1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/major.h>
46 #include <linux/mutex.h>
47 #include <linux/scatterlist.h>
48 #include <linux/bitmap.h>
49 #include <linux/list.h>
50 #include <linux/workqueue.h>
51 #include <linux/sched/mm.h>
52
53 #include <xen/xen.h>
54 #include <xen/xenbus.h>
55 #include <xen/grant_table.h>
56 #include <xen/events.h>
57 #include <xen/page.h>
58 #include <xen/platform_pci.h>
59
60 #include <xen/interface/grant_table.h>
61 #include <xen/interface/io/blkif.h>
62 #include <xen/interface/io/protocols.h>
63
64 #include <asm/xen/hypervisor.h>
65
66 /*
67 * The minimal size of segment supported by the block framework is PAGE_SIZE.
68 * When Linux is using a different page size than Xen, it may not be possible
69 * to put all the data in a single segment.
70 * This can happen when the backend doesn't support indirect descriptor and
71 * therefore the maximum amount of data that a request can carry is
72 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
73 *
74 * Note that we only support one extra request. So the Linux page size
75 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
76 * 88KB.
77 */
78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
79
80 enum blkif_state {
81 BLKIF_STATE_DISCONNECTED,
82 BLKIF_STATE_CONNECTED,
83 BLKIF_STATE_SUSPENDED,
84 BLKIF_STATE_ERROR,
85 };
86
87 struct grant {
88 grant_ref_t gref;
89 struct page *page;
90 struct list_head node;
91 };
92
93 enum blk_req_status {
94 REQ_PROCESSING,
95 REQ_WAITING,
96 REQ_DONE,
97 REQ_ERROR,
98 REQ_EOPNOTSUPP,
99 };
100
101 struct blk_shadow {
102 struct blkif_request req;
103 struct request *request;
104 struct grant **grants_used;
105 struct grant **indirect_grants;
106 struct scatterlist *sg;
107 unsigned int num_sg;
108 enum blk_req_status status;
109
110 #define NO_ASSOCIATED_ID ~0UL
111 /*
112 * Id of the sibling if we ever need 2 requests when handling a
113 * block I/O request
114 */
115 unsigned long associated_id;
116 };
117
118 struct blkif_req {
119 blk_status_t error;
120 };
121
blkif_req(struct request * rq)122 static inline struct blkif_req *blkif_req(struct request *rq)
123 {
124 return blk_mq_rq_to_pdu(rq);
125 }
126
127 static DEFINE_MUTEX(blkfront_mutex);
128 static const struct block_device_operations xlvbd_block_fops;
129 static struct delayed_work blkfront_work;
130 static LIST_HEAD(info_list);
131
132 /*
133 * Maximum number of segments in indirect requests, the actual value used by
134 * the frontend driver is the minimum of this value and the value provided
135 * by the backend driver.
136 */
137
138 static unsigned int xen_blkif_max_segments = 32;
139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
140 MODULE_PARM_DESC(max_indirect_segments,
141 "Maximum amount of segments in indirect requests (default is 32)");
142
143 static unsigned int xen_blkif_max_queues = 4;
144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
146
147 /*
148 * Maximum order of pages to be used for the shared ring between front and
149 * backend, 4KB page granularity is used.
150 */
151 static unsigned int xen_blkif_max_ring_order;
152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
154
155 static bool __read_mostly xen_blkif_trusted = true;
156 module_param_named(trusted, xen_blkif_trusted, bool, 0644);
157 MODULE_PARM_DESC(trusted, "Is the backend trusted");
158
159 #define BLK_RING_SIZE(info) \
160 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
161
162 /*
163 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
164 * characters are enough. Define to 20 to keep consistent with backend.
165 */
166 #define RINGREF_NAME_LEN (20)
167 /*
168 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
169 */
170 #define QUEUE_NAME_LEN (17)
171
172 /*
173 * Per-ring info.
174 * Every blkfront device can associate with one or more blkfront_ring_info,
175 * depending on how many hardware queues/rings to be used.
176 */
177 struct blkfront_ring_info {
178 /* Lock to protect data in every ring buffer. */
179 spinlock_t ring_lock;
180 struct blkif_front_ring ring;
181 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
182 unsigned int evtchn, irq;
183 struct work_struct work;
184 struct gnttab_free_callback callback;
185 struct list_head indirect_pages;
186 struct list_head grants;
187 unsigned int persistent_gnts_c;
188 unsigned long shadow_free;
189 struct blkfront_info *dev_info;
190 struct blk_shadow shadow[];
191 };
192
193 /*
194 * We have one of these per vbd, whether ide, scsi or 'other'. They
195 * hang in private_data off the gendisk structure. We may end up
196 * putting all kinds of interesting stuff here :-)
197 */
198 struct blkfront_info
199 {
200 struct mutex mutex;
201 struct xenbus_device *xbdev;
202 struct gendisk *gd;
203 u16 sector_size;
204 unsigned int physical_sector_size;
205 unsigned long vdisk_info;
206 int vdevice;
207 blkif_vdev_t handle;
208 enum blkif_state connected;
209 /* Number of pages per ring buffer. */
210 unsigned int nr_ring_pages;
211 struct request_queue *rq;
212 unsigned int feature_flush:1;
213 unsigned int feature_fua:1;
214 unsigned int feature_discard:1;
215 unsigned int feature_secdiscard:1;
216 /* Connect-time cached feature_persistent parameter */
217 unsigned int feature_persistent_parm:1;
218 /* Persistent grants feature negotiation result */
219 unsigned int feature_persistent:1;
220 unsigned int bounce:1;
221 unsigned int discard_granularity;
222 unsigned int discard_alignment;
223 /* Number of 4KB segments handled */
224 unsigned int max_indirect_segments;
225 int is_ready;
226 struct blk_mq_tag_set tag_set;
227 struct blkfront_ring_info *rinfo;
228 unsigned int nr_rings;
229 unsigned int rinfo_size;
230 /* Save uncomplete reqs and bios for migration. */
231 struct list_head requests;
232 struct bio_list bio_list;
233 struct list_head info_list;
234 };
235
236 static unsigned int nr_minors;
237 static unsigned long *minors;
238 static DEFINE_SPINLOCK(minor_lock);
239
240 #define PARTS_PER_DISK 16
241 #define PARTS_PER_EXT_DISK 256
242
243 #define BLKIF_MAJOR(dev) ((dev)>>8)
244 #define BLKIF_MINOR(dev) ((dev) & 0xff)
245
246 #define EXT_SHIFT 28
247 #define EXTENDED (1<<EXT_SHIFT)
248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
250 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
252 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
254
255 #define DEV_NAME "xvd" /* name in /dev */
256
257 /*
258 * Grants are always the same size as a Xen page (i.e 4KB).
259 * A physical segment is always the same size as a Linux page.
260 * Number of grants per physical segment
261 */
262 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
263
264 #define GRANTS_PER_INDIRECT_FRAME \
265 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
266
267 #define INDIRECT_GREFS(_grants) \
268 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
269
270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
271 static void blkfront_gather_backend_features(struct blkfront_info *info);
272 static int negotiate_mq(struct blkfront_info *info);
273
274 #define for_each_rinfo(info, ptr, idx) \
275 for ((ptr) = (info)->rinfo, (idx) = 0; \
276 (idx) < (info)->nr_rings; \
277 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
278
279 static inline struct blkfront_ring_info *
get_rinfo(const struct blkfront_info * info,unsigned int i)280 get_rinfo(const struct blkfront_info *info, unsigned int i)
281 {
282 BUG_ON(i >= info->nr_rings);
283 return (void *)info->rinfo + i * info->rinfo_size;
284 }
285
get_id_from_freelist(struct blkfront_ring_info * rinfo)286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
287 {
288 unsigned long free = rinfo->shadow_free;
289
290 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
291 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
292 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
293 return free;
294 }
295
add_id_to_freelist(struct blkfront_ring_info * rinfo,unsigned long id)296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
297 unsigned long id)
298 {
299 if (rinfo->shadow[id].req.u.rw.id != id)
300 return -EINVAL;
301 if (rinfo->shadow[id].request == NULL)
302 return -EINVAL;
303 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
304 rinfo->shadow[id].request = NULL;
305 rinfo->shadow_free = id;
306 return 0;
307 }
308
fill_grant_buffer(struct blkfront_ring_info * rinfo,int num)309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
310 {
311 struct blkfront_info *info = rinfo->dev_info;
312 struct page *granted_page;
313 struct grant *gnt_list_entry, *n;
314 int i = 0;
315
316 while (i < num) {
317 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
318 if (!gnt_list_entry)
319 goto out_of_memory;
320
321 if (info->bounce) {
322 granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
323 if (!granted_page) {
324 kfree(gnt_list_entry);
325 goto out_of_memory;
326 }
327 gnt_list_entry->page = granted_page;
328 }
329
330 gnt_list_entry->gref = INVALID_GRANT_REF;
331 list_add(&gnt_list_entry->node, &rinfo->grants);
332 i++;
333 }
334
335 return 0;
336
337 out_of_memory:
338 list_for_each_entry_safe(gnt_list_entry, n,
339 &rinfo->grants, node) {
340 list_del(&gnt_list_entry->node);
341 if (info->bounce)
342 __free_page(gnt_list_entry->page);
343 kfree(gnt_list_entry);
344 i--;
345 }
346 BUG_ON(i != 0);
347 return -ENOMEM;
348 }
349
get_free_grant(struct blkfront_ring_info * rinfo)350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
351 {
352 struct grant *gnt_list_entry;
353
354 BUG_ON(list_empty(&rinfo->grants));
355 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
356 node);
357 list_del(&gnt_list_entry->node);
358
359 if (gnt_list_entry->gref != INVALID_GRANT_REF)
360 rinfo->persistent_gnts_c--;
361
362 return gnt_list_entry;
363 }
364
grant_foreign_access(const struct grant * gnt_list_entry,const struct blkfront_info * info)365 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
366 const struct blkfront_info *info)
367 {
368 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
369 info->xbdev->otherend_id,
370 gnt_list_entry->page,
371 0);
372 }
373
get_grant(grant_ref_t * gref_head,unsigned long gfn,struct blkfront_ring_info * rinfo)374 static struct grant *get_grant(grant_ref_t *gref_head,
375 unsigned long gfn,
376 struct blkfront_ring_info *rinfo)
377 {
378 struct grant *gnt_list_entry = get_free_grant(rinfo);
379 struct blkfront_info *info = rinfo->dev_info;
380
381 if (gnt_list_entry->gref != INVALID_GRANT_REF)
382 return gnt_list_entry;
383
384 /* Assign a gref to this page */
385 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 if (info->bounce)
388 grant_foreign_access(gnt_list_entry, info);
389 else {
390 /* Grant access to the GFN passed by the caller */
391 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
392 info->xbdev->otherend_id,
393 gfn, 0);
394 }
395
396 return gnt_list_entry;
397 }
398
get_indirect_grant(grant_ref_t * gref_head,struct blkfront_ring_info * rinfo)399 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
400 struct blkfront_ring_info *rinfo)
401 {
402 struct grant *gnt_list_entry = get_free_grant(rinfo);
403 struct blkfront_info *info = rinfo->dev_info;
404
405 if (gnt_list_entry->gref != INVALID_GRANT_REF)
406 return gnt_list_entry;
407
408 /* Assign a gref to this page */
409 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
410 BUG_ON(gnt_list_entry->gref == -ENOSPC);
411 if (!info->bounce) {
412 struct page *indirect_page;
413
414 /* Fetch a pre-allocated page to use for indirect grefs */
415 BUG_ON(list_empty(&rinfo->indirect_pages));
416 indirect_page = list_first_entry(&rinfo->indirect_pages,
417 struct page, lru);
418 list_del(&indirect_page->lru);
419 gnt_list_entry->page = indirect_page;
420 }
421 grant_foreign_access(gnt_list_entry, info);
422
423 return gnt_list_entry;
424 }
425
op_name(int op)426 static const char *op_name(int op)
427 {
428 static const char *const names[] = {
429 [BLKIF_OP_READ] = "read",
430 [BLKIF_OP_WRITE] = "write",
431 [BLKIF_OP_WRITE_BARRIER] = "barrier",
432 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
433 [BLKIF_OP_DISCARD] = "discard" };
434
435 if (op < 0 || op >= ARRAY_SIZE(names))
436 return "unknown";
437
438 if (!names[op])
439 return "reserved";
440
441 return names[op];
442 }
xlbd_reserve_minors(unsigned int minor,unsigned int nr)443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
444 {
445 unsigned int end = minor + nr;
446 int rc;
447
448 if (end > nr_minors) {
449 unsigned long *bitmap, *old;
450
451 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
452 GFP_KERNEL);
453 if (bitmap == NULL)
454 return -ENOMEM;
455
456 spin_lock(&minor_lock);
457 if (end > nr_minors) {
458 old = minors;
459 memcpy(bitmap, minors,
460 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
461 minors = bitmap;
462 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
463 } else
464 old = bitmap;
465 spin_unlock(&minor_lock);
466 kfree(old);
467 }
468
469 spin_lock(&minor_lock);
470 if (find_next_bit(minors, end, minor) >= end) {
471 bitmap_set(minors, minor, nr);
472 rc = 0;
473 } else
474 rc = -EBUSY;
475 spin_unlock(&minor_lock);
476
477 return rc;
478 }
479
xlbd_release_minors(unsigned int minor,unsigned int nr)480 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
481 {
482 unsigned int end = minor + nr;
483
484 BUG_ON(end > nr_minors);
485 spin_lock(&minor_lock);
486 bitmap_clear(minors, minor, nr);
487 spin_unlock(&minor_lock);
488 }
489
blkif_restart_queue_callback(void * arg)490 static void blkif_restart_queue_callback(void *arg)
491 {
492 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
493 schedule_work(&rinfo->work);
494 }
495
blkif_getgeo(struct block_device * bd,struct hd_geometry * hg)496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
497 {
498 /* We don't have real geometry info, but let's at least return
499 values consistent with the size of the device */
500 sector_t nsect = get_capacity(bd->bd_disk);
501 sector_t cylinders = nsect;
502
503 hg->heads = 0xff;
504 hg->sectors = 0x3f;
505 sector_div(cylinders, hg->heads * hg->sectors);
506 hg->cylinders = cylinders;
507 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
508 hg->cylinders = 0xffff;
509 return 0;
510 }
511
blkif_ioctl(struct block_device * bdev,fmode_t mode,unsigned command,unsigned long argument)512 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
513 unsigned command, unsigned long argument)
514 {
515 struct blkfront_info *info = bdev->bd_disk->private_data;
516 int i;
517
518 switch (command) {
519 case CDROMMULTISESSION:
520 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
521 if (put_user(0, (char __user *)(argument + i)))
522 return -EFAULT;
523 return 0;
524 case CDROM_GET_CAPABILITY:
525 if (!(info->vdisk_info & VDISK_CDROM))
526 return -EINVAL;
527 return 0;
528 default:
529 return -EINVAL;
530 }
531 }
532
blkif_ring_get_request(struct blkfront_ring_info * rinfo,struct request * req,struct blkif_request ** ring_req)533 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
534 struct request *req,
535 struct blkif_request **ring_req)
536 {
537 unsigned long id;
538
539 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
540 rinfo->ring.req_prod_pvt++;
541
542 id = get_id_from_freelist(rinfo);
543 rinfo->shadow[id].request = req;
544 rinfo->shadow[id].status = REQ_PROCESSING;
545 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
546
547 rinfo->shadow[id].req.u.rw.id = id;
548
549 return id;
550 }
551
blkif_queue_discard_req(struct request * req,struct blkfront_ring_info * rinfo)552 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
553 {
554 struct blkfront_info *info = rinfo->dev_info;
555 struct blkif_request *ring_req, *final_ring_req;
556 unsigned long id;
557
558 /* Fill out a communications ring structure. */
559 id = blkif_ring_get_request(rinfo, req, &final_ring_req);
560 ring_req = &rinfo->shadow[id].req;
561
562 ring_req->operation = BLKIF_OP_DISCARD;
563 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
564 ring_req->u.discard.id = id;
565 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
566 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
567 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
568 else
569 ring_req->u.discard.flag = 0;
570
571 /* Copy the request to the ring page. */
572 *final_ring_req = *ring_req;
573 rinfo->shadow[id].status = REQ_WAITING;
574
575 return 0;
576 }
577
578 struct setup_rw_req {
579 unsigned int grant_idx;
580 struct blkif_request_segment *segments;
581 struct blkfront_ring_info *rinfo;
582 struct blkif_request *ring_req;
583 grant_ref_t gref_head;
584 unsigned int id;
585 /* Only used when persistent grant is used and it's a write request */
586 bool need_copy;
587 unsigned int bvec_off;
588 char *bvec_data;
589
590 bool require_extra_req;
591 struct blkif_request *extra_ring_req;
592 };
593
blkif_setup_rw_req_grant(unsigned long gfn,unsigned int offset,unsigned int len,void * data)594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
595 unsigned int len, void *data)
596 {
597 struct setup_rw_req *setup = data;
598 int n, ref;
599 struct grant *gnt_list_entry;
600 unsigned int fsect, lsect;
601 /* Convenient aliases */
602 unsigned int grant_idx = setup->grant_idx;
603 struct blkif_request *ring_req = setup->ring_req;
604 struct blkfront_ring_info *rinfo = setup->rinfo;
605 /*
606 * We always use the shadow of the first request to store the list
607 * of grant associated to the block I/O request. This made the
608 * completion more easy to handle even if the block I/O request is
609 * split.
610 */
611 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
612
613 if (unlikely(setup->require_extra_req &&
614 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
615 /*
616 * We are using the second request, setup grant_idx
617 * to be the index of the segment array.
618 */
619 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
620 ring_req = setup->extra_ring_req;
621 }
622
623 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
624 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
625 if (setup->segments)
626 kunmap_atomic(setup->segments);
627
628 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
629 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
630 shadow->indirect_grants[n] = gnt_list_entry;
631 setup->segments = kmap_atomic(gnt_list_entry->page);
632 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
633 }
634
635 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
636 ref = gnt_list_entry->gref;
637 /*
638 * All the grants are stored in the shadow of the first
639 * request. Therefore we have to use the global index.
640 */
641 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
642
643 if (setup->need_copy) {
644 void *shared_data;
645
646 shared_data = kmap_atomic(gnt_list_entry->page);
647 /*
648 * this does not wipe data stored outside the
649 * range sg->offset..sg->offset+sg->length.
650 * Therefore, blkback *could* see data from
651 * previous requests. This is OK as long as
652 * persistent grants are shared with just one
653 * domain. It may need refactoring if this
654 * changes
655 */
656 memcpy(shared_data + offset,
657 setup->bvec_data + setup->bvec_off,
658 len);
659
660 kunmap_atomic(shared_data);
661 setup->bvec_off += len;
662 }
663
664 fsect = offset >> 9;
665 lsect = fsect + (len >> 9) - 1;
666 if (ring_req->operation != BLKIF_OP_INDIRECT) {
667 ring_req->u.rw.seg[grant_idx] =
668 (struct blkif_request_segment) {
669 .gref = ref,
670 .first_sect = fsect,
671 .last_sect = lsect };
672 } else {
673 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
674 (struct blkif_request_segment) {
675 .gref = ref,
676 .first_sect = fsect,
677 .last_sect = lsect };
678 }
679
680 (setup->grant_idx)++;
681 }
682
blkif_setup_extra_req(struct blkif_request * first,struct blkif_request * second)683 static void blkif_setup_extra_req(struct blkif_request *first,
684 struct blkif_request *second)
685 {
686 uint16_t nr_segments = first->u.rw.nr_segments;
687
688 /*
689 * The second request is only present when the first request uses
690 * all its segments. It's always the continuity of the first one.
691 */
692 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
693
694 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
695 second->u.rw.sector_number = first->u.rw.sector_number +
696 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
697
698 second->u.rw.handle = first->u.rw.handle;
699 second->operation = first->operation;
700 }
701
blkif_queue_rw_req(struct request * req,struct blkfront_ring_info * rinfo)702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
703 {
704 struct blkfront_info *info = rinfo->dev_info;
705 struct blkif_request *ring_req, *extra_ring_req = NULL;
706 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
707 unsigned long id, extra_id = NO_ASSOCIATED_ID;
708 bool require_extra_req = false;
709 int i;
710 struct setup_rw_req setup = {
711 .grant_idx = 0,
712 .segments = NULL,
713 .rinfo = rinfo,
714 .need_copy = rq_data_dir(req) && info->bounce,
715 };
716
717 /*
718 * Used to store if we are able to queue the request by just using
719 * existing persistent grants, or if we have to get new grants,
720 * as there are not sufficiently many free.
721 */
722 bool new_persistent_gnts = false;
723 struct scatterlist *sg;
724 int num_sg, max_grefs, num_grant;
725
726 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
727 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
728 /*
729 * If we are using indirect segments we need to account
730 * for the indirect grefs used in the request.
731 */
732 max_grefs += INDIRECT_GREFS(max_grefs);
733
734 /* Check if we have enough persistent grants to allocate a requests */
735 if (rinfo->persistent_gnts_c < max_grefs) {
736 new_persistent_gnts = true;
737
738 if (gnttab_alloc_grant_references(
739 max_grefs - rinfo->persistent_gnts_c,
740 &setup.gref_head) < 0) {
741 gnttab_request_free_callback(
742 &rinfo->callback,
743 blkif_restart_queue_callback,
744 rinfo,
745 max_grefs - rinfo->persistent_gnts_c);
746 return 1;
747 }
748 }
749
750 /* Fill out a communications ring structure. */
751 id = blkif_ring_get_request(rinfo, req, &final_ring_req);
752 ring_req = &rinfo->shadow[id].req;
753
754 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
755 num_grant = 0;
756 /* Calculate the number of grant used */
757 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
758 num_grant += gnttab_count_grant(sg->offset, sg->length);
759
760 require_extra_req = info->max_indirect_segments == 0 &&
761 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
762 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
763
764 rinfo->shadow[id].num_sg = num_sg;
765 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
766 likely(!require_extra_req)) {
767 /*
768 * The indirect operation can only be a BLKIF_OP_READ or
769 * BLKIF_OP_WRITE
770 */
771 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
772 ring_req->operation = BLKIF_OP_INDIRECT;
773 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
774 BLKIF_OP_WRITE : BLKIF_OP_READ;
775 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
776 ring_req->u.indirect.handle = info->handle;
777 ring_req->u.indirect.nr_segments = num_grant;
778 } else {
779 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
780 ring_req->u.rw.handle = info->handle;
781 ring_req->operation = rq_data_dir(req) ?
782 BLKIF_OP_WRITE : BLKIF_OP_READ;
783 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
784 /*
785 * Ideally we can do an unordered flush-to-disk.
786 * In case the backend onlysupports barriers, use that.
787 * A barrier request a superset of FUA, so we can
788 * implement it the same way. (It's also a FLUSH+FUA,
789 * since it is guaranteed ordered WRT previous writes.)
790 */
791 if (info->feature_flush && info->feature_fua)
792 ring_req->operation =
793 BLKIF_OP_WRITE_BARRIER;
794 else if (info->feature_flush)
795 ring_req->operation =
796 BLKIF_OP_FLUSH_DISKCACHE;
797 else
798 ring_req->operation = 0;
799 }
800 ring_req->u.rw.nr_segments = num_grant;
801 if (unlikely(require_extra_req)) {
802 extra_id = blkif_ring_get_request(rinfo, req,
803 &final_extra_ring_req);
804 extra_ring_req = &rinfo->shadow[extra_id].req;
805
806 /*
807 * Only the first request contains the scatter-gather
808 * list.
809 */
810 rinfo->shadow[extra_id].num_sg = 0;
811
812 blkif_setup_extra_req(ring_req, extra_ring_req);
813
814 /* Link the 2 requests together */
815 rinfo->shadow[extra_id].associated_id = id;
816 rinfo->shadow[id].associated_id = extra_id;
817 }
818 }
819
820 setup.ring_req = ring_req;
821 setup.id = id;
822
823 setup.require_extra_req = require_extra_req;
824 if (unlikely(require_extra_req))
825 setup.extra_ring_req = extra_ring_req;
826
827 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
828 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
829
830 if (setup.need_copy) {
831 setup.bvec_off = sg->offset;
832 setup.bvec_data = kmap_atomic(sg_page(sg));
833 }
834
835 gnttab_foreach_grant_in_range(sg_page(sg),
836 sg->offset,
837 sg->length,
838 blkif_setup_rw_req_grant,
839 &setup);
840
841 if (setup.need_copy)
842 kunmap_atomic(setup.bvec_data);
843 }
844 if (setup.segments)
845 kunmap_atomic(setup.segments);
846
847 /* Copy request(s) to the ring page. */
848 *final_ring_req = *ring_req;
849 rinfo->shadow[id].status = REQ_WAITING;
850 if (unlikely(require_extra_req)) {
851 *final_extra_ring_req = *extra_ring_req;
852 rinfo->shadow[extra_id].status = REQ_WAITING;
853 }
854
855 if (new_persistent_gnts)
856 gnttab_free_grant_references(setup.gref_head);
857
858 return 0;
859 }
860
861 /*
862 * Generate a Xen blkfront IO request from a blk layer request. Reads
863 * and writes are handled as expected.
864 *
865 * @req: a request struct
866 */
blkif_queue_request(struct request * req,struct blkfront_ring_info * rinfo)867 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
868 {
869 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
870 return 1;
871
872 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
873 req_op(req) == REQ_OP_SECURE_ERASE))
874 return blkif_queue_discard_req(req, rinfo);
875 else
876 return blkif_queue_rw_req(req, rinfo);
877 }
878
flush_requests(struct blkfront_ring_info * rinfo)879 static inline void flush_requests(struct blkfront_ring_info *rinfo)
880 {
881 int notify;
882
883 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
884
885 if (notify)
886 notify_remote_via_irq(rinfo->irq);
887 }
888
blkif_request_flush_invalid(struct request * req,struct blkfront_info * info)889 static inline bool blkif_request_flush_invalid(struct request *req,
890 struct blkfront_info *info)
891 {
892 return (blk_rq_is_passthrough(req) ||
893 ((req_op(req) == REQ_OP_FLUSH) &&
894 !info->feature_flush) ||
895 ((req->cmd_flags & REQ_FUA) &&
896 !info->feature_fua));
897 }
898
blkif_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)899 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
900 const struct blk_mq_queue_data *qd)
901 {
902 unsigned long flags;
903 int qid = hctx->queue_num;
904 struct blkfront_info *info = hctx->queue->queuedata;
905 struct blkfront_ring_info *rinfo = NULL;
906
907 rinfo = get_rinfo(info, qid);
908 blk_mq_start_request(qd->rq);
909 spin_lock_irqsave(&rinfo->ring_lock, flags);
910 if (RING_FULL(&rinfo->ring))
911 goto out_busy;
912
913 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
914 goto out_err;
915
916 if (blkif_queue_request(qd->rq, rinfo))
917 goto out_busy;
918
919 flush_requests(rinfo);
920 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
921 return BLK_STS_OK;
922
923 out_err:
924 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
925 return BLK_STS_IOERR;
926
927 out_busy:
928 blk_mq_stop_hw_queue(hctx);
929 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
930 return BLK_STS_DEV_RESOURCE;
931 }
932
blkif_complete_rq(struct request * rq)933 static void blkif_complete_rq(struct request *rq)
934 {
935 blk_mq_end_request(rq, blkif_req(rq)->error);
936 }
937
938 static const struct blk_mq_ops blkfront_mq_ops = {
939 .queue_rq = blkif_queue_rq,
940 .complete = blkif_complete_rq,
941 };
942
blkif_set_queue_limits(struct blkfront_info * info)943 static void blkif_set_queue_limits(struct blkfront_info *info)
944 {
945 struct request_queue *rq = info->rq;
946 struct gendisk *gd = info->gd;
947 unsigned int segments = info->max_indirect_segments ? :
948 BLKIF_MAX_SEGMENTS_PER_REQUEST;
949
950 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
951
952 if (info->feature_discard) {
953 blk_queue_max_discard_sectors(rq, get_capacity(gd));
954 rq->limits.discard_granularity = info->discard_granularity ?:
955 info->physical_sector_size;
956 rq->limits.discard_alignment = info->discard_alignment;
957 if (info->feature_secdiscard)
958 blk_queue_max_secure_erase_sectors(rq,
959 get_capacity(gd));
960 }
961
962 /* Hard sector size and max sectors impersonate the equiv. hardware. */
963 blk_queue_logical_block_size(rq, info->sector_size);
964 blk_queue_physical_block_size(rq, info->physical_sector_size);
965 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
966
967 /* Each segment in a request is up to an aligned page in size. */
968 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
969 blk_queue_max_segment_size(rq, PAGE_SIZE);
970
971 /* Ensure a merged request will fit in a single I/O ring slot. */
972 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
973
974 /* Make sure buffer addresses are sector-aligned. */
975 blk_queue_dma_alignment(rq, 511);
976 }
977
flush_info(struct blkfront_info * info)978 static const char *flush_info(struct blkfront_info *info)
979 {
980 if (info->feature_flush && info->feature_fua)
981 return "barrier: enabled;";
982 else if (info->feature_flush)
983 return "flush diskcache: enabled;";
984 else
985 return "barrier or flush: disabled;";
986 }
987
xlvbd_flush(struct blkfront_info * info)988 static void xlvbd_flush(struct blkfront_info *info)
989 {
990 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
991 info->feature_fua ? true : false);
992 pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
993 info->gd->disk_name, flush_info(info),
994 "persistent grants:", info->feature_persistent ?
995 "enabled;" : "disabled;", "indirect descriptors:",
996 info->max_indirect_segments ? "enabled;" : "disabled;",
997 "bounce buffer:", info->bounce ? "enabled" : "disabled;");
998 }
999
xen_translate_vdev(int vdevice,int * minor,unsigned int * offset)1000 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1001 {
1002 int major;
1003 major = BLKIF_MAJOR(vdevice);
1004 *minor = BLKIF_MINOR(vdevice);
1005 switch (major) {
1006 case XEN_IDE0_MAJOR:
1007 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1008 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1009 EMULATED_HD_DISK_MINOR_OFFSET;
1010 break;
1011 case XEN_IDE1_MAJOR:
1012 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1013 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1014 EMULATED_HD_DISK_MINOR_OFFSET;
1015 break;
1016 case XEN_SCSI_DISK0_MAJOR:
1017 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1018 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1019 break;
1020 case XEN_SCSI_DISK1_MAJOR:
1021 case XEN_SCSI_DISK2_MAJOR:
1022 case XEN_SCSI_DISK3_MAJOR:
1023 case XEN_SCSI_DISK4_MAJOR:
1024 case XEN_SCSI_DISK5_MAJOR:
1025 case XEN_SCSI_DISK6_MAJOR:
1026 case XEN_SCSI_DISK7_MAJOR:
1027 *offset = (*minor / PARTS_PER_DISK) +
1028 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1029 EMULATED_SD_DISK_NAME_OFFSET;
1030 *minor = *minor +
1031 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1032 EMULATED_SD_DISK_MINOR_OFFSET;
1033 break;
1034 case XEN_SCSI_DISK8_MAJOR:
1035 case XEN_SCSI_DISK9_MAJOR:
1036 case XEN_SCSI_DISK10_MAJOR:
1037 case XEN_SCSI_DISK11_MAJOR:
1038 case XEN_SCSI_DISK12_MAJOR:
1039 case XEN_SCSI_DISK13_MAJOR:
1040 case XEN_SCSI_DISK14_MAJOR:
1041 case XEN_SCSI_DISK15_MAJOR:
1042 *offset = (*minor / PARTS_PER_DISK) +
1043 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1044 EMULATED_SD_DISK_NAME_OFFSET;
1045 *minor = *minor +
1046 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1047 EMULATED_SD_DISK_MINOR_OFFSET;
1048 break;
1049 case XENVBD_MAJOR:
1050 *offset = *minor / PARTS_PER_DISK;
1051 break;
1052 default:
1053 printk(KERN_WARNING "blkfront: your disk configuration is "
1054 "incorrect, please use an xvd device instead\n");
1055 return -ENODEV;
1056 }
1057 return 0;
1058 }
1059
encode_disk_name(char * ptr,unsigned int n)1060 static char *encode_disk_name(char *ptr, unsigned int n)
1061 {
1062 if (n >= 26)
1063 ptr = encode_disk_name(ptr, n / 26 - 1);
1064 *ptr = 'a' + n % 26;
1065 return ptr + 1;
1066 }
1067
xlvbd_alloc_gendisk(blkif_sector_t capacity,struct blkfront_info * info,u16 sector_size,unsigned int physical_sector_size)1068 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1069 struct blkfront_info *info, u16 sector_size,
1070 unsigned int physical_sector_size)
1071 {
1072 struct gendisk *gd;
1073 int nr_minors = 1;
1074 int err;
1075 unsigned int offset;
1076 int minor;
1077 int nr_parts;
1078 char *ptr;
1079
1080 BUG_ON(info->gd != NULL);
1081 BUG_ON(info->rq != NULL);
1082
1083 if ((info->vdevice>>EXT_SHIFT) > 1) {
1084 /* this is above the extended range; something is wrong */
1085 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1086 return -ENODEV;
1087 }
1088
1089 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1090 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1091 if (err)
1092 return err;
1093 nr_parts = PARTS_PER_DISK;
1094 } else {
1095 minor = BLKIF_MINOR_EXT(info->vdevice);
1096 nr_parts = PARTS_PER_EXT_DISK;
1097 offset = minor / nr_parts;
1098 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1099 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1100 "emulated IDE disks,\n\t choose an xvd device name"
1101 "from xvde on\n", info->vdevice);
1102 }
1103 if (minor >> MINORBITS) {
1104 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1105 info->vdevice, minor);
1106 return -ENODEV;
1107 }
1108
1109 if ((minor % nr_parts) == 0)
1110 nr_minors = nr_parts;
1111
1112 err = xlbd_reserve_minors(minor, nr_minors);
1113 if (err)
1114 return err;
1115
1116 memset(&info->tag_set, 0, sizeof(info->tag_set));
1117 info->tag_set.ops = &blkfront_mq_ops;
1118 info->tag_set.nr_hw_queues = info->nr_rings;
1119 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1120 /*
1121 * When indirect descriptior is not supported, the I/O request
1122 * will be split between multiple request in the ring.
1123 * To avoid problems when sending the request, divide by
1124 * 2 the depth of the queue.
1125 */
1126 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
1127 } else
1128 info->tag_set.queue_depth = BLK_RING_SIZE(info);
1129 info->tag_set.numa_node = NUMA_NO_NODE;
1130 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1131 info->tag_set.cmd_size = sizeof(struct blkif_req);
1132 info->tag_set.driver_data = info;
1133
1134 err = blk_mq_alloc_tag_set(&info->tag_set);
1135 if (err)
1136 goto out_release_minors;
1137
1138 gd = blk_mq_alloc_disk(&info->tag_set, info);
1139 if (IS_ERR(gd)) {
1140 err = PTR_ERR(gd);
1141 goto out_free_tag_set;
1142 }
1143
1144 strcpy(gd->disk_name, DEV_NAME);
1145 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1146 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1147 if (nr_minors > 1)
1148 *ptr = 0;
1149 else
1150 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1151 "%d", minor & (nr_parts - 1));
1152
1153 gd->major = XENVBD_MAJOR;
1154 gd->first_minor = minor;
1155 gd->minors = nr_minors;
1156 gd->fops = &xlvbd_block_fops;
1157 gd->private_data = info;
1158 set_capacity(gd, capacity);
1159
1160 info->rq = gd->queue;
1161 info->gd = gd;
1162 info->sector_size = sector_size;
1163 info->physical_sector_size = physical_sector_size;
1164 blkif_set_queue_limits(info);
1165
1166 xlvbd_flush(info);
1167
1168 if (info->vdisk_info & VDISK_READONLY)
1169 set_disk_ro(gd, 1);
1170 if (info->vdisk_info & VDISK_REMOVABLE)
1171 gd->flags |= GENHD_FL_REMOVABLE;
1172
1173 return 0;
1174
1175 out_free_tag_set:
1176 blk_mq_free_tag_set(&info->tag_set);
1177 out_release_minors:
1178 xlbd_release_minors(minor, nr_minors);
1179 return err;
1180 }
1181
1182 /* Already hold rinfo->ring_lock. */
kick_pending_request_queues_locked(struct blkfront_ring_info * rinfo)1183 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1184 {
1185 if (!RING_FULL(&rinfo->ring))
1186 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1187 }
1188
kick_pending_request_queues(struct blkfront_ring_info * rinfo)1189 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1190 {
1191 unsigned long flags;
1192
1193 spin_lock_irqsave(&rinfo->ring_lock, flags);
1194 kick_pending_request_queues_locked(rinfo);
1195 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1196 }
1197
blkif_restart_queue(struct work_struct * work)1198 static void blkif_restart_queue(struct work_struct *work)
1199 {
1200 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1201
1202 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1203 kick_pending_request_queues(rinfo);
1204 }
1205
blkif_free_ring(struct blkfront_ring_info * rinfo)1206 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1207 {
1208 struct grant *persistent_gnt, *n;
1209 struct blkfront_info *info = rinfo->dev_info;
1210 int i, j, segs;
1211
1212 /*
1213 * Remove indirect pages, this only happens when using indirect
1214 * descriptors but not persistent grants
1215 */
1216 if (!list_empty(&rinfo->indirect_pages)) {
1217 struct page *indirect_page, *n;
1218
1219 BUG_ON(info->bounce);
1220 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1221 list_del(&indirect_page->lru);
1222 __free_page(indirect_page);
1223 }
1224 }
1225
1226 /* Remove all persistent grants. */
1227 if (!list_empty(&rinfo->grants)) {
1228 list_for_each_entry_safe(persistent_gnt, n,
1229 &rinfo->grants, node) {
1230 list_del(&persistent_gnt->node);
1231 if (persistent_gnt->gref != INVALID_GRANT_REF) {
1232 gnttab_end_foreign_access(persistent_gnt->gref,
1233 NULL);
1234 rinfo->persistent_gnts_c--;
1235 }
1236 if (info->bounce)
1237 __free_page(persistent_gnt->page);
1238 kfree(persistent_gnt);
1239 }
1240 }
1241 BUG_ON(rinfo->persistent_gnts_c != 0);
1242
1243 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1244 /*
1245 * Clear persistent grants present in requests already
1246 * on the shared ring
1247 */
1248 if (!rinfo->shadow[i].request)
1249 goto free_shadow;
1250
1251 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1252 rinfo->shadow[i].req.u.indirect.nr_segments :
1253 rinfo->shadow[i].req.u.rw.nr_segments;
1254 for (j = 0; j < segs; j++) {
1255 persistent_gnt = rinfo->shadow[i].grants_used[j];
1256 gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1257 if (info->bounce)
1258 __free_page(persistent_gnt->page);
1259 kfree(persistent_gnt);
1260 }
1261
1262 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1263 /*
1264 * If this is not an indirect operation don't try to
1265 * free indirect segments
1266 */
1267 goto free_shadow;
1268
1269 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1270 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1271 gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1272 __free_page(persistent_gnt->page);
1273 kfree(persistent_gnt);
1274 }
1275
1276 free_shadow:
1277 kvfree(rinfo->shadow[i].grants_used);
1278 rinfo->shadow[i].grants_used = NULL;
1279 kvfree(rinfo->shadow[i].indirect_grants);
1280 rinfo->shadow[i].indirect_grants = NULL;
1281 kvfree(rinfo->shadow[i].sg);
1282 rinfo->shadow[i].sg = NULL;
1283 }
1284
1285 /* No more gnttab callback work. */
1286 gnttab_cancel_free_callback(&rinfo->callback);
1287
1288 /* Flush gnttab callback work. Must be done with no locks held. */
1289 flush_work(&rinfo->work);
1290
1291 /* Free resources associated with old device channel. */
1292 xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages,
1293 rinfo->ring_ref);
1294
1295 if (rinfo->irq)
1296 unbind_from_irqhandler(rinfo->irq, rinfo);
1297 rinfo->evtchn = rinfo->irq = 0;
1298 }
1299
blkif_free(struct blkfront_info * info,int suspend)1300 static void blkif_free(struct blkfront_info *info, int suspend)
1301 {
1302 unsigned int i;
1303 struct blkfront_ring_info *rinfo;
1304
1305 /* Prevent new requests being issued until we fix things up. */
1306 info->connected = suspend ?
1307 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1308 /* No more blkif_request(). */
1309 if (info->rq)
1310 blk_mq_stop_hw_queues(info->rq);
1311
1312 for_each_rinfo(info, rinfo, i)
1313 blkif_free_ring(rinfo);
1314
1315 kvfree(info->rinfo);
1316 info->rinfo = NULL;
1317 info->nr_rings = 0;
1318 }
1319
1320 struct copy_from_grant {
1321 const struct blk_shadow *s;
1322 unsigned int grant_idx;
1323 unsigned int bvec_offset;
1324 char *bvec_data;
1325 };
1326
blkif_copy_from_grant(unsigned long gfn,unsigned int offset,unsigned int len,void * data)1327 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1328 unsigned int len, void *data)
1329 {
1330 struct copy_from_grant *info = data;
1331 char *shared_data;
1332 /* Convenient aliases */
1333 const struct blk_shadow *s = info->s;
1334
1335 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1336
1337 memcpy(info->bvec_data + info->bvec_offset,
1338 shared_data + offset, len);
1339
1340 info->bvec_offset += len;
1341 info->grant_idx++;
1342
1343 kunmap_atomic(shared_data);
1344 }
1345
blkif_rsp_to_req_status(int rsp)1346 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1347 {
1348 switch (rsp)
1349 {
1350 case BLKIF_RSP_OKAY:
1351 return REQ_DONE;
1352 case BLKIF_RSP_EOPNOTSUPP:
1353 return REQ_EOPNOTSUPP;
1354 case BLKIF_RSP_ERROR:
1355 default:
1356 return REQ_ERROR;
1357 }
1358 }
1359
1360 /*
1361 * Get the final status of the block request based on two ring response
1362 */
blkif_get_final_status(enum blk_req_status s1,enum blk_req_status s2)1363 static int blkif_get_final_status(enum blk_req_status s1,
1364 enum blk_req_status s2)
1365 {
1366 BUG_ON(s1 < REQ_DONE);
1367 BUG_ON(s2 < REQ_DONE);
1368
1369 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1370 return BLKIF_RSP_ERROR;
1371 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1372 return BLKIF_RSP_EOPNOTSUPP;
1373 return BLKIF_RSP_OKAY;
1374 }
1375
1376 /*
1377 * Return values:
1378 * 1 response processed.
1379 * 0 missing further responses.
1380 * -1 error while processing.
1381 */
blkif_completion(unsigned long * id,struct blkfront_ring_info * rinfo,struct blkif_response * bret)1382 static int blkif_completion(unsigned long *id,
1383 struct blkfront_ring_info *rinfo,
1384 struct blkif_response *bret)
1385 {
1386 int i = 0;
1387 struct scatterlist *sg;
1388 int num_sg, num_grant;
1389 struct blkfront_info *info = rinfo->dev_info;
1390 struct blk_shadow *s = &rinfo->shadow[*id];
1391 struct copy_from_grant data = {
1392 .grant_idx = 0,
1393 };
1394
1395 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1396 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1397
1398 /* The I/O request may be split in two. */
1399 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1400 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1401
1402 /* Keep the status of the current response in shadow. */
1403 s->status = blkif_rsp_to_req_status(bret->status);
1404
1405 /* Wait the second response if not yet here. */
1406 if (s2->status < REQ_DONE)
1407 return 0;
1408
1409 bret->status = blkif_get_final_status(s->status,
1410 s2->status);
1411
1412 /*
1413 * All the grants is stored in the first shadow in order
1414 * to make the completion code simpler.
1415 */
1416 num_grant += s2->req.u.rw.nr_segments;
1417
1418 /*
1419 * The two responses may not come in order. Only the
1420 * first request will store the scatter-gather list.
1421 */
1422 if (s2->num_sg != 0) {
1423 /* Update "id" with the ID of the first response. */
1424 *id = s->associated_id;
1425 s = s2;
1426 }
1427
1428 /*
1429 * We don't need anymore the second request, so recycling
1430 * it now.
1431 */
1432 if (add_id_to_freelist(rinfo, s->associated_id))
1433 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1434 info->gd->disk_name, s->associated_id);
1435 }
1436
1437 data.s = s;
1438 num_sg = s->num_sg;
1439
1440 if (bret->operation == BLKIF_OP_READ && info->bounce) {
1441 for_each_sg(s->sg, sg, num_sg, i) {
1442 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1443
1444 data.bvec_offset = sg->offset;
1445 data.bvec_data = kmap_atomic(sg_page(sg));
1446
1447 gnttab_foreach_grant_in_range(sg_page(sg),
1448 sg->offset,
1449 sg->length,
1450 blkif_copy_from_grant,
1451 &data);
1452
1453 kunmap_atomic(data.bvec_data);
1454 }
1455 }
1456 /* Add the persistent grant into the list of free grants */
1457 for (i = 0; i < num_grant; i++) {
1458 if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1459 /*
1460 * If the grant is still mapped by the backend (the
1461 * backend has chosen to make this grant persistent)
1462 * we add it at the head of the list, so it will be
1463 * reused first.
1464 */
1465 if (!info->feature_persistent) {
1466 pr_alert("backed has not unmapped grant: %u\n",
1467 s->grants_used[i]->gref);
1468 return -1;
1469 }
1470 list_add(&s->grants_used[i]->node, &rinfo->grants);
1471 rinfo->persistent_gnts_c++;
1472 } else {
1473 /*
1474 * If the grant is not mapped by the backend we add it
1475 * to the tail of the list, so it will not be picked
1476 * again unless we run out of persistent grants.
1477 */
1478 s->grants_used[i]->gref = INVALID_GRANT_REF;
1479 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1480 }
1481 }
1482 if (s->req.operation == BLKIF_OP_INDIRECT) {
1483 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1484 if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1485 if (!info->feature_persistent) {
1486 pr_alert("backed has not unmapped grant: %u\n",
1487 s->indirect_grants[i]->gref);
1488 return -1;
1489 }
1490 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1491 rinfo->persistent_gnts_c++;
1492 } else {
1493 struct page *indirect_page;
1494
1495 /*
1496 * Add the used indirect page back to the list of
1497 * available pages for indirect grefs.
1498 */
1499 if (!info->bounce) {
1500 indirect_page = s->indirect_grants[i]->page;
1501 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1502 }
1503 s->indirect_grants[i]->gref = INVALID_GRANT_REF;
1504 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1505 }
1506 }
1507 }
1508
1509 return 1;
1510 }
1511
blkif_interrupt(int irq,void * dev_id)1512 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1513 {
1514 struct request *req;
1515 struct blkif_response bret;
1516 RING_IDX i, rp;
1517 unsigned long flags;
1518 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1519 struct blkfront_info *info = rinfo->dev_info;
1520 unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1521
1522 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1523 xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1524 return IRQ_HANDLED;
1525 }
1526
1527 spin_lock_irqsave(&rinfo->ring_lock, flags);
1528 again:
1529 rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1530 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1531 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1532 pr_alert("%s: illegal number of responses %u\n",
1533 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1534 goto err;
1535 }
1536
1537 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1538 unsigned long id;
1539 unsigned int op;
1540
1541 eoiflag = 0;
1542
1543 RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1544 id = bret.id;
1545
1546 /*
1547 * The backend has messed up and given us an id that we would
1548 * never have given to it (we stamp it up to BLK_RING_SIZE -
1549 * look in get_id_from_freelist.
1550 */
1551 if (id >= BLK_RING_SIZE(info)) {
1552 pr_alert("%s: response has incorrect id (%ld)\n",
1553 info->gd->disk_name, id);
1554 goto err;
1555 }
1556 if (rinfo->shadow[id].status != REQ_WAITING) {
1557 pr_alert("%s: response references no pending request\n",
1558 info->gd->disk_name);
1559 goto err;
1560 }
1561
1562 rinfo->shadow[id].status = REQ_PROCESSING;
1563 req = rinfo->shadow[id].request;
1564
1565 op = rinfo->shadow[id].req.operation;
1566 if (op == BLKIF_OP_INDIRECT)
1567 op = rinfo->shadow[id].req.u.indirect.indirect_op;
1568 if (bret.operation != op) {
1569 pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1570 info->gd->disk_name, bret.operation, op);
1571 goto err;
1572 }
1573
1574 if (bret.operation != BLKIF_OP_DISCARD) {
1575 int ret;
1576
1577 /*
1578 * We may need to wait for an extra response if the
1579 * I/O request is split in 2
1580 */
1581 ret = blkif_completion(&id, rinfo, &bret);
1582 if (!ret)
1583 continue;
1584 if (unlikely(ret < 0))
1585 goto err;
1586 }
1587
1588 if (add_id_to_freelist(rinfo, id)) {
1589 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1590 info->gd->disk_name, op_name(bret.operation), id);
1591 continue;
1592 }
1593
1594 if (bret.status == BLKIF_RSP_OKAY)
1595 blkif_req(req)->error = BLK_STS_OK;
1596 else
1597 blkif_req(req)->error = BLK_STS_IOERR;
1598
1599 switch (bret.operation) {
1600 case BLKIF_OP_DISCARD:
1601 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1602 struct request_queue *rq = info->rq;
1603
1604 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1605 info->gd->disk_name, op_name(bret.operation));
1606 blkif_req(req)->error = BLK_STS_NOTSUPP;
1607 info->feature_discard = 0;
1608 info->feature_secdiscard = 0;
1609 blk_queue_max_discard_sectors(rq, 0);
1610 blk_queue_max_secure_erase_sectors(rq, 0);
1611 }
1612 break;
1613 case BLKIF_OP_FLUSH_DISKCACHE:
1614 case BLKIF_OP_WRITE_BARRIER:
1615 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1616 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1617 info->gd->disk_name, op_name(bret.operation));
1618 blkif_req(req)->error = BLK_STS_NOTSUPP;
1619 }
1620 if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1621 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1622 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1623 info->gd->disk_name, op_name(bret.operation));
1624 blkif_req(req)->error = BLK_STS_NOTSUPP;
1625 }
1626 if (unlikely(blkif_req(req)->error)) {
1627 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1628 blkif_req(req)->error = BLK_STS_OK;
1629 info->feature_fua = 0;
1630 info->feature_flush = 0;
1631 xlvbd_flush(info);
1632 }
1633 fallthrough;
1634 case BLKIF_OP_READ:
1635 case BLKIF_OP_WRITE:
1636 if (unlikely(bret.status != BLKIF_RSP_OKAY))
1637 dev_dbg_ratelimited(&info->xbdev->dev,
1638 "Bad return from blkdev data request: %#x\n",
1639 bret.status);
1640
1641 break;
1642 default:
1643 BUG();
1644 }
1645
1646 if (likely(!blk_should_fake_timeout(req->q)))
1647 blk_mq_complete_request(req);
1648 }
1649
1650 rinfo->ring.rsp_cons = i;
1651
1652 if (i != rinfo->ring.req_prod_pvt) {
1653 int more_to_do;
1654 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1655 if (more_to_do)
1656 goto again;
1657 } else
1658 rinfo->ring.sring->rsp_event = i + 1;
1659
1660 kick_pending_request_queues_locked(rinfo);
1661
1662 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1663
1664 xen_irq_lateeoi(irq, eoiflag);
1665
1666 return IRQ_HANDLED;
1667
1668 err:
1669 info->connected = BLKIF_STATE_ERROR;
1670
1671 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1672
1673 /* No EOI in order to avoid further interrupts. */
1674
1675 pr_alert("%s disabled for further use\n", info->gd->disk_name);
1676 return IRQ_HANDLED;
1677 }
1678
1679
setup_blkring(struct xenbus_device * dev,struct blkfront_ring_info * rinfo)1680 static int setup_blkring(struct xenbus_device *dev,
1681 struct blkfront_ring_info *rinfo)
1682 {
1683 struct blkif_sring *sring;
1684 int err;
1685 struct blkfront_info *info = rinfo->dev_info;
1686 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1687
1688 err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring,
1689 info->nr_ring_pages, rinfo->ring_ref);
1690 if (err)
1691 goto fail;
1692
1693 XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1694
1695 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1696 if (err)
1697 goto fail;
1698
1699 err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1700 0, "blkif", rinfo);
1701 if (err <= 0) {
1702 xenbus_dev_fatal(dev, err,
1703 "bind_evtchn_to_irqhandler failed");
1704 goto fail;
1705 }
1706 rinfo->irq = err;
1707
1708 return 0;
1709 fail:
1710 blkif_free(info, 0);
1711 return err;
1712 }
1713
1714 /*
1715 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1716 * ring buffer may have multi pages depending on ->nr_ring_pages.
1717 */
write_per_ring_nodes(struct xenbus_transaction xbt,struct blkfront_ring_info * rinfo,const char * dir)1718 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1719 struct blkfront_ring_info *rinfo, const char *dir)
1720 {
1721 int err;
1722 unsigned int i;
1723 const char *message = NULL;
1724 struct blkfront_info *info = rinfo->dev_info;
1725
1726 if (info->nr_ring_pages == 1) {
1727 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1728 if (err) {
1729 message = "writing ring-ref";
1730 goto abort_transaction;
1731 }
1732 } else {
1733 for (i = 0; i < info->nr_ring_pages; i++) {
1734 char ring_ref_name[RINGREF_NAME_LEN];
1735
1736 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1737 err = xenbus_printf(xbt, dir, ring_ref_name,
1738 "%u", rinfo->ring_ref[i]);
1739 if (err) {
1740 message = "writing ring-ref";
1741 goto abort_transaction;
1742 }
1743 }
1744 }
1745
1746 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1747 if (err) {
1748 message = "writing event-channel";
1749 goto abort_transaction;
1750 }
1751
1752 return 0;
1753
1754 abort_transaction:
1755 xenbus_transaction_end(xbt, 1);
1756 if (message)
1757 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1758
1759 return err;
1760 }
1761
1762 /* Enable the persistent grants feature. */
1763 static bool feature_persistent = true;
1764 module_param(feature_persistent, bool, 0644);
1765 MODULE_PARM_DESC(feature_persistent,
1766 "Enables the persistent grants feature");
1767
1768 /* Common code used when first setting up, and when resuming. */
talk_to_blkback(struct xenbus_device * dev,struct blkfront_info * info)1769 static int talk_to_blkback(struct xenbus_device *dev,
1770 struct blkfront_info *info)
1771 {
1772 const char *message = NULL;
1773 struct xenbus_transaction xbt;
1774 int err;
1775 unsigned int i, max_page_order;
1776 unsigned int ring_page_order;
1777 struct blkfront_ring_info *rinfo;
1778
1779 if (!info)
1780 return -ENODEV;
1781
1782 /* Check if backend is trusted. */
1783 info->bounce = !xen_blkif_trusted ||
1784 !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1785
1786 max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1787 "max-ring-page-order", 0);
1788 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1789 info->nr_ring_pages = 1 << ring_page_order;
1790
1791 err = negotiate_mq(info);
1792 if (err)
1793 goto destroy_blkring;
1794
1795 for_each_rinfo(info, rinfo, i) {
1796 /* Create shared ring, alloc event channel. */
1797 err = setup_blkring(dev, rinfo);
1798 if (err)
1799 goto destroy_blkring;
1800 }
1801
1802 again:
1803 err = xenbus_transaction_start(&xbt);
1804 if (err) {
1805 xenbus_dev_fatal(dev, err, "starting transaction");
1806 goto destroy_blkring;
1807 }
1808
1809 if (info->nr_ring_pages > 1) {
1810 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1811 ring_page_order);
1812 if (err) {
1813 message = "writing ring-page-order";
1814 goto abort_transaction;
1815 }
1816 }
1817
1818 /* We already got the number of queues/rings in _probe */
1819 if (info->nr_rings == 1) {
1820 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1821 if (err)
1822 goto destroy_blkring;
1823 } else {
1824 char *path;
1825 size_t pathsize;
1826
1827 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1828 info->nr_rings);
1829 if (err) {
1830 message = "writing multi-queue-num-queues";
1831 goto abort_transaction;
1832 }
1833
1834 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1835 path = kmalloc(pathsize, GFP_KERNEL);
1836 if (!path) {
1837 err = -ENOMEM;
1838 message = "ENOMEM while writing ring references";
1839 goto abort_transaction;
1840 }
1841
1842 for_each_rinfo(info, rinfo, i) {
1843 memset(path, 0, pathsize);
1844 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1845 err = write_per_ring_nodes(xbt, rinfo, path);
1846 if (err) {
1847 kfree(path);
1848 goto destroy_blkring;
1849 }
1850 }
1851 kfree(path);
1852 }
1853 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1854 XEN_IO_PROTO_ABI_NATIVE);
1855 if (err) {
1856 message = "writing protocol";
1857 goto abort_transaction;
1858 }
1859 info->feature_persistent_parm = feature_persistent;
1860 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1861 info->feature_persistent_parm);
1862 if (err)
1863 dev_warn(&dev->dev,
1864 "writing persistent grants feature to xenbus");
1865
1866 err = xenbus_transaction_end(xbt, 0);
1867 if (err) {
1868 if (err == -EAGAIN)
1869 goto again;
1870 xenbus_dev_fatal(dev, err, "completing transaction");
1871 goto destroy_blkring;
1872 }
1873
1874 for_each_rinfo(info, rinfo, i) {
1875 unsigned int j;
1876
1877 for (j = 0; j < BLK_RING_SIZE(info); j++)
1878 rinfo->shadow[j].req.u.rw.id = j + 1;
1879 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1880 }
1881 xenbus_switch_state(dev, XenbusStateInitialised);
1882
1883 return 0;
1884
1885 abort_transaction:
1886 xenbus_transaction_end(xbt, 1);
1887 if (message)
1888 xenbus_dev_fatal(dev, err, "%s", message);
1889 destroy_blkring:
1890 blkif_free(info, 0);
1891 return err;
1892 }
1893
negotiate_mq(struct blkfront_info * info)1894 static int negotiate_mq(struct blkfront_info *info)
1895 {
1896 unsigned int backend_max_queues;
1897 unsigned int i;
1898 struct blkfront_ring_info *rinfo;
1899
1900 BUG_ON(info->nr_rings);
1901
1902 /* Check if backend supports multiple queues. */
1903 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1904 "multi-queue-max-queues", 1);
1905 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1906 /* We need at least one ring. */
1907 if (!info->nr_rings)
1908 info->nr_rings = 1;
1909
1910 info->rinfo_size = struct_size(info->rinfo, shadow,
1911 BLK_RING_SIZE(info));
1912 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1913 if (!info->rinfo) {
1914 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1915 info->nr_rings = 0;
1916 return -ENOMEM;
1917 }
1918
1919 for_each_rinfo(info, rinfo, i) {
1920 INIT_LIST_HEAD(&rinfo->indirect_pages);
1921 INIT_LIST_HEAD(&rinfo->grants);
1922 rinfo->dev_info = info;
1923 INIT_WORK(&rinfo->work, blkif_restart_queue);
1924 spin_lock_init(&rinfo->ring_lock);
1925 }
1926 return 0;
1927 }
1928
1929 /*
1930 * Entry point to this code when a new device is created. Allocate the basic
1931 * structures and the ring buffer for communication with the backend, and
1932 * inform the backend of the appropriate details for those. Switch to
1933 * Initialised state.
1934 */
blkfront_probe(struct xenbus_device * dev,const struct xenbus_device_id * id)1935 static int blkfront_probe(struct xenbus_device *dev,
1936 const struct xenbus_device_id *id)
1937 {
1938 int err, vdevice;
1939 struct blkfront_info *info;
1940
1941 /* FIXME: Use dynamic device id if this is not set. */
1942 err = xenbus_scanf(XBT_NIL, dev->nodename,
1943 "virtual-device", "%i", &vdevice);
1944 if (err != 1) {
1945 /* go looking in the extended area instead */
1946 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1947 "%i", &vdevice);
1948 if (err != 1) {
1949 xenbus_dev_fatal(dev, err, "reading virtual-device");
1950 return err;
1951 }
1952 }
1953
1954 if (xen_hvm_domain()) {
1955 char *type;
1956 int len;
1957 /* no unplug has been done: do not hook devices != xen vbds */
1958 if (xen_has_pv_and_legacy_disk_devices()) {
1959 int major;
1960
1961 if (!VDEV_IS_EXTENDED(vdevice))
1962 major = BLKIF_MAJOR(vdevice);
1963 else
1964 major = XENVBD_MAJOR;
1965
1966 if (major != XENVBD_MAJOR) {
1967 printk(KERN_INFO
1968 "%s: HVM does not support vbd %d as xen block device\n",
1969 __func__, vdevice);
1970 return -ENODEV;
1971 }
1972 }
1973 /* do not create a PV cdrom device if we are an HVM guest */
1974 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1975 if (IS_ERR(type))
1976 return -ENODEV;
1977 if (strncmp(type, "cdrom", 5) == 0) {
1978 kfree(type);
1979 return -ENODEV;
1980 }
1981 kfree(type);
1982 }
1983 info = kzalloc(sizeof(*info), GFP_KERNEL);
1984 if (!info) {
1985 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1986 return -ENOMEM;
1987 }
1988
1989 info->xbdev = dev;
1990
1991 mutex_init(&info->mutex);
1992 info->vdevice = vdevice;
1993 info->connected = BLKIF_STATE_DISCONNECTED;
1994
1995 /* Front end dir is a number, which is used as the id. */
1996 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1997 dev_set_drvdata(&dev->dev, info);
1998
1999 mutex_lock(&blkfront_mutex);
2000 list_add(&info->info_list, &info_list);
2001 mutex_unlock(&blkfront_mutex);
2002
2003 return 0;
2004 }
2005
blkif_recover(struct blkfront_info * info)2006 static int blkif_recover(struct blkfront_info *info)
2007 {
2008 unsigned int r_index;
2009 struct request *req, *n;
2010 int rc;
2011 struct bio *bio;
2012 unsigned int segs;
2013 struct blkfront_ring_info *rinfo;
2014
2015 blkfront_gather_backend_features(info);
2016 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2017 blkif_set_queue_limits(info);
2018 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2019 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2020
2021 for_each_rinfo(info, rinfo, r_index) {
2022 rc = blkfront_setup_indirect(rinfo);
2023 if (rc)
2024 return rc;
2025 }
2026 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2027
2028 /* Now safe for us to use the shared ring */
2029 info->connected = BLKIF_STATE_CONNECTED;
2030
2031 for_each_rinfo(info, rinfo, r_index) {
2032 /* Kick any other new requests queued since we resumed */
2033 kick_pending_request_queues(rinfo);
2034 }
2035
2036 list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2037 /* Requeue pending requests (flush or discard) */
2038 list_del_init(&req->queuelist);
2039 BUG_ON(req->nr_phys_segments > segs);
2040 blk_mq_requeue_request(req, false);
2041 }
2042 blk_mq_start_stopped_hw_queues(info->rq, true);
2043 blk_mq_kick_requeue_list(info->rq);
2044
2045 while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2046 /* Traverse the list of pending bios and re-queue them */
2047 submit_bio(bio);
2048 }
2049
2050 return 0;
2051 }
2052
2053 /*
2054 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2055 * driver restart. We tear down our blkif structure and recreate it, but
2056 * leave the device-layer structures intact so that this is transparent to the
2057 * rest of the kernel.
2058 */
blkfront_resume(struct xenbus_device * dev)2059 static int blkfront_resume(struct xenbus_device *dev)
2060 {
2061 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2062 int err = 0;
2063 unsigned int i, j;
2064 struct blkfront_ring_info *rinfo;
2065
2066 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2067
2068 bio_list_init(&info->bio_list);
2069 INIT_LIST_HEAD(&info->requests);
2070 for_each_rinfo(info, rinfo, i) {
2071 struct bio_list merge_bio;
2072 struct blk_shadow *shadow = rinfo->shadow;
2073
2074 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2075 /* Not in use? */
2076 if (!shadow[j].request)
2077 continue;
2078
2079 /*
2080 * Get the bios in the request so we can re-queue them.
2081 */
2082 if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2083 req_op(shadow[j].request) == REQ_OP_DISCARD ||
2084 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2085 shadow[j].request->cmd_flags & REQ_FUA) {
2086 /*
2087 * Flush operations don't contain bios, so
2088 * we need to requeue the whole request
2089 *
2090 * XXX: but this doesn't make any sense for a
2091 * write with the FUA flag set..
2092 */
2093 list_add(&shadow[j].request->queuelist, &info->requests);
2094 continue;
2095 }
2096 merge_bio.head = shadow[j].request->bio;
2097 merge_bio.tail = shadow[j].request->biotail;
2098 bio_list_merge(&info->bio_list, &merge_bio);
2099 shadow[j].request->bio = NULL;
2100 blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2101 }
2102 }
2103
2104 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2105
2106 err = talk_to_blkback(dev, info);
2107 if (!err)
2108 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2109
2110 /*
2111 * We have to wait for the backend to switch to
2112 * connected state, since we want to read which
2113 * features it supports.
2114 */
2115
2116 return err;
2117 }
2118
blkfront_closing(struct blkfront_info * info)2119 static void blkfront_closing(struct blkfront_info *info)
2120 {
2121 struct xenbus_device *xbdev = info->xbdev;
2122 struct blkfront_ring_info *rinfo;
2123 unsigned int i;
2124
2125 if (xbdev->state == XenbusStateClosing)
2126 return;
2127
2128 /* No more blkif_request(). */
2129 if (info->rq && info->gd) {
2130 blk_mq_stop_hw_queues(info->rq);
2131 blk_mark_disk_dead(info->gd);
2132 set_capacity(info->gd, 0);
2133 }
2134
2135 for_each_rinfo(info, rinfo, i) {
2136 /* No more gnttab callback work. */
2137 gnttab_cancel_free_callback(&rinfo->callback);
2138
2139 /* Flush gnttab callback work. Must be done with no locks held. */
2140 flush_work(&rinfo->work);
2141 }
2142
2143 xenbus_frontend_closed(xbdev);
2144 }
2145
blkfront_setup_discard(struct blkfront_info * info)2146 static void blkfront_setup_discard(struct blkfront_info *info)
2147 {
2148 info->feature_discard = 1;
2149 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2150 "discard-granularity",
2151 0);
2152 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2153 "discard-alignment", 0);
2154 info->feature_secdiscard =
2155 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2156 0);
2157 }
2158
blkfront_setup_indirect(struct blkfront_ring_info * rinfo)2159 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2160 {
2161 unsigned int psegs, grants, memflags;
2162 int err, i;
2163 struct blkfront_info *info = rinfo->dev_info;
2164
2165 memflags = memalloc_noio_save();
2166
2167 if (info->max_indirect_segments == 0) {
2168 if (!HAS_EXTRA_REQ)
2169 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2170 else {
2171 /*
2172 * When an extra req is required, the maximum
2173 * grants supported is related to the size of the
2174 * Linux block segment.
2175 */
2176 grants = GRANTS_PER_PSEG;
2177 }
2178 }
2179 else
2180 grants = info->max_indirect_segments;
2181 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2182
2183 err = fill_grant_buffer(rinfo,
2184 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2185 if (err)
2186 goto out_of_memory;
2187
2188 if (!info->bounce && info->max_indirect_segments) {
2189 /*
2190 * We are using indirect descriptors but don't have a bounce
2191 * buffer, we need to allocate a set of pages that can be
2192 * used for mapping indirect grefs
2193 */
2194 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2195
2196 BUG_ON(!list_empty(&rinfo->indirect_pages));
2197 for (i = 0; i < num; i++) {
2198 struct page *indirect_page = alloc_page(GFP_KERNEL |
2199 __GFP_ZERO);
2200 if (!indirect_page)
2201 goto out_of_memory;
2202 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2203 }
2204 }
2205
2206 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2207 rinfo->shadow[i].grants_used =
2208 kvcalloc(grants,
2209 sizeof(rinfo->shadow[i].grants_used[0]),
2210 GFP_KERNEL);
2211 rinfo->shadow[i].sg = kvcalloc(psegs,
2212 sizeof(rinfo->shadow[i].sg[0]),
2213 GFP_KERNEL);
2214 if (info->max_indirect_segments)
2215 rinfo->shadow[i].indirect_grants =
2216 kvcalloc(INDIRECT_GREFS(grants),
2217 sizeof(rinfo->shadow[i].indirect_grants[0]),
2218 GFP_KERNEL);
2219 if ((rinfo->shadow[i].grants_used == NULL) ||
2220 (rinfo->shadow[i].sg == NULL) ||
2221 (info->max_indirect_segments &&
2222 (rinfo->shadow[i].indirect_grants == NULL)))
2223 goto out_of_memory;
2224 sg_init_table(rinfo->shadow[i].sg, psegs);
2225 }
2226
2227 memalloc_noio_restore(memflags);
2228
2229 return 0;
2230
2231 out_of_memory:
2232 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2233 kvfree(rinfo->shadow[i].grants_used);
2234 rinfo->shadow[i].grants_used = NULL;
2235 kvfree(rinfo->shadow[i].sg);
2236 rinfo->shadow[i].sg = NULL;
2237 kvfree(rinfo->shadow[i].indirect_grants);
2238 rinfo->shadow[i].indirect_grants = NULL;
2239 }
2240 if (!list_empty(&rinfo->indirect_pages)) {
2241 struct page *indirect_page, *n;
2242 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2243 list_del(&indirect_page->lru);
2244 __free_page(indirect_page);
2245 }
2246 }
2247
2248 memalloc_noio_restore(memflags);
2249
2250 return -ENOMEM;
2251 }
2252
2253 /*
2254 * Gather all backend feature-*
2255 */
blkfront_gather_backend_features(struct blkfront_info * info)2256 static void blkfront_gather_backend_features(struct blkfront_info *info)
2257 {
2258 unsigned int indirect_segments;
2259
2260 info->feature_flush = 0;
2261 info->feature_fua = 0;
2262
2263 /*
2264 * If there's no "feature-barrier" defined, then it means
2265 * we're dealing with a very old backend which writes
2266 * synchronously; nothing to do.
2267 *
2268 * If there are barriers, then we use flush.
2269 */
2270 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2271 info->feature_flush = 1;
2272 info->feature_fua = 1;
2273 }
2274
2275 /*
2276 * And if there is "feature-flush-cache" use that above
2277 * barriers.
2278 */
2279 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2280 0)) {
2281 info->feature_flush = 1;
2282 info->feature_fua = 0;
2283 }
2284
2285 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2286 blkfront_setup_discard(info);
2287
2288 if (info->feature_persistent_parm)
2289 info->feature_persistent =
2290 !!xenbus_read_unsigned(info->xbdev->otherend,
2291 "feature-persistent", 0);
2292 if (info->feature_persistent)
2293 info->bounce = true;
2294
2295 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2296 "feature-max-indirect-segments", 0);
2297 if (indirect_segments > xen_blkif_max_segments)
2298 indirect_segments = xen_blkif_max_segments;
2299 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2300 indirect_segments = 0;
2301 info->max_indirect_segments = indirect_segments;
2302
2303 if (info->feature_persistent) {
2304 mutex_lock(&blkfront_mutex);
2305 schedule_delayed_work(&blkfront_work, HZ * 10);
2306 mutex_unlock(&blkfront_mutex);
2307 }
2308 }
2309
2310 /*
2311 * Invoked when the backend is finally 'ready' (and has told produced
2312 * the details about the physical device - #sectors, size, etc).
2313 */
blkfront_connect(struct blkfront_info * info)2314 static void blkfront_connect(struct blkfront_info *info)
2315 {
2316 unsigned long long sectors;
2317 unsigned long sector_size;
2318 unsigned int physical_sector_size;
2319 int err, i;
2320 struct blkfront_ring_info *rinfo;
2321
2322 switch (info->connected) {
2323 case BLKIF_STATE_CONNECTED:
2324 /*
2325 * Potentially, the back-end may be signalling
2326 * a capacity change; update the capacity.
2327 */
2328 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2329 "sectors", "%Lu", §ors);
2330 if (XENBUS_EXIST_ERR(err))
2331 return;
2332 printk(KERN_INFO "Setting capacity to %Lu\n",
2333 sectors);
2334 set_capacity_and_notify(info->gd, sectors);
2335
2336 return;
2337 case BLKIF_STATE_SUSPENDED:
2338 /*
2339 * If we are recovering from suspension, we need to wait
2340 * for the backend to announce it's features before
2341 * reconnecting, at least we need to know if the backend
2342 * supports indirect descriptors, and how many.
2343 */
2344 blkif_recover(info);
2345 return;
2346
2347 default:
2348 break;
2349 }
2350
2351 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2352 __func__, info->xbdev->otherend);
2353
2354 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2355 "sectors", "%llu", §ors,
2356 "info", "%u", &info->vdisk_info,
2357 "sector-size", "%lu", §or_size,
2358 NULL);
2359 if (err) {
2360 xenbus_dev_fatal(info->xbdev, err,
2361 "reading backend fields at %s",
2362 info->xbdev->otherend);
2363 return;
2364 }
2365
2366 /*
2367 * physical-sector-size is a newer field, so old backends may not
2368 * provide this. Assume physical sector size to be the same as
2369 * sector_size in that case.
2370 */
2371 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2372 "physical-sector-size",
2373 sector_size);
2374 blkfront_gather_backend_features(info);
2375 for_each_rinfo(info, rinfo, i) {
2376 err = blkfront_setup_indirect(rinfo);
2377 if (err) {
2378 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2379 info->xbdev->otherend);
2380 blkif_free(info, 0);
2381 break;
2382 }
2383 }
2384
2385 err = xlvbd_alloc_gendisk(sectors, info, sector_size,
2386 physical_sector_size);
2387 if (err) {
2388 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2389 info->xbdev->otherend);
2390 goto fail;
2391 }
2392
2393 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2394
2395 /* Kick pending requests. */
2396 info->connected = BLKIF_STATE_CONNECTED;
2397 for_each_rinfo(info, rinfo, i)
2398 kick_pending_request_queues(rinfo);
2399
2400 err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2401 if (err) {
2402 put_disk(info->gd);
2403 blk_mq_free_tag_set(&info->tag_set);
2404 info->rq = NULL;
2405 goto fail;
2406 }
2407
2408 info->is_ready = 1;
2409 return;
2410
2411 fail:
2412 blkif_free(info, 0);
2413 return;
2414 }
2415
2416 /*
2417 * Callback received when the backend's state changes.
2418 */
blkback_changed(struct xenbus_device * dev,enum xenbus_state backend_state)2419 static void blkback_changed(struct xenbus_device *dev,
2420 enum xenbus_state backend_state)
2421 {
2422 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2423
2424 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2425
2426 switch (backend_state) {
2427 case XenbusStateInitWait:
2428 if (dev->state != XenbusStateInitialising)
2429 break;
2430 if (talk_to_blkback(dev, info))
2431 break;
2432 break;
2433 case XenbusStateInitialising:
2434 case XenbusStateInitialised:
2435 case XenbusStateReconfiguring:
2436 case XenbusStateReconfigured:
2437 case XenbusStateUnknown:
2438 break;
2439
2440 case XenbusStateConnected:
2441 /*
2442 * talk_to_blkback sets state to XenbusStateInitialised
2443 * and blkfront_connect sets it to XenbusStateConnected
2444 * (if connection went OK).
2445 *
2446 * If the backend (or toolstack) decides to poke at backend
2447 * state (and re-trigger the watch by setting the state repeatedly
2448 * to XenbusStateConnected (4)) we need to deal with this.
2449 * This is allowed as this is used to communicate to the guest
2450 * that the size of disk has changed!
2451 */
2452 if ((dev->state != XenbusStateInitialised) &&
2453 (dev->state != XenbusStateConnected)) {
2454 if (talk_to_blkback(dev, info))
2455 break;
2456 }
2457
2458 blkfront_connect(info);
2459 break;
2460
2461 case XenbusStateClosed:
2462 if (dev->state == XenbusStateClosed)
2463 break;
2464 fallthrough;
2465 case XenbusStateClosing:
2466 blkfront_closing(info);
2467 break;
2468 }
2469 }
2470
blkfront_remove(struct xenbus_device * xbdev)2471 static int blkfront_remove(struct xenbus_device *xbdev)
2472 {
2473 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2474
2475 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2476
2477 if (info->gd)
2478 del_gendisk(info->gd);
2479
2480 mutex_lock(&blkfront_mutex);
2481 list_del(&info->info_list);
2482 mutex_unlock(&blkfront_mutex);
2483
2484 blkif_free(info, 0);
2485 if (info->gd) {
2486 xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2487 put_disk(info->gd);
2488 blk_mq_free_tag_set(&info->tag_set);
2489 }
2490
2491 kfree(info);
2492 return 0;
2493 }
2494
blkfront_is_ready(struct xenbus_device * dev)2495 static int blkfront_is_ready(struct xenbus_device *dev)
2496 {
2497 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2498
2499 return info->is_ready && info->xbdev;
2500 }
2501
2502 static const struct block_device_operations xlvbd_block_fops =
2503 {
2504 .owner = THIS_MODULE,
2505 .getgeo = blkif_getgeo,
2506 .ioctl = blkif_ioctl,
2507 .compat_ioctl = blkdev_compat_ptr_ioctl,
2508 };
2509
2510
2511 static const struct xenbus_device_id blkfront_ids[] = {
2512 { "vbd" },
2513 { "" }
2514 };
2515
2516 static struct xenbus_driver blkfront_driver = {
2517 .ids = blkfront_ids,
2518 .probe = blkfront_probe,
2519 .remove = blkfront_remove,
2520 .resume = blkfront_resume,
2521 .otherend_changed = blkback_changed,
2522 .is_ready = blkfront_is_ready,
2523 };
2524
purge_persistent_grants(struct blkfront_info * info)2525 static void purge_persistent_grants(struct blkfront_info *info)
2526 {
2527 unsigned int i;
2528 unsigned long flags;
2529 struct blkfront_ring_info *rinfo;
2530
2531 for_each_rinfo(info, rinfo, i) {
2532 struct grant *gnt_list_entry, *tmp;
2533 LIST_HEAD(grants);
2534
2535 spin_lock_irqsave(&rinfo->ring_lock, flags);
2536
2537 if (rinfo->persistent_gnts_c == 0) {
2538 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2539 continue;
2540 }
2541
2542 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2543 node) {
2544 if (gnt_list_entry->gref == INVALID_GRANT_REF ||
2545 !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2546 continue;
2547
2548 list_del(&gnt_list_entry->node);
2549 rinfo->persistent_gnts_c--;
2550 gnt_list_entry->gref = INVALID_GRANT_REF;
2551 list_add_tail(&gnt_list_entry->node, &grants);
2552 }
2553
2554 list_splice_tail(&grants, &rinfo->grants);
2555
2556 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2557 }
2558 }
2559
blkfront_delay_work(struct work_struct * work)2560 static void blkfront_delay_work(struct work_struct *work)
2561 {
2562 struct blkfront_info *info;
2563 bool need_schedule_work = false;
2564
2565 /*
2566 * Note that when using bounce buffers but not persistent grants
2567 * there's no need to run blkfront_delay_work because grants are
2568 * revoked in blkif_completion or else an error is reported and the
2569 * connection is closed.
2570 */
2571
2572 mutex_lock(&blkfront_mutex);
2573
2574 list_for_each_entry(info, &info_list, info_list) {
2575 if (info->feature_persistent) {
2576 need_schedule_work = true;
2577 mutex_lock(&info->mutex);
2578 purge_persistent_grants(info);
2579 mutex_unlock(&info->mutex);
2580 }
2581 }
2582
2583 if (need_schedule_work)
2584 schedule_delayed_work(&blkfront_work, HZ * 10);
2585
2586 mutex_unlock(&blkfront_mutex);
2587 }
2588
xlblk_init(void)2589 static int __init xlblk_init(void)
2590 {
2591 int ret;
2592 int nr_cpus = num_online_cpus();
2593
2594 if (!xen_domain())
2595 return -ENODEV;
2596
2597 if (!xen_has_pv_disk_devices())
2598 return -ENODEV;
2599
2600 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2601 pr_warn("xen_blk: can't get major %d with name %s\n",
2602 XENVBD_MAJOR, DEV_NAME);
2603 return -ENODEV;
2604 }
2605
2606 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2607 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2608
2609 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2610 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2611 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2612 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2613 }
2614
2615 if (xen_blkif_max_queues > nr_cpus) {
2616 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2617 xen_blkif_max_queues, nr_cpus);
2618 xen_blkif_max_queues = nr_cpus;
2619 }
2620
2621 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2622
2623 ret = xenbus_register_frontend(&blkfront_driver);
2624 if (ret) {
2625 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2626 return ret;
2627 }
2628
2629 return 0;
2630 }
2631 module_init(xlblk_init);
2632
2633
xlblk_exit(void)2634 static void __exit xlblk_exit(void)
2635 {
2636 cancel_delayed_work_sync(&blkfront_work);
2637
2638 xenbus_unregister_driver(&blkfront_driver);
2639 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2640 kfree(minors);
2641 }
2642 module_exit(xlblk_exit);
2643
2644 MODULE_DESCRIPTION("Xen virtual block device frontend");
2645 MODULE_LICENSE("GPL");
2646 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2647 MODULE_ALIAS("xen:vbd");
2648 MODULE_ALIAS("xenblk");
2649