1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
8 * Manish Ahuja
9 *
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12 */
13
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36
37 /*
38 * The CPU who acquired the lock to trigger the fadump crash should
39 * wait for other CPUs to enter.
40 *
41 * The timeout is in milliseconds.
42 */
43 #define CRASH_TIMEOUT 500
44
45 static struct fw_dump fw_dump;
46
47 static void __init fadump_reserve_crash_area(u64 base);
48
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50
51 static struct kobject *fadump_kobj;
52
53 static atomic_t cpus_in_fadump;
54 static DEFINE_MUTEX(fadump_mutex);
55
56 static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
57
58 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
59 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
60 sizeof(struct fadump_memory_range))
61 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
62 static struct fadump_mrange_info
63 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
64
65 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
66
67 #ifdef CONFIG_CMA
68 static struct cma *fadump_cma;
69
70 /*
71 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
72 *
73 * This function initializes CMA area from fadump reserved memory.
74 * The total size of fadump reserved memory covers for boot memory size
75 * + cpu data size + hpte size and metadata.
76 * Initialize only the area equivalent to boot memory size for CMA use.
77 * The remaining portion of fadump reserved memory will be not given
78 * to CMA and pages for those will stay reserved. boot memory size is
79 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
80 * But for some reason even if it fails we still have the memory reservation
81 * with us and we can still continue doing fadump.
82 */
fadump_cma_init(void)83 static int __init fadump_cma_init(void)
84 {
85 unsigned long long base, size;
86 int rc;
87
88 if (!fw_dump.fadump_enabled)
89 return 0;
90
91 /*
92 * Do not use CMA if user has provided fadump=nocma kernel parameter.
93 * Return 1 to continue with fadump old behaviour.
94 */
95 if (fw_dump.nocma)
96 return 1;
97
98 base = fw_dump.reserve_dump_area_start;
99 size = fw_dump.boot_memory_size;
100
101 if (!size)
102 return 0;
103
104 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
105 if (rc) {
106 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
107 /*
108 * Though the CMA init has failed we still have memory
109 * reservation with us. The reserved memory will be
110 * blocked from production system usage. Hence return 1,
111 * so that we can continue with fadump.
112 */
113 return 1;
114 }
115
116 /*
117 * If CMA activation fails, keep the pages reserved, instead of
118 * exposing them to buddy allocator. Same as 'fadump=nocma' case.
119 */
120 cma_reserve_pages_on_error(fadump_cma);
121
122 /*
123 * So we now have successfully initialized cma area for fadump.
124 */
125 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
126 "bytes of memory reserved for firmware-assisted dump\n",
127 cma_get_size(fadump_cma),
128 (unsigned long)cma_get_base(fadump_cma) >> 20,
129 fw_dump.reserve_dump_area_size);
130 return 1;
131 }
132 #else
fadump_cma_init(void)133 static int __init fadump_cma_init(void) { return 1; }
134 #endif /* CONFIG_CMA */
135
136 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)137 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
138 int depth, void *data)
139 {
140 if (depth == 0) {
141 early_init_dt_scan_reserved_ranges(node);
142 return 0;
143 }
144
145 if (depth != 1)
146 return 0;
147
148 if (strcmp(uname, "rtas") == 0) {
149 rtas_fadump_dt_scan(&fw_dump, node);
150 return 1;
151 }
152
153 if (strcmp(uname, "ibm,opal") == 0) {
154 opal_fadump_dt_scan(&fw_dump, node);
155 return 1;
156 }
157
158 return 0;
159 }
160
161 /*
162 * If fadump is registered, check if the memory provided
163 * falls within boot memory area and reserved memory area.
164 */
is_fadump_memory_area(u64 addr,unsigned long size)165 int is_fadump_memory_area(u64 addr, unsigned long size)
166 {
167 u64 d_start, d_end;
168
169 if (!fw_dump.dump_registered)
170 return 0;
171
172 if (!size)
173 return 0;
174
175 d_start = fw_dump.reserve_dump_area_start;
176 d_end = d_start + fw_dump.reserve_dump_area_size;
177 if (((addr + size) > d_start) && (addr <= d_end))
178 return 1;
179
180 return (addr <= fw_dump.boot_mem_top);
181 }
182
should_fadump_crash(void)183 int should_fadump_crash(void)
184 {
185 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
186 return 0;
187 return 1;
188 }
189
is_fadump_active(void)190 int is_fadump_active(void)
191 {
192 return fw_dump.dump_active;
193 }
194
195 /*
196 * Returns true, if there are no holes in memory area between d_start to d_end,
197 * false otherwise.
198 */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)199 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
200 {
201 phys_addr_t reg_start, reg_end;
202 bool ret = false;
203 u64 i, start, end;
204
205 for_each_mem_range(i, ®_start, ®_end) {
206 start = max_t(u64, d_start, reg_start);
207 end = min_t(u64, d_end, reg_end);
208 if (d_start < end) {
209 /* Memory hole from d_start to start */
210 if (start > d_start)
211 break;
212
213 if (end == d_end) {
214 ret = true;
215 break;
216 }
217
218 d_start = end + 1;
219 }
220 }
221
222 return ret;
223 }
224
225 /*
226 * Returns true, if there are no holes in boot memory area,
227 * false otherwise.
228 */
is_fadump_boot_mem_contiguous(void)229 bool is_fadump_boot_mem_contiguous(void)
230 {
231 unsigned long d_start, d_end;
232 bool ret = false;
233 int i;
234
235 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
236 d_start = fw_dump.boot_mem_addr[i];
237 d_end = d_start + fw_dump.boot_mem_sz[i];
238
239 ret = is_fadump_mem_area_contiguous(d_start, d_end);
240 if (!ret)
241 break;
242 }
243
244 return ret;
245 }
246
247 /*
248 * Returns true, if there are no holes in reserved memory area,
249 * false otherwise.
250 */
is_fadump_reserved_mem_contiguous(void)251 bool is_fadump_reserved_mem_contiguous(void)
252 {
253 u64 d_start, d_end;
254
255 d_start = fw_dump.reserve_dump_area_start;
256 d_end = d_start + fw_dump.reserve_dump_area_size;
257 return is_fadump_mem_area_contiguous(d_start, d_end);
258 }
259
260 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)261 static void __init fadump_show_config(void)
262 {
263 int i;
264
265 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
266 (fw_dump.fadump_supported ? "present" : "no support"));
267
268 if (!fw_dump.fadump_supported)
269 return;
270
271 pr_debug("Fadump enabled : %s\n",
272 (fw_dump.fadump_enabled ? "yes" : "no"));
273 pr_debug("Dump Active : %s\n",
274 (fw_dump.dump_active ? "yes" : "no"));
275 pr_debug("Dump section sizes:\n");
276 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
277 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
278 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
279 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
280 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
281 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
282 pr_debug("[%03d] base = %llx, size = %llx\n", i,
283 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
284 }
285 }
286
287 /**
288 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
289 *
290 * Function to find the largest memory size we need to reserve during early
291 * boot process. This will be the size of the memory that is required for a
292 * kernel to boot successfully.
293 *
294 * This function has been taken from phyp-assisted dump feature implementation.
295 *
296 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
297 *
298 * TODO: Come up with better approach to find out more accurate memory size
299 * that is required for a kernel to boot successfully.
300 *
301 */
fadump_calculate_reserve_size(void)302 static __init u64 fadump_calculate_reserve_size(void)
303 {
304 u64 base, size, bootmem_min;
305 int ret;
306
307 if (fw_dump.reserve_bootvar)
308 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
309
310 /*
311 * Check if the size is specified through crashkernel= cmdline
312 * option. If yes, then use that but ignore base as fadump reserves
313 * memory at a predefined offset.
314 */
315 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
316 &size, &base);
317 if (ret == 0 && size > 0) {
318 unsigned long max_size;
319
320 if (fw_dump.reserve_bootvar)
321 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
322
323 fw_dump.reserve_bootvar = (unsigned long)size;
324
325 /*
326 * Adjust if the boot memory size specified is above
327 * the upper limit.
328 */
329 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
330 if (fw_dump.reserve_bootvar > max_size) {
331 fw_dump.reserve_bootvar = max_size;
332 pr_info("Adjusted boot memory size to %luMB\n",
333 (fw_dump.reserve_bootvar >> 20));
334 }
335
336 return fw_dump.reserve_bootvar;
337 } else if (fw_dump.reserve_bootvar) {
338 /*
339 * 'fadump_reserve_mem=' is being used to reserve memory
340 * for firmware-assisted dump.
341 */
342 return fw_dump.reserve_bootvar;
343 }
344
345 /* divide by 20 to get 5% of value */
346 size = memblock_phys_mem_size() / 20;
347
348 /* round it down in multiples of 256 */
349 size = size & ~0x0FFFFFFFUL;
350
351 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
352 if (memory_limit && size > memory_limit)
353 size = memory_limit;
354
355 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
356 return (size > bootmem_min ? size : bootmem_min);
357 }
358
359 /*
360 * Calculate the total memory size required to be reserved for
361 * firmware-assisted dump registration.
362 */
get_fadump_area_size(void)363 static unsigned long __init get_fadump_area_size(void)
364 {
365 unsigned long size = 0;
366
367 size += fw_dump.cpu_state_data_size;
368 size += fw_dump.hpte_region_size;
369 /*
370 * Account for pagesize alignment of boot memory area destination address.
371 * This faciliates in mmap reading of first kernel's memory.
372 */
373 size = PAGE_ALIGN(size);
374 size += fw_dump.boot_memory_size;
375 size += sizeof(struct fadump_crash_info_header);
376 size += sizeof(struct elfhdr); /* ELF core header.*/
377 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
378 /* Program headers for crash memory regions. */
379 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
380
381 size = PAGE_ALIGN(size);
382
383 /* This is to hold kernel metadata on platforms that support it */
384 size += (fw_dump.ops->fadump_get_metadata_size ?
385 fw_dump.ops->fadump_get_metadata_size() : 0);
386 return size;
387 }
388
add_boot_mem_region(unsigned long rstart,unsigned long rsize)389 static int __init add_boot_mem_region(unsigned long rstart,
390 unsigned long rsize)
391 {
392 int i = fw_dump.boot_mem_regs_cnt++;
393
394 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
395 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
396 return 0;
397 }
398
399 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
400 i, rstart, (rstart + rsize));
401 fw_dump.boot_mem_addr[i] = rstart;
402 fw_dump.boot_mem_sz[i] = rsize;
403 return 1;
404 }
405
406 /*
407 * Firmware usually has a hard limit on the data it can copy per region.
408 * Honour that by splitting a memory range into multiple regions.
409 */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)410 static int __init add_boot_mem_regions(unsigned long mstart,
411 unsigned long msize)
412 {
413 unsigned long rstart, rsize, max_size;
414 int ret = 1;
415
416 rstart = mstart;
417 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
418 while (msize) {
419 if (msize > max_size)
420 rsize = max_size;
421 else
422 rsize = msize;
423
424 ret = add_boot_mem_region(rstart, rsize);
425 if (!ret)
426 break;
427
428 msize -= rsize;
429 rstart += rsize;
430 }
431
432 return ret;
433 }
434
fadump_get_boot_mem_regions(void)435 static int __init fadump_get_boot_mem_regions(void)
436 {
437 unsigned long size, cur_size, hole_size, last_end;
438 unsigned long mem_size = fw_dump.boot_memory_size;
439 phys_addr_t reg_start, reg_end;
440 int ret = 1;
441 u64 i;
442
443 fw_dump.boot_mem_regs_cnt = 0;
444
445 last_end = 0;
446 hole_size = 0;
447 cur_size = 0;
448 for_each_mem_range(i, ®_start, ®_end) {
449 size = reg_end - reg_start;
450 hole_size += (reg_start - last_end);
451
452 if ((cur_size + size) >= mem_size) {
453 size = (mem_size - cur_size);
454 ret = add_boot_mem_regions(reg_start, size);
455 break;
456 }
457
458 mem_size -= size;
459 cur_size += size;
460 ret = add_boot_mem_regions(reg_start, size);
461 if (!ret)
462 break;
463
464 last_end = reg_end;
465 }
466 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
467
468 return ret;
469 }
470
471 /*
472 * Returns true, if the given range overlaps with reserved memory ranges
473 * starting at idx. Also, updates idx to index of overlapping memory range
474 * with the given memory range.
475 * False, otherwise.
476 */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)477 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
478 {
479 bool ret = false;
480 int i;
481
482 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
483 u64 rbase = reserved_mrange_info.mem_ranges[i].base;
484 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
485
486 if (end <= rbase)
487 break;
488
489 if ((end > rbase) && (base < rend)) {
490 *idx = i;
491 ret = true;
492 break;
493 }
494 }
495
496 return ret;
497 }
498
499 /*
500 * Locate a suitable memory area to reserve memory for FADump. While at it,
501 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
502 */
fadump_locate_reserve_mem(u64 base,u64 size)503 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
504 {
505 struct fadump_memory_range *mrngs;
506 phys_addr_t mstart, mend;
507 int idx = 0;
508 u64 i, ret = 0;
509
510 mrngs = reserved_mrange_info.mem_ranges;
511 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
512 &mstart, &mend, NULL) {
513 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
514 i, mstart, mend, base);
515
516 if (mstart > base)
517 base = PAGE_ALIGN(mstart);
518
519 while ((mend > base) && ((mend - base) >= size)) {
520 if (!overlaps_reserved_ranges(base, base+size, &idx)) {
521 ret = base;
522 goto out;
523 }
524
525 base = mrngs[idx].base + mrngs[idx].size;
526 base = PAGE_ALIGN(base);
527 }
528 }
529
530 out:
531 return ret;
532 }
533
fadump_reserve_mem(void)534 int __init fadump_reserve_mem(void)
535 {
536 u64 base, size, mem_boundary, bootmem_min;
537 int ret = 1;
538
539 if (!fw_dump.fadump_enabled)
540 return 0;
541
542 if (!fw_dump.fadump_supported) {
543 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
544 goto error_out;
545 }
546
547 /*
548 * Initialize boot memory size
549 * If dump is active then we have already calculated the size during
550 * first kernel.
551 */
552 if (!fw_dump.dump_active) {
553 fw_dump.boot_memory_size =
554 PAGE_ALIGN(fadump_calculate_reserve_size());
555 #ifdef CONFIG_CMA
556 if (!fw_dump.nocma) {
557 fw_dump.boot_memory_size =
558 ALIGN(fw_dump.boot_memory_size,
559 CMA_MIN_ALIGNMENT_BYTES);
560 }
561 #endif
562
563 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
564 if (fw_dump.boot_memory_size < bootmem_min) {
565 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
566 fw_dump.boot_memory_size, bootmem_min);
567 goto error_out;
568 }
569
570 if (!fadump_get_boot_mem_regions()) {
571 pr_err("Too many holes in boot memory area to enable fadump\n");
572 goto error_out;
573 }
574 }
575
576 /*
577 * Calculate the memory boundary.
578 * If memory_limit is less than actual memory boundary then reserve
579 * the memory for fadump beyond the memory_limit and adjust the
580 * memory_limit accordingly, so that the running kernel can run with
581 * specified memory_limit.
582 */
583 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
584 size = get_fadump_area_size();
585 if ((memory_limit + size) < memblock_end_of_DRAM())
586 memory_limit += size;
587 else
588 memory_limit = memblock_end_of_DRAM();
589 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
590 " dump, now %#016llx\n", memory_limit);
591 }
592 if (memory_limit)
593 mem_boundary = memory_limit;
594 else
595 mem_boundary = memblock_end_of_DRAM();
596
597 base = fw_dump.boot_mem_top;
598 size = get_fadump_area_size();
599 fw_dump.reserve_dump_area_size = size;
600 if (fw_dump.dump_active) {
601 pr_info("Firmware-assisted dump is active.\n");
602
603 #ifdef CONFIG_HUGETLB_PAGE
604 /*
605 * FADump capture kernel doesn't care much about hugepages.
606 * In fact, handling hugepages in capture kernel is asking for
607 * trouble. So, disable HugeTLB support when fadump is active.
608 */
609 hugetlb_disabled = true;
610 #endif
611 /*
612 * If last boot has crashed then reserve all the memory
613 * above boot memory size so that we don't touch it until
614 * dump is written to disk by userspace tool. This memory
615 * can be released for general use by invalidating fadump.
616 */
617 fadump_reserve_crash_area(base);
618
619 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
620 pr_debug("Reserve dump area start address: 0x%lx\n",
621 fw_dump.reserve_dump_area_start);
622 } else {
623 /*
624 * Reserve memory at an offset closer to bottom of the RAM to
625 * minimize the impact of memory hot-remove operation.
626 */
627 base = fadump_locate_reserve_mem(base, size);
628
629 if (!base || (base + size > mem_boundary)) {
630 pr_err("Failed to find memory chunk for reservation!\n");
631 goto error_out;
632 }
633 fw_dump.reserve_dump_area_start = base;
634
635 /*
636 * Calculate the kernel metadata address and register it with
637 * f/w if the platform supports.
638 */
639 if (fw_dump.ops->fadump_setup_metadata &&
640 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
641 goto error_out;
642
643 if (memblock_reserve(base, size)) {
644 pr_err("Failed to reserve memory!\n");
645 goto error_out;
646 }
647
648 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
649 (size >> 20), base, (memblock_phys_mem_size() >> 20));
650
651 ret = fadump_cma_init();
652 }
653
654 return ret;
655 error_out:
656 fw_dump.fadump_enabled = 0;
657 return 0;
658 }
659
660 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)661 static int __init early_fadump_param(char *p)
662 {
663 if (!p)
664 return 1;
665
666 if (strncmp(p, "on", 2) == 0)
667 fw_dump.fadump_enabled = 1;
668 else if (strncmp(p, "off", 3) == 0)
669 fw_dump.fadump_enabled = 0;
670 else if (strncmp(p, "nocma", 5) == 0) {
671 fw_dump.fadump_enabled = 1;
672 fw_dump.nocma = 1;
673 }
674
675 return 0;
676 }
677 early_param("fadump", early_fadump_param);
678
679 /*
680 * Look for fadump_reserve_mem= cmdline option
681 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
682 * the sooner 'crashkernel=' parameter is accustomed to.
683 */
early_fadump_reserve_mem(char * p)684 static int __init early_fadump_reserve_mem(char *p)
685 {
686 if (p)
687 fw_dump.reserve_bootvar = memparse(p, &p);
688 return 0;
689 }
690 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
691
crash_fadump(struct pt_regs * regs,const char * str)692 void crash_fadump(struct pt_regs *regs, const char *str)
693 {
694 unsigned int msecs;
695 struct fadump_crash_info_header *fdh = NULL;
696 int old_cpu, this_cpu;
697 /* Do not include first CPU */
698 unsigned int ncpus = num_online_cpus() - 1;
699
700 if (!should_fadump_crash())
701 return;
702
703 /*
704 * old_cpu == -1 means this is the first CPU which has come here,
705 * go ahead and trigger fadump.
706 *
707 * old_cpu != -1 means some other CPU has already on it's way
708 * to trigger fadump, just keep looping here.
709 */
710 this_cpu = smp_processor_id();
711 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
712
713 if (old_cpu != -1) {
714 atomic_inc(&cpus_in_fadump);
715
716 /*
717 * We can't loop here indefinitely. Wait as long as fadump
718 * is in force. If we race with fadump un-registration this
719 * loop will break and then we go down to normal panic path
720 * and reboot. If fadump is in force the first crashing
721 * cpu will definitely trigger fadump.
722 */
723 while (fw_dump.dump_registered)
724 cpu_relax();
725 return;
726 }
727
728 fdh = __va(fw_dump.fadumphdr_addr);
729 fdh->crashing_cpu = crashing_cpu;
730 crash_save_vmcoreinfo();
731
732 if (regs)
733 fdh->regs = *regs;
734 else
735 ppc_save_regs(&fdh->regs);
736
737 fdh->cpu_mask = *cpu_online_mask;
738
739 /*
740 * If we came in via system reset, wait a while for the secondary
741 * CPUs to enter.
742 */
743 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
744 msecs = CRASH_TIMEOUT;
745 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
746 mdelay(1);
747 }
748
749 fw_dump.ops->fadump_trigger(fdh, str);
750 }
751
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)752 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
753 {
754 struct elf_prstatus prstatus;
755
756 memset(&prstatus, 0, sizeof(prstatus));
757 /*
758 * FIXME: How do i get PID? Do I really need it?
759 * prstatus.pr_pid = ????
760 */
761 elf_core_copy_regs(&prstatus.pr_reg, regs);
762 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
763 &prstatus, sizeof(prstatus));
764 return buf;
765 }
766
fadump_update_elfcore_header(char * bufp)767 void __init fadump_update_elfcore_header(char *bufp)
768 {
769 struct elf_phdr *phdr;
770
771 bufp += sizeof(struct elfhdr);
772
773 /* First note is a place holder for cpu notes info. */
774 phdr = (struct elf_phdr *)bufp;
775
776 if (phdr->p_type == PT_NOTE) {
777 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
778 phdr->p_offset = phdr->p_paddr;
779 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
780 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
781 }
782 return;
783 }
784
fadump_alloc_buffer(unsigned long size)785 static void *__init fadump_alloc_buffer(unsigned long size)
786 {
787 unsigned long count, i;
788 struct page *page;
789 void *vaddr;
790
791 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
792 if (!vaddr)
793 return NULL;
794
795 count = PAGE_ALIGN(size) / PAGE_SIZE;
796 page = virt_to_page(vaddr);
797 for (i = 0; i < count; i++)
798 mark_page_reserved(page + i);
799 return vaddr;
800 }
801
fadump_free_buffer(unsigned long vaddr,unsigned long size)802 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
803 {
804 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
805 }
806
fadump_setup_cpu_notes_buf(u32 num_cpus)807 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
808 {
809 /* Allocate buffer to hold cpu crash notes. */
810 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
811 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
812 fw_dump.cpu_notes_buf_vaddr =
813 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
814 if (!fw_dump.cpu_notes_buf_vaddr) {
815 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
816 fw_dump.cpu_notes_buf_size);
817 return -ENOMEM;
818 }
819
820 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
821 fw_dump.cpu_notes_buf_size,
822 fw_dump.cpu_notes_buf_vaddr);
823 return 0;
824 }
825
fadump_free_cpu_notes_buf(void)826 void fadump_free_cpu_notes_buf(void)
827 {
828 if (!fw_dump.cpu_notes_buf_vaddr)
829 return;
830
831 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
832 fw_dump.cpu_notes_buf_size);
833 fw_dump.cpu_notes_buf_vaddr = 0;
834 fw_dump.cpu_notes_buf_size = 0;
835 }
836
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)837 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
838 {
839 if (mrange_info->is_static) {
840 mrange_info->mem_range_cnt = 0;
841 return;
842 }
843
844 kfree(mrange_info->mem_ranges);
845 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
846 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
847 }
848
849 /*
850 * Allocate or reallocate mem_ranges array in incremental units
851 * of PAGE_SIZE.
852 */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)853 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
854 {
855 struct fadump_memory_range *new_array;
856 u64 new_size;
857
858 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
859 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
860 new_size, mrange_info->name);
861
862 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
863 if (new_array == NULL) {
864 pr_err("Insufficient memory for setting up %s memory ranges\n",
865 mrange_info->name);
866 fadump_free_mem_ranges(mrange_info);
867 return -ENOMEM;
868 }
869
870 mrange_info->mem_ranges = new_array;
871 mrange_info->mem_ranges_sz = new_size;
872 mrange_info->max_mem_ranges = (new_size /
873 sizeof(struct fadump_memory_range));
874 return 0;
875 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)876 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
877 u64 base, u64 end)
878 {
879 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
880 bool is_adjacent = false;
881 u64 start, size;
882
883 if (base == end)
884 return 0;
885
886 /*
887 * Fold adjacent memory ranges to bring down the memory ranges/
888 * PT_LOAD segments count.
889 */
890 if (mrange_info->mem_range_cnt) {
891 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
892 size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
893
894 /*
895 * Boot memory area needs separate PT_LOAD segment(s) as it
896 * is moved to a different location at the time of crash.
897 * So, fold only if the region is not boot memory area.
898 */
899 if ((start + size) == base && start >= fw_dump.boot_mem_top)
900 is_adjacent = true;
901 }
902 if (!is_adjacent) {
903 /* resize the array on reaching the limit */
904 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
905 int ret;
906
907 if (mrange_info->is_static) {
908 pr_err("Reached array size limit for %s memory ranges\n",
909 mrange_info->name);
910 return -ENOSPC;
911 }
912
913 ret = fadump_alloc_mem_ranges(mrange_info);
914 if (ret)
915 return ret;
916
917 /* Update to the new resized array */
918 mem_ranges = mrange_info->mem_ranges;
919 }
920
921 start = base;
922 mem_ranges[mrange_info->mem_range_cnt].base = start;
923 mrange_info->mem_range_cnt++;
924 }
925
926 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
927 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
928 mrange_info->name, (mrange_info->mem_range_cnt - 1),
929 start, end - 1, (end - start));
930 return 0;
931 }
932
fadump_exclude_reserved_area(u64 start,u64 end)933 static int fadump_exclude_reserved_area(u64 start, u64 end)
934 {
935 u64 ra_start, ra_end;
936 int ret = 0;
937
938 ra_start = fw_dump.reserve_dump_area_start;
939 ra_end = ra_start + fw_dump.reserve_dump_area_size;
940
941 if ((ra_start < end) && (ra_end > start)) {
942 if ((start < ra_start) && (end > ra_end)) {
943 ret = fadump_add_mem_range(&crash_mrange_info,
944 start, ra_start);
945 if (ret)
946 return ret;
947
948 ret = fadump_add_mem_range(&crash_mrange_info,
949 ra_end, end);
950 } else if (start < ra_start) {
951 ret = fadump_add_mem_range(&crash_mrange_info,
952 start, ra_start);
953 } else if (ra_end < end) {
954 ret = fadump_add_mem_range(&crash_mrange_info,
955 ra_end, end);
956 }
957 } else
958 ret = fadump_add_mem_range(&crash_mrange_info, start, end);
959
960 return ret;
961 }
962
fadump_init_elfcore_header(char * bufp)963 static int fadump_init_elfcore_header(char *bufp)
964 {
965 struct elfhdr *elf;
966
967 elf = (struct elfhdr *) bufp;
968 bufp += sizeof(struct elfhdr);
969 memcpy(elf->e_ident, ELFMAG, SELFMAG);
970 elf->e_ident[EI_CLASS] = ELF_CLASS;
971 elf->e_ident[EI_DATA] = ELF_DATA;
972 elf->e_ident[EI_VERSION] = EV_CURRENT;
973 elf->e_ident[EI_OSABI] = ELF_OSABI;
974 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
975 elf->e_type = ET_CORE;
976 elf->e_machine = ELF_ARCH;
977 elf->e_version = EV_CURRENT;
978 elf->e_entry = 0;
979 elf->e_phoff = sizeof(struct elfhdr);
980 elf->e_shoff = 0;
981
982 if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
983 elf->e_flags = 2;
984 else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
985 elf->e_flags = 1;
986 else
987 elf->e_flags = 0;
988
989 elf->e_ehsize = sizeof(struct elfhdr);
990 elf->e_phentsize = sizeof(struct elf_phdr);
991 elf->e_phnum = 0;
992 elf->e_shentsize = 0;
993 elf->e_shnum = 0;
994 elf->e_shstrndx = 0;
995
996 return 0;
997 }
998
999 /*
1000 * Traverse through memblock structure and setup crash memory ranges. These
1001 * ranges will be used create PT_LOAD program headers in elfcore header.
1002 */
fadump_setup_crash_memory_ranges(void)1003 static int fadump_setup_crash_memory_ranges(void)
1004 {
1005 u64 i, start, end;
1006 int ret;
1007
1008 pr_debug("Setup crash memory ranges.\n");
1009 crash_mrange_info.mem_range_cnt = 0;
1010
1011 /*
1012 * Boot memory region(s) registered with firmware are moved to
1013 * different location at the time of crash. Create separate program
1014 * header(s) for this memory chunk(s) with the correct offset.
1015 */
1016 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1017 start = fw_dump.boot_mem_addr[i];
1018 end = start + fw_dump.boot_mem_sz[i];
1019 ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1020 if (ret)
1021 return ret;
1022 }
1023
1024 for_each_mem_range(i, &start, &end) {
1025 /*
1026 * skip the memory chunk that is already added
1027 * (0 through boot_memory_top).
1028 */
1029 if (start < fw_dump.boot_mem_top) {
1030 if (end > fw_dump.boot_mem_top)
1031 start = fw_dump.boot_mem_top;
1032 else
1033 continue;
1034 }
1035
1036 /* add this range excluding the reserved dump area. */
1037 ret = fadump_exclude_reserved_area(start, end);
1038 if (ret)
1039 return ret;
1040 }
1041
1042 return 0;
1043 }
1044
1045 /*
1046 * If the given physical address falls within the boot memory region then
1047 * return the relocated address that points to the dump region reserved
1048 * for saving initial boot memory contents.
1049 */
fadump_relocate(unsigned long paddr)1050 static inline unsigned long fadump_relocate(unsigned long paddr)
1051 {
1052 unsigned long raddr, rstart, rend, rlast, hole_size;
1053 int i;
1054
1055 hole_size = 0;
1056 rlast = 0;
1057 raddr = paddr;
1058 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1059 rstart = fw_dump.boot_mem_addr[i];
1060 rend = rstart + fw_dump.boot_mem_sz[i];
1061 hole_size += (rstart - rlast);
1062
1063 if (paddr >= rstart && paddr < rend) {
1064 raddr += fw_dump.boot_mem_dest_addr - hole_size;
1065 break;
1066 }
1067
1068 rlast = rend;
1069 }
1070
1071 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1072 return raddr;
1073 }
1074
fadump_create_elfcore_headers(char * bufp)1075 static int fadump_create_elfcore_headers(char *bufp)
1076 {
1077 unsigned long long raddr, offset;
1078 struct elf_phdr *phdr;
1079 struct elfhdr *elf;
1080 int i, j;
1081
1082 fadump_init_elfcore_header(bufp);
1083 elf = (struct elfhdr *)bufp;
1084 bufp += sizeof(struct elfhdr);
1085
1086 /*
1087 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1088 * will be populated during second kernel boot after crash. Hence
1089 * this PT_NOTE will always be the first elf note.
1090 *
1091 * NOTE: Any new ELF note addition should be placed after this note.
1092 */
1093 phdr = (struct elf_phdr *)bufp;
1094 bufp += sizeof(struct elf_phdr);
1095 phdr->p_type = PT_NOTE;
1096 phdr->p_flags = 0;
1097 phdr->p_vaddr = 0;
1098 phdr->p_align = 0;
1099
1100 phdr->p_offset = 0;
1101 phdr->p_paddr = 0;
1102 phdr->p_filesz = 0;
1103 phdr->p_memsz = 0;
1104
1105 (elf->e_phnum)++;
1106
1107 /* setup ELF PT_NOTE for vmcoreinfo */
1108 phdr = (struct elf_phdr *)bufp;
1109 bufp += sizeof(struct elf_phdr);
1110 phdr->p_type = PT_NOTE;
1111 phdr->p_flags = 0;
1112 phdr->p_vaddr = 0;
1113 phdr->p_align = 0;
1114
1115 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
1116 phdr->p_offset = phdr->p_paddr;
1117 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1118
1119 /* Increment number of program headers. */
1120 (elf->e_phnum)++;
1121
1122 /* setup PT_LOAD sections. */
1123 j = 0;
1124 offset = 0;
1125 raddr = fw_dump.boot_mem_addr[0];
1126 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1127 u64 mbase, msize;
1128
1129 mbase = crash_mrange_info.mem_ranges[i].base;
1130 msize = crash_mrange_info.mem_ranges[i].size;
1131 if (!msize)
1132 continue;
1133
1134 phdr = (struct elf_phdr *)bufp;
1135 bufp += sizeof(struct elf_phdr);
1136 phdr->p_type = PT_LOAD;
1137 phdr->p_flags = PF_R|PF_W|PF_X;
1138 phdr->p_offset = mbase;
1139
1140 if (mbase == raddr) {
1141 /*
1142 * The entire real memory region will be moved by
1143 * firmware to the specified destination_address.
1144 * Hence set the correct offset.
1145 */
1146 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1147 if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1148 offset += fw_dump.boot_mem_sz[j];
1149 raddr = fw_dump.boot_mem_addr[++j];
1150 }
1151 }
1152
1153 phdr->p_paddr = mbase;
1154 phdr->p_vaddr = (unsigned long)__va(mbase);
1155 phdr->p_filesz = msize;
1156 phdr->p_memsz = msize;
1157 phdr->p_align = 0;
1158
1159 /* Increment number of program headers. */
1160 (elf->e_phnum)++;
1161 }
1162 return 0;
1163 }
1164
init_fadump_header(unsigned long addr)1165 static unsigned long init_fadump_header(unsigned long addr)
1166 {
1167 struct fadump_crash_info_header *fdh;
1168
1169 if (!addr)
1170 return 0;
1171
1172 fdh = __va(addr);
1173 addr += sizeof(struct fadump_crash_info_header);
1174
1175 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1176 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1177 fdh->elfcorehdr_addr = addr;
1178 /* We will set the crashing cpu id in crash_fadump() during crash. */
1179 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1180 /*
1181 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1182 * register data is processed while exporting the vmcore.
1183 */
1184 fdh->cpu_mask = *cpu_possible_mask;
1185
1186 return addr;
1187 }
1188
register_fadump(void)1189 static int register_fadump(void)
1190 {
1191 unsigned long addr;
1192 void *vaddr;
1193 int ret;
1194
1195 /*
1196 * If no memory is reserved then we can not register for firmware-
1197 * assisted dump.
1198 */
1199 if (!fw_dump.reserve_dump_area_size)
1200 return -ENODEV;
1201
1202 ret = fadump_setup_crash_memory_ranges();
1203 if (ret)
1204 return ret;
1205
1206 addr = fw_dump.fadumphdr_addr;
1207
1208 /* Initialize fadump crash info header. */
1209 addr = init_fadump_header(addr);
1210 vaddr = __va(addr);
1211
1212 pr_debug("Creating ELF core headers at %#016lx\n", addr);
1213 fadump_create_elfcore_headers(vaddr);
1214
1215 /* register the future kernel dump with firmware. */
1216 pr_debug("Registering for firmware-assisted kernel dump...\n");
1217 return fw_dump.ops->fadump_register(&fw_dump);
1218 }
1219
fadump_cleanup(void)1220 void fadump_cleanup(void)
1221 {
1222 if (!fw_dump.fadump_supported)
1223 return;
1224
1225 /* Invalidate the registration only if dump is active. */
1226 if (fw_dump.dump_active) {
1227 pr_debug("Invalidating firmware-assisted dump registration\n");
1228 fw_dump.ops->fadump_invalidate(&fw_dump);
1229 } else if (fw_dump.dump_registered) {
1230 /* Un-register Firmware-assisted dump if it was registered. */
1231 fw_dump.ops->fadump_unregister(&fw_dump);
1232 fadump_free_mem_ranges(&crash_mrange_info);
1233 }
1234
1235 if (fw_dump.ops->fadump_cleanup)
1236 fw_dump.ops->fadump_cleanup(&fw_dump);
1237 }
1238
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1239 static void fadump_free_reserved_memory(unsigned long start_pfn,
1240 unsigned long end_pfn)
1241 {
1242 unsigned long pfn;
1243 unsigned long time_limit = jiffies + HZ;
1244
1245 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1246 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1247
1248 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1249 free_reserved_page(pfn_to_page(pfn));
1250
1251 if (time_after(jiffies, time_limit)) {
1252 cond_resched();
1253 time_limit = jiffies + HZ;
1254 }
1255 }
1256 }
1257
1258 /*
1259 * Skip memory holes and free memory that was actually reserved.
1260 */
fadump_release_reserved_area(u64 start,u64 end)1261 static void fadump_release_reserved_area(u64 start, u64 end)
1262 {
1263 unsigned long reg_spfn, reg_epfn;
1264 u64 tstart, tend, spfn, epfn;
1265 int i;
1266
1267 spfn = PHYS_PFN(start);
1268 epfn = PHYS_PFN(end);
1269
1270 for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) {
1271 tstart = max_t(u64, spfn, reg_spfn);
1272 tend = min_t(u64, epfn, reg_epfn);
1273
1274 if (tstart < tend) {
1275 fadump_free_reserved_memory(tstart, tend);
1276
1277 if (tend == epfn)
1278 break;
1279
1280 spfn = tend;
1281 }
1282 }
1283 }
1284
1285 /*
1286 * Sort the mem ranges in-place and merge adjacent ranges
1287 * to minimize the memory ranges count.
1288 */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1289 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1290 {
1291 struct fadump_memory_range *mem_ranges;
1292 u64 base, size;
1293 int i, j, idx;
1294
1295 if (!reserved_mrange_info.mem_range_cnt)
1296 return;
1297
1298 /* Sort the memory ranges */
1299 mem_ranges = mrange_info->mem_ranges;
1300 for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1301 idx = i;
1302 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1303 if (mem_ranges[idx].base > mem_ranges[j].base)
1304 idx = j;
1305 }
1306 if (idx != i)
1307 swap(mem_ranges[idx], mem_ranges[i]);
1308 }
1309
1310 /* Merge adjacent reserved ranges */
1311 idx = 0;
1312 for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1313 base = mem_ranges[i-1].base;
1314 size = mem_ranges[i-1].size;
1315 if (mem_ranges[i].base == (base + size))
1316 mem_ranges[idx].size += mem_ranges[i].size;
1317 else {
1318 idx++;
1319 if (i == idx)
1320 continue;
1321
1322 mem_ranges[idx] = mem_ranges[i];
1323 }
1324 }
1325 mrange_info->mem_range_cnt = idx + 1;
1326 }
1327
1328 /*
1329 * Scan reserved-ranges to consider them while reserving/releasing
1330 * memory for FADump.
1331 */
early_init_dt_scan_reserved_ranges(unsigned long node)1332 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1333 {
1334 const __be32 *prop;
1335 int len, ret = -1;
1336 unsigned long i;
1337
1338 /* reserved-ranges already scanned */
1339 if (reserved_mrange_info.mem_range_cnt != 0)
1340 return;
1341
1342 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1343 if (!prop)
1344 return;
1345
1346 /*
1347 * Each reserved range is an (address,size) pair, 2 cells each,
1348 * totalling 4 cells per range.
1349 */
1350 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1351 u64 base, size;
1352
1353 base = of_read_number(prop + (i * 4) + 0, 2);
1354 size = of_read_number(prop + (i * 4) + 2, 2);
1355
1356 if (size) {
1357 ret = fadump_add_mem_range(&reserved_mrange_info,
1358 base, base + size);
1359 if (ret < 0) {
1360 pr_warn("some reserved ranges are ignored!\n");
1361 break;
1362 }
1363 }
1364 }
1365
1366 /* Compact reserved ranges */
1367 sort_and_merge_mem_ranges(&reserved_mrange_info);
1368 }
1369
1370 /*
1371 * Release the memory that was reserved during early boot to preserve the
1372 * crash'ed kernel's memory contents except reserved dump area (permanent
1373 * reservation) and reserved ranges used by F/W. The released memory will
1374 * be available for general use.
1375 */
fadump_release_memory(u64 begin,u64 end)1376 static void fadump_release_memory(u64 begin, u64 end)
1377 {
1378 u64 ra_start, ra_end, tstart;
1379 int i, ret;
1380
1381 ra_start = fw_dump.reserve_dump_area_start;
1382 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1383
1384 /*
1385 * If reserved ranges array limit is hit, overwrite the last reserved
1386 * memory range with reserved dump area to ensure it is excluded from
1387 * the memory being released (reused for next FADump registration).
1388 */
1389 if (reserved_mrange_info.mem_range_cnt ==
1390 reserved_mrange_info.max_mem_ranges)
1391 reserved_mrange_info.mem_range_cnt--;
1392
1393 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1394 if (ret != 0)
1395 return;
1396
1397 /* Get the reserved ranges list in order first. */
1398 sort_and_merge_mem_ranges(&reserved_mrange_info);
1399
1400 /* Exclude reserved ranges and release remaining memory */
1401 tstart = begin;
1402 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1403 ra_start = reserved_mrange_info.mem_ranges[i].base;
1404 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1405
1406 if (tstart >= ra_end)
1407 continue;
1408
1409 if (tstart < ra_start)
1410 fadump_release_reserved_area(tstart, ra_start);
1411 tstart = ra_end;
1412 }
1413
1414 if (tstart < end)
1415 fadump_release_reserved_area(tstart, end);
1416 }
1417
fadump_invalidate_release_mem(void)1418 static void fadump_invalidate_release_mem(void)
1419 {
1420 mutex_lock(&fadump_mutex);
1421 if (!fw_dump.dump_active) {
1422 mutex_unlock(&fadump_mutex);
1423 return;
1424 }
1425
1426 fadump_cleanup();
1427 mutex_unlock(&fadump_mutex);
1428
1429 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1430 fadump_free_cpu_notes_buf();
1431
1432 /*
1433 * Setup kernel metadata and initialize the kernel dump
1434 * memory structure for FADump re-registration.
1435 */
1436 if (fw_dump.ops->fadump_setup_metadata &&
1437 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1438 pr_warn("Failed to setup kernel metadata!\n");
1439 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1440 }
1441
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1442 static ssize_t release_mem_store(struct kobject *kobj,
1443 struct kobj_attribute *attr,
1444 const char *buf, size_t count)
1445 {
1446 int input = -1;
1447
1448 if (!fw_dump.dump_active)
1449 return -EPERM;
1450
1451 if (kstrtoint(buf, 0, &input))
1452 return -EINVAL;
1453
1454 if (input == 1) {
1455 /*
1456 * Take away the '/proc/vmcore'. We are releasing the dump
1457 * memory, hence it will not be valid anymore.
1458 */
1459 #ifdef CONFIG_PROC_VMCORE
1460 vmcore_cleanup();
1461 #endif
1462 fadump_invalidate_release_mem();
1463
1464 } else
1465 return -EINVAL;
1466 return count;
1467 }
1468
1469 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1470 static void __init unregister_fadump(void)
1471 {
1472 fadump_cleanup();
1473 fadump_release_memory(fw_dump.reserve_dump_area_start,
1474 fw_dump.reserve_dump_area_size);
1475 fw_dump.fadump_enabled = 0;
1476 kobject_put(fadump_kobj);
1477 }
1478
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1479 static ssize_t enabled_show(struct kobject *kobj,
1480 struct kobj_attribute *attr,
1481 char *buf)
1482 {
1483 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1484 }
1485
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1486 static ssize_t mem_reserved_show(struct kobject *kobj,
1487 struct kobj_attribute *attr,
1488 char *buf)
1489 {
1490 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1491 }
1492
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1493 static ssize_t registered_show(struct kobject *kobj,
1494 struct kobj_attribute *attr,
1495 char *buf)
1496 {
1497 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1498 }
1499
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1500 static ssize_t registered_store(struct kobject *kobj,
1501 struct kobj_attribute *attr,
1502 const char *buf, size_t count)
1503 {
1504 int ret = 0;
1505 int input = -1;
1506
1507 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1508 return -EPERM;
1509
1510 if (kstrtoint(buf, 0, &input))
1511 return -EINVAL;
1512
1513 mutex_lock(&fadump_mutex);
1514
1515 switch (input) {
1516 case 0:
1517 if (fw_dump.dump_registered == 0) {
1518 goto unlock_out;
1519 }
1520
1521 /* Un-register Firmware-assisted dump */
1522 pr_debug("Un-register firmware-assisted dump\n");
1523 fw_dump.ops->fadump_unregister(&fw_dump);
1524 break;
1525 case 1:
1526 if (fw_dump.dump_registered == 1) {
1527 /* Un-register Firmware-assisted dump */
1528 fw_dump.ops->fadump_unregister(&fw_dump);
1529 }
1530 /* Register Firmware-assisted dump */
1531 ret = register_fadump();
1532 break;
1533 default:
1534 ret = -EINVAL;
1535 break;
1536 }
1537
1538 unlock_out:
1539 mutex_unlock(&fadump_mutex);
1540 return ret < 0 ? ret : count;
1541 }
1542
fadump_region_show(struct seq_file * m,void * private)1543 static int fadump_region_show(struct seq_file *m, void *private)
1544 {
1545 if (!fw_dump.fadump_enabled)
1546 return 0;
1547
1548 mutex_lock(&fadump_mutex);
1549 fw_dump.ops->fadump_region_show(&fw_dump, m);
1550 mutex_unlock(&fadump_mutex);
1551 return 0;
1552 }
1553
1554 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1555 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1556 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1557 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1558
1559 static struct attribute *fadump_attrs[] = {
1560 &enable_attr.attr,
1561 ®ister_attr.attr,
1562 &mem_reserved_attr.attr,
1563 NULL,
1564 };
1565
1566 ATTRIBUTE_GROUPS(fadump);
1567
1568 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1569
fadump_init_files(void)1570 static void __init fadump_init_files(void)
1571 {
1572 int rc = 0;
1573
1574 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1575 if (!fadump_kobj) {
1576 pr_err("failed to create fadump kobject\n");
1577 return;
1578 }
1579
1580 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1581 &fadump_region_fops);
1582
1583 if (fw_dump.dump_active) {
1584 rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1585 if (rc)
1586 pr_err("unable to create release_mem sysfs file (%d)\n",
1587 rc);
1588 }
1589
1590 rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1591 if (rc) {
1592 pr_err("sysfs group creation failed (%d), unregistering FADump",
1593 rc);
1594 unregister_fadump();
1595 return;
1596 }
1597
1598 /*
1599 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1600 * create symlink at old location to maintain backward compatibility.
1601 *
1602 * - fadump_enabled -> fadump/enabled
1603 * - fadump_registered -> fadump/registered
1604 * - fadump_release_mem -> fadump/release_mem
1605 */
1606 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1607 "enabled", "fadump_enabled");
1608 if (rc) {
1609 pr_err("unable to create fadump_enabled symlink (%d)", rc);
1610 return;
1611 }
1612
1613 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1614 "registered",
1615 "fadump_registered");
1616 if (rc) {
1617 pr_err("unable to create fadump_registered symlink (%d)", rc);
1618 sysfs_remove_link(kernel_kobj, "fadump_enabled");
1619 return;
1620 }
1621
1622 if (fw_dump.dump_active) {
1623 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1624 fadump_kobj,
1625 "release_mem",
1626 "fadump_release_mem");
1627 if (rc)
1628 pr_err("unable to create fadump_release_mem symlink (%d)",
1629 rc);
1630 }
1631 return;
1632 }
1633
1634 /*
1635 * Prepare for firmware-assisted dump.
1636 */
setup_fadump(void)1637 int __init setup_fadump(void)
1638 {
1639 if (!fw_dump.fadump_supported)
1640 return 0;
1641
1642 fadump_init_files();
1643 fadump_show_config();
1644
1645 if (!fw_dump.fadump_enabled)
1646 return 1;
1647
1648 /*
1649 * If dump data is available then see if it is valid and prepare for
1650 * saving it to the disk.
1651 */
1652 if (fw_dump.dump_active) {
1653 /*
1654 * if dump process fails then invalidate the registration
1655 * and release memory before proceeding for re-registration.
1656 */
1657 if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1658 fadump_invalidate_release_mem();
1659 }
1660 /* Initialize the kernel dump memory structure and register with f/w */
1661 else if (fw_dump.reserve_dump_area_size) {
1662 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1663 register_fadump();
1664 }
1665
1666 /*
1667 * In case of panic, fadump is triggered via ppc_panic_event()
1668 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1669 * lets panic() function take crash friendly path before panic
1670 * notifiers are invoked.
1671 */
1672 crash_kexec_post_notifiers = true;
1673
1674 return 1;
1675 }
1676 /*
1677 * Use subsys_initcall_sync() here because there is dependency with
1678 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1679 * is done before registering with f/w.
1680 */
1681 subsys_initcall_sync(setup_fadump);
1682 #else /* !CONFIG_PRESERVE_FA_DUMP */
1683
1684 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1685 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1686 int depth, void *data)
1687 {
1688 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1689 return 0;
1690
1691 opal_fadump_dt_scan(&fw_dump, node);
1692 return 1;
1693 }
1694
1695 /*
1696 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1697 * preserve crash data. The subsequent memory preserving kernel boot
1698 * is likely to process this crash data.
1699 */
fadump_reserve_mem(void)1700 int __init fadump_reserve_mem(void)
1701 {
1702 if (fw_dump.dump_active) {
1703 /*
1704 * If last boot has crashed then reserve all the memory
1705 * above boot memory to preserve crash data.
1706 */
1707 pr_info("Preserving crash data for processing in next boot.\n");
1708 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1709 } else
1710 pr_debug("FADump-aware kernel..\n");
1711
1712 return 1;
1713 }
1714 #endif /* CONFIG_PRESERVE_FA_DUMP */
1715
1716 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1717 static void __init fadump_reserve_crash_area(u64 base)
1718 {
1719 u64 i, mstart, mend, msize;
1720
1721 for_each_mem_range(i, &mstart, &mend) {
1722 msize = mend - mstart;
1723
1724 if ((mstart + msize) < base)
1725 continue;
1726
1727 if (mstart < base) {
1728 msize -= (base - mstart);
1729 mstart = base;
1730 }
1731
1732 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1733 (msize >> 20), mstart);
1734 memblock_reserve(mstart, msize);
1735 }
1736 }
1737
arch_reserved_kernel_pages(void)1738 unsigned long __init arch_reserved_kernel_pages(void)
1739 {
1740 return memblock_reserved_size() / PAGE_SIZE;
1741 }
1742