1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7 #include <linux/bitfield.h>
8 #include <linux/slab.h>
9 #include <linux/sort.h>
10 #include <linux/mtd/spi-nor.h>
11
12 #include "core.h"
13
14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 (((p)->parameter_table_pointer[2] << 16) | \
17 ((p)->parameter_table_pointer[1] << 8) | \
18 ((p)->parameter_table_pointer[0] << 0))
19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20
21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */
25 #define SFDP_SCCR_MAP_ID 0xff87 /*
26 * Status, Control and Configuration
27 * Register Map.
28 */
29
30 #define SFDP_SIGNATURE 0x50444653U
31
32 struct sfdp_header {
33 u32 signature; /* Ox50444653U <=> "SFDP" */
34 u8 minor;
35 u8 major;
36 u8 nph; /* 0-base number of parameter headers */
37 u8 unused;
38
39 /* Basic Flash Parameter Table. */
40 struct sfdp_parameter_header bfpt_header;
41 };
42
43 /* Fast Read settings. */
44 struct sfdp_bfpt_read {
45 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
46 u32 hwcaps;
47
48 /*
49 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
50 * whether the Fast Read x-y-z command is supported.
51 */
52 u32 supported_dword;
53 u32 supported_bit;
54
55 /*
56 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
57 * encodes the op code, the number of mode clocks and the number of wait
58 * states to be used by Fast Read x-y-z command.
59 */
60 u32 settings_dword;
61 u32 settings_shift;
62
63 /* The SPI protocol for this Fast Read x-y-z command. */
64 enum spi_nor_protocol proto;
65 };
66
67 struct sfdp_bfpt_erase {
68 /*
69 * The half-word at offset <shift> in DWORD <dword> encodes the
70 * op code and erase sector size to be used by Sector Erase commands.
71 */
72 u32 dword;
73 u32 shift;
74 };
75
76 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
77 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
78 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
79 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
80 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
81
82 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
83 #define SMPT_CMD_READ_DUMMY_SHIFT 16
84 #define SMPT_CMD_READ_DUMMY(_cmd) \
85 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
86 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
87
88 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
89 #define SMPT_CMD_READ_DATA_SHIFT 24
90 #define SMPT_CMD_READ_DATA(_cmd) \
91 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
92
93 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
94 #define SMPT_CMD_OPCODE_SHIFT 8
95 #define SMPT_CMD_OPCODE(_cmd) \
96 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
97
98 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
99 #define SMPT_MAP_REGION_COUNT_SHIFT 16
100 #define SMPT_MAP_REGION_COUNT(_header) \
101 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
102 SMPT_MAP_REGION_COUNT_SHIFT) + 1)
103
104 #define SMPT_MAP_ID_MASK GENMASK(15, 8)
105 #define SMPT_MAP_ID_SHIFT 8
106 #define SMPT_MAP_ID(_header) \
107 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
108
109 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
110 #define SMPT_MAP_REGION_SIZE_SHIFT 8
111 #define SMPT_MAP_REGION_SIZE(_region) \
112 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
113 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
114
115 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
116 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
117 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
118
119 #define SMPT_DESC_TYPE_MAP BIT(1)
120 #define SMPT_DESC_END BIT(0)
121
122 #define SFDP_4BAIT_DWORD_MAX 2
123
124 struct sfdp_4bait {
125 /* The hardware capability. */
126 u32 hwcaps;
127
128 /*
129 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
130 * the associated 4-byte address op code is supported.
131 */
132 u32 supported_bit;
133 };
134
135 /**
136 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
137 * addr_nbytes and read_dummy members of the struct spi_nor
138 * should be previously
139 * set.
140 * @nor: pointer to a 'struct spi_nor'
141 * @addr: offset in the serial flash memory
142 * @len: number of bytes to read
143 * @buf: buffer where the data is copied into (dma-safe memory)
144 *
145 * Return: 0 on success, -errno otherwise.
146 */
spi_nor_read_raw(struct spi_nor * nor,u32 addr,size_t len,u8 * buf)147 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
148 {
149 ssize_t ret;
150
151 while (len) {
152 ret = spi_nor_read_data(nor, addr, len, buf);
153 if (ret < 0)
154 return ret;
155 if (!ret || ret > len)
156 return -EIO;
157
158 buf += ret;
159 addr += ret;
160 len -= ret;
161 }
162 return 0;
163 }
164
165 /**
166 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
167 * @nor: pointer to a 'struct spi_nor'
168 * @addr: offset in the SFDP area to start reading data from
169 * @len: number of bytes to read
170 * @buf: buffer where the SFDP data are copied into (dma-safe memory)
171 *
172 * Whatever the actual numbers of bytes for address and dummy cycles are
173 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
174 * followed by a 3-byte address and 8 dummy clock cycles.
175 *
176 * Return: 0 on success, -errno otherwise.
177 */
spi_nor_read_sfdp(struct spi_nor * nor,u32 addr,size_t len,void * buf)178 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
179 size_t len, void *buf)
180 {
181 u8 addr_nbytes, read_opcode, read_dummy;
182 int ret;
183
184 read_opcode = nor->read_opcode;
185 addr_nbytes = nor->addr_nbytes;
186 read_dummy = nor->read_dummy;
187
188 nor->read_opcode = SPINOR_OP_RDSFDP;
189 nor->addr_nbytes = 3;
190 nor->read_dummy = 8;
191
192 ret = spi_nor_read_raw(nor, addr, len, buf);
193
194 nor->read_opcode = read_opcode;
195 nor->addr_nbytes = addr_nbytes;
196 nor->read_dummy = read_dummy;
197
198 return ret;
199 }
200
201 /**
202 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
203 * @nor: pointer to a 'struct spi_nor'
204 * @addr: offset in the SFDP area to start reading data from
205 * @len: number of bytes to read
206 * @buf: buffer where the SFDP data are copied into
207 *
208 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
209 * guaranteed to be dma-safe.
210 *
211 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
212 * otherwise.
213 */
spi_nor_read_sfdp_dma_unsafe(struct spi_nor * nor,u32 addr,size_t len,void * buf)214 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
215 size_t len, void *buf)
216 {
217 void *dma_safe_buf;
218 int ret;
219
220 dma_safe_buf = kmalloc(len, GFP_KERNEL);
221 if (!dma_safe_buf)
222 return -ENOMEM;
223
224 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
225 memcpy(buf, dma_safe_buf, len);
226 kfree(dma_safe_buf);
227
228 return ret;
229 }
230
231 static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command * read,u16 half,enum spi_nor_protocol proto)232 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
233 u16 half,
234 enum spi_nor_protocol proto)
235 {
236 read->num_mode_clocks = (half >> 5) & 0x07;
237 read->num_wait_states = (half >> 0) & 0x1f;
238 read->opcode = (half >> 8) & 0xff;
239 read->proto = proto;
240 }
241
242 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
243 /* Fast Read 1-1-2 */
244 {
245 SNOR_HWCAPS_READ_1_1_2,
246 BFPT_DWORD(1), BIT(16), /* Supported bit */
247 BFPT_DWORD(4), 0, /* Settings */
248 SNOR_PROTO_1_1_2,
249 },
250
251 /* Fast Read 1-2-2 */
252 {
253 SNOR_HWCAPS_READ_1_2_2,
254 BFPT_DWORD(1), BIT(20), /* Supported bit */
255 BFPT_DWORD(4), 16, /* Settings */
256 SNOR_PROTO_1_2_2,
257 },
258
259 /* Fast Read 2-2-2 */
260 {
261 SNOR_HWCAPS_READ_2_2_2,
262 BFPT_DWORD(5), BIT(0), /* Supported bit */
263 BFPT_DWORD(6), 16, /* Settings */
264 SNOR_PROTO_2_2_2,
265 },
266
267 /* Fast Read 1-1-4 */
268 {
269 SNOR_HWCAPS_READ_1_1_4,
270 BFPT_DWORD(1), BIT(22), /* Supported bit */
271 BFPT_DWORD(3), 16, /* Settings */
272 SNOR_PROTO_1_1_4,
273 },
274
275 /* Fast Read 1-4-4 */
276 {
277 SNOR_HWCAPS_READ_1_4_4,
278 BFPT_DWORD(1), BIT(21), /* Supported bit */
279 BFPT_DWORD(3), 0, /* Settings */
280 SNOR_PROTO_1_4_4,
281 },
282
283 /* Fast Read 4-4-4 */
284 {
285 SNOR_HWCAPS_READ_4_4_4,
286 BFPT_DWORD(5), BIT(4), /* Supported bit */
287 BFPT_DWORD(7), 16, /* Settings */
288 SNOR_PROTO_4_4_4,
289 },
290 };
291
292 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
293 /* Erase Type 1 in DWORD8 bits[15:0] */
294 {BFPT_DWORD(8), 0},
295
296 /* Erase Type 2 in DWORD8 bits[31:16] */
297 {BFPT_DWORD(8), 16},
298
299 /* Erase Type 3 in DWORD9 bits[15:0] */
300 {BFPT_DWORD(9), 0},
301
302 /* Erase Type 4 in DWORD9 bits[31:16] */
303 {BFPT_DWORD(9), 16},
304 };
305
306 /**
307 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
308 * @erase: pointer to a structure that describes a SPI NOR erase type
309 * @size: the size of the sector/block erased by the erase type
310 * @opcode: the SPI command op code to erase the sector/block
311 * @i: erase type index as sorted in the Basic Flash Parameter Table
312 *
313 * The supported Erase Types will be sorted at init in ascending order, with
314 * the smallest Erase Type size being the first member in the erase_type array
315 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
316 * the Basic Flash Parameter Table since it will be used later on to
317 * synchronize with the supported Erase Types defined in SFDP optional tables.
318 */
319 static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type * erase,u32 size,u8 opcode,u8 i)320 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
321 u32 size, u8 opcode, u8 i)
322 {
323 erase->idx = i;
324 spi_nor_set_erase_type(erase, size, opcode);
325 }
326
327 /**
328 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
329 * @l: member in the left half of the map's erase_type array
330 * @r: member in the right half of the map's erase_type array
331 *
332 * Comparison function used in the sort() call to sort in ascending order the
333 * map's erase types, the smallest erase type size being the first member in the
334 * sorted erase_type array.
335 *
336 * Return: the result of @l->size - @r->size
337 */
spi_nor_map_cmp_erase_type(const void * l,const void * r)338 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
339 {
340 const struct spi_nor_erase_type *left = l, *right = r;
341
342 return left->size - right->size;
343 }
344
345 /**
346 * spi_nor_sort_erase_mask() - sort erase mask
347 * @map: the erase map of the SPI NOR
348 * @erase_mask: the erase type mask to be sorted
349 *
350 * Replicate the sort done for the map's erase types in BFPT: sort the erase
351 * mask in ascending order with the smallest erase type size starting from
352 * BIT(0) in the sorted erase mask.
353 *
354 * Return: sorted erase mask.
355 */
spi_nor_sort_erase_mask(struct spi_nor_erase_map * map,u8 erase_mask)356 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
357 {
358 struct spi_nor_erase_type *erase_type = map->erase_type;
359 int i;
360 u8 sorted_erase_mask = 0;
361
362 if (!erase_mask)
363 return 0;
364
365 /* Replicate the sort done for the map's erase types. */
366 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
367 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
368 sorted_erase_mask |= BIT(i);
369
370 return sorted_erase_mask;
371 }
372
373 /**
374 * spi_nor_regions_sort_erase_types() - sort erase types in each region
375 * @map: the erase map of the SPI NOR
376 *
377 * Function assumes that the erase types defined in the erase map are already
378 * sorted in ascending order, with the smallest erase type size being the first
379 * member in the erase_type array. It replicates the sort done for the map's
380 * erase types. Each region's erase bitmask will indicate which erase types are
381 * supported from the sorted erase types defined in the erase map.
382 * Sort the all region's erase type at init in order to speed up the process of
383 * finding the best erase command at runtime.
384 */
spi_nor_regions_sort_erase_types(struct spi_nor_erase_map * map)385 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
386 {
387 struct spi_nor_erase_region *region = map->regions;
388 u8 region_erase_mask, sorted_erase_mask;
389
390 while (region) {
391 region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
392
393 sorted_erase_mask = spi_nor_sort_erase_mask(map,
394 region_erase_mask);
395
396 /* Overwrite erase mask. */
397 region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
398 sorted_erase_mask;
399
400 region = spi_nor_region_next(region);
401 }
402 }
403
404 /**
405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
406 * @nor: pointer to a 'struct spi_nor'
407 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
408 * the Basic Flash Parameter Table length and version
409 *
410 * The Basic Flash Parameter Table is the main and only mandatory table as
411 * defined by the SFDP (JESD216) specification.
412 * It provides us with the total size (memory density) of the data array and
413 * the number of address bytes for Fast Read, Page Program and Sector Erase
414 * commands.
415 * For Fast READ commands, it also gives the number of mode clock cycles and
416 * wait states (regrouped in the number of dummy clock cycles) for each
417 * supported instruction op code.
418 * For Page Program, the page size is now available since JESD216 rev A, however
419 * the supported instruction op codes are still not provided.
420 * For Sector Erase commands, this table stores the supported instruction op
421 * codes and the associated sector sizes.
422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
423 * rev A. The QER bits encode the manufacturer dependent procedure to be
424 * executed to set the Quad Enable (QE) bit in some internal register of the
425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
426 * sending any Quad SPI command to the memory. Actually, setting the QE bit
427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
428 * and IO3 hence enabling 4 (Quad) I/O lines.
429 *
430 * Return: 0 on success, -errno otherwise.
431 */
spi_nor_parse_bfpt(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header)432 static int spi_nor_parse_bfpt(struct spi_nor *nor,
433 const struct sfdp_parameter_header *bfpt_header)
434 {
435 struct spi_nor_flash_parameter *params = nor->params;
436 struct spi_nor_erase_map *map = ¶ms->erase_map;
437 struct spi_nor_erase_type *erase_type = map->erase_type;
438 struct sfdp_bfpt bfpt;
439 size_t len;
440 int i, cmd, err;
441 u32 addr, val;
442 u16 half;
443 u8 erase_mask;
444
445 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
446 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
447 return -EINVAL;
448
449 /* Read the Basic Flash Parameter Table. */
450 len = min_t(size_t, sizeof(bfpt),
451 bfpt_header->length * sizeof(u32));
452 addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
453 memset(&bfpt, 0, sizeof(bfpt));
454 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt);
455 if (err < 0)
456 return err;
457
458 /* Fix endianness of the BFPT DWORDs. */
459 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
460
461 /* Number of address bytes. */
462 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
463 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
464 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
465 params->addr_nbytes = 3;
466 params->addr_mode_nbytes = 3;
467 break;
468
469 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
470 params->addr_nbytes = 4;
471 params->addr_mode_nbytes = 4;
472 break;
473
474 default:
475 break;
476 }
477
478 /* Flash Memory Density (in bits). */
479 val = bfpt.dwords[BFPT_DWORD(2)];
480 if (val & BIT(31)) {
481 val &= ~BIT(31);
482
483 /*
484 * Prevent overflows on params->size. Anyway, a NOR of 2^64
485 * bits is unlikely to exist so this error probably means
486 * the BFPT we are reading is corrupted/wrong.
487 */
488 if (val > 63)
489 return -EINVAL;
490
491 params->size = 1ULL << val;
492 } else {
493 params->size = val + 1;
494 }
495 params->size >>= 3; /* Convert to bytes. */
496
497 /* Fast Read settings. */
498 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
499 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
500 struct spi_nor_read_command *read;
501
502 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
503 params->hwcaps.mask &= ~rd->hwcaps;
504 continue;
505 }
506
507 params->hwcaps.mask |= rd->hwcaps;
508 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
509 read = ¶ms->reads[cmd];
510 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
511 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
512 }
513
514 /*
515 * Sector Erase settings. Reinitialize the uniform erase map using the
516 * Erase Types defined in the bfpt table.
517 */
518 erase_mask = 0;
519 memset(¶ms->erase_map, 0, sizeof(params->erase_map));
520 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
521 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
522 u32 erasesize;
523 u8 opcode;
524
525 half = bfpt.dwords[er->dword] >> er->shift;
526 erasesize = half & 0xff;
527
528 /* erasesize == 0 means this Erase Type is not supported. */
529 if (!erasesize)
530 continue;
531
532 erasesize = 1U << erasesize;
533 opcode = (half >> 8) & 0xff;
534 erase_mask |= BIT(i);
535 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
536 opcode, i);
537 }
538 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
539 /*
540 * Sort all the map's Erase Types in ascending order with the smallest
541 * erase size being the first member in the erase_type array.
542 */
543 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
544 spi_nor_map_cmp_erase_type, NULL);
545 /*
546 * Sort the erase types in the uniform region in order to update the
547 * uniform_erase_type bitmask. The bitmask will be used later on when
548 * selecting the uniform erase.
549 */
550 spi_nor_regions_sort_erase_types(map);
551 map->uniform_erase_type = map->uniform_region.offset &
552 SNOR_ERASE_TYPE_MASK;
553
554 /* Stop here if not JESD216 rev A or later. */
555 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
556 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
557
558 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
559 val = bfpt.dwords[BFPT_DWORD(11)];
560 val &= BFPT_DWORD11_PAGE_SIZE_MASK;
561 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
562 params->page_size = 1U << val;
563
564 /* Quad Enable Requirements. */
565 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
566 case BFPT_DWORD15_QER_NONE:
567 params->quad_enable = NULL;
568 break;
569
570 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
571 /*
572 * Writing only one byte to the Status Register has the
573 * side-effect of clearing Status Register 2.
574 */
575 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
576 /*
577 * Read Configuration Register (35h) instruction is not
578 * supported.
579 */
580 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
581 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
582 break;
583
584 case BFPT_DWORD15_QER_SR1_BIT6:
585 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
586 params->quad_enable = spi_nor_sr1_bit6_quad_enable;
587 break;
588
589 case BFPT_DWORD15_QER_SR2_BIT7:
590 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591 params->quad_enable = spi_nor_sr2_bit7_quad_enable;
592 break;
593
594 case BFPT_DWORD15_QER_SR2_BIT1:
595 /*
596 * JESD216 rev B or later does not specify if writing only one
597 * byte to the Status Register clears or not the Status
598 * Register 2, so let's be cautious and keep the default
599 * assumption of a 16-bit Write Status (01h) command.
600 */
601 nor->flags |= SNOR_F_HAS_16BIT_SR;
602
603 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
604 break;
605
606 default:
607 dev_dbg(nor->dev, "BFPT QER reserved value used\n");
608 break;
609 }
610
611 /* Soft Reset support. */
612 if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
613 nor->flags |= SNOR_F_SOFT_RESET;
614
615 /* Stop here if not JESD216 rev C or later. */
616 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
617 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
618
619 /* 8D-8D-8D command extension. */
620 switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
621 case BFPT_DWORD18_CMD_EXT_REP:
622 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
623 break;
624
625 case BFPT_DWORD18_CMD_EXT_INV:
626 nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
627 break;
628
629 case BFPT_DWORD18_CMD_EXT_RES:
630 dev_dbg(nor->dev, "Reserved command extension used\n");
631 break;
632
633 case BFPT_DWORD18_CMD_EXT_16B:
634 dev_dbg(nor->dev, "16-bit opcodes not supported\n");
635 return -EOPNOTSUPP;
636 }
637
638 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
639 }
640
641 /**
642 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
643 * configuration detection command.
644 * @nor: pointer to a 'struct spi_nor'
645 * @settings: configuration detection command descriptor, dword1
646 */
spi_nor_smpt_addr_nbytes(const struct spi_nor * nor,const u32 settings)647 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
648 {
649 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
650 case SMPT_CMD_ADDRESS_LEN_0:
651 return 0;
652 case SMPT_CMD_ADDRESS_LEN_3:
653 return 3;
654 case SMPT_CMD_ADDRESS_LEN_4:
655 return 4;
656 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
657 default:
658 return nor->params->addr_mode_nbytes;
659 }
660 }
661
662 /**
663 * spi_nor_smpt_read_dummy() - return the configuration detection command read
664 * latency, in clock cycles.
665 * @nor: pointer to a 'struct spi_nor'
666 * @settings: configuration detection command descriptor, dword1
667 *
668 * Return: the number of dummy cycles for an SMPT read
669 */
spi_nor_smpt_read_dummy(const struct spi_nor * nor,const u32 settings)670 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
671 {
672 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
673
674 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
675 return nor->read_dummy;
676 return read_dummy;
677 }
678
679 /**
680 * spi_nor_get_map_in_use() - get the configuration map in use
681 * @nor: pointer to a 'struct spi_nor'
682 * @smpt: pointer to the sector map parameter table
683 * @smpt_len: sector map parameter table length
684 *
685 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
686 */
spi_nor_get_map_in_use(struct spi_nor * nor,const u32 * smpt,u8 smpt_len)687 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
688 u8 smpt_len)
689 {
690 const u32 *ret;
691 u8 *buf;
692 u32 addr;
693 int err;
694 u8 i;
695 u8 addr_nbytes, read_opcode, read_dummy;
696 u8 read_data_mask, map_id;
697
698 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
699 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
700 if (!buf)
701 return ERR_PTR(-ENOMEM);
702
703 addr_nbytes = nor->addr_nbytes;
704 read_dummy = nor->read_dummy;
705 read_opcode = nor->read_opcode;
706
707 map_id = 0;
708 /* Determine if there are any optional Detection Command Descriptors */
709 for (i = 0; i < smpt_len; i += 2) {
710 if (smpt[i] & SMPT_DESC_TYPE_MAP)
711 break;
712
713 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
714 nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
715 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
716 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
717 addr = smpt[i + 1];
718
719 err = spi_nor_read_raw(nor, addr, 1, buf);
720 if (err) {
721 ret = ERR_PTR(err);
722 goto out;
723 }
724
725 /*
726 * Build an index value that is used to select the Sector Map
727 * Configuration that is currently in use.
728 */
729 map_id = map_id << 1 | !!(*buf & read_data_mask);
730 }
731
732 /*
733 * If command descriptors are provided, they always precede map
734 * descriptors in the table. There is no need to start the iteration
735 * over smpt array all over again.
736 *
737 * Find the matching configuration map.
738 */
739 ret = ERR_PTR(-EINVAL);
740 while (i < smpt_len) {
741 if (SMPT_MAP_ID(smpt[i]) == map_id) {
742 ret = smpt + i;
743 break;
744 }
745
746 /*
747 * If there are no more configuration map descriptors and no
748 * configuration ID matched the configuration identifier, the
749 * sector address map is unknown.
750 */
751 if (smpt[i] & SMPT_DESC_END)
752 break;
753
754 /* increment the table index to the next map */
755 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
756 }
757
758 /* fall through */
759 out:
760 kfree(buf);
761 nor->addr_nbytes = addr_nbytes;
762 nor->read_dummy = read_dummy;
763 nor->read_opcode = read_opcode;
764 return ret;
765 }
766
spi_nor_region_mark_end(struct spi_nor_erase_region * region)767 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
768 {
769 region->offset |= SNOR_LAST_REGION;
770 }
771
spi_nor_region_mark_overlay(struct spi_nor_erase_region * region)772 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
773 {
774 region->offset |= SNOR_OVERLAID_REGION;
775 }
776
777 /**
778 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
779 * @region: pointer to a structure that describes a SPI NOR erase region
780 * @erase: pointer to a structure that describes a SPI NOR erase type
781 * @erase_type: erase type bitmask
782 */
783 static void
spi_nor_region_check_overlay(struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase,const u8 erase_type)784 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
785 const struct spi_nor_erase_type *erase,
786 const u8 erase_type)
787 {
788 int i;
789
790 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
791 if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
792 continue;
793 if (region->size & erase[i].size_mask) {
794 spi_nor_region_mark_overlay(region);
795 return;
796 }
797 }
798 }
799
800 /**
801 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
802 * @nor: pointer to a 'struct spi_nor'
803 * @smpt: pointer to the sector map parameter table
804 *
805 * Return: 0 on success, -errno otherwise.
806 */
spi_nor_init_non_uniform_erase_map(struct spi_nor * nor,const u32 * smpt)807 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
808 const u32 *smpt)
809 {
810 struct spi_nor_erase_map *map = &nor->params->erase_map;
811 struct spi_nor_erase_type *erase = map->erase_type;
812 struct spi_nor_erase_region *region;
813 u64 offset;
814 u32 region_count;
815 int i, j;
816 u8 uniform_erase_type, save_uniform_erase_type;
817 u8 erase_type, regions_erase_type;
818
819 region_count = SMPT_MAP_REGION_COUNT(*smpt);
820 /*
821 * The regions will be freed when the driver detaches from the
822 * device.
823 */
824 region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
825 GFP_KERNEL);
826 if (!region)
827 return -ENOMEM;
828 map->regions = region;
829
830 uniform_erase_type = 0xff;
831 regions_erase_type = 0;
832 offset = 0;
833 /* Populate regions. */
834 for (i = 0; i < region_count; i++) {
835 j = i + 1; /* index for the region dword */
836 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
837 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
838 region[i].offset = offset | erase_type;
839
840 spi_nor_region_check_overlay(®ion[i], erase, erase_type);
841
842 /*
843 * Save the erase types that are supported in all regions and
844 * can erase the entire flash memory.
845 */
846 uniform_erase_type &= erase_type;
847
848 /*
849 * regions_erase_type mask will indicate all the erase types
850 * supported in this configuration map.
851 */
852 regions_erase_type |= erase_type;
853
854 offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
855 region[i].size;
856 }
857 spi_nor_region_mark_end(®ion[i - 1]);
858
859 save_uniform_erase_type = map->uniform_erase_type;
860 map->uniform_erase_type = spi_nor_sort_erase_mask(map,
861 uniform_erase_type);
862
863 if (!regions_erase_type) {
864 /*
865 * Roll back to the previous uniform_erase_type mask, SMPT is
866 * broken.
867 */
868 map->uniform_erase_type = save_uniform_erase_type;
869 return -EINVAL;
870 }
871
872 /*
873 * BFPT advertises all the erase types supported by all the possible
874 * map configurations. Mask out the erase types that are not supported
875 * by the current map configuration.
876 */
877 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
878 if (!(regions_erase_type & BIT(erase[i].idx)))
879 spi_nor_set_erase_type(&erase[i], 0, 0xFF);
880
881 return 0;
882 }
883
884 /**
885 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
886 * @nor: pointer to a 'struct spi_nor'
887 * @smpt_header: sector map parameter table header
888 *
889 * This table is optional, but when available, we parse it to identify the
890 * location and size of sectors within the main data array of the flash memory
891 * device and to identify which Erase Types are supported by each sector.
892 *
893 * Return: 0 on success, -errno otherwise.
894 */
spi_nor_parse_smpt(struct spi_nor * nor,const struct sfdp_parameter_header * smpt_header)895 static int spi_nor_parse_smpt(struct spi_nor *nor,
896 const struct sfdp_parameter_header *smpt_header)
897 {
898 const u32 *sector_map;
899 u32 *smpt;
900 size_t len;
901 u32 addr;
902 int ret;
903
904 /* Read the Sector Map Parameter Table. */
905 len = smpt_header->length * sizeof(*smpt);
906 smpt = kmalloc(len, GFP_KERNEL);
907 if (!smpt)
908 return -ENOMEM;
909
910 addr = SFDP_PARAM_HEADER_PTP(smpt_header);
911 ret = spi_nor_read_sfdp(nor, addr, len, smpt);
912 if (ret)
913 goto out;
914
915 /* Fix endianness of the SMPT DWORDs. */
916 le32_to_cpu_array(smpt, smpt_header->length);
917
918 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
919 if (IS_ERR(sector_map)) {
920 ret = PTR_ERR(sector_map);
921 goto out;
922 }
923
924 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
925 if (ret)
926 goto out;
927
928 spi_nor_regions_sort_erase_types(&nor->params->erase_map);
929 /* fall through */
930 out:
931 kfree(smpt);
932 return ret;
933 }
934
935 /**
936 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
937 * @nor: pointer to a 'struct spi_nor'.
938 * @param_header: pointer to the 'struct sfdp_parameter_header' describing
939 * the 4-Byte Address Instruction Table length and version.
940 *
941 * Return: 0 on success, -errno otherwise.
942 */
spi_nor_parse_4bait(struct spi_nor * nor,const struct sfdp_parameter_header * param_header)943 static int spi_nor_parse_4bait(struct spi_nor *nor,
944 const struct sfdp_parameter_header *param_header)
945 {
946 static const struct sfdp_4bait reads[] = {
947 { SNOR_HWCAPS_READ, BIT(0) },
948 { SNOR_HWCAPS_READ_FAST, BIT(1) },
949 { SNOR_HWCAPS_READ_1_1_2, BIT(2) },
950 { SNOR_HWCAPS_READ_1_2_2, BIT(3) },
951 { SNOR_HWCAPS_READ_1_1_4, BIT(4) },
952 { SNOR_HWCAPS_READ_1_4_4, BIT(5) },
953 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) },
954 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) },
955 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) },
956 };
957 static const struct sfdp_4bait programs[] = {
958 { SNOR_HWCAPS_PP, BIT(6) },
959 { SNOR_HWCAPS_PP_1_1_4, BIT(7) },
960 { SNOR_HWCAPS_PP_1_4_4, BIT(8) },
961 };
962 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
963 { 0u /* not used */, BIT(9) },
964 { 0u /* not used */, BIT(10) },
965 { 0u /* not used */, BIT(11) },
966 { 0u /* not used */, BIT(12) },
967 };
968 struct spi_nor_flash_parameter *params = nor->params;
969 struct spi_nor_pp_command *params_pp = params->page_programs;
970 struct spi_nor_erase_map *map = ¶ms->erase_map;
971 struct spi_nor_erase_type *erase_type = map->erase_type;
972 u32 *dwords;
973 size_t len;
974 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
975 int i, ret;
976
977 if (param_header->major != SFDP_JESD216_MAJOR ||
978 param_header->length < SFDP_4BAIT_DWORD_MAX)
979 return -EINVAL;
980
981 /* Read the 4-byte Address Instruction Table. */
982 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
983
984 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
985 dwords = kmalloc(len, GFP_KERNEL);
986 if (!dwords)
987 return -ENOMEM;
988
989 addr = SFDP_PARAM_HEADER_PTP(param_header);
990 ret = spi_nor_read_sfdp(nor, addr, len, dwords);
991 if (ret)
992 goto out;
993
994 /* Fix endianness of the 4BAIT DWORDs. */
995 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
996
997 /*
998 * Compute the subset of (Fast) Read commands for which the 4-byte
999 * version is supported.
1000 */
1001 discard_hwcaps = 0;
1002 read_hwcaps = 0;
1003 for (i = 0; i < ARRAY_SIZE(reads); i++) {
1004 const struct sfdp_4bait *read = &reads[i];
1005
1006 discard_hwcaps |= read->hwcaps;
1007 if ((params->hwcaps.mask & read->hwcaps) &&
1008 (dwords[0] & read->supported_bit))
1009 read_hwcaps |= read->hwcaps;
1010 }
1011
1012 /*
1013 * Compute the subset of Page Program commands for which the 4-byte
1014 * version is supported.
1015 */
1016 pp_hwcaps = 0;
1017 for (i = 0; i < ARRAY_SIZE(programs); i++) {
1018 const struct sfdp_4bait *program = &programs[i];
1019
1020 /*
1021 * The 4 Byte Address Instruction (Optional) Table is the only
1022 * SFDP table that indicates support for Page Program Commands.
1023 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1024 * authority for specifying Page Program support.
1025 */
1026 discard_hwcaps |= program->hwcaps;
1027 if (dwords[0] & program->supported_bit)
1028 pp_hwcaps |= program->hwcaps;
1029 }
1030
1031 /*
1032 * Compute the subset of Sector Erase commands for which the 4-byte
1033 * version is supported.
1034 */
1035 erase_mask = 0;
1036 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1037 const struct sfdp_4bait *erase = &erases[i];
1038
1039 if (dwords[0] & erase->supported_bit)
1040 erase_mask |= BIT(i);
1041 }
1042
1043 /* Replicate the sort done for the map's erase types in BFPT. */
1044 erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1045
1046 /*
1047 * We need at least one 4-byte op code per read, program and erase
1048 * operation; the .read(), .write() and .erase() hooks share the
1049 * nor->addr_nbytes value.
1050 */
1051 if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1052 goto out;
1053
1054 /*
1055 * Discard all operations from the 4-byte instruction set which are
1056 * not supported by this memory.
1057 */
1058 params->hwcaps.mask &= ~discard_hwcaps;
1059 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1060
1061 /* Use the 4-byte address instruction set. */
1062 for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1063 struct spi_nor_read_command *read_cmd = ¶ms->reads[i];
1064
1065 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1066 }
1067
1068 /* 4BAIT is the only SFDP table that indicates page program support. */
1069 if (pp_hwcaps & SNOR_HWCAPS_PP) {
1070 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP],
1071 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1072 /*
1073 * Since xSPI Page Program opcode is backward compatible with
1074 * Legacy SPI, use Legacy SPI opcode there as well.
1075 */
1076 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR],
1077 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1078 }
1079 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1080 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4],
1081 SPINOR_OP_PP_1_1_4_4B,
1082 SNOR_PROTO_1_1_4);
1083 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1084 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4],
1085 SPINOR_OP_PP_1_4_4_4B,
1086 SNOR_PROTO_1_4_4);
1087
1088 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1089 if (erase_mask & BIT(i))
1090 erase_type[i].opcode = (dwords[1] >>
1091 erase_type[i].idx * 8) & 0xFF;
1092 else
1093 spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1094 }
1095
1096 /*
1097 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1098 * later because we already did the conversion to 4byte opcodes. Also,
1099 * this latest function implements a legacy quirk for the erase size of
1100 * Spansion memory. However this quirk is no longer needed with new
1101 * SFDP compliant memories.
1102 */
1103 params->addr_nbytes = 4;
1104 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1105
1106 /* fall through */
1107 out:
1108 kfree(dwords);
1109 return ret;
1110 }
1111
1112 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29)
1113 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28)
1114 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8)
1115 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7)
1116 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27)
1117 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17)
1118 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7)
1119
1120 /**
1121 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1122 * @nor: pointer to a 'struct spi_nor'
1123 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing
1124 * the Profile 1.0 Table length and version.
1125 *
1126 * Return: 0 on success, -errno otherwise.
1127 */
spi_nor_parse_profile1(struct spi_nor * nor,const struct sfdp_parameter_header * profile1_header)1128 static int spi_nor_parse_profile1(struct spi_nor *nor,
1129 const struct sfdp_parameter_header *profile1_header)
1130 {
1131 u32 *dwords, addr;
1132 size_t len;
1133 int ret;
1134 u8 dummy, opcode;
1135
1136 len = profile1_header->length * sizeof(*dwords);
1137 dwords = kmalloc(len, GFP_KERNEL);
1138 if (!dwords)
1139 return -ENOMEM;
1140
1141 addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1142 ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1143 if (ret)
1144 goto out;
1145
1146 le32_to_cpu_array(dwords, profile1_header->length);
1147
1148 /* Get 8D-8D-8D fast read opcode and dummy cycles. */
1149 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
1150
1151 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1152 if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
1153 nor->params->rdsr_dummy = 8;
1154 else
1155 nor->params->rdsr_dummy = 4;
1156
1157 if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1158 nor->params->rdsr_addr_nbytes = 4;
1159 else
1160 nor->params->rdsr_addr_nbytes = 0;
1161
1162 /*
1163 * We don't know what speed the controller is running at. Find the
1164 * dummy cycles for the fastest frequency the flash can run at to be
1165 * sure we are never short of dummy cycles. A value of 0 means the
1166 * frequency is not supported.
1167 *
1168 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1169 * flashes set the correct value if needed in their fixup hooks.
1170 */
1171 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
1172 if (!dummy)
1173 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
1174 if (!dummy)
1175 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
1176 if (!dummy)
1177 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
1178 if (!dummy)
1179 dev_dbg(nor->dev,
1180 "Can't find dummy cycles from Profile 1.0 table\n");
1181
1182 /* Round up to an even value to avoid tripping controllers up. */
1183 dummy = round_up(dummy, 2);
1184
1185 /* Update the fast read settings. */
1186 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1187 0, dummy, opcode,
1188 SNOR_PROTO_8_8_8_DTR);
1189
1190 out:
1191 kfree(dwords);
1192 return ret;
1193 }
1194
1195 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31)
1196
1197 /**
1198 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1199 * Map.
1200 * @nor: pointer to a 'struct spi_nor'
1201 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing
1202 * the SCCR Map table length and version.
1203 *
1204 * Return: 0 on success, -errno otherwise.
1205 */
spi_nor_parse_sccr(struct spi_nor * nor,const struct sfdp_parameter_header * sccr_header)1206 static int spi_nor_parse_sccr(struct spi_nor *nor,
1207 const struct sfdp_parameter_header *sccr_header)
1208 {
1209 u32 *dwords, addr;
1210 size_t len;
1211 int ret;
1212
1213 len = sccr_header->length * sizeof(*dwords);
1214 dwords = kmalloc(len, GFP_KERNEL);
1215 if (!dwords)
1216 return -ENOMEM;
1217
1218 addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1219 ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1220 if (ret)
1221 goto out;
1222
1223 le32_to_cpu_array(dwords, sccr_header->length);
1224
1225 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
1226 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1227
1228 out:
1229 kfree(dwords);
1230 return ret;
1231 }
1232
1233 /**
1234 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1235 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1236 * tables.
1237 * @nor: pointer to a 'struct spi_nor'
1238 *
1239 * Used to tweak various flash parameters when information provided by the SFDP
1240 * tables are wrong.
1241 */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)1242 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1243 {
1244 if (nor->manufacturer && nor->manufacturer->fixups &&
1245 nor->manufacturer->fixups->post_sfdp)
1246 nor->manufacturer->fixups->post_sfdp(nor);
1247
1248 if (nor->info->fixups && nor->info->fixups->post_sfdp)
1249 nor->info->fixups->post_sfdp(nor);
1250 }
1251
1252 /**
1253 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1254 * @nor: pointer to a 'struct spi_nor'
1255 *
1256 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1257 * specification. This is a standard which tends to supported by almost all
1258 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1259 * runtime the main parameters needed to perform basic SPI flash operations such
1260 * as Fast Read, Page Program or Sector Erase commands.
1261 *
1262 * Return: 0 on success, -errno otherwise.
1263 */
spi_nor_parse_sfdp(struct spi_nor * nor)1264 int spi_nor_parse_sfdp(struct spi_nor *nor)
1265 {
1266 const struct sfdp_parameter_header *param_header, *bfpt_header;
1267 struct sfdp_parameter_header *param_headers = NULL;
1268 struct sfdp_header header;
1269 struct device *dev = nor->dev;
1270 struct sfdp *sfdp;
1271 size_t sfdp_size;
1272 size_t psize;
1273 int i, err;
1274
1275 /* Get the SFDP header. */
1276 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1277 if (err < 0)
1278 return err;
1279
1280 /* Check the SFDP header version. */
1281 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1282 header.major != SFDP_JESD216_MAJOR)
1283 return -EINVAL;
1284
1285 /*
1286 * Verify that the first and only mandatory parameter header is a
1287 * Basic Flash Parameter Table header as specified in JESD216.
1288 */
1289 bfpt_header = &header.bfpt_header;
1290 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1291 bfpt_header->major != SFDP_JESD216_MAJOR)
1292 return -EINVAL;
1293
1294 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1295 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1296
1297 /*
1298 * Allocate memory then read all parameter headers with a single
1299 * Read SFDP command. These parameter headers will actually be parsed
1300 * twice: a first time to get the latest revision of the basic flash
1301 * parameter table, then a second time to handle the supported optional
1302 * tables.
1303 * Hence we read the parameter headers once for all to reduce the
1304 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1305 * because we don't need to keep these parameter headers: the allocated
1306 * memory is always released with kfree() before exiting this function.
1307 */
1308 if (header.nph) {
1309 psize = header.nph * sizeof(*param_headers);
1310
1311 param_headers = kmalloc(psize, GFP_KERNEL);
1312 if (!param_headers)
1313 return -ENOMEM;
1314
1315 err = spi_nor_read_sfdp(nor, sizeof(header),
1316 psize, param_headers);
1317 if (err < 0) {
1318 dev_dbg(dev, "failed to read SFDP parameter headers\n");
1319 goto exit;
1320 }
1321 }
1322
1323 /*
1324 * Cache the complete SFDP data. It is not (easily) possible to fetch
1325 * SFDP after probe time and we need it for the sysfs access.
1326 */
1327 for (i = 0; i < header.nph; i++) {
1328 param_header = ¶m_headers[i];
1329 sfdp_size = max_t(size_t, sfdp_size,
1330 SFDP_PARAM_HEADER_PTP(param_header) +
1331 SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1332 }
1333
1334 /*
1335 * Limit the total size to a reasonable value to avoid allocating too
1336 * much memory just of because the flash returned some insane values.
1337 */
1338 if (sfdp_size > PAGE_SIZE) {
1339 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1340 sfdp_size);
1341 sfdp_size = PAGE_SIZE;
1342 }
1343
1344 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1345 if (!sfdp) {
1346 err = -ENOMEM;
1347 goto exit;
1348 }
1349
1350 /*
1351 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1352 * sfdp_size should be a multiple of DWORDs. But in case a flash
1353 * is not spec compliant, make sure that we have enough space to store
1354 * the complete SFDP data.
1355 */
1356 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1357 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1358 sizeof(*sfdp->dwords), GFP_KERNEL);
1359 if (!sfdp->dwords) {
1360 err = -ENOMEM;
1361 devm_kfree(dev, sfdp);
1362 goto exit;
1363 }
1364
1365 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1366 if (err < 0) {
1367 dev_dbg(dev, "failed to read SFDP data\n");
1368 devm_kfree(dev, sfdp->dwords);
1369 devm_kfree(dev, sfdp);
1370 goto exit;
1371 }
1372
1373 nor->sfdp = sfdp;
1374
1375 /*
1376 * Check other parameter headers to get the latest revision of
1377 * the basic flash parameter table.
1378 */
1379 for (i = 0; i < header.nph; i++) {
1380 param_header = ¶m_headers[i];
1381
1382 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1383 param_header->major == SFDP_JESD216_MAJOR &&
1384 (param_header->minor > bfpt_header->minor ||
1385 (param_header->minor == bfpt_header->minor &&
1386 param_header->length > bfpt_header->length)))
1387 bfpt_header = param_header;
1388 }
1389
1390 err = spi_nor_parse_bfpt(nor, bfpt_header);
1391 if (err)
1392 goto exit;
1393
1394 /* Parse optional parameter tables. */
1395 for (i = 0; i < header.nph; i++) {
1396 param_header = ¶m_headers[i];
1397
1398 switch (SFDP_PARAM_HEADER_ID(param_header)) {
1399 case SFDP_SECTOR_MAP_ID:
1400 err = spi_nor_parse_smpt(nor, param_header);
1401 break;
1402
1403 case SFDP_4BAIT_ID:
1404 err = spi_nor_parse_4bait(nor, param_header);
1405 break;
1406
1407 case SFDP_PROFILE1_ID:
1408 err = spi_nor_parse_profile1(nor, param_header);
1409 break;
1410
1411 case SFDP_SCCR_MAP_ID:
1412 err = spi_nor_parse_sccr(nor, param_header);
1413 break;
1414
1415 default:
1416 break;
1417 }
1418
1419 if (err) {
1420 dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1421 SFDP_PARAM_HEADER_ID(param_header));
1422 /*
1423 * Let's not drop all information we extracted so far
1424 * if optional table parsers fail. In case of failing,
1425 * each optional parser is responsible to roll back to
1426 * the previously known spi_nor data.
1427 */
1428 err = 0;
1429 }
1430 }
1431
1432 spi_nor_post_sfdp_fixups(nor);
1433 exit:
1434 kfree(param_headers);
1435 return err;
1436 }
1437