list;
163 struct blk_mq_tag_set admin_tag_set;
164 struct sockaddr_storage addr;
165 struct sockaddr_storage src_addr;
166 struct nvme_ctrl ctrl;
167
168 struct work_struct err_work;
169 struct delayed_work connect_work;
170 struct nvme_tcp_request async_req;
171 u32 io_queues[HCTX_MAX_TYPES];
172 };
173
174 static LIST_HEAD(nvme_tcp_ctrl_list);
175 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
176 static struct workqueue_struct *nvme_tcp_wq;
177 static const struct blk_mq_ops nvme_tcp_mq_ops;
178 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
179 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
180
to_tcp_ctrl(struct nvme_ctrl * ctrl)181 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
182 {
183 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
184 }
185
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)186 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
187 {
188 return queue - queue->ctrl->queues;
189 }
190
nvme_tcp_tagset(struct nvme_tcp_queue * queue)191 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
192 {
193 u32 queue_idx = nvme_tcp_queue_id(queue);
194
195 if (queue_idx == 0)
196 return queue->ctrl->admin_tag_set.tags[queue_idx];
197 return queue->ctrl->tag_set.tags[queue_idx - 1];
198 }
199
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)200 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
201 {
202 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
203 }
204
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)205 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
206 {
207 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
208 }
209
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)210 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
211 {
212 if (nvme_is_fabrics(req->req.cmd))
213 return NVME_TCP_ADMIN_CCSZ;
214 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
215 }
216
nvme_tcp_async_req(struct nvme_tcp_request * req)217 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
218 {
219 return req == &req->queue->ctrl->async_req;
220 }
221
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)222 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
223 {
224 struct request *rq;
225
226 if (unlikely(nvme_tcp_async_req(req)))
227 return false; /* async events don't have a request */
228
229 rq = blk_mq_rq_from_pdu(req);
230
231 return rq_data_dir(rq) == WRITE && req->data_len &&
232 req->data_len <= nvme_tcp_inline_data_size(req);
233 }
234
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)235 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
236 {
237 return req->iter.bvec->bv_page;
238 }
239
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)240 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
241 {
242 return req->iter.bvec->bv_offset + req->iter.iov_offset;
243 }
244
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)245 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
246 {
247 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
248 req->pdu_len - req->pdu_sent);
249 }
250
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)251 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
252 {
253 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
254 req->pdu_len - req->pdu_sent : 0;
255 }
256
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)257 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
258 int len)
259 {
260 return nvme_tcp_pdu_data_left(req) <= len;
261 }
262
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)263 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
264 unsigned int dir)
265 {
266 struct request *rq = blk_mq_rq_from_pdu(req);
267 struct bio_vec *vec;
268 unsigned int size;
269 int nr_bvec;
270 size_t offset;
271
272 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
273 vec = &rq->special_vec;
274 nr_bvec = 1;
275 size = blk_rq_payload_bytes(rq);
276 offset = 0;
277 } else {
278 struct bio *bio = req->curr_bio;
279 struct bvec_iter bi;
280 struct bio_vec bv;
281
282 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
283 nr_bvec = 0;
284 bio_for_each_bvec(bv, bio, bi) {
285 nr_bvec++;
286 }
287 size = bio->bi_iter.bi_size;
288 offset = bio->bi_iter.bi_bvec_done;
289 }
290
291 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
292 req->iter.iov_offset = offset;
293 }
294
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)295 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
296 int len)
297 {
298 req->data_sent += len;
299 req->pdu_sent += len;
300 iov_iter_advance(&req->iter, len);
301 if (!iov_iter_count(&req->iter) &&
302 req->data_sent < req->data_len) {
303 req->curr_bio = req->curr_bio->bi_next;
304 nvme_tcp_init_iter(req, WRITE);
305 }
306 }
307
nvme_tcp_send_all(struct nvme_tcp_queue * queue)308 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
309 {
310 int ret;
311
312 /* drain the send queue as much as we can... */
313 do {
314 ret = nvme_tcp_try_send(queue);
315 } while (ret > 0);
316 }
317
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)318 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
319 {
320 return !list_empty(&queue->send_list) ||
321 !llist_empty(&queue->req_list);
322 }
323
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)324 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
325 bool sync, bool last)
326 {
327 struct nvme_tcp_queue *queue = req->queue;
328 bool empty;
329
330 empty = llist_add(&req->lentry, &queue->req_list) &&
331 list_empty(&queue->send_list) && !queue->request;
332
333 /*
334 * if we're the first on the send_list and we can try to send
335 * directly, otherwise queue io_work. Also, only do that if we
336 * are on the same cpu, so we don't introduce contention.
337 */
338 if (queue->io_cpu == raw_smp_processor_id() &&
339 sync && empty && mutex_trylock(&queue->send_mutex)) {
340 nvme_tcp_send_all(queue);
341 mutex_unlock(&queue->send_mutex);
342 }
343
344 if (last && nvme_tcp_queue_more(queue))
345 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
346 }
347
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)348 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
349 {
350 struct nvme_tcp_request *req;
351 struct llist_node *node;
352
353 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
354 req = llist_entry(node, struct nvme_tcp_request, lentry);
355 list_add(&req->entry, &queue->send_list);
356 }
357 }
358
359 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)360 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
361 {
362 struct nvme_tcp_request *req;
363
364 req = list_first_entry_or_null(&queue->send_list,
365 struct nvme_tcp_request, entry);
366 if (!req) {
367 nvme_tcp_process_req_list(queue);
368 req = list_first_entry_or_null(&queue->send_list,
369 struct nvme_tcp_request, entry);
370 if (unlikely(!req))
371 return NULL;
372 }
373
374 list_del(&req->entry);
375 return req;
376 }
377
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)378 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
379 __le32 *dgst)
380 {
381 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
382 crypto_ahash_final(hash);
383 }
384
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)385 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
386 struct page *page, off_t off, size_t len)
387 {
388 struct scatterlist sg;
389
390 sg_init_table(&sg, 1);
391 sg_set_page(&sg, page, len, off);
392 ahash_request_set_crypt(hash, &sg, NULL, len);
393 crypto_ahash_update(hash);
394 }
395
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)396 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
397 void *pdu, size_t len)
398 {
399 struct scatterlist sg;
400
401 sg_init_one(&sg, pdu, len);
402 ahash_request_set_crypt(hash, &sg, pdu + len, len);
403 crypto_ahash_digest(hash);
404 }
405
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)406 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
407 void *pdu, size_t pdu_len)
408 {
409 struct nvme_tcp_hdr *hdr = pdu;
410 __le32 recv_digest;
411 __le32 exp_digest;
412
413 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
414 dev_err(queue->ctrl->ctrl.device,
415 "queue %d: header digest flag is cleared\n",
416 nvme_tcp_queue_id(queue));
417 return -EPROTO;
418 }
419
420 recv_digest = *(__le32 *)(pdu + hdr->hlen);
421 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
422 exp_digest = *(__le32 *)(pdu + hdr->hlen);
423 if (recv_digest != exp_digest) {
424 dev_err(queue->ctrl->ctrl.device,
425 "header digest error: recv %#x expected %#x\n",
426 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
427 return -EIO;
428 }
429
430 return 0;
431 }
432
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)433 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
434 {
435 struct nvme_tcp_hdr *hdr = pdu;
436 u8 digest_len = nvme_tcp_hdgst_len(queue);
437 u32 len;
438
439 len = le32_to_cpu(hdr->plen) - hdr->hlen -
440 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
441
442 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
443 dev_err(queue->ctrl->ctrl.device,
444 "queue %d: data digest flag is cleared\n",
445 nvme_tcp_queue_id(queue));
446 return -EPROTO;
447 }
448 crypto_ahash_init(queue->rcv_hash);
449
450 return 0;
451 }
452
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)453 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
454 struct request *rq, unsigned int hctx_idx)
455 {
456 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
457
458 page_frag_free(req->pdu);
459 }
460
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)461 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
462 struct request *rq, unsigned int hctx_idx,
463 unsigned int numa_node)
464 {
465 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
466 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
467 struct nvme_tcp_cmd_pdu *pdu;
468 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
469 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
470 u8 hdgst = nvme_tcp_hdgst_len(queue);
471
472 req->pdu = page_frag_alloc(&queue->pf_cache,
473 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
474 GFP_KERNEL | __GFP_ZERO);
475 if (!req->pdu)
476 return -ENOMEM;
477
478 pdu = req->pdu;
479 req->queue = queue;
480 nvme_req(rq)->ctrl = &ctrl->ctrl;
481 nvme_req(rq)->cmd = &pdu->cmd;
482
483 return 0;
484 }
485
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)486 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
487 unsigned int hctx_idx)
488 {
489 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
490 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
491
492 hctx->driver_data = queue;
493 return 0;
494 }
495
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)496 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
497 unsigned int hctx_idx)
498 {
499 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
500 struct nvme_tcp_queue *queue = &ctrl->queues[0];
501
502 hctx->driver_data = queue;
503 return 0;
504 }
505
506 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)507 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
508 {
509 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
510 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
511 NVME_TCP_RECV_DATA;
512 }
513
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)514 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
515 {
516 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
517 nvme_tcp_hdgst_len(queue);
518 queue->pdu_offset = 0;
519 queue->data_remaining = -1;
520 queue->ddgst_remaining = 0;
521 }
522
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)523 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
524 {
525 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
526 return;
527
528 dev_warn(ctrl->device, "starting error recovery\n");
529 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
530 }
531
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)532 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
533 struct nvme_completion *cqe)
534 {
535 struct nvme_tcp_request *req;
536 struct request *rq;
537
538 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
539 if (!rq) {
540 dev_err(queue->ctrl->ctrl.device,
541 "got bad cqe.command_id %#x on queue %d\n",
542 cqe->command_id, nvme_tcp_queue_id(queue));
543 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
544 return -EINVAL;
545 }
546
547 req = blk_mq_rq_to_pdu(rq);
548 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
549 req->status = cqe->status;
550
551 if (!nvme_try_complete_req(rq, req->status, cqe->result))
552 nvme_complete_rq(rq);
553 queue->nr_cqe++;
554
555 return 0;
556 }
557
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)558 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
559 struct nvme_tcp_data_pdu *pdu)
560 {
561 struct request *rq;
562
563 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
564 if (!rq) {
565 dev_err(queue->ctrl->ctrl.device,
566 "got bad c2hdata.command_id %#x on queue %d\n",
567 pdu->command_id, nvme_tcp_queue_id(queue));
568 return -ENOENT;
569 }
570
571 if (!blk_rq_payload_bytes(rq)) {
572 dev_err(queue->ctrl->ctrl.device,
573 "queue %d tag %#x unexpected data\n",
574 nvme_tcp_queue_id(queue), rq->tag);
575 return -EIO;
576 }
577
578 queue->data_remaining = le32_to_cpu(pdu->data_length);
579
580 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
581 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
582 dev_err(queue->ctrl->ctrl.device,
583 "queue %d tag %#x SUCCESS set but not last PDU\n",
584 nvme_tcp_queue_id(queue), rq->tag);
585 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
586 return -EPROTO;
587 }
588
589 return 0;
590 }
591
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)592 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
593 struct nvme_tcp_rsp_pdu *pdu)
594 {
595 struct nvme_completion *cqe = &pdu->cqe;
596 int ret = 0;
597
598 /*
599 * AEN requests are special as they don't time out and can
600 * survive any kind of queue freeze and often don't respond to
601 * aborts. We don't even bother to allocate a struct request
602 * for them but rather special case them here.
603 */
604 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
605 cqe->command_id)))
606 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
607 &cqe->result);
608 else
609 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
610
611 return ret;
612 }
613
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)614 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
615 {
616 struct nvme_tcp_data_pdu *data = req->pdu;
617 struct nvme_tcp_queue *queue = req->queue;
618 struct request *rq = blk_mq_rq_from_pdu(req);
619 u32 h2cdata_sent = req->pdu_len;
620 u8 hdgst = nvme_tcp_hdgst_len(queue);
621 u8 ddgst = nvme_tcp_ddgst_len(queue);
622
623 req->state = NVME_TCP_SEND_H2C_PDU;
624 req->offset = 0;
625 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
626 req->pdu_sent = 0;
627 req->h2cdata_left -= req->pdu_len;
628 req->h2cdata_offset += h2cdata_sent;
629
630 memset(data, 0, sizeof(*data));
631 data->hdr.type = nvme_tcp_h2c_data;
632 if (!req->h2cdata_left)
633 data->hdr.flags = NVME_TCP_F_DATA_LAST;
634 if (queue->hdr_digest)
635 data->hdr.flags |= NVME_TCP_F_HDGST;
636 if (queue->data_digest)
637 data->hdr.flags |= NVME_TCP_F_DDGST;
638 data->hdr.hlen = sizeof(*data);
639 data->hdr.pdo = data->hdr.hlen + hdgst;
640 data->hdr.plen =
641 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
642 data->ttag = req->ttag;
643 data->command_id = nvme_cid(rq);
644 data->data_offset = cpu_to_le32(req->h2cdata_offset);
645 data->data_length = cpu_to_le32(req->pdu_len);
646 }
647
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)648 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
649 struct nvme_tcp_r2t_pdu *pdu)
650 {
651 struct nvme_tcp_request *req;
652 struct request *rq;
653 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
654 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
655
656 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
657 if (!rq) {
658 dev_err(queue->ctrl->ctrl.device,
659 "got bad r2t.command_id %#x on queue %d\n",
660 pdu->command_id, nvme_tcp_queue_id(queue));
661 return -ENOENT;
662 }
663 req = blk_mq_rq_to_pdu(rq);
664
665 if (unlikely(!r2t_length)) {
666 dev_err(queue->ctrl->ctrl.device,
667 "req %d r2t len is %u, probably a bug...\n",
668 rq->tag, r2t_length);
669 return -EPROTO;
670 }
671
672 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
673 dev_err(queue->ctrl->ctrl.device,
674 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
675 rq->tag, r2t_length, req->data_len, req->data_sent);
676 return -EPROTO;
677 }
678
679 if (unlikely(r2t_offset < req->data_sent)) {
680 dev_err(queue->ctrl->ctrl.device,
681 "req %d unexpected r2t offset %u (expected %zu)\n",
682 rq->tag, r2t_offset, req->data_sent);
683 return -EPROTO;
684 }
685
686 req->pdu_len = 0;
687 req->h2cdata_left = r2t_length;
688 req->h2cdata_offset = r2t_offset;
689 req->ttag = pdu->ttag;
690
691 nvme_tcp_setup_h2c_data_pdu(req);
692 nvme_tcp_queue_request(req, false, true);
693
694 return 0;
695 }
696
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)697 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
698 unsigned int *offset, size_t *len)
699 {
700 struct nvme_tcp_hdr *hdr;
701 char *pdu = queue->pdu;
702 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
703 int ret;
704
705 ret = skb_copy_bits(skb, *offset,
706 &pdu[queue->pdu_offset], rcv_len);
707 if (unlikely(ret))
708 return ret;
709
710 queue->pdu_remaining -= rcv_len;
711 queue->pdu_offset += rcv_len;
712 *offset += rcv_len;
713 *len -= rcv_len;
714 if (queue->pdu_remaining)
715 return 0;
716
717 hdr = queue->pdu;
718 if (queue->hdr_digest) {
719 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
720 if (unlikely(ret))
721 return ret;
722 }
723
724
725 if (queue->data_digest) {
726 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
727 if (unlikely(ret))
728 return ret;
729 }
730
731 switch (hdr->type) {
732 case nvme_tcp_c2h_data:
733 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
734 case nvme_tcp_rsp:
735 nvme_tcp_init_recv_ctx(queue);
736 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
737 case nvme_tcp_r2t:
738 nvme_tcp_init_recv_ctx(queue);
739 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
740 default:
741 dev_err(queue->ctrl->ctrl.device,
742 "unsupported pdu type (%d)\n", hdr->type);
743 return -EINVAL;
744 }
745 }
746
nvme_tcp_end_request(struct request * rq,u16 status)747 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
748 {
749 union nvme_result res = {};
750
751 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
752 nvme_complete_rq(rq);
753 }
754
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)755 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
756 unsigned int *offset, size_t *len)
757 {
758 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
759 struct request *rq =
760 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
761 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
762
763 while (true) {
764 int recv_len, ret;
765
766 recv_len = min_t(size_t, *len, queue->data_remaining);
767 if (!recv_len)
768 break;
769
770 if (!iov_iter_count(&req->iter)) {
771 req->curr_bio = req->curr_bio->bi_next;
772
773 /*
774 * If we don`t have any bios it means that controller
775 * sent more data than we requested, hence error
776 */
777 if (!req->curr_bio) {
778 dev_err(queue->ctrl->ctrl.device,
779 "queue %d no space in request %#x",
780 nvme_tcp_queue_id(queue), rq->tag);
781 nvme_tcp_init_recv_ctx(queue);
782 return -EIO;
783 }
784 nvme_tcp_init_iter(req, READ);
785 }
786
787 /* we can read only from what is left in this bio */
788 recv_len = min_t(size_t, recv_len,
789 iov_iter_count(&req->iter));
790
791 if (queue->data_digest)
792 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
793 &req->iter, recv_len, queue->rcv_hash);
794 else
795 ret = skb_copy_datagram_iter(skb, *offset,
796 &req->iter, recv_len);
797 if (ret) {
798 dev_err(queue->ctrl->ctrl.device,
799 "queue %d failed to copy request %#x data",
800 nvme_tcp_queue_id(queue), rq->tag);
801 return ret;
802 }
803
804 *len -= recv_len;
805 *offset += recv_len;
806 queue->data_remaining -= recv_len;
807 }
808
809 if (!queue->data_remaining) {
810 if (queue->data_digest) {
811 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
812 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
813 } else {
814 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
815 nvme_tcp_end_request(rq,
816 le16_to_cpu(req->status));
817 queue->nr_cqe++;
818 }
819 nvme_tcp_init_recv_ctx(queue);
820 }
821 }
822
823 return 0;
824 }
825
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)826 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
827 struct sk_buff *skb, unsigned int *offset, size_t *len)
828 {
829 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
830 char *ddgst = (char *)&queue->recv_ddgst;
831 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
832 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
833 int ret;
834
835 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
836 if (unlikely(ret))
837 return ret;
838
839 queue->ddgst_remaining -= recv_len;
840 *offset += recv_len;
841 *len -= recv_len;
842 if (queue->ddgst_remaining)
843 return 0;
844
845 if (queue->recv_ddgst != queue->exp_ddgst) {
846 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
847 pdu->command_id);
848 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
849
850 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
851
852 dev_err(queue->ctrl->ctrl.device,
853 "data digest error: recv %#x expected %#x\n",
854 le32_to_cpu(queue->recv_ddgst),
855 le32_to_cpu(queue->exp_ddgst));
856 }
857
858 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
859 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
860 pdu->command_id);
861 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
862
863 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
864 queue->nr_cqe++;
865 }
866
867 nvme_tcp_init_recv_ctx(queue);
868 return 0;
869 }
870
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)871 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
872 unsigned int offset, size_t len)
873 {
874 struct nvme_tcp_queue *queue = desc->arg.data;
875 size_t consumed = len;
876 int result;
877
878 while (len) {
879 switch (nvme_tcp_recv_state(queue)) {
880 case NVME_TCP_RECV_PDU:
881 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
882 break;
883 case NVME_TCP_RECV_DATA:
884 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
885 break;
886 case NVME_TCP_RECV_DDGST:
887 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
888 break;
889 default:
890 result = -EFAULT;
891 }
892 if (result) {
893 dev_err(queue->ctrl->ctrl.device,
894 "receive failed: %d\n", result);
895 queue->rd_enabled = false;
896 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
897 return result;
898 }
899 }
900
901 return consumed;
902 }
903
nvme_tcp_data_ready(struct sock * sk)904 static void nvme_tcp_data_ready(struct sock *sk)
905 {
906 struct nvme_tcp_queue *queue;
907
908 read_lock_bh(&sk->sk_callback_lock);
909 queue = sk->sk_user_data;
910 if (likely(queue && queue->rd_enabled) &&
911 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
912 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
913 read_unlock_bh(&sk->sk_callback_lock);
914 }
915
nvme_tcp_write_space(struct sock * sk)916 static void nvme_tcp_write_space(struct sock *sk)
917 {
918 struct nvme_tcp_queue *queue;
919
920 read_lock_bh(&sk->sk_callback_lock);
921 queue = sk->sk_user_data;
922 if (likely(queue && sk_stream_is_writeable(sk))) {
923 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
924 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
925 }
926 read_unlock_bh(&sk->sk_callback_lock);
927 }
928
nvme_tcp_state_change(struct sock * sk)929 static void nvme_tcp_state_change(struct sock *sk)
930 {
931 struct nvme_tcp_queue *queue;
932
933 read_lock_bh(&sk->sk_callback_lock);
934 queue = sk->sk_user_data;
935 if (!queue)
936 goto done;
937
938 switch (sk->sk_state) {
939 case TCP_CLOSE:
940 case TCP_CLOSE_WAIT:
941 case TCP_LAST_ACK:
942 case TCP_FIN_WAIT1:
943 case TCP_FIN_WAIT2:
944 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
945 break;
946 default:
947 dev_info(queue->ctrl->ctrl.device,
948 "queue %d socket state %d\n",
949 nvme_tcp_queue_id(queue), sk->sk_state);
950 }
951
952 queue->state_change(sk);
953 done:
954 read_unlock_bh(&sk->sk_callback_lock);
955 }
956
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)957 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
958 {
959 queue->request = NULL;
960 }
961
nvme_tcp_fail_request(struct nvme_tcp_request * req)962 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
963 {
964 if (nvme_tcp_async_req(req)) {
965 union nvme_result res = {};
966
967 nvme_complete_async_event(&req->queue->ctrl->ctrl,
968 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
969 } else {
970 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
971 NVME_SC_HOST_PATH_ERROR);
972 }
973 }
974
nvme_tcp_try_send_data(struct nvme_tcp_request * req)975 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
976 {
977 struct nvme_tcp_queue *queue = req->queue;
978 int req_data_len = req->data_len;
979 u32 h2cdata_left = req->h2cdata_left;
980
981 while (true) {
982 struct page *page = nvme_tcp_req_cur_page(req);
983 size_t offset = nvme_tcp_req_cur_offset(req);
984 size_t len = nvme_tcp_req_cur_length(req);
985 bool last = nvme_tcp_pdu_last_send(req, len);
986 int req_data_sent = req->data_sent;
987 int ret, flags = MSG_DONTWAIT;
988
989 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
990 flags |= MSG_EOR;
991 else
992 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
993
994 if (sendpage_ok(page)) {
995 ret = kernel_sendpage(queue->sock, page, offset, len,
996 flags);
997 } else {
998 ret = sock_no_sendpage(queue->sock, page, offset, len,
999 flags);
1000 }
1001 if (ret <= 0)
1002 return ret;
1003
1004 if (queue->data_digest)
1005 nvme_tcp_ddgst_update(queue->snd_hash, page,
1006 offset, ret);
1007
1008 /*
1009 * update the request iterator except for the last payload send
1010 * in the request where we don't want to modify it as we may
1011 * compete with the RX path completing the request.
1012 */
1013 if (req_data_sent + ret < req_data_len)
1014 nvme_tcp_advance_req(req, ret);
1015
1016 /* fully successful last send in current PDU */
1017 if (last && ret == len) {
1018 if (queue->data_digest) {
1019 nvme_tcp_ddgst_final(queue->snd_hash,
1020 &req->ddgst);
1021 req->state = NVME_TCP_SEND_DDGST;
1022 req->offset = 0;
1023 } else {
1024 if (h2cdata_left)
1025 nvme_tcp_setup_h2c_data_pdu(req);
1026 else
1027 nvme_tcp_done_send_req(queue);
1028 }
1029 return 1;
1030 }
1031 }
1032 return -EAGAIN;
1033 }
1034
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1035 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1036 {
1037 struct nvme_tcp_queue *queue = req->queue;
1038 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1039 bool inline_data = nvme_tcp_has_inline_data(req);
1040 u8 hdgst = nvme_tcp_hdgst_len(queue);
1041 int len = sizeof(*pdu) + hdgst - req->offset;
1042 int flags = MSG_DONTWAIT;
1043 int ret;
1044
1045 if (inline_data || nvme_tcp_queue_more(queue))
1046 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1047 else
1048 flags |= MSG_EOR;
1049
1050 if (queue->hdr_digest && !req->offset)
1051 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1052
1053 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1054 offset_in_page(pdu) + req->offset, len, flags);
1055 if (unlikely(ret <= 0))
1056 return ret;
1057
1058 len -= ret;
1059 if (!len) {
1060 if (inline_data) {
1061 req->state = NVME_TCP_SEND_DATA;
1062 if (queue->data_digest)
1063 crypto_ahash_init(queue->snd_hash);
1064 } else {
1065 nvme_tcp_done_send_req(queue);
1066 }
1067 return 1;
1068 }
1069 req->offset += ret;
1070
1071 return -EAGAIN;
1072 }
1073
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1074 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1075 {
1076 struct nvme_tcp_queue *queue = req->queue;
1077 struct nvme_tcp_data_pdu *pdu = req->pdu;
1078 u8 hdgst = nvme_tcp_hdgst_len(queue);
1079 int len = sizeof(*pdu) - req->offset + hdgst;
1080 int ret;
1081
1082 if (queue->hdr_digest && !req->offset)
1083 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1084
1085 if (!req->h2cdata_left)
1086 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1087 offset_in_page(pdu) + req->offset, len,
1088 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1089 else
1090 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1091 offset_in_page(pdu) + req->offset, len,
1092 MSG_DONTWAIT | MSG_MORE);
1093 if (unlikely(ret <= 0))
1094 return ret;
1095
1096 len -= ret;
1097 if (!len) {
1098 req->state = NVME_TCP_SEND_DATA;
1099 if (queue->data_digest)
1100 crypto_ahash_init(queue->snd_hash);
1101 return 1;
1102 }
1103 req->offset += ret;
1104
1105 return -EAGAIN;
1106 }
1107
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1108 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1109 {
1110 struct nvme_tcp_queue *queue = req->queue;
1111 size_t offset = req->offset;
1112 u32 h2cdata_left = req->h2cdata_left;
1113 int ret;
1114 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1115 struct kvec iov = {
1116 .iov_base = (u8 *)&req->ddgst + req->offset,
1117 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1118 };
1119
1120 if (nvme_tcp_queue_more(queue))
1121 msg.msg_flags |= MSG_MORE;
1122 else
1123 msg.msg_flags |= MSG_EOR;
1124
1125 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1126 if (unlikely(ret <= 0))
1127 return ret;
1128
1129 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1130 if (h2cdata_left)
1131 nvme_tcp_setup_h2c_data_pdu(req);
1132 else
1133 nvme_tcp_done_send_req(queue);
1134 return 1;
1135 }
1136
1137 req->offset += ret;
1138 return -EAGAIN;
1139 }
1140
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1141 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1142 {
1143 struct nvme_tcp_request *req;
1144 unsigned int noreclaim_flag;
1145 int ret = 1;
1146
1147 if (!queue->request) {
1148 queue->request = nvme_tcp_fetch_request(queue);
1149 if (!queue->request)
1150 return 0;
1151 }
1152 req = queue->request;
1153
1154 noreclaim_flag = memalloc_noreclaim_save();
1155 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1156 ret = nvme_tcp_try_send_cmd_pdu(req);
1157 if (ret <= 0)
1158 goto done;
1159 if (!nvme_tcp_has_inline_data(req))
1160 goto out;
1161 }
1162
1163 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1164 ret = nvme_tcp_try_send_data_pdu(req);
1165 if (ret <= 0)
1166 goto done;
1167 }
1168
1169 if (req->state == NVME_TCP_SEND_DATA) {
1170 ret = nvme_tcp_try_send_data(req);
1171 if (ret <= 0)
1172 goto done;
1173 }
1174
1175 if (req->state == NVME_TCP_SEND_DDGST)
1176 ret = nvme_tcp_try_send_ddgst(req);
1177 done:
1178 if (ret == -EAGAIN) {
1179 ret = 0;
1180 } else if (ret < 0) {
1181 dev_err(queue->ctrl->ctrl.device,
1182 "failed to send request %d\n", ret);
1183 nvme_tcp_fail_request(queue->request);
1184 nvme_tcp_done_send_req(queue);
1185 }
1186 out:
1187 memalloc_noreclaim_restore(noreclaim_flag);
1188 return ret;
1189 }
1190
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1191 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1192 {
1193 struct socket *sock = queue->sock;
1194 struct sock *sk = sock->sk;
1195 read_descriptor_t rd_desc;
1196 int consumed;
1197
1198 rd_desc.arg.data = queue;
1199 rd_desc.count = 1;
1200 lock_sock(sk);
1201 queue->nr_cqe = 0;
1202 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1203 release_sock(sk);
1204 return consumed;
1205 }
1206
nvme_tcp_io_work(struct work_struct * w)1207 static void nvme_tcp_io_work(struct work_struct *w)
1208 {
1209 struct nvme_tcp_queue *queue =
1210 container_of(w, struct nvme_tcp_queue, io_work);
1211 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1212
1213 do {
1214 bool pending = false;
1215 int result;
1216
1217 if (mutex_trylock(&queue->send_mutex)) {
1218 result = nvme_tcp_try_send(queue);
1219 mutex_unlock(&queue->send_mutex);
1220 if (result > 0)
1221 pending = true;
1222 else if (unlikely(result < 0))
1223 break;
1224 }
1225
1226 result = nvme_tcp_try_recv(queue);
1227 if (result > 0)
1228 pending = true;
1229 else if (unlikely(result < 0))
1230 return;
1231
1232 if (!pending || !queue->rd_enabled)
1233 return;
1234
1235 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1236
1237 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1238 }
1239
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1240 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1241 {
1242 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1243
1244 ahash_request_free(queue->rcv_hash);
1245 ahash_request_free(queue->snd_hash);
1246 crypto_free_ahash(tfm);
1247 }
1248
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1249 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1250 {
1251 struct crypto_ahash *tfm;
1252
1253 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1254 if (IS_ERR(tfm))
1255 return PTR_ERR(tfm);
1256
1257 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1258 if (!queue->snd_hash)
1259 goto free_tfm;
1260 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1261
1262 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1263 if (!queue->rcv_hash)
1264 goto free_snd_hash;
1265 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1266
1267 return 0;
1268 free_snd_hash:
1269 ahash_request_free(queue->snd_hash);
1270 free_tfm:
1271 crypto_free_ahash(tfm);
1272 return -ENOMEM;
1273 }
1274
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1275 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1276 {
1277 struct nvme_tcp_request *async = &ctrl->async_req;
1278
1279 page_frag_free(async->pdu);
1280 }
1281
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1282 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1283 {
1284 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1285 struct nvme_tcp_request *async = &ctrl->async_req;
1286 u8 hdgst = nvme_tcp_hdgst_len(queue);
1287
1288 async->pdu = page_frag_alloc(&queue->pf_cache,
1289 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1290 GFP_KERNEL | __GFP_ZERO);
1291 if (!async->pdu)
1292 return -ENOMEM;
1293
1294 async->queue = &ctrl->queues[0];
1295 return 0;
1296 }
1297
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1298 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1299 {
1300 struct page *page;
1301 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1302 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1303 unsigned int noreclaim_flag;
1304
1305 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1306 return;
1307
1308 if (queue->hdr_digest || queue->data_digest)
1309 nvme_tcp_free_crypto(queue);
1310
1311 if (queue->pf_cache.va) {
1312 page = virt_to_head_page(queue->pf_cache.va);
1313 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1314 queue->pf_cache.va = NULL;
1315 }
1316
1317 noreclaim_flag = memalloc_noreclaim_save();
1318 sock_release(queue->sock);
1319 memalloc_noreclaim_restore(noreclaim_flag);
1320
1321 kfree(queue->pdu);
1322 mutex_destroy(&queue->send_mutex);
1323 mutex_destroy(&queue->queue_lock);
1324 }
1325
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1326 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1327 {
1328 struct nvme_tcp_icreq_pdu *icreq;
1329 struct nvme_tcp_icresp_pdu *icresp;
1330 struct msghdr msg = {};
1331 struct kvec iov;
1332 bool ctrl_hdgst, ctrl_ddgst;
1333 u32 maxh2cdata;
1334 int ret;
1335
1336 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1337 if (!icreq)
1338 return -ENOMEM;
1339
1340 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1341 if (!icresp) {
1342 ret = -ENOMEM;
1343 goto free_icreq;
1344 }
1345
1346 icreq->hdr.type = nvme_tcp_icreq;
1347 icreq->hdr.hlen = sizeof(*icreq);
1348 icreq->hdr.pdo = 0;
1349 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1350 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1351 icreq->maxr2t = 0; /* single inflight r2t supported */
1352 icreq->hpda = 0; /* no alignment constraint */
1353 if (queue->hdr_digest)
1354 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1355 if (queue->data_digest)
1356 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1357
1358 iov.iov_base = icreq;
1359 iov.iov_len = sizeof(*icreq);
1360 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1361 if (ret < 0)
1362 goto free_icresp;
1363
1364 memset(&msg, 0, sizeof(msg));
1365 iov.iov_base = icresp;
1366 iov.iov_len = sizeof(*icresp);
1367 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1368 iov.iov_len, msg.msg_flags);
1369 if (ret < 0)
1370 goto free_icresp;
1371
1372 ret = -EINVAL;
1373 if (icresp->hdr.type != nvme_tcp_icresp) {
1374 pr_err("queue %d: bad type returned %d\n",
1375 nvme_tcp_queue_id(queue), icresp->hdr.type);
1376 goto free_icresp;
1377 }
1378
1379 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1380 pr_err("queue %d: bad pdu length returned %d\n",
1381 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1382 goto free_icresp;
1383 }
1384
1385 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1386 pr_err("queue %d: bad pfv returned %d\n",
1387 nvme_tcp_queue_id(queue), icresp->pfv);
1388 goto free_icresp;
1389 }
1390
1391 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1392 if ((queue->data_digest && !ctrl_ddgst) ||
1393 (!queue->data_digest && ctrl_ddgst)) {
1394 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1395 nvme_tcp_queue_id(queue),
1396 queue->data_digest ? "enabled" : "disabled",
1397 ctrl_ddgst ? "enabled" : "disabled");
1398 goto free_icresp;
1399 }
1400
1401 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1402 if ((queue->hdr_digest && !ctrl_hdgst) ||
1403 (!queue->hdr_digest && ctrl_hdgst)) {
1404 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1405 nvme_tcp_queue_id(queue),
1406 queue->hdr_digest ? "enabled" : "disabled",
1407 ctrl_hdgst ? "enabled" : "disabled");
1408 goto free_icresp;
1409 }
1410
1411 if (icresp->cpda != 0) {
1412 pr_err("queue %d: unsupported cpda returned %d\n",
1413 nvme_tcp_queue_id(queue), icresp->cpda);
1414 goto free_icresp;
1415 }
1416
1417 maxh2cdata = le32_to_cpu(icresp->maxdata);
1418 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1419 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1420 nvme_tcp_queue_id(queue), maxh2cdata);
1421 goto free_icresp;
1422 }
1423 queue->maxh2cdata = maxh2cdata;
1424
1425 ret = 0;
1426 free_icresp:
1427 kfree(icresp);
1428 free_icreq:
1429 kfree(icreq);
1430 return ret;
1431 }
1432
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1433 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1434 {
1435 return nvme_tcp_queue_id(queue) == 0;
1436 }
1437
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1438 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1439 {
1440 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1441 int qid = nvme_tcp_queue_id(queue);
1442
1443 return !nvme_tcp_admin_queue(queue) &&
1444 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1445 }
1446
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1447 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1448 {
1449 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1450 int qid = nvme_tcp_queue_id(queue);
1451
1452 return !nvme_tcp_admin_queue(queue) &&
1453 !nvme_tcp_default_queue(queue) &&
1454 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1455 ctrl->io_queues[HCTX_TYPE_READ];
1456 }
1457
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1458 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1459 {
1460 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1461 int qid = nvme_tcp_queue_id(queue);
1462
1463 return !nvme_tcp_admin_queue(queue) &&
1464 !nvme_tcp_default_queue(queue) &&
1465 !nvme_tcp_read_queue(queue) &&
1466 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1467 ctrl->io_queues[HCTX_TYPE_READ] +
1468 ctrl->io_queues[HCTX_TYPE_POLL];
1469 }
1470
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1471 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1472 {
1473 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1474 int qid = nvme_tcp_queue_id(queue);
1475 int n = 0;
1476
1477 if (nvme_tcp_default_queue(queue))
1478 n = qid - 1;
1479 else if (nvme_tcp_read_queue(queue))
1480 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1481 else if (nvme_tcp_poll_queue(queue))
1482 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1483 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1484 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1485 }
1486
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid)1487 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1488 {
1489 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1490 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1491 int ret, rcv_pdu_size;
1492
1493 mutex_init(&queue->queue_lock);
1494 queue->ctrl = ctrl;
1495 init_llist_head(&queue->req_list);
1496 INIT_LIST_HEAD(&queue->send_list);
1497 mutex_init(&queue->send_mutex);
1498 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1499
1500 if (qid > 0)
1501 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1502 else
1503 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1504 NVME_TCP_ADMIN_CCSZ;
1505
1506 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1507 IPPROTO_TCP, &queue->sock);
1508 if (ret) {
1509 dev_err(nctrl->device,
1510 "failed to create socket: %d\n", ret);
1511 goto err_destroy_mutex;
1512 }
1513
1514 nvme_tcp_reclassify_socket(queue->sock);
1515
1516 /* Single syn retry */
1517 tcp_sock_set_syncnt(queue->sock->sk, 1);
1518
1519 /* Set TCP no delay */
1520 tcp_sock_set_nodelay(queue->sock->sk);
1521
1522 /*
1523 * Cleanup whatever is sitting in the TCP transmit queue on socket
1524 * close. This is done to prevent stale data from being sent should
1525 * the network connection be restored before TCP times out.
1526 */
1527 sock_no_linger(queue->sock->sk);
1528
1529 if (so_priority > 0)
1530 sock_set_priority(queue->sock->sk, so_priority);
1531
1532 /* Set socket type of service */
1533 if (nctrl->opts->tos >= 0)
1534 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1535
1536 /* Set 10 seconds timeout for icresp recvmsg */
1537 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1538
1539 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1540 nvme_tcp_set_queue_io_cpu(queue);
1541 queue->request = NULL;
1542 queue->data_remaining = 0;
1543 queue->ddgst_remaining = 0;
1544 queue->pdu_remaining = 0;
1545 queue->pdu_offset = 0;
1546 sk_set_memalloc(queue->sock->sk);
1547
1548 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1549 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1550 sizeof(ctrl->src_addr));
1551 if (ret) {
1552 dev_err(nctrl->device,
1553 "failed to bind queue %d socket %d\n",
1554 qid, ret);
1555 goto err_sock;
1556 }
1557 }
1558
1559 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1560 char *iface = nctrl->opts->host_iface;
1561 sockptr_t optval = KERNEL_SOCKPTR(iface);
1562
1563 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1564 optval, strlen(iface));
1565 if (ret) {
1566 dev_err(nctrl->device,
1567 "failed to bind to interface %s queue %d err %d\n",
1568 iface, qid, ret);
1569 goto err_sock;
1570 }
1571 }
1572
1573 queue->hdr_digest = nctrl->opts->hdr_digest;
1574 queue->data_digest = nctrl->opts->data_digest;
1575 if (queue->hdr_digest || queue->data_digest) {
1576 ret = nvme_tcp_alloc_crypto(queue);
1577 if (ret) {
1578 dev_err(nctrl->device,
1579 "failed to allocate queue %d crypto\n", qid);
1580 goto err_sock;
1581 }
1582 }
1583
1584 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1585 nvme_tcp_hdgst_len(queue);
1586 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1587 if (!queue->pdu) {
1588 ret = -ENOMEM;
1589 goto err_crypto;
1590 }
1591
1592 dev_dbg(nctrl->device, "connecting queue %d\n",
1593 nvme_tcp_queue_id(queue));
1594
1595 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1596 sizeof(ctrl->addr), 0);
1597 if (ret) {
1598 dev_err(nctrl->device,
1599 "failed to connect socket: %d\n", ret);
1600 goto err_rcv_pdu;
1601 }
1602
1603 ret = nvme_tcp_init_connection(queue);
1604 if (ret)
1605 goto err_init_connect;
1606
1607 queue->rd_enabled = true;
1608 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1609 nvme_tcp_init_recv_ctx(queue);
1610
1611 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1612 queue->sock->sk->sk_user_data = queue;
1613 queue->state_change = queue->sock->sk->sk_state_change;
1614 queue->data_ready = queue->sock->sk->sk_data_ready;
1615 queue->write_space = queue->sock->sk->sk_write_space;
1616 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1617 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1618 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1619 #ifdef CONFIG_NET_RX_BUSY_POLL
1620 queue->sock->sk->sk_ll_usec = 1;
1621 #endif
1622 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1623
1624 return 0;
1625
1626 err_init_connect:
1627 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1628 err_rcv_pdu:
1629 kfree(queue->pdu);
1630 err_crypto:
1631 if (queue->hdr_digest || queue->data_digest)
1632 nvme_tcp_free_crypto(queue);
1633 err_sock:
1634 sock_release(queue->sock);
1635 queue->sock = NULL;
1636 err_destroy_mutex:
1637 mutex_destroy(&queue->send_mutex);
1638 mutex_destroy(&queue->queue_lock);
1639 return ret;
1640 }
1641
nvme_tcp_restore_sock_calls(struct nvme_tcp_queue * queue)1642 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1643 {
1644 struct socket *sock = queue->sock;
1645
1646 write_lock_bh(&sock->sk->sk_callback_lock);
1647 sock->sk->sk_user_data = NULL;
1648 sock->sk->sk_data_ready = queue->data_ready;
1649 sock->sk->sk_state_change = queue->state_change;
1650 sock->sk->sk_write_space = queue->write_space;
1651 write_unlock_bh(&sock->sk->sk_callback_lock);
1652 }
1653
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1654 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1655 {
1656 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1657 nvme_tcp_restore_sock_calls(queue);
1658 cancel_work_sync(&queue->io_work);
1659 }
1660
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1661 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1662 {
1663 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1664 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1665
1666 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1667 return;
1668
1669 mutex_lock(&queue->queue_lock);
1670 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1671 __nvme_tcp_stop_queue(queue);
1672 mutex_unlock(&queue->queue_lock);
1673 }
1674
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1675 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1676 {
1677 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1678 int ret;
1679
1680 if (idx)
1681 ret = nvmf_connect_io_queue(nctrl, idx);
1682 else
1683 ret = nvmf_connect_admin_queue(nctrl);
1684
1685 if (!ret) {
1686 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1687 } else {
1688 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1689 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1690 dev_err(nctrl->device,
1691 "failed to connect queue: %d ret=%d\n", idx, ret);
1692 }
1693 return ret;
1694 }
1695
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1696 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1697 {
1698 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1699 cancel_work_sync(&ctrl->async_event_work);
1700 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1701 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1702 }
1703
1704 nvme_tcp_free_queue(ctrl, 0);
1705 }
1706
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1707 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1708 {
1709 int i;
1710
1711 for (i = 1; i < ctrl->queue_count; i++)
1712 nvme_tcp_free_queue(ctrl, i);
1713 }
1714
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1715 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1716 {
1717 int i;
1718
1719 for (i = 1; i < ctrl->queue_count; i++)
1720 nvme_tcp_stop_queue(ctrl, i);
1721 }
1722
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)1723 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1724 int first, int last)
1725 {
1726 int i, ret;
1727
1728 for (i = first; i < last; i++) {
1729 ret = nvme_tcp_start_queue(ctrl, i);
1730 if (ret)
1731 goto out_stop_queues;
1732 }
1733
1734 return 0;
1735
1736 out_stop_queues:
1737 for (i--; i >= first; i--)
1738 nvme_tcp_stop_queue(ctrl, i);
1739 return ret;
1740 }
1741
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1742 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1743 {
1744 int ret;
1745
1746 ret = nvme_tcp_alloc_queue(ctrl, 0);
1747 if (ret)
1748 return ret;
1749
1750 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1751 if (ret)
1752 goto out_free_queue;
1753
1754 return 0;
1755
1756 out_free_queue:
1757 nvme_tcp_free_queue(ctrl, 0);
1758 return ret;
1759 }
1760
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1761 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1762 {
1763 int i, ret;
1764
1765 for (i = 1; i < ctrl->queue_count; i++) {
1766 ret = nvme_tcp_alloc_queue(ctrl, i);
1767 if (ret)
1768 goto out_free_queues;
1769 }
1770
1771 return 0;
1772
1773 out_free_queues:
1774 for (i--; i >= 1; i--)
1775 nvme_tcp_free_queue(ctrl, i);
1776
1777 return ret;
1778 }
1779
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1780 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1781 {
1782 unsigned int nr_io_queues;
1783
1784 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1785 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1786 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1787
1788 return nr_io_queues;
1789 }
1790
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1791 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1792 unsigned int nr_io_queues)
1793 {
1794 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1795 struct nvmf_ctrl_options *opts = nctrl->opts;
1796
1797 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1798 /*
1799 * separate read/write queues
1800 * hand out dedicated default queues only after we have
1801 * sufficient read queues.
1802 */
1803 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1804 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1805 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1806 min(opts->nr_write_queues, nr_io_queues);
1807 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1808 } else {
1809 /*
1810 * shared read/write queues
1811 * either no write queues were requested, or we don't have
1812 * sufficient queue count to have dedicated default queues.
1813 */
1814 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1815 min(opts->nr_io_queues, nr_io_queues);
1816 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1817 }
1818
1819 if (opts->nr_poll_queues && nr_io_queues) {
1820 /* map dedicated poll queues only if we have queues left */
1821 ctrl->io_queues[HCTX_TYPE_POLL] =
1822 min(opts->nr_poll_queues, nr_io_queues);
1823 }
1824 }
1825
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1826 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1827 {
1828 unsigned int nr_io_queues;
1829 int ret;
1830
1831 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1832 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1833 if (ret)
1834 return ret;
1835
1836 if (nr_io_queues == 0) {
1837 dev_err(ctrl->device,
1838 "unable to set any I/O queues\n");
1839 return -ENOMEM;
1840 }
1841
1842 ctrl->queue_count = nr_io_queues + 1;
1843 dev_info(ctrl->device,
1844 "creating %d I/O queues.\n", nr_io_queues);
1845
1846 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1847
1848 return __nvme_tcp_alloc_io_queues(ctrl);
1849 }
1850
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1851 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1852 {
1853 nvme_tcp_stop_io_queues(ctrl);
1854 if (remove)
1855 nvme_remove_io_tag_set(ctrl);
1856 nvme_tcp_free_io_queues(ctrl);
1857 }
1858
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1859 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1860 {
1861 int ret, nr_queues;
1862
1863 ret = nvme_tcp_alloc_io_queues(ctrl);
1864 if (ret)
1865 return ret;
1866
1867 if (new) {
1868 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1869 &nvme_tcp_mq_ops,
1870 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING,
1871 sizeof(struct nvme_tcp_request));
1872 if (ret)
1873 goto out_free_io_queues;
1874 }
1875
1876 /*
1877 * Only start IO queues for which we have allocated the tagset
1878 * and limitted it to the available queues. On reconnects, the
1879 * queue number might have changed.
1880 */
1881 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1882 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1883 if (ret)
1884 goto out_cleanup_connect_q;
1885
1886 if (!new) {
1887 nvme_start_queues(ctrl);
1888 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1889 /*
1890 * If we timed out waiting for freeze we are likely to
1891 * be stuck. Fail the controller initialization just
1892 * to be safe.
1893 */
1894 ret = -ENODEV;
1895 goto out_wait_freeze_timed_out;
1896 }
1897 blk_mq_update_nr_hw_queues(ctrl->tagset,
1898 ctrl->queue_count - 1);
1899 nvme_unfreeze(ctrl);
1900 }
1901
1902 /*
1903 * If the number of queues has increased (reconnect case)
1904 * start all new queues now.
1905 */
1906 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1907 ctrl->tagset->nr_hw_queues + 1);
1908 if (ret)
1909 goto out_wait_freeze_timed_out;
1910
1911 return 0;
1912
1913 out_wait_freeze_timed_out:
1914 nvme_stop_queues(ctrl);
1915 nvme_sync_io_queues(ctrl);
1916 nvme_tcp_stop_io_queues(ctrl);
1917 out_cleanup_connect_q:
1918 nvme_cancel_tagset(ctrl);
1919 if (new)
1920 nvme_remove_io_tag_set(ctrl);
1921 out_free_io_queues:
1922 nvme_tcp_free_io_queues(ctrl);
1923 return ret;
1924 }
1925
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1926 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1927 {
1928 nvme_tcp_stop_queue(ctrl, 0);
1929 if (remove)
1930 nvme_remove_admin_tag_set(ctrl);
1931 nvme_tcp_free_admin_queue(ctrl);
1932 }
1933
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1934 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1935 {
1936 int error;
1937
1938 error = nvme_tcp_alloc_admin_queue(ctrl);
1939 if (error)
1940 return error;
1941
1942 if (new) {
1943 error = nvme_alloc_admin_tag_set(ctrl,
1944 &to_tcp_ctrl(ctrl)->admin_tag_set,
1945 &nvme_tcp_admin_mq_ops, BLK_MQ_F_BLOCKING,
1946 sizeof(struct nvme_tcp_request));
1947 if (error)
1948 goto out_free_queue;
1949 }
1950
1951 error = nvme_tcp_start_queue(ctrl, 0);
1952 if (error)
1953 goto out_cleanup_tagset;
1954
1955 error = nvme_enable_ctrl(ctrl);
1956 if (error)
1957 goto out_stop_queue;
1958
1959 nvme_start_admin_queue(ctrl);
1960
1961 error = nvme_init_ctrl_finish(ctrl);
1962 if (error)
1963 goto out_quiesce_queue;
1964
1965 return 0;
1966
1967 out_quiesce_queue:
1968 nvme_stop_admin_queue(ctrl);
1969 blk_sync_queue(ctrl->admin_q);
1970 out_stop_queue:
1971 nvme_tcp_stop_queue(ctrl, 0);
1972 nvme_cancel_admin_tagset(ctrl);
1973 out_cleanup_tagset:
1974 if (new)
1975 nvme_remove_admin_tag_set(ctrl);
1976 out_free_queue:
1977 nvme_tcp_free_admin_queue(ctrl);
1978 return error;
1979 }
1980
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)1981 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1982 bool remove)
1983 {
1984 nvme_stop_admin_queue(ctrl);
1985 blk_sync_queue(ctrl->admin_q);
1986 nvme_tcp_stop_queue(ctrl, 0);
1987 nvme_cancel_admin_tagset(ctrl);
1988 if (remove)
1989 nvme_start_admin_queue(ctrl);
1990 nvme_tcp_destroy_admin_queue(ctrl, remove);
1991 }
1992
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)1993 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1994 bool remove)
1995 {
1996 if (ctrl->queue_count <= 1)
1997 return;
1998 nvme_stop_admin_queue(ctrl);
1999 nvme_start_freeze(ctrl);
2000 nvme_stop_queues(ctrl);
2001 nvme_sync_io_queues(ctrl);
2002 nvme_tcp_stop_io_queues(ctrl);
2003 nvme_cancel_tagset(ctrl);
2004 if (remove)
2005 nvme_start_queues(ctrl);
2006 nvme_tcp_destroy_io_queues(ctrl, remove);
2007 }
2008
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)2009 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2010 {
2011 /* If we are resetting/deleting then do nothing */
2012 if (ctrl->state != NVME_CTRL_CONNECTING) {
2013 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2014 ctrl->state == NVME_CTRL_LIVE);
2015 return;
2016 }
2017
2018 if (nvmf_should_reconnect(ctrl)) {
2019 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2020 ctrl->opts->reconnect_delay);
2021 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2022 ctrl->opts->reconnect_delay * HZ);
2023 } else {
2024 dev_info(ctrl->device, "Removing controller...\n");
2025 nvme_delete_ctrl(ctrl);
2026 }
2027 }
2028
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2029 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2030 {
2031 struct nvmf_ctrl_options *opts = ctrl->opts;
2032 int ret;
2033
2034 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2035 if (ret)
2036 return ret;
2037
2038 if (ctrl->icdoff) {
2039 ret = -EOPNOTSUPP;
2040 dev_err(ctrl->device, "icdoff is not supported!\n");
2041 goto destroy_admin;
2042 }
2043
2044 if (!nvme_ctrl_sgl_supported(ctrl)) {
2045 ret = -EOPNOTSUPP;
2046 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2047 goto destroy_admin;
2048 }
2049
2050 if (opts->queue_size > ctrl->sqsize + 1)
2051 dev_warn(ctrl->device,
2052 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2053 opts->queue_size, ctrl->sqsize + 1);
2054
2055 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2056 dev_warn(ctrl->device,
2057 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2058 ctrl->sqsize + 1, ctrl->maxcmd);
2059 ctrl->sqsize = ctrl->maxcmd - 1;
2060 }
2061
2062 if (ctrl->queue_count > 1) {
2063 ret = nvme_tcp_configure_io_queues(ctrl, new);
2064 if (ret)
2065 goto destroy_admin;
2066 }
2067
2068 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2069 /*
2070 * state change failure is ok if we started ctrl delete,
2071 * unless we're during creation of a new controller to
2072 * avoid races with teardown flow.
2073 */
2074 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2075 ctrl->state != NVME_CTRL_DELETING_NOIO);
2076 WARN_ON_ONCE(new);
2077 ret = -EINVAL;
2078 goto destroy_io;
2079 }
2080
2081 nvme_start_ctrl(ctrl);
2082 return 0;
2083
2084 destroy_io:
2085 if (ctrl->queue_count > 1) {
2086 nvme_stop_queues(ctrl);
2087 nvme_sync_io_queues(ctrl);
2088 nvme_tcp_stop_io_queues(ctrl);
2089 nvme_cancel_tagset(ctrl);
2090 nvme_tcp_destroy_io_queues(ctrl, new);
2091 }
2092 destroy_admin:
2093 nvme_stop_admin_queue(ctrl);
2094 blk_sync_queue(ctrl->admin_q);
2095 nvme_tcp_stop_queue(ctrl, 0);
2096 nvme_cancel_admin_tagset(ctrl);
2097 nvme_tcp_destroy_admin_queue(ctrl, new);
2098 return ret;
2099 }
2100
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2101 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2102 {
2103 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2104 struct nvme_tcp_ctrl, connect_work);
2105 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2106
2107 ++ctrl->nr_reconnects;
2108
2109 if (nvme_tcp_setup_ctrl(ctrl, false))
2110 goto requeue;
2111
2112 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2113 ctrl->nr_reconnects);
2114
2115 ctrl->nr_reconnects = 0;
2116
2117 return;
2118
2119 requeue:
2120 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2121 ctrl->nr_reconnects);
2122 nvme_tcp_reconnect_or_remove(ctrl);
2123 }
2124
nvme_tcp_error_recovery_work(struct work_struct * work)2125 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2126 {
2127 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2128 struct nvme_tcp_ctrl, err_work);
2129 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2130
2131 nvme_auth_stop(ctrl);
2132 nvme_stop_keep_alive(ctrl);
2133 flush_work(&ctrl->async_event_work);
2134 nvme_tcp_teardown_io_queues(ctrl, false);
2135 /* unquiesce to fail fast pending requests */
2136 nvme_start_queues(ctrl);
2137 nvme_tcp_teardown_admin_queue(ctrl, false);
2138 nvme_start_admin_queue(ctrl);
2139
2140 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2141 /* state change failure is ok if we started ctrl delete */
2142 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2143 ctrl->state != NVME_CTRL_DELETING_NOIO);
2144 return;
2145 }
2146
2147 nvme_tcp_reconnect_or_remove(ctrl);
2148 }
2149
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2150 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2151 {
2152 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2153 nvme_stop_admin_queue(ctrl);
2154 if (shutdown)
2155 nvme_shutdown_ctrl(ctrl);
2156 else
2157 nvme_disable_ctrl(ctrl);
2158 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2159 }
2160
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2161 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2162 {
2163 nvme_tcp_teardown_ctrl(ctrl, true);
2164 }
2165
nvme_reset_ctrl_work(struct work_struct * work)2166 static void nvme_reset_ctrl_work(struct work_struct *work)
2167 {
2168 struct nvme_ctrl *ctrl =
2169 container_of(work, struct nvme_ctrl, reset_work);
2170
2171 nvme_stop_ctrl(ctrl);
2172 nvme_tcp_teardown_ctrl(ctrl, false);
2173
2174 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2175 /* state change failure is ok if we started ctrl delete */
2176 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2177 ctrl->state != NVME_CTRL_DELETING_NOIO);
2178 return;
2179 }
2180
2181 if (nvme_tcp_setup_ctrl(ctrl, false))
2182 goto out_fail;
2183
2184 return;
2185
2186 out_fail:
2187 ++ctrl->nr_reconnects;
2188 nvme_tcp_reconnect_or_remove(ctrl);
2189 }
2190
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2191 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2192 {
2193 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2194 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2195 }
2196
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2197 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2198 {
2199 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2200
2201 if (list_empty(&ctrl->list))
2202 goto free_ctrl;
2203
2204 mutex_lock(&nvme_tcp_ctrl_mutex);
2205 list_del(&ctrl->list);
2206 mutex_unlock(&nvme_tcp_ctrl_mutex);
2207
2208 nvmf_free_options(nctrl->opts);
2209 free_ctrl:
2210 kfree(ctrl->queues);
2211 kfree(ctrl);
2212 }
2213
nvme_tcp_set_sg_null(struct nvme_command * c)2214 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2215 {
2216 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2217
2218 sg->addr = 0;
2219 sg->length = 0;
2220 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2221 NVME_SGL_FMT_TRANSPORT_A;
2222 }
2223
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2224 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2225 struct nvme_command *c, u32 data_len)
2226 {
2227 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2228
2229 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2230 sg->length = cpu_to_le32(data_len);
2231 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2232 }
2233
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2234 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2235 u32 data_len)
2236 {
2237 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2238
2239 sg->addr = 0;
2240 sg->length = cpu_to_le32(data_len);
2241 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2242 NVME_SGL_FMT_TRANSPORT_A;
2243 }
2244
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2245 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2246 {
2247 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2248 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2249 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2250 struct nvme_command *cmd = &pdu->cmd;
2251 u8 hdgst = nvme_tcp_hdgst_len(queue);
2252
2253 memset(pdu, 0, sizeof(*pdu));
2254 pdu->hdr.type = nvme_tcp_cmd;
2255 if (queue->hdr_digest)
2256 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2257 pdu->hdr.hlen = sizeof(*pdu);
2258 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2259
2260 cmd->common.opcode = nvme_admin_async_event;
2261 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2262 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2263 nvme_tcp_set_sg_null(cmd);
2264
2265 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2266 ctrl->async_req.offset = 0;
2267 ctrl->async_req.curr_bio = NULL;
2268 ctrl->async_req.data_len = 0;
2269
2270 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2271 }
2272
nvme_tcp_complete_timed_out(struct request * rq)2273 static void nvme_tcp_complete_timed_out(struct request *rq)
2274 {
2275 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2276 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2277
2278 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2279 nvmf_complete_timed_out_request(rq);
2280 }
2281
nvme_tcp_timeout(struct request * rq)2282 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2283 {
2284 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2285 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2286 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2287
2288 dev_warn(ctrl->device,
2289 "queue %d: timeout request %#x type %d\n",
2290 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2291
2292 if (ctrl->state != NVME_CTRL_LIVE) {
2293 /*
2294 * If we are resetting, connecting or deleting we should
2295 * complete immediately because we may block controller
2296 * teardown or setup sequence
2297 * - ctrl disable/shutdown fabrics requests
2298 * - connect requests
2299 * - initialization admin requests
2300 * - I/O requests that entered after unquiescing and
2301 * the controller stopped responding
2302 *
2303 * All other requests should be cancelled by the error
2304 * recovery work, so it's fine that we fail it here.
2305 */
2306 nvme_tcp_complete_timed_out(rq);
2307 return BLK_EH_DONE;
2308 }
2309
2310 /*
2311 * LIVE state should trigger the normal error recovery which will
2312 * handle completing this request.
2313 */
2314 nvme_tcp_error_recovery(ctrl);
2315 return BLK_EH_RESET_TIMER;
2316 }
2317
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2318 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2319 struct request *rq)
2320 {
2321 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2322 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2323 struct nvme_command *c = &pdu->cmd;
2324
2325 c->common.flags |= NVME_CMD_SGL_METABUF;
2326
2327 if (!blk_rq_nr_phys_segments(rq))
2328 nvme_tcp_set_sg_null(c);
2329 else if (rq_data_dir(rq) == WRITE &&
2330 req->data_len <= nvme_tcp_inline_data_size(req))
2331 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2332 else
2333 nvme_tcp_set_sg_host_data(c, req->data_len);
2334
2335 return 0;
2336 }
2337
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2338 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2339 struct request *rq)
2340 {
2341 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2342 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2343 struct nvme_tcp_queue *queue = req->queue;
2344 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2345 blk_status_t ret;
2346
2347 ret = nvme_setup_cmd(ns, rq);
2348 if (ret)
2349 return ret;
2350
2351 req->state = NVME_TCP_SEND_CMD_PDU;
2352 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2353 req->offset = 0;
2354 req->data_sent = 0;
2355 req->pdu_len = 0;
2356 req->pdu_sent = 0;
2357 req->h2cdata_left = 0;
2358 req->data_len = blk_rq_nr_phys_segments(rq) ?
2359 blk_rq_payload_bytes(rq) : 0;
2360 req->curr_bio = rq->bio;
2361 if (req->curr_bio && req->data_len)
2362 nvme_tcp_init_iter(req, rq_data_dir(rq));
2363
2364 if (rq_data_dir(rq) == WRITE &&
2365 req->data_len <= nvme_tcp_inline_data_size(req))
2366 req->pdu_len = req->data_len;
2367
2368 pdu->hdr.type = nvme_tcp_cmd;
2369 pdu->hdr.flags = 0;
2370 if (queue->hdr_digest)
2371 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2372 if (queue->data_digest && req->pdu_len) {
2373 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2374 ddgst = nvme_tcp_ddgst_len(queue);
2375 }
2376 pdu->hdr.hlen = sizeof(*pdu);
2377 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2378 pdu->hdr.plen =
2379 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2380
2381 ret = nvme_tcp_map_data(queue, rq);
2382 if (unlikely(ret)) {
2383 nvme_cleanup_cmd(rq);
2384 dev_err(queue->ctrl->ctrl.device,
2385 "Failed to map data (%d)\n", ret);
2386 return ret;
2387 }
2388
2389 return 0;
2390 }
2391
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2392 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2393 {
2394 struct nvme_tcp_queue *queue = hctx->driver_data;
2395
2396 if (!llist_empty(&queue->req_list))
2397 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2398 }
2399
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2400 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2401 const struct blk_mq_queue_data *bd)
2402 {
2403 struct nvme_ns *ns = hctx->queue->queuedata;
2404 struct nvme_tcp_queue *queue = hctx->driver_data;
2405 struct request *rq = bd->rq;
2406 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2407 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2408 blk_status_t ret;
2409
2410 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2411 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2412
2413 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2414 if (unlikely(ret))
2415 return ret;
2416
2417 blk_mq_start_request(rq);
2418
2419 nvme_tcp_queue_request(req, true, bd->last);
2420
2421 return BLK_STS_OK;
2422 }
2423
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2424 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2425 {
2426 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2427 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2428
2429 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2430 /* separate read/write queues */
2431 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2432 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2433 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2434 set->map[HCTX_TYPE_READ].nr_queues =
2435 ctrl->io_queues[HCTX_TYPE_READ];
2436 set->map[HCTX_TYPE_READ].queue_offset =
2437 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2438 } else {
2439 /* shared read/write queues */
2440 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2441 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2442 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2443 set->map[HCTX_TYPE_READ].nr_queues =
2444 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2445 set->map[HCTX_TYPE_READ].queue_offset = 0;
2446 }
2447 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2448 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2449
2450 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2451 /* map dedicated poll queues only if we have queues left */
2452 set->map[HCTX_TYPE_POLL].nr_queues =
2453 ctrl->io_queues[HCTX_TYPE_POLL];
2454 set->map[HCTX_TYPE_POLL].queue_offset =
2455 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2456 ctrl->io_queues[HCTX_TYPE_READ];
2457 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2458 }
2459
2460 dev_info(ctrl->ctrl.device,
2461 "mapped %d/%d/%d default/read/poll queues.\n",
2462 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2463 ctrl->io_queues[HCTX_TYPE_READ],
2464 ctrl->io_queues[HCTX_TYPE_POLL]);
2465 }
2466
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2467 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2468 {
2469 struct nvme_tcp_queue *queue = hctx->driver_data;
2470 struct sock *sk = queue->sock->sk;
2471
2472 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2473 return 0;
2474
2475 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2476 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2477 sk_busy_loop(sk, true);
2478 nvme_tcp_try_recv(queue);
2479 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2480 return queue->nr_cqe;
2481 }
2482
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2483 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2484 {
2485 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2486 struct sockaddr_storage src_addr;
2487 int ret, len;
2488
2489 len = nvmf_get_address(ctrl, buf, size);
2490
2491 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2492 if (ret > 0) {
2493 if (len > 0)
2494 len--; /* strip trailing newline */
2495 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2496 (len) ? "," : "", &src_addr);
2497 }
2498
2499 return len;
2500 }
2501
2502 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2503 .queue_rq = nvme_tcp_queue_rq,
2504 .commit_rqs = nvme_tcp_commit_rqs,
2505 .complete = nvme_complete_rq,
2506 .init_request = nvme_tcp_init_request,
2507 .exit_request = nvme_tcp_exit_request,
2508 .init_hctx = nvme_tcp_init_hctx,
2509 .timeout = nvme_tcp_timeout,
2510 .map_queues = nvme_tcp_map_queues,
2511 .poll = nvme_tcp_poll,
2512 };
2513
2514 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2515 .queue_rq = nvme_tcp_queue_rq,
2516 .complete = nvme_complete_rq,
2517 .init_request = nvme_tcp_init_request,
2518 .exit_request = nvme_tcp_exit_request,
2519 .init_hctx = nvme_tcp_init_admin_hctx,
2520 .timeout = nvme_tcp_timeout,
2521 };
2522
2523 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2524 .name = "tcp",
2525 .module = THIS_MODULE,
2526 .flags = NVME_F_FABRICS,
2527 .reg_read32 = nvmf_reg_read32,
2528 .reg_read64 = nvmf_reg_read64,
2529 .reg_write32 = nvmf_reg_write32,
2530 .free_ctrl = nvme_tcp_free_ctrl,
2531 .submit_async_event = nvme_tcp_submit_async_event,
2532 .delete_ctrl = nvme_tcp_delete_ctrl,
2533 .get_address = nvme_tcp_get_address,
2534 .stop_ctrl = nvme_tcp_stop_ctrl,
2535 };
2536
2537 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2538 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2539 {
2540 struct nvme_tcp_ctrl *ctrl;
2541 bool found = false;
2542
2543 mutex_lock(&nvme_tcp_ctrl_mutex);
2544 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2545 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2546 if (found)
2547 break;
2548 }
2549 mutex_unlock(&nvme_tcp_ctrl_mutex);
2550
2551 return found;
2552 }
2553
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2554 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2555 struct nvmf_ctrl_options *opts)
2556 {
2557 struct nvme_tcp_ctrl *ctrl;
2558 int ret;
2559
2560 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2561 if (!ctrl)
2562 return ERR_PTR(-ENOMEM);
2563
2564 INIT_LIST_HEAD(&ctrl->list);
2565 ctrl->ctrl.opts = opts;
2566 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2567 opts->nr_poll_queues + 1;
2568 ctrl->ctrl.sqsize = opts->queue_size - 1;
2569 ctrl->ctrl.kato = opts->kato;
2570
2571 INIT_DELAYED_WORK(&ctrl->connect_work,
2572 nvme_tcp_reconnect_ctrl_work);
2573 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2574 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2575
2576 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2577 opts->trsvcid =
2578 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2579 if (!opts->trsvcid) {
2580 ret = -ENOMEM;
2581 goto out_free_ctrl;
2582 }
2583 opts->mask |= NVMF_OPT_TRSVCID;
2584 }
2585
2586 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2587 opts->traddr, opts->trsvcid, &ctrl->addr);
2588 if (ret) {
2589 pr_err("malformed address passed: %s:%s\n",
2590 opts->traddr, opts->trsvcid);
2591 goto out_free_ctrl;
2592 }
2593
2594 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2595 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2596 opts->host_traddr, NULL, &ctrl->src_addr);
2597 if (ret) {
2598 pr_err("malformed src address passed: %s\n",
2599 opts->host_traddr);
2600 goto out_free_ctrl;
2601 }
2602 }
2603
2604 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2605 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2606 pr_err("invalid interface passed: %s\n",
2607 opts->host_iface);
2608 ret = -ENODEV;
2609 goto out_free_ctrl;
2610 }
2611 }
2612
2613 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2614 ret = -EALREADY;
2615 goto out_free_ctrl;
2616 }
2617
2618 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2619 GFP_KERNEL);
2620 if (!ctrl->queues) {
2621 ret = -ENOMEM;
2622 goto out_free_ctrl;
2623 }
2624
2625 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2626 if (ret)
2627 goto out_kfree_queues;
2628
2629 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2630 WARN_ON_ONCE(1);
2631 ret = -EINTR;
2632 goto out_uninit_ctrl;
2633 }
2634
2635 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2636 if (ret)
2637 goto out_uninit_ctrl;
2638
2639 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2640 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2641
2642 mutex_lock(&nvme_tcp_ctrl_mutex);
2643 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2644 mutex_unlock(&nvme_tcp_ctrl_mutex);
2645
2646 return &ctrl->ctrl;
2647
2648 out_uninit_ctrl:
2649 nvme_uninit_ctrl(&ctrl->ctrl);
2650 nvme_put_ctrl(&ctrl->ctrl);
2651 if (ret > 0)
2652 ret = -EIO;
2653 return ERR_PTR(ret);
2654 out_kfree_queues:
2655 kfree(ctrl->queues);
2656 out_free_ctrl:
2657 kfree(ctrl);
2658 return ERR_PTR(ret);
2659 }
2660
2661 static struct nvmf_transport_ops nvme_tcp_transport = {
2662 .name = "tcp",
2663 .module = THIS_MODULE,
2664 .required_opts = NVMF_OPT_TRADDR,
2665 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2666 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2667 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2668 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2669 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2670 .create_ctrl = nvme_tcp_create_ctrl,
2671 };
2672
nvme_tcp_init_module(void)2673 static int __init nvme_tcp_init_module(void)
2674 {
2675 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2676 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2677 if (!nvme_tcp_wq)
2678 return -ENOMEM;
2679
2680 nvmf_register_transport(&nvme_tcp_transport);
2681 return 0;
2682 }
2683
nvme_tcp_cleanup_module(void)2684 static void __exit nvme_tcp_cleanup_module(void)
2685 {
2686 struct nvme_tcp_ctrl *ctrl;
2687
2688 nvmf_unregister_transport(&nvme_tcp_transport);
2689
2690 mutex_lock(&nvme_tcp_ctrl_mutex);
2691 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2692 nvme_delete_ctrl(&ctrl->ctrl);
2693 mutex_unlock(&nvme_tcp_ctrl_mutex);
2694 flush_workqueue(nvme_delete_wq);
2695
2696 destroy_workqueue(nvme_tcp_wq);
2697 }
2698
2699 module_init(nvme_tcp_init_module);
2700 module_exit(nvme_tcp_cleanup_module);
2701
2702 MODULE_LICENSE("GPL v2");
2703