• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..--

.gitignoreD11-Mar-202418 21

READMED11-Mar-20242.3 KiB5946

bridge_igmp.shD11-Mar-20242.8 KiB153107

bridge_port_isolation.shD11-Mar-20242.3 KiB152112

bridge_sticky_fdb.shD11-Mar-20241.1 KiB7052

bridge_vlan_aware.shD11-Mar-20242.5 KiB152103

bridge_vlan_unaware.shD11-Mar-20241.2 KiB10574

configD11-Mar-2024303 1514

devlink_lib.shD11-Mar-20247.4 KiB358272

forwarding.config.sampleD11-Mar-20241 KiB3918

gre_inner_v4_multipath.shD11-Mar-20247.5 KiB306182

gre_inner_v6_multipath.shD11-Mar-20247.7 KiB307183

gre_multipath.shD11-Mar-20246.3 KiB258157

ip6gre_inner_v4_multipath.shD11-Mar-20247.8 KiB305182

ip6gre_inner_v6_multipath.shD11-Mar-20247.9 KiB306183

ipip_flat_gre.shD11-Mar-2024838 6443

ipip_flat_gre_key.shD11-Mar-2024860 6443

ipip_flat_gre_keys.shD11-Mar-2024886 6443

ipip_hier_gre.shD11-Mar-2024887 6443

ipip_hier_gre_key.shD11-Mar-2024910 6443

ipip_hier_gre_keys.shD11-Mar-2024938 6443

ipip_lib.shD11-Mar-20248.4 KiB350158

lib.shD11-Mar-202419.3 KiB1,040793

loopback.shD11-Mar-20241.4 KiB9564

mirror_gre.shD11-Mar-20243.3 KiB160112

mirror_gre_bound.shD11-Mar-20245.8 KiB227130

mirror_gre_bridge_1d.shD11-Mar-20244.2 KiB13368

mirror_gre_bridge_1d_vlan.shD11-Mar-20242.1 KiB12486

mirror_gre_bridge_1q.shD11-Mar-20244 KiB12766

mirror_gre_bridge_1q_lag.shD11-Mar-20247.3 KiB293191

mirror_gre_changes.shD11-Mar-20245.7 KiB273193

mirror_gre_flower.shD11-Mar-20242.8 KiB13894

mirror_gre_lag_lacp.shD11-Mar-20247.3 KiB286183

mirror_gre_lib.shD11-Mar-20242.5 KiB13198

mirror_gre_neigh.shD11-Mar-20242.3 KiB11679

mirror_gre_nh.shD11-Mar-20242.9 KiB13285

mirror_gre_topo_lib.shD11-Mar-20243.4 KiB9545

mirror_gre_vlan.shD11-Mar-20241.7 KiB9363

mirror_gre_vlan_bridge_1q.shD11-Mar-20248.9 KiB348225

mirror_lib.shD11-Mar-20242.7 KiB136108

mirror_topo_lib.shD11-Mar-20242.7 KiB10259

mirror_vlan.shD11-Mar-20242.2 KiB13293

router.shD11-Mar-20242.1 KiB13695

router_bridge.shD11-Mar-20241.8 KiB11483

router_bridge_vlan.shD11-Mar-20242 KiB13397

router_broadcast.shD11-Mar-20245 KiB238179

router_mpath_nh.shD11-Mar-20247.9 KiB360260

router_multicast.shD11-Mar-202411.3 KiB417270

router_multipath.shD11-Mar-20248.2 KiB343248

router_vid_1.shD11-Mar-20242.1 KiB13695

tc_actions.shD11-Mar-20244.3 KiB214153

tc_chains.shD11-Mar-20244.8 KiB206148

tc_common.shD11-Mar-2024316 1711

tc_flower.shD11-Mar-202410.1 KiB376266

tc_flower_router.shD11-Mar-20243 KiB173123

tc_shblocks.shD11-Mar-20242.7 KiB153108

tc_vlan_modify.shD11-Mar-20243.2 KiB165116

vxlan_asymmetric.shD11-Mar-202417.2 KiB568347

vxlan_bridge_1d.shD11-Mar-202420 KiB787542

vxlan_bridge_1d_port_8472.shD11-Mar-2024172 115

vxlan_bridge_1q.shD11-Mar-202423.5 KiB861556

vxlan_bridge_1q_port_8472.shD11-Mar-2024172 115

vxlan_symmetric.shD11-Mar-202417.7 KiB552339

README

1Motivation
2==========
3
4One of the nice things about network namespaces is that they allow one
5to easily create and test complex environments.
6
7Unfortunately, these namespaces can not be used with actual switching
8ASICs, as their ports can not be migrated to other network namespaces
9(NETIF_F_NETNS_LOCAL) and most of them probably do not support the
10L1-separation provided by namespaces.
11
12However, a similar kind of flexibility can be achieved by using VRFs and
13by looping the switch ports together. For example:
14
15                             br0
16                              +
17               vrf-h1         |           vrf-h2
18                 +        +---+----+        +
19                 |        |        |        |
20    192.0.2.1/24 +        +        +        + 192.0.2.2/24
21               swp1     swp2     swp3     swp4
22                 +        +        +        +
23                 |        |        |        |
24                 +--------+        +--------+
25
26The VRFs act as lightweight namespaces representing hosts connected to
27the switch.
28
29This approach for testing switch ASICs has several advantages over the
30traditional method that requires multiple physical machines, to name a
31few:
32
331. Only the device under test (DUT) is being tested without noise from
34other system.
35
362. Ability to easily provision complex topologies. Testing bridging
37between 4-ports LAGs or 8-way ECMP requires many physical links that are
38not always available. With the VRF-based approach one merely needs to
39loopback more ports.
40
41These tests are written with switch ASICs in mind, but they can be run
42on any Linux box using veth pairs to emulate physical loopbacks.
43
44Guidelines for Writing Tests
45============================
46
47o Where possible, reuse an existing topology for different tests instead
48  of recreating the same topology.
49o Tests that use anything but the most trivial topologies should include
50  an ASCII art showing the topology.
51o Where possible, IPv6 and IPv4 addresses shall conform to RFC 3849 and
52  RFC 5737, respectively.
53o Where possible, tests shall be written so that they can be reused by
54  multiple topologies and added to lib.sh.
55o Checks shall be added to lib.sh for any external dependencies.
56o Code shall be checked using ShellCheck [1] prior to submission.
57
581. https://www.shellcheck.net/
59