1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2022 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/skbuff.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29 #include <linux/can/dev.h>
30 #include <linux/can/error.h>
31 #include <linux/pm_runtime.h>
32 
33 #define DRIVER_NAME	"xilinx_can"
34 
35 /* CAN registers set */
36 enum xcan_reg {
37 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
38 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
39 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
40 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
41 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
42 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
43 	XCAN_SR_OFFSET		= 0x18, /* Status */
44 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
45 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
46 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
47 
48 	/* not on CAN FD cores */
49 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
50 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
51 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
52 
53 	/* only on CAN FD cores */
54 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
55 					  * Prescaler
56 					  */
57 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
58 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
59 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
60 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
61 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
62 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
63 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
64 	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
65 	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
66 };
67 
68 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
69 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
70 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
71 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
72 #define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
73 
74 #define XCAN_CANFD_FRAME_SIZE		0x48
75 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
76 					 XCAN_CANFD_FRAME_SIZE * (n))
77 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
78 					 XCAN_CANFD_FRAME_SIZE * (n))
79 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
80 					 XCAN_CANFD_FRAME_SIZE * (n))
81 
82 /* the single TX mailbox used by this driver on CAN FD HW */
83 #define XCAN_TX_MAILBOX_IDX		0
84 
85 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
86 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
87 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
88 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
89 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
90 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
91 #define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
92 #define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
93 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
94 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
95 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
96 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
97 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
98 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
99 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
100 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
101 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
102 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
103 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
104 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
105 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
106 #define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
107 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
108 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
109 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
110 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
111 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
112 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
113 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
114 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
115 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
116 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
117 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
118 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
119 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
120 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
121 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
122 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
123 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
124 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
125 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
126 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
127 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
128 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
129 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
130 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
131 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
132 #define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
133 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
134 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
135 #define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
136 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
137 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
138 
139 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
140 #define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
141 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
142 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
143 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
144 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
145 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
146 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
147 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
148 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
149 
150 /* CAN frame length constants */
151 #define XCAN_FRAME_MAX_DATA_LEN		8
152 #define XCANFD_DW_BYTES			4
153 #define XCAN_TIMEOUT			(1 * HZ)
154 
155 /* TX-FIFO-empty interrupt available */
156 #define XCAN_FLAG_TXFEMP	0x0001
157 /* RX Match Not Finished interrupt available */
158 #define XCAN_FLAG_RXMNF		0x0002
159 /* Extended acceptance filters with control at 0xE0 */
160 #define XCAN_FLAG_EXT_FILTERS	0x0004
161 /* TX mailboxes instead of TX FIFO */
162 #define XCAN_FLAG_TX_MAILBOXES	0x0008
163 /* RX FIFO with each buffer in separate registers at 0x1100
164  * instead of the regular FIFO at 0x50
165  */
166 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
167 #define XCAN_FLAG_CANFD_2	0x0020
168 
169 enum xcan_ip_type {
170 	XAXI_CAN = 0,
171 	XZYNQ_CANPS,
172 	XAXI_CANFD,
173 	XAXI_CANFD_2_0,
174 };
175 
176 struct xcan_devtype_data {
177 	enum xcan_ip_type cantype;
178 	unsigned int flags;
179 	const struct can_bittiming_const *bittiming_const;
180 	const char *bus_clk_name;
181 	unsigned int btr_ts2_shift;
182 	unsigned int btr_sjw_shift;
183 };
184 
185 /**
186  * struct xcan_priv - This definition define CAN driver instance
187  * @can:			CAN private data structure.
188  * @tx_lock:			Lock for synchronizing TX interrupt handling
189  * @tx_head:			Tx CAN packets ready to send on the queue
190  * @tx_tail:			Tx CAN packets successfully sended on the queue
191  * @tx_max:			Maximum number packets the driver can send
192  * @napi:			NAPI structure
193  * @read_reg:			For reading data from CAN registers
194  * @write_reg:			For writing data to CAN registers
195  * @dev:			Network device data structure
196  * @reg_base:			Ioremapped address to registers
197  * @irq_flags:			For request_irq()
198  * @bus_clk:			Pointer to struct clk
199  * @can_clk:			Pointer to struct clk
200  * @devtype:			Device type specific constants
201  */
202 struct xcan_priv {
203 	struct can_priv can;
204 	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
205 	unsigned int tx_head;
206 	unsigned int tx_tail;
207 	unsigned int tx_max;
208 	struct napi_struct napi;
209 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
210 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
211 			  u32 val);
212 	struct device *dev;
213 	void __iomem *reg_base;
214 	unsigned long irq_flags;
215 	struct clk *bus_clk;
216 	struct clk *can_clk;
217 	struct xcan_devtype_data devtype;
218 };
219 
220 /* CAN Bittiming constants as per Xilinx CAN specs */
221 static const struct can_bittiming_const xcan_bittiming_const = {
222 	.name = DRIVER_NAME,
223 	.tseg1_min = 1,
224 	.tseg1_max = 16,
225 	.tseg2_min = 1,
226 	.tseg2_max = 8,
227 	.sjw_max = 4,
228 	.brp_min = 1,
229 	.brp_max = 256,
230 	.brp_inc = 1,
231 };
232 
233 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
234 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
235 	.name = DRIVER_NAME,
236 	.tseg1_min = 1,
237 	.tseg1_max = 64,
238 	.tseg2_min = 1,
239 	.tseg2_max = 16,
240 	.sjw_max = 16,
241 	.brp_min = 1,
242 	.brp_max = 256,
243 	.brp_inc = 1,
244 };
245 
246 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
247 static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
248 	.name = DRIVER_NAME,
249 	.tseg1_min = 1,
250 	.tseg1_max = 16,
251 	.tseg2_min = 1,
252 	.tseg2_max = 8,
253 	.sjw_max = 8,
254 	.brp_min = 1,
255 	.brp_max = 256,
256 	.brp_inc = 1,
257 };
258 
259 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
260 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
261 	.name = DRIVER_NAME,
262 	.tseg1_min = 1,
263 	.tseg1_max = 256,
264 	.tseg2_min = 1,
265 	.tseg2_max = 128,
266 	.sjw_max = 128,
267 	.brp_min = 1,
268 	.brp_max = 256,
269 	.brp_inc = 1,
270 };
271 
272 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
273 static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
274 	.name = DRIVER_NAME,
275 	.tseg1_min = 1,
276 	.tseg1_max = 32,
277 	.tseg2_min = 1,
278 	.tseg2_max = 16,
279 	.sjw_max = 16,
280 	.brp_min = 1,
281 	.brp_max = 256,
282 	.brp_inc = 1,
283 };
284 
285 /* Transmission Delay Compensation constants for CANFD 1.0 */
286 static const struct can_tdc_const xcan_tdc_const_canfd = {
287 	.tdcv_min = 0,
288 	.tdcv_max = 0, /* Manual mode not supported. */
289 	.tdco_min = 0,
290 	.tdco_max = 32,
291 	.tdcf_min = 0, /* Filter window not supported */
292 	.tdcf_max = 0,
293 };
294 
295 /* Transmission Delay Compensation constants for CANFD 2.0 */
296 static const struct can_tdc_const xcan_tdc_const_canfd2 = {
297 	.tdcv_min = 0,
298 	.tdcv_max = 0, /* Manual mode not supported. */
299 	.tdco_min = 0,
300 	.tdco_max = 64,
301 	.tdcf_min = 0, /* Filter window not supported */
302 	.tdcf_max = 0,
303 };
304 
305 /**
306  * xcan_write_reg_le - Write a value to the device register little endian
307  * @priv:	Driver private data structure
308  * @reg:	Register offset
309  * @val:	Value to write at the Register offset
310  *
311  * Write data to the paricular CAN register
312  */
xcan_write_reg_le(const struct xcan_priv * priv,enum xcan_reg reg,u32 val)313 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
314 			      u32 val)
315 {
316 	iowrite32(val, priv->reg_base + reg);
317 }
318 
319 /**
320  * xcan_read_reg_le - Read a value from the device register little endian
321  * @priv:	Driver private data structure
322  * @reg:	Register offset
323  *
324  * Read data from the particular CAN register
325  * Return: value read from the CAN register
326  */
xcan_read_reg_le(const struct xcan_priv * priv,enum xcan_reg reg)327 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
328 {
329 	return ioread32(priv->reg_base + reg);
330 }
331 
332 /**
333  * xcan_write_reg_be - Write a value to the device register big endian
334  * @priv:	Driver private data structure
335  * @reg:	Register offset
336  * @val:	Value to write at the Register offset
337  *
338  * Write data to the paricular CAN register
339  */
xcan_write_reg_be(const struct xcan_priv * priv,enum xcan_reg reg,u32 val)340 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
341 			      u32 val)
342 {
343 	iowrite32be(val, priv->reg_base + reg);
344 }
345 
346 /**
347  * xcan_read_reg_be - Read a value from the device register big endian
348  * @priv:	Driver private data structure
349  * @reg:	Register offset
350  *
351  * Read data from the particular CAN register
352  * Return: value read from the CAN register
353  */
xcan_read_reg_be(const struct xcan_priv * priv,enum xcan_reg reg)354 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
355 {
356 	return ioread32be(priv->reg_base + reg);
357 }
358 
359 /**
360  * xcan_rx_int_mask - Get the mask for the receive interrupt
361  * @priv:	Driver private data structure
362  *
363  * Return: The receive interrupt mask used by the driver on this HW
364  */
xcan_rx_int_mask(const struct xcan_priv * priv)365 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
366 {
367 	/* RXNEMP is better suited for our use case as it cannot be cleared
368 	 * while the FIFO is non-empty, but CAN FD HW does not have it
369 	 */
370 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
371 		return XCAN_IXR_RXOK_MASK;
372 	else
373 		return XCAN_IXR_RXNEMP_MASK;
374 }
375 
376 /**
377  * set_reset_mode - Resets the CAN device mode
378  * @ndev:	Pointer to net_device structure
379  *
380  * This is the driver reset mode routine.The driver
381  * enters into configuration mode.
382  *
383  * Return: 0 on success and failure value on error
384  */
set_reset_mode(struct net_device * ndev)385 static int set_reset_mode(struct net_device *ndev)
386 {
387 	struct xcan_priv *priv = netdev_priv(ndev);
388 	unsigned long timeout;
389 
390 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
391 
392 	timeout = jiffies + XCAN_TIMEOUT;
393 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
394 		if (time_after(jiffies, timeout)) {
395 			netdev_warn(ndev, "timed out for config mode\n");
396 			return -ETIMEDOUT;
397 		}
398 		usleep_range(500, 10000);
399 	}
400 
401 	/* reset clears FIFOs */
402 	priv->tx_head = 0;
403 	priv->tx_tail = 0;
404 
405 	return 0;
406 }
407 
408 /**
409  * xcan_set_bittiming - CAN set bit timing routine
410  * @ndev:	Pointer to net_device structure
411  *
412  * This is the driver set bittiming  routine.
413  * Return: 0 on success and failure value on error
414  */
xcan_set_bittiming(struct net_device * ndev)415 static int xcan_set_bittiming(struct net_device *ndev)
416 {
417 	struct xcan_priv *priv = netdev_priv(ndev);
418 	struct can_bittiming *bt = &priv->can.bittiming;
419 	struct can_bittiming *dbt = &priv->can.data_bittiming;
420 	u32 btr0, btr1;
421 	u32 is_config_mode;
422 
423 	/* Check whether Xilinx CAN is in configuration mode.
424 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
425 	 */
426 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
427 				XCAN_SR_CONFIG_MASK;
428 	if (!is_config_mode) {
429 		netdev_alert(ndev,
430 			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
431 		return -EPERM;
432 	}
433 
434 	/* Setting Baud Rate prescaler value in BRPR Register */
435 	btr0 = (bt->brp - 1);
436 
437 	/* Setting Time Segment 1 in BTR Register */
438 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
439 
440 	/* Setting Time Segment 2 in BTR Register */
441 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
442 
443 	/* Setting Synchronous jump width in BTR Register */
444 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
445 
446 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
447 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
448 
449 	if (priv->devtype.cantype == XAXI_CANFD ||
450 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
451 		/* Setting Baud Rate prescaler value in F_BRPR Register */
452 		btr0 = dbt->brp - 1;
453 		if (can_tdc_is_enabled(&priv->can)) {
454 			if (priv->devtype.cantype == XAXI_CANFD)
455 				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
456 					XCAN_BRPR_TDC_ENABLE;
457 			else
458 				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
459 					XCAN_BRPR_TDC_ENABLE;
460 		}
461 
462 		/* Setting Time Segment 1 in BTR Register */
463 		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
464 
465 		/* Setting Time Segment 2 in BTR Register */
466 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
467 
468 		/* Setting Synchronous jump width in BTR Register */
469 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
470 
471 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
472 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
473 	}
474 
475 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
476 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
477 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
478 
479 	return 0;
480 }
481 
482 /**
483  * xcan_chip_start - This the drivers start routine
484  * @ndev:	Pointer to net_device structure
485  *
486  * This is the drivers start routine.
487  * Based on the State of the CAN device it puts
488  * the CAN device into a proper mode.
489  *
490  * Return: 0 on success and failure value on error
491  */
xcan_chip_start(struct net_device * ndev)492 static int xcan_chip_start(struct net_device *ndev)
493 {
494 	struct xcan_priv *priv = netdev_priv(ndev);
495 	u32 reg_msr;
496 	int err;
497 	u32 ier;
498 
499 	/* Check if it is in reset mode */
500 	err = set_reset_mode(ndev);
501 	if (err < 0)
502 		return err;
503 
504 	err = xcan_set_bittiming(ndev);
505 	if (err < 0)
506 		return err;
507 
508 	/* Enable interrupts
509 	 *
510 	 * We enable the ERROR interrupt even with
511 	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
512 	 * dedicated interrupt for a state change to
513 	 * ERROR_WARNING/ERROR_PASSIVE.
514 	 */
515 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
516 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
517 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
518 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
519 
520 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
521 		ier |= XCAN_IXR_RXMNF_MASK;
522 
523 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
524 
525 	/* Check whether it is loopback mode or normal mode  */
526 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
527 		reg_msr = XCAN_MSR_LBACK_MASK;
528 	else
529 		reg_msr = 0x0;
530 
531 	/* enable the first extended filter, if any, as cores with extended
532 	 * filtering default to non-receipt if all filters are disabled
533 	 */
534 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
535 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
536 
537 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
538 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
539 
540 	netdev_dbg(ndev, "status:#x%08x\n",
541 		   priv->read_reg(priv, XCAN_SR_OFFSET));
542 
543 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
544 	return 0;
545 }
546 
547 /**
548  * xcan_do_set_mode - This sets the mode of the driver
549  * @ndev:	Pointer to net_device structure
550  * @mode:	Tells the mode of the driver
551  *
552  * This check the drivers state and calls the corresponding modes to set.
553  *
554  * Return: 0 on success and failure value on error
555  */
xcan_do_set_mode(struct net_device * ndev,enum can_mode mode)556 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
557 {
558 	int ret;
559 
560 	switch (mode) {
561 	case CAN_MODE_START:
562 		ret = xcan_chip_start(ndev);
563 		if (ret < 0) {
564 			netdev_err(ndev, "xcan_chip_start failed!\n");
565 			return ret;
566 		}
567 		netif_wake_queue(ndev);
568 		break;
569 	default:
570 		ret = -EOPNOTSUPP;
571 		break;
572 	}
573 
574 	return ret;
575 }
576 
577 /**
578  * xcan_write_frame - Write a frame to HW
579  * @ndev:		Pointer to net_device structure
580  * @skb:		sk_buff pointer that contains data to be Txed
581  * @frame_offset:	Register offset to write the frame to
582  */
xcan_write_frame(struct net_device * ndev,struct sk_buff * skb,int frame_offset)583 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
584 			     int frame_offset)
585 {
586 	u32 id, dlc, data[2] = {0, 0};
587 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
588 	u32 ramoff, dwindex = 0, i;
589 	struct xcan_priv *priv = netdev_priv(ndev);
590 
591 	/* Watch carefully on the bit sequence */
592 	if (cf->can_id & CAN_EFF_FLAG) {
593 		/* Extended CAN ID format */
594 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
595 			XCAN_IDR_ID2_MASK;
596 		id |= (((cf->can_id & CAN_EFF_MASK) >>
597 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
598 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
599 
600 		/* The substibute remote TX request bit should be "1"
601 		 * for extended frames as in the Xilinx CAN datasheet
602 		 */
603 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
604 
605 		if (cf->can_id & CAN_RTR_FLAG)
606 			/* Extended frames remote TX request */
607 			id |= XCAN_IDR_RTR_MASK;
608 	} else {
609 		/* Standard CAN ID format */
610 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
611 			XCAN_IDR_ID1_MASK;
612 
613 		if (cf->can_id & CAN_RTR_FLAG)
614 			/* Standard frames remote TX request */
615 			id |= XCAN_IDR_SRR_MASK;
616 	}
617 
618 	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
619 	if (can_is_canfd_skb(skb)) {
620 		if (cf->flags & CANFD_BRS)
621 			dlc |= XCAN_DLCR_BRS_MASK;
622 		dlc |= XCAN_DLCR_EDL_MASK;
623 	}
624 
625 	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
626 	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
627 		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
628 	else
629 		can_put_echo_skb(skb, ndev, 0, 0);
630 
631 	priv->tx_head++;
632 
633 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
634 	/* If the CAN frame is RTR frame this write triggers transmission
635 	 * (not on CAN FD)
636 	 */
637 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
638 	if (priv->devtype.cantype == XAXI_CANFD ||
639 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
640 		for (i = 0; i < cf->len; i += 4) {
641 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
642 					(dwindex * XCANFD_DW_BYTES);
643 			priv->write_reg(priv, ramoff,
644 					be32_to_cpup((__be32 *)(cf->data + i)));
645 			dwindex++;
646 		}
647 	} else {
648 		if (cf->len > 0)
649 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
650 		if (cf->len > 4)
651 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
652 
653 		if (!(cf->can_id & CAN_RTR_FLAG)) {
654 			priv->write_reg(priv,
655 					XCAN_FRAME_DW1_OFFSET(frame_offset),
656 					data[0]);
657 			/* If the CAN frame is Standard/Extended frame this
658 			 * write triggers transmission (not on CAN FD)
659 			 */
660 			priv->write_reg(priv,
661 					XCAN_FRAME_DW2_OFFSET(frame_offset),
662 					data[1]);
663 		}
664 	}
665 }
666 
667 /**
668  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
669  * @skb:	sk_buff pointer that contains data to be Txed
670  * @ndev:	Pointer to net_device structure
671  *
672  * Return: 0 on success, -ENOSPC if FIFO is full.
673  */
xcan_start_xmit_fifo(struct sk_buff * skb,struct net_device * ndev)674 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
675 {
676 	struct xcan_priv *priv = netdev_priv(ndev);
677 	unsigned long flags;
678 
679 	/* Check if the TX buffer is full */
680 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
681 			XCAN_SR_TXFLL_MASK))
682 		return -ENOSPC;
683 
684 	spin_lock_irqsave(&priv->tx_lock, flags);
685 
686 	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
687 
688 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
689 	if (priv->tx_max > 1)
690 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
691 
692 	/* Check if the TX buffer is full */
693 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
694 		netif_stop_queue(ndev);
695 
696 	spin_unlock_irqrestore(&priv->tx_lock, flags);
697 
698 	return 0;
699 }
700 
701 /**
702  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
703  * @skb:	sk_buff pointer that contains data to be Txed
704  * @ndev:	Pointer to net_device structure
705  *
706  * Return: 0 on success, -ENOSPC if there is no space
707  */
xcan_start_xmit_mailbox(struct sk_buff * skb,struct net_device * ndev)708 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
709 {
710 	struct xcan_priv *priv = netdev_priv(ndev);
711 	unsigned long flags;
712 
713 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
714 		     BIT(XCAN_TX_MAILBOX_IDX)))
715 		return -ENOSPC;
716 
717 	spin_lock_irqsave(&priv->tx_lock, flags);
718 
719 	xcan_write_frame(ndev, skb,
720 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
721 
722 	/* Mark buffer as ready for transmit */
723 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
724 
725 	netif_stop_queue(ndev);
726 
727 	spin_unlock_irqrestore(&priv->tx_lock, flags);
728 
729 	return 0;
730 }
731 
732 /**
733  * xcan_start_xmit - Starts the transmission
734  * @skb:	sk_buff pointer that contains data to be Txed
735  * @ndev:	Pointer to net_device structure
736  *
737  * This function is invoked from upper layers to initiate transmission.
738  *
739  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
740  */
xcan_start_xmit(struct sk_buff * skb,struct net_device * ndev)741 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
742 {
743 	struct xcan_priv *priv = netdev_priv(ndev);
744 	int ret;
745 
746 	if (can_dev_dropped_skb(ndev, skb))
747 		return NETDEV_TX_OK;
748 
749 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
750 		ret = xcan_start_xmit_mailbox(skb, ndev);
751 	else
752 		ret = xcan_start_xmit_fifo(skb, ndev);
753 
754 	if (ret < 0) {
755 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
756 		netif_stop_queue(ndev);
757 		return NETDEV_TX_BUSY;
758 	}
759 
760 	return NETDEV_TX_OK;
761 }
762 
763 /**
764  * xcan_rx -  Is called from CAN isr to complete the received
765  *		frame  processing
766  * @ndev:	Pointer to net_device structure
767  * @frame_base:	Register offset to the frame to be read
768  *
769  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
770  * does minimal processing and invokes "netif_receive_skb" to complete further
771  * processing.
772  * Return: 1 on success and 0 on failure.
773  */
xcan_rx(struct net_device * ndev,int frame_base)774 static int xcan_rx(struct net_device *ndev, int frame_base)
775 {
776 	struct xcan_priv *priv = netdev_priv(ndev);
777 	struct net_device_stats *stats = &ndev->stats;
778 	struct can_frame *cf;
779 	struct sk_buff *skb;
780 	u32 id_xcan, dlc, data[2] = {0, 0};
781 
782 	skb = alloc_can_skb(ndev, &cf);
783 	if (unlikely(!skb)) {
784 		stats->rx_dropped++;
785 		return 0;
786 	}
787 
788 	/* Read a frame from Xilinx zynq CANPS */
789 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
790 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
791 				   XCAN_DLCR_DLC_SHIFT;
792 
793 	/* Change Xilinx CAN data length format to socketCAN data format */
794 	cf->len = can_cc_dlc2len(dlc);
795 
796 	/* Change Xilinx CAN ID format to socketCAN ID format */
797 	if (id_xcan & XCAN_IDR_IDE_MASK) {
798 		/* The received frame is an Extended format frame */
799 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
800 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
801 				XCAN_IDR_ID2_SHIFT;
802 		cf->can_id |= CAN_EFF_FLAG;
803 		if (id_xcan & XCAN_IDR_RTR_MASK)
804 			cf->can_id |= CAN_RTR_FLAG;
805 	} else {
806 		/* The received frame is a standard format frame */
807 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
808 				XCAN_IDR_ID1_SHIFT;
809 		if (id_xcan & XCAN_IDR_SRR_MASK)
810 			cf->can_id |= CAN_RTR_FLAG;
811 	}
812 
813 	/* DW1/DW2 must always be read to remove message from RXFIFO */
814 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
815 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
816 
817 	if (!(cf->can_id & CAN_RTR_FLAG)) {
818 		/* Change Xilinx CAN data format to socketCAN data format */
819 		if (cf->len > 0)
820 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
821 		if (cf->len > 4)
822 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
823 
824 		stats->rx_bytes += cf->len;
825 	}
826 	stats->rx_packets++;
827 
828 	netif_receive_skb(skb);
829 
830 	return 1;
831 }
832 
833 /**
834  * xcanfd_rx -  Is called from CAN isr to complete the received
835  *		frame  processing
836  * @ndev:	Pointer to net_device structure
837  * @frame_base:	Register offset to the frame to be read
838  *
839  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
840  * does minimal processing and invokes "netif_receive_skb" to complete further
841  * processing.
842  * Return: 1 on success and 0 on failure.
843  */
xcanfd_rx(struct net_device * ndev,int frame_base)844 static int xcanfd_rx(struct net_device *ndev, int frame_base)
845 {
846 	struct xcan_priv *priv = netdev_priv(ndev);
847 	struct net_device_stats *stats = &ndev->stats;
848 	struct canfd_frame *cf;
849 	struct sk_buff *skb;
850 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
851 
852 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
853 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
854 	if (dlc & XCAN_DLCR_EDL_MASK)
855 		skb = alloc_canfd_skb(ndev, &cf);
856 	else
857 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
858 
859 	if (unlikely(!skb)) {
860 		stats->rx_dropped++;
861 		return 0;
862 	}
863 
864 	/* Change Xilinx CANFD data length format to socketCAN data
865 	 * format
866 	 */
867 	if (dlc & XCAN_DLCR_EDL_MASK)
868 		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
869 				  XCAN_DLCR_DLC_SHIFT);
870 	else
871 		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
872 					  XCAN_DLCR_DLC_SHIFT);
873 
874 	/* Change Xilinx CAN ID format to socketCAN ID format */
875 	if (id_xcan & XCAN_IDR_IDE_MASK) {
876 		/* The received frame is an Extended format frame */
877 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
878 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
879 				XCAN_IDR_ID2_SHIFT;
880 		cf->can_id |= CAN_EFF_FLAG;
881 		if (id_xcan & XCAN_IDR_RTR_MASK)
882 			cf->can_id |= CAN_RTR_FLAG;
883 	} else {
884 		/* The received frame is a standard format frame */
885 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
886 				XCAN_IDR_ID1_SHIFT;
887 		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
888 					XCAN_IDR_SRR_MASK))
889 			cf->can_id |= CAN_RTR_FLAG;
890 	}
891 
892 	/* Check the frame received is FD or not*/
893 	if (dlc & XCAN_DLCR_EDL_MASK) {
894 		for (i = 0; i < cf->len; i += 4) {
895 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
896 					(dwindex * XCANFD_DW_BYTES);
897 			data[0] = priv->read_reg(priv, dw_offset);
898 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
899 			dwindex++;
900 		}
901 	} else {
902 		for (i = 0; i < cf->len; i += 4) {
903 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
904 			data[0] = priv->read_reg(priv, dw_offset + i);
905 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
906 		}
907 	}
908 
909 	if (!(cf->can_id & CAN_RTR_FLAG))
910 		stats->rx_bytes += cf->len;
911 	stats->rx_packets++;
912 
913 	netif_receive_skb(skb);
914 
915 	return 1;
916 }
917 
918 /**
919  * xcan_current_error_state - Get current error state from HW
920  * @ndev:	Pointer to net_device structure
921  *
922  * Checks the current CAN error state from the HW. Note that this
923  * only checks for ERROR_PASSIVE and ERROR_WARNING.
924  *
925  * Return:
926  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
927  * otherwise.
928  */
xcan_current_error_state(struct net_device * ndev)929 static enum can_state xcan_current_error_state(struct net_device *ndev)
930 {
931 	struct xcan_priv *priv = netdev_priv(ndev);
932 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
933 
934 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
935 		return CAN_STATE_ERROR_PASSIVE;
936 	else if (status & XCAN_SR_ERRWRN_MASK)
937 		return CAN_STATE_ERROR_WARNING;
938 	else
939 		return CAN_STATE_ERROR_ACTIVE;
940 }
941 
942 /**
943  * xcan_set_error_state - Set new CAN error state
944  * @ndev:	Pointer to net_device structure
945  * @new_state:	The new CAN state to be set
946  * @cf:		Error frame to be populated or NULL
947  *
948  * Set new CAN error state for the device, updating statistics and
949  * populating the error frame if given.
950  */
xcan_set_error_state(struct net_device * ndev,enum can_state new_state,struct can_frame * cf)951 static void xcan_set_error_state(struct net_device *ndev,
952 				 enum can_state new_state,
953 				 struct can_frame *cf)
954 {
955 	struct xcan_priv *priv = netdev_priv(ndev);
956 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
957 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
958 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
959 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
960 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
961 
962 	/* non-ERROR states are handled elsewhere */
963 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
964 		return;
965 
966 	can_change_state(ndev, cf, tx_state, rx_state);
967 
968 	if (cf) {
969 		cf->can_id |= CAN_ERR_CNT;
970 		cf->data[6] = txerr;
971 		cf->data[7] = rxerr;
972 	}
973 }
974 
975 /**
976  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
977  * @ndev:	Pointer to net_device structure
978  *
979  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
980  * the performed RX/TX has caused it to drop to a lesser state and set
981  * the interface state accordingly.
982  */
xcan_update_error_state_after_rxtx(struct net_device * ndev)983 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
984 {
985 	struct xcan_priv *priv = netdev_priv(ndev);
986 	enum can_state old_state = priv->can.state;
987 	enum can_state new_state;
988 
989 	/* changing error state due to successful frame RX/TX can only
990 	 * occur from these states
991 	 */
992 	if (old_state != CAN_STATE_ERROR_WARNING &&
993 	    old_state != CAN_STATE_ERROR_PASSIVE)
994 		return;
995 
996 	new_state = xcan_current_error_state(ndev);
997 
998 	if (new_state != old_state) {
999 		struct sk_buff *skb;
1000 		struct can_frame *cf;
1001 
1002 		skb = alloc_can_err_skb(ndev, &cf);
1003 
1004 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1005 
1006 		if (skb)
1007 			netif_rx(skb);
1008 	}
1009 }
1010 
1011 /**
1012  * xcan_err_interrupt - error frame Isr
1013  * @ndev:	net_device pointer
1014  * @isr:	interrupt status register value
1015  *
1016  * This is the CAN error interrupt and it will
1017  * check the type of error and forward the error
1018  * frame to upper layers.
1019  */
xcan_err_interrupt(struct net_device * ndev,u32 isr)1020 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1021 {
1022 	struct xcan_priv *priv = netdev_priv(ndev);
1023 	struct net_device_stats *stats = &ndev->stats;
1024 	struct can_frame cf = { };
1025 	u32 err_status;
1026 
1027 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1028 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1029 
1030 	if (isr & XCAN_IXR_BSOFF_MASK) {
1031 		priv->can.state = CAN_STATE_BUS_OFF;
1032 		priv->can.can_stats.bus_off++;
1033 		/* Leave device in Config Mode in bus-off state */
1034 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1035 		can_bus_off(ndev);
1036 		cf.can_id |= CAN_ERR_BUSOFF;
1037 	} else {
1038 		enum can_state new_state = xcan_current_error_state(ndev);
1039 
1040 		if (new_state != priv->can.state)
1041 			xcan_set_error_state(ndev, new_state, &cf);
1042 	}
1043 
1044 	/* Check for Arbitration lost interrupt */
1045 	if (isr & XCAN_IXR_ARBLST_MASK) {
1046 		priv->can.can_stats.arbitration_lost++;
1047 		cf.can_id |= CAN_ERR_LOSTARB;
1048 		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1049 	}
1050 
1051 	/* Check for RX FIFO Overflow interrupt */
1052 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1053 		stats->rx_over_errors++;
1054 		stats->rx_errors++;
1055 		cf.can_id |= CAN_ERR_CRTL;
1056 		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1057 	}
1058 
1059 	/* Check for RX Match Not Finished interrupt */
1060 	if (isr & XCAN_IXR_RXMNF_MASK) {
1061 		stats->rx_dropped++;
1062 		stats->rx_errors++;
1063 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1064 		cf.can_id |= CAN_ERR_CRTL;
1065 		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1066 	}
1067 
1068 	/* Check for error interrupt */
1069 	if (isr & XCAN_IXR_ERROR_MASK) {
1070 		bool berr_reporting = false;
1071 
1072 		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1073 			berr_reporting = true;
1074 			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1075 		}
1076 
1077 		/* Check for Ack error interrupt */
1078 		if (err_status & XCAN_ESR_ACKER_MASK) {
1079 			stats->tx_errors++;
1080 			if (berr_reporting) {
1081 				cf.can_id |= CAN_ERR_ACK;
1082 				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1083 			}
1084 		}
1085 
1086 		/* Check for Bit error interrupt */
1087 		if (err_status & XCAN_ESR_BERR_MASK) {
1088 			stats->tx_errors++;
1089 			if (berr_reporting) {
1090 				cf.can_id |= CAN_ERR_PROT;
1091 				cf.data[2] = CAN_ERR_PROT_BIT;
1092 			}
1093 		}
1094 
1095 		/* Check for Stuff error interrupt */
1096 		if (err_status & XCAN_ESR_STER_MASK) {
1097 			stats->rx_errors++;
1098 			if (berr_reporting) {
1099 				cf.can_id |= CAN_ERR_PROT;
1100 				cf.data[2] = CAN_ERR_PROT_STUFF;
1101 			}
1102 		}
1103 
1104 		/* Check for Form error interrupt */
1105 		if (err_status & XCAN_ESR_FMER_MASK) {
1106 			stats->rx_errors++;
1107 			if (berr_reporting) {
1108 				cf.can_id |= CAN_ERR_PROT;
1109 				cf.data[2] = CAN_ERR_PROT_FORM;
1110 			}
1111 		}
1112 
1113 		/* Check for CRC error interrupt */
1114 		if (err_status & XCAN_ESR_CRCER_MASK) {
1115 			stats->rx_errors++;
1116 			if (berr_reporting) {
1117 				cf.can_id |= CAN_ERR_PROT;
1118 				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1119 			}
1120 		}
1121 		priv->can.can_stats.bus_error++;
1122 	}
1123 
1124 	if (cf.can_id) {
1125 		struct can_frame *skb_cf;
1126 		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1127 
1128 		if (skb) {
1129 			skb_cf->can_id |= cf.can_id;
1130 			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1131 			netif_rx(skb);
1132 		}
1133 	}
1134 
1135 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1136 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1137 }
1138 
1139 /**
1140  * xcan_state_interrupt - It will check the state of the CAN device
1141  * @ndev:	net_device pointer
1142  * @isr:	interrupt status register value
1143  *
1144  * This will checks the state of the CAN device
1145  * and puts the device into appropriate state.
1146  */
xcan_state_interrupt(struct net_device * ndev,u32 isr)1147 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1148 {
1149 	struct xcan_priv *priv = netdev_priv(ndev);
1150 
1151 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1152 	if (isr & XCAN_IXR_SLP_MASK)
1153 		priv->can.state = CAN_STATE_SLEEPING;
1154 
1155 	/* Check for Wake up interrupt if set put CAN device in Active state */
1156 	if (isr & XCAN_IXR_WKUP_MASK)
1157 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1158 }
1159 
1160 /**
1161  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1162  * @priv:	Driver private data structure
1163  *
1164  * Return: Register offset of the next frame in RX FIFO.
1165  */
xcan_rx_fifo_get_next_frame(struct xcan_priv * priv)1166 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1167 {
1168 	int offset;
1169 
1170 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1171 		u32 fsr, mask;
1172 
1173 		/* clear RXOK before the is-empty check so that any newly
1174 		 * received frame will reassert it without a race
1175 		 */
1176 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1177 
1178 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1179 
1180 		/* check if RX FIFO is empty */
1181 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1182 			mask = XCAN_2_FSR_FL_MASK;
1183 		else
1184 			mask = XCAN_FSR_FL_MASK;
1185 
1186 		if (!(fsr & mask))
1187 			return -ENOENT;
1188 
1189 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1190 			offset =
1191 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1192 		else
1193 			offset =
1194 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1195 
1196 	} else {
1197 		/* check if RX FIFO is empty */
1198 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1199 		      XCAN_IXR_RXNEMP_MASK))
1200 			return -ENOENT;
1201 
1202 		/* frames are read from a static offset */
1203 		offset = XCAN_RXFIFO_OFFSET;
1204 	}
1205 
1206 	return offset;
1207 }
1208 
1209 /**
1210  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1211  * @napi:	napi structure pointer
1212  * @quota:	Max number of rx packets to be processed.
1213  *
1214  * This is the poll routine for rx part.
1215  * It will process the packets maximux quota value.
1216  *
1217  * Return: number of packets received
1218  */
xcan_rx_poll(struct napi_struct * napi,int quota)1219 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1220 {
1221 	struct net_device *ndev = napi->dev;
1222 	struct xcan_priv *priv = netdev_priv(ndev);
1223 	u32 ier;
1224 	int work_done = 0;
1225 	int frame_offset;
1226 
1227 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1228 	       (work_done < quota)) {
1229 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1230 			work_done += xcanfd_rx(ndev, frame_offset);
1231 		else
1232 			work_done += xcan_rx(ndev, frame_offset);
1233 
1234 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1235 			/* increment read index */
1236 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1237 					XCAN_FSR_IRI_MASK);
1238 		else
1239 			/* clear rx-not-empty (will actually clear only if
1240 			 * empty)
1241 			 */
1242 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1243 					XCAN_IXR_RXNEMP_MASK);
1244 	}
1245 
1246 	if (work_done)
1247 		xcan_update_error_state_after_rxtx(ndev);
1248 
1249 	if (work_done < quota) {
1250 		if (napi_complete_done(napi, work_done)) {
1251 			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1252 			ier |= xcan_rx_int_mask(priv);
1253 			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1254 		}
1255 	}
1256 	return work_done;
1257 }
1258 
1259 /**
1260  * xcan_tx_interrupt - Tx Done Isr
1261  * @ndev:	net_device pointer
1262  * @isr:	Interrupt status register value
1263  */
xcan_tx_interrupt(struct net_device * ndev,u32 isr)1264 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1265 {
1266 	struct xcan_priv *priv = netdev_priv(ndev);
1267 	struct net_device_stats *stats = &ndev->stats;
1268 	unsigned int frames_in_fifo;
1269 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1270 	unsigned long flags;
1271 	int retries = 0;
1272 
1273 	/* Synchronize with xmit as we need to know the exact number
1274 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1275 	 * handling.
1276 	 * This also prevents a race between netif_wake_queue() and
1277 	 * netif_stop_queue().
1278 	 */
1279 	spin_lock_irqsave(&priv->tx_lock, flags);
1280 
1281 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1282 
1283 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1284 		/* clear TXOK anyway to avoid getting back here */
1285 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1286 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1287 		return;
1288 	}
1289 
1290 	/* Check if 2 frames were sent (TXOK only means that at least 1
1291 	 * frame was sent).
1292 	 */
1293 	if (frames_in_fifo > 1) {
1294 		WARN_ON(frames_in_fifo > priv->tx_max);
1295 
1296 		/* Synchronize TXOK and isr so that after the loop:
1297 		 * (1) isr variable is up-to-date at least up to TXOK clear
1298 		 *     time. This avoids us clearing a TXOK of a second frame
1299 		 *     but not noticing that the FIFO is now empty and thus
1300 		 *     marking only a single frame as sent.
1301 		 * (2) No TXOK is left. Having one could mean leaving a
1302 		 *     stray TXOK as we might process the associated frame
1303 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1304 		 *     clear to satisfy (1).
1305 		 */
1306 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1307 		       !WARN_ON(++retries == 100)) {
1308 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1309 					XCAN_IXR_TXOK_MASK);
1310 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1311 		}
1312 
1313 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1314 			/* nothing in FIFO anymore */
1315 			frames_sent = frames_in_fifo;
1316 		}
1317 	} else {
1318 		/* single frame in fifo, just clear TXOK */
1319 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1320 	}
1321 
1322 	while (frames_sent--) {
1323 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1324 						    priv->tx_max, NULL);
1325 		priv->tx_tail++;
1326 		stats->tx_packets++;
1327 	}
1328 
1329 	netif_wake_queue(ndev);
1330 
1331 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1332 
1333 	xcan_update_error_state_after_rxtx(ndev);
1334 }
1335 
1336 /**
1337  * xcan_interrupt - CAN Isr
1338  * @irq:	irq number
1339  * @dev_id:	device id pointer
1340  *
1341  * This is the xilinx CAN Isr. It checks for the type of interrupt
1342  * and invokes the corresponding ISR.
1343  *
1344  * Return:
1345  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1346  */
xcan_interrupt(int irq,void * dev_id)1347 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1348 {
1349 	struct net_device *ndev = (struct net_device *)dev_id;
1350 	struct xcan_priv *priv = netdev_priv(ndev);
1351 	u32 isr, ier;
1352 	u32 isr_errors;
1353 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1354 
1355 	/* Get the interrupt status from Xilinx CAN */
1356 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1357 	if (!isr)
1358 		return IRQ_NONE;
1359 
1360 	/* Check for the type of interrupt and Processing it */
1361 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1362 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1363 				XCAN_IXR_WKUP_MASK));
1364 		xcan_state_interrupt(ndev, isr);
1365 	}
1366 
1367 	/* Check for Tx interrupt and Processing it */
1368 	if (isr & XCAN_IXR_TXOK_MASK)
1369 		xcan_tx_interrupt(ndev, isr);
1370 
1371 	/* Check for the type of error interrupt and Processing it */
1372 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1373 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1374 			    XCAN_IXR_RXMNF_MASK);
1375 	if (isr_errors) {
1376 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1377 		xcan_err_interrupt(ndev, isr);
1378 	}
1379 
1380 	/* Check for the type of receive interrupt and Processing it */
1381 	if (isr & rx_int_mask) {
1382 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1383 		ier &= ~rx_int_mask;
1384 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1385 		napi_schedule(&priv->napi);
1386 	}
1387 	return IRQ_HANDLED;
1388 }
1389 
1390 /**
1391  * xcan_chip_stop - Driver stop routine
1392  * @ndev:	Pointer to net_device structure
1393  *
1394  * This is the drivers stop routine. It will disable the
1395  * interrupts and put the device into configuration mode.
1396  */
xcan_chip_stop(struct net_device * ndev)1397 static void xcan_chip_stop(struct net_device *ndev)
1398 {
1399 	struct xcan_priv *priv = netdev_priv(ndev);
1400 	int ret;
1401 
1402 	/* Disable interrupts and leave the can in configuration mode */
1403 	ret = set_reset_mode(ndev);
1404 	if (ret < 0)
1405 		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1406 
1407 	priv->can.state = CAN_STATE_STOPPED;
1408 }
1409 
1410 /**
1411  * xcan_open - Driver open routine
1412  * @ndev:	Pointer to net_device structure
1413  *
1414  * This is the driver open routine.
1415  * Return: 0 on success and failure value on error
1416  */
xcan_open(struct net_device * ndev)1417 static int xcan_open(struct net_device *ndev)
1418 {
1419 	struct xcan_priv *priv = netdev_priv(ndev);
1420 	int ret;
1421 
1422 	ret = pm_runtime_get_sync(priv->dev);
1423 	if (ret < 0) {
1424 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1425 			   __func__, ret);
1426 		goto err;
1427 	}
1428 
1429 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1430 			  ndev->name, ndev);
1431 	if (ret < 0) {
1432 		netdev_err(ndev, "irq allocation for CAN failed\n");
1433 		goto err;
1434 	}
1435 
1436 	/* Set chip into reset mode */
1437 	ret = set_reset_mode(ndev);
1438 	if (ret < 0) {
1439 		netdev_err(ndev, "mode resetting failed!\n");
1440 		goto err_irq;
1441 	}
1442 
1443 	/* Common open */
1444 	ret = open_candev(ndev);
1445 	if (ret)
1446 		goto err_irq;
1447 
1448 	ret = xcan_chip_start(ndev);
1449 	if (ret < 0) {
1450 		netdev_err(ndev, "xcan_chip_start failed!\n");
1451 		goto err_candev;
1452 	}
1453 
1454 	napi_enable(&priv->napi);
1455 	netif_start_queue(ndev);
1456 
1457 	return 0;
1458 
1459 err_candev:
1460 	close_candev(ndev);
1461 err_irq:
1462 	free_irq(ndev->irq, ndev);
1463 err:
1464 	pm_runtime_put(priv->dev);
1465 
1466 	return ret;
1467 }
1468 
1469 /**
1470  * xcan_close - Driver close routine
1471  * @ndev:	Pointer to net_device structure
1472  *
1473  * Return: 0 always
1474  */
xcan_close(struct net_device * ndev)1475 static int xcan_close(struct net_device *ndev)
1476 {
1477 	struct xcan_priv *priv = netdev_priv(ndev);
1478 
1479 	netif_stop_queue(ndev);
1480 	napi_disable(&priv->napi);
1481 	xcan_chip_stop(ndev);
1482 	free_irq(ndev->irq, ndev);
1483 	close_candev(ndev);
1484 
1485 	pm_runtime_put(priv->dev);
1486 
1487 	return 0;
1488 }
1489 
1490 /**
1491  * xcan_get_berr_counter - error counter routine
1492  * @ndev:	Pointer to net_device structure
1493  * @bec:	Pointer to can_berr_counter structure
1494  *
1495  * This is the driver error counter routine.
1496  * Return: 0 on success and failure value on error
1497  */
xcan_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1498 static int xcan_get_berr_counter(const struct net_device *ndev,
1499 				 struct can_berr_counter *bec)
1500 {
1501 	struct xcan_priv *priv = netdev_priv(ndev);
1502 	int ret;
1503 
1504 	ret = pm_runtime_get_sync(priv->dev);
1505 	if (ret < 0) {
1506 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1507 			   __func__, ret);
1508 		pm_runtime_put(priv->dev);
1509 		return ret;
1510 	}
1511 
1512 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1513 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1514 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1515 
1516 	pm_runtime_put(priv->dev);
1517 
1518 	return 0;
1519 }
1520 
1521 /**
1522  * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1523  * @ndev:	Pointer to net_device structure
1524  * @tdcv:	Pointer to TDCV value
1525  *
1526  * Return: 0 on success
1527  */
xcan_get_auto_tdcv(const struct net_device * ndev,u32 * tdcv)1528 static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1529 {
1530 	struct xcan_priv *priv = netdev_priv(ndev);
1531 
1532 	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1533 
1534 	return 0;
1535 }
1536 
1537 static const struct net_device_ops xcan_netdev_ops = {
1538 	.ndo_open	= xcan_open,
1539 	.ndo_stop	= xcan_close,
1540 	.ndo_start_xmit	= xcan_start_xmit,
1541 	.ndo_change_mtu	= can_change_mtu,
1542 };
1543 
1544 static const struct ethtool_ops xcan_ethtool_ops = {
1545 	.get_ts_info = ethtool_op_get_ts_info,
1546 };
1547 
1548 /**
1549  * xcan_suspend - Suspend method for the driver
1550  * @dev:	Address of the device structure
1551  *
1552  * Put the driver into low power mode.
1553  * Return: 0 on success and failure value on error
1554  */
xcan_suspend(struct device * dev)1555 static int __maybe_unused xcan_suspend(struct device *dev)
1556 {
1557 	struct net_device *ndev = dev_get_drvdata(dev);
1558 
1559 	if (netif_running(ndev)) {
1560 		netif_stop_queue(ndev);
1561 		netif_device_detach(ndev);
1562 		xcan_chip_stop(ndev);
1563 	}
1564 
1565 	return pm_runtime_force_suspend(dev);
1566 }
1567 
1568 /**
1569  * xcan_resume - Resume from suspend
1570  * @dev:	Address of the device structure
1571  *
1572  * Resume operation after suspend.
1573  * Return: 0 on success and failure value on error
1574  */
xcan_resume(struct device * dev)1575 static int __maybe_unused xcan_resume(struct device *dev)
1576 {
1577 	struct net_device *ndev = dev_get_drvdata(dev);
1578 	int ret;
1579 
1580 	ret = pm_runtime_force_resume(dev);
1581 	if (ret) {
1582 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1583 		return ret;
1584 	}
1585 
1586 	if (netif_running(ndev)) {
1587 		ret = xcan_chip_start(ndev);
1588 		if (ret) {
1589 			dev_err(dev, "xcan_chip_start failed on resume\n");
1590 			return ret;
1591 		}
1592 
1593 		netif_device_attach(ndev);
1594 		netif_start_queue(ndev);
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 /**
1601  * xcan_runtime_suspend - Runtime suspend method for the driver
1602  * @dev:	Address of the device structure
1603  *
1604  * Put the driver into low power mode.
1605  * Return: 0 always
1606  */
xcan_runtime_suspend(struct device * dev)1607 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1608 {
1609 	struct net_device *ndev = dev_get_drvdata(dev);
1610 	struct xcan_priv *priv = netdev_priv(ndev);
1611 
1612 	clk_disable_unprepare(priv->bus_clk);
1613 	clk_disable_unprepare(priv->can_clk);
1614 
1615 	return 0;
1616 }
1617 
1618 /**
1619  * xcan_runtime_resume - Runtime resume from suspend
1620  * @dev:	Address of the device structure
1621  *
1622  * Resume operation after suspend.
1623  * Return: 0 on success and failure value on error
1624  */
xcan_runtime_resume(struct device * dev)1625 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1626 {
1627 	struct net_device *ndev = dev_get_drvdata(dev);
1628 	struct xcan_priv *priv = netdev_priv(ndev);
1629 	int ret;
1630 
1631 	ret = clk_prepare_enable(priv->bus_clk);
1632 	if (ret) {
1633 		dev_err(dev, "Cannot enable clock.\n");
1634 		return ret;
1635 	}
1636 	ret = clk_prepare_enable(priv->can_clk);
1637 	if (ret) {
1638 		dev_err(dev, "Cannot enable clock.\n");
1639 		clk_disable_unprepare(priv->bus_clk);
1640 		return ret;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static const struct dev_pm_ops xcan_dev_pm_ops = {
1647 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1648 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1649 };
1650 
1651 static const struct xcan_devtype_data xcan_zynq_data = {
1652 	.cantype = XZYNQ_CANPS,
1653 	.flags = XCAN_FLAG_TXFEMP,
1654 	.bittiming_const = &xcan_bittiming_const,
1655 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1656 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1657 	.bus_clk_name = "pclk",
1658 };
1659 
1660 static const struct xcan_devtype_data xcan_axi_data = {
1661 	.cantype = XAXI_CAN,
1662 	.bittiming_const = &xcan_bittiming_const,
1663 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1664 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1665 	.bus_clk_name = "s_axi_aclk",
1666 };
1667 
1668 static const struct xcan_devtype_data xcan_canfd_data = {
1669 	.cantype = XAXI_CANFD,
1670 	.flags = XCAN_FLAG_EXT_FILTERS |
1671 		 XCAN_FLAG_RXMNF |
1672 		 XCAN_FLAG_TX_MAILBOXES |
1673 		 XCAN_FLAG_RX_FIFO_MULTI,
1674 	.bittiming_const = &xcan_bittiming_const_canfd,
1675 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1676 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1677 	.bus_clk_name = "s_axi_aclk",
1678 };
1679 
1680 static const struct xcan_devtype_data xcan_canfd2_data = {
1681 	.cantype = XAXI_CANFD_2_0,
1682 	.flags = XCAN_FLAG_EXT_FILTERS |
1683 		 XCAN_FLAG_RXMNF |
1684 		 XCAN_FLAG_TX_MAILBOXES |
1685 		 XCAN_FLAG_CANFD_2 |
1686 		 XCAN_FLAG_RX_FIFO_MULTI,
1687 	.bittiming_const = &xcan_bittiming_const_canfd2,
1688 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1689 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1690 	.bus_clk_name = "s_axi_aclk",
1691 };
1692 
1693 /* Match table for OF platform binding */
1694 static const struct of_device_id xcan_of_match[] = {
1695 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1696 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1697 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1698 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1699 	{ /* end of list */ },
1700 };
1701 MODULE_DEVICE_TABLE(of, xcan_of_match);
1702 
1703 /**
1704  * xcan_probe - Platform registration call
1705  * @pdev:	Handle to the platform device structure
1706  *
1707  * This function does all the memory allocation and registration for the CAN
1708  * device.
1709  *
1710  * Return: 0 on success and failure value on error
1711  */
xcan_probe(struct platform_device * pdev)1712 static int xcan_probe(struct platform_device *pdev)
1713 {
1714 	struct net_device *ndev;
1715 	struct xcan_priv *priv;
1716 	const struct of_device_id *of_id;
1717 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1718 	void __iomem *addr;
1719 	int ret;
1720 	int rx_max, tx_max;
1721 	u32 hw_tx_max = 0, hw_rx_max = 0;
1722 	const char *hw_tx_max_property;
1723 
1724 	/* Get the virtual base address for the device */
1725 	addr = devm_platform_ioremap_resource(pdev, 0);
1726 	if (IS_ERR(addr)) {
1727 		ret = PTR_ERR(addr);
1728 		goto err;
1729 	}
1730 
1731 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1732 	if (of_id && of_id->data)
1733 		devtype = of_id->data;
1734 
1735 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1736 			     "tx-mailbox-count" : "tx-fifo-depth";
1737 
1738 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1739 				   &hw_tx_max);
1740 	if (ret < 0) {
1741 		dev_err(&pdev->dev, "missing %s property\n",
1742 			hw_tx_max_property);
1743 		goto err;
1744 	}
1745 
1746 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1747 				   &hw_rx_max);
1748 	if (ret < 0) {
1749 		dev_err(&pdev->dev,
1750 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1751 		goto err;
1752 	}
1753 
1754 	/* With TX FIFO:
1755 	 *
1756 	 * There is no way to directly figure out how many frames have been
1757 	 * sent when the TXOK interrupt is processed. If TXFEMP
1758 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1759 	 * to determine if 1 or 2 frames have been sent.
1760 	 * Theoretically we should be able to use TXFWMEMP to determine up
1761 	 * to 3 frames, but it seems that after putting a second frame in the
1762 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1763 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1764 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1765 	 * completely synchronized with the rest of the bits?
1766 	 *
1767 	 * With TX mailboxes:
1768 	 *
1769 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1770 	 * we submit frames one at a time.
1771 	 */
1772 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1773 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1774 		tx_max = min(hw_tx_max, 2U);
1775 	else
1776 		tx_max = 1;
1777 
1778 	rx_max = hw_rx_max;
1779 
1780 	/* Create a CAN device instance */
1781 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1782 	if (!ndev)
1783 		return -ENOMEM;
1784 
1785 	priv = netdev_priv(ndev);
1786 	priv->dev = &pdev->dev;
1787 	priv->can.bittiming_const = devtype->bittiming_const;
1788 	priv->can.do_set_mode = xcan_do_set_mode;
1789 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1790 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1791 					CAN_CTRLMODE_BERR_REPORTING;
1792 
1793 	if (devtype->cantype == XAXI_CANFD) {
1794 		priv->can.data_bittiming_const =
1795 			&xcan_data_bittiming_const_canfd;
1796 		priv->can.tdc_const = &xcan_tdc_const_canfd;
1797 	}
1798 
1799 	if (devtype->cantype == XAXI_CANFD_2_0) {
1800 		priv->can.data_bittiming_const =
1801 			&xcan_data_bittiming_const_canfd2;
1802 		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1803 	}
1804 
1805 	if (devtype->cantype == XAXI_CANFD ||
1806 	    devtype->cantype == XAXI_CANFD_2_0) {
1807 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1808 						CAN_CTRLMODE_TDC_AUTO;
1809 		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1810 	}
1811 
1812 	priv->reg_base = addr;
1813 	priv->tx_max = tx_max;
1814 	priv->devtype = *devtype;
1815 	spin_lock_init(&priv->tx_lock);
1816 
1817 	/* Get IRQ for the device */
1818 	ret = platform_get_irq(pdev, 0);
1819 	if (ret < 0)
1820 		goto err_free;
1821 
1822 	ndev->irq = ret;
1823 
1824 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1825 
1826 	platform_set_drvdata(pdev, ndev);
1827 	SET_NETDEV_DEV(ndev, &pdev->dev);
1828 	ndev->netdev_ops = &xcan_netdev_ops;
1829 	ndev->ethtool_ops = &xcan_ethtool_ops;
1830 
1831 	/* Getting the CAN can_clk info */
1832 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1833 	if (IS_ERR(priv->can_clk)) {
1834 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1835 				    "device clock not found\n");
1836 		goto err_free;
1837 	}
1838 
1839 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1840 	if (IS_ERR(priv->bus_clk)) {
1841 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1842 				    "bus clock not found\n");
1843 		goto err_free;
1844 	}
1845 
1846 	priv->write_reg = xcan_write_reg_le;
1847 	priv->read_reg = xcan_read_reg_le;
1848 
1849 	pm_runtime_enable(&pdev->dev);
1850 	ret = pm_runtime_get_sync(&pdev->dev);
1851 	if (ret < 0) {
1852 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1853 			   __func__, ret);
1854 		goto err_disableclks;
1855 	}
1856 
1857 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1858 		priv->write_reg = xcan_write_reg_be;
1859 		priv->read_reg = xcan_read_reg_be;
1860 	}
1861 
1862 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1863 
1864 	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1865 
1866 	ret = register_candev(ndev);
1867 	if (ret) {
1868 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1869 		goto err_disableclks;
1870 	}
1871 
1872 	pm_runtime_put(&pdev->dev);
1873 
1874 	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1875 		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1876 		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1877 	}
1878 
1879 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1880 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1881 		   hw_tx_max, priv->tx_max);
1882 
1883 	return 0;
1884 
1885 err_disableclks:
1886 	pm_runtime_put(priv->dev);
1887 	pm_runtime_disable(&pdev->dev);
1888 err_free:
1889 	free_candev(ndev);
1890 err:
1891 	return ret;
1892 }
1893 
1894 /**
1895  * xcan_remove - Unregister the device after releasing the resources
1896  * @pdev:	Handle to the platform device structure
1897  *
1898  * This function frees all the resources allocated to the device.
1899  * Return: 0 always
1900  */
xcan_remove(struct platform_device * pdev)1901 static int xcan_remove(struct platform_device *pdev)
1902 {
1903 	struct net_device *ndev = platform_get_drvdata(pdev);
1904 
1905 	unregister_candev(ndev);
1906 	pm_runtime_disable(&pdev->dev);
1907 	free_candev(ndev);
1908 
1909 	return 0;
1910 }
1911 
1912 static struct platform_driver xcan_driver = {
1913 	.probe = xcan_probe,
1914 	.remove	= xcan_remove,
1915 	.driver	= {
1916 		.name = DRIVER_NAME,
1917 		.pm = &xcan_dev_pm_ops,
1918 		.of_match_table	= xcan_of_match,
1919 	},
1920 };
1921 
1922 module_platform_driver(xcan_driver);
1923 
1924 MODULE_LICENSE("GPL");
1925 MODULE_AUTHOR("Xilinx Inc");
1926 MODULE_DESCRIPTION("Xilinx CAN interface");
1927