1 /*
2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/moduleparam.h>
19 #include <linux/if_arp.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rtnetlink.h>
22
23 #include "wil6210.h"
24 #include "txrx.h"
25 #include "txrx_edma.h"
26 #include "wmi.h"
27 #include "boot_loader.h"
28
29 #define WAIT_FOR_HALP_VOTE_MS 100
30 #define WAIT_FOR_SCAN_ABORT_MS 1000
31 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
32 #define WIL_BOARD_FILE_MAX_NAMELEN 128
33
34 bool debug_fw; /* = false; */
35 module_param(debug_fw, bool, 0444);
36 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
37
38 static u8 oob_mode;
39 module_param(oob_mode, byte, 0444);
40 MODULE_PARM_DESC(oob_mode,
41 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
42
43 bool no_fw_recovery;
44 module_param(no_fw_recovery, bool, 0644);
45 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
46
47 /* if not set via modparam, will be set to default value of 1/8 of
48 * rx ring size during init flow
49 */
50 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
51 module_param(rx_ring_overflow_thrsh, ushort, 0444);
52 MODULE_PARM_DESC(rx_ring_overflow_thrsh,
53 " RX ring overflow threshold in descriptors.");
54
55 /* We allow allocation of more than 1 page buffers to support large packets.
56 * It is suboptimal behavior performance wise in case MTU above page size.
57 */
58 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
mtu_max_set(const char * val,const struct kernel_param * kp)59 static int mtu_max_set(const char *val, const struct kernel_param *kp)
60 {
61 int ret;
62
63 /* sets mtu_max directly. no need to restore it in case of
64 * illegal value since we assume this will fail insmod
65 */
66 ret = param_set_uint(val, kp);
67 if (ret)
68 return ret;
69
70 if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
71 ret = -EINVAL;
72
73 return ret;
74 }
75
76 static const struct kernel_param_ops mtu_max_ops = {
77 .set = mtu_max_set,
78 .get = param_get_uint,
79 };
80
81 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
82 MODULE_PARM_DESC(mtu_max, " Max MTU value.");
83
84 static uint rx_ring_order;
85 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
86 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
87
ring_order_set(const char * val,const struct kernel_param * kp)88 static int ring_order_set(const char *val, const struct kernel_param *kp)
89 {
90 int ret;
91 uint x;
92
93 ret = kstrtouint(val, 0, &x);
94 if (ret)
95 return ret;
96
97 if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
98 return -EINVAL;
99
100 *((uint *)kp->arg) = x;
101
102 return 0;
103 }
104
105 static const struct kernel_param_ops ring_order_ops = {
106 .set = ring_order_set,
107 .get = param_get_uint,
108 };
109
110 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
111 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
112 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
113 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
114 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
115 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
116
117 enum {
118 WIL_BOOT_ERR,
119 WIL_BOOT_VANILLA,
120 WIL_BOOT_PRODUCTION,
121 WIL_BOOT_DEVELOPMENT,
122 };
123
124 enum {
125 WIL_SIG_STATUS_VANILLA = 0x0,
126 WIL_SIG_STATUS_DEVELOPMENT = 0x1,
127 WIL_SIG_STATUS_PRODUCTION = 0x2,
128 WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
129 };
130
131 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
132 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
133
134 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
135
136 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
137 /* round up to be above 2 ms total */
138 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
139
140 /*
141 * Due to a hardware issue,
142 * one has to read/write to/from NIC in 32-bit chunks;
143 * regular memcpy_fromio and siblings will
144 * not work on 64-bit platform - it uses 64-bit transactions
145 *
146 * Force 32-bit transactions to enable NIC on 64-bit platforms
147 *
148 * To avoid byte swap on big endian host, __raw_{read|write}l
149 * should be used - {read|write}l would swap bytes to provide
150 * little endian on PCI value in host endianness.
151 */
wil_memcpy_fromio_32(void * dst,const volatile void __iomem * src,size_t count)152 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
153 size_t count)
154 {
155 u32 *d = dst;
156 const volatile u32 __iomem *s = src;
157
158 for (; count >= 4; count -= 4)
159 *d++ = __raw_readl(s++);
160
161 if (unlikely(count)) {
162 /* count can be 1..3 */
163 u32 tmp = __raw_readl(s);
164
165 memcpy(d, &tmp, count);
166 }
167 }
168
wil_memcpy_toio_32(volatile void __iomem * dst,const void * src,size_t count)169 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
170 size_t count)
171 {
172 volatile u32 __iomem *d = dst;
173 const u32 *s = src;
174
175 for (; count >= 4; count -= 4)
176 __raw_writel(*s++, d++);
177
178 if (unlikely(count)) {
179 /* count can be 1..3 */
180 u32 tmp = 0;
181
182 memcpy(&tmp, s, count);
183 __raw_writel(tmp, d);
184 }
185 }
186
187 /* Device memory access is prohibited while reset or suspend.
188 * wil_mem_access_lock protects accessing device memory in these cases
189 */
wil_mem_access_lock(struct wil6210_priv * wil)190 int wil_mem_access_lock(struct wil6210_priv *wil)
191 {
192 if (!down_read_trylock(&wil->mem_lock))
193 return -EBUSY;
194
195 if (test_bit(wil_status_suspending, wil->status) ||
196 test_bit(wil_status_suspended, wil->status)) {
197 up_read(&wil->mem_lock);
198 return -EBUSY;
199 }
200
201 return 0;
202 }
203
wil_mem_access_unlock(struct wil6210_priv * wil)204 void wil_mem_access_unlock(struct wil6210_priv *wil)
205 {
206 up_read(&wil->mem_lock);
207 }
208
wil_ring_fini_tx(struct wil6210_priv * wil,int id)209 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
210 {
211 struct wil_ring *ring = &wil->ring_tx[id];
212 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
213
214 lockdep_assert_held(&wil->mutex);
215
216 if (!ring->va)
217 return;
218
219 wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
220
221 spin_lock_bh(&txdata->lock);
222 txdata->dot1x_open = false;
223 txdata->mid = U8_MAX;
224 txdata->enabled = 0; /* no Tx can be in progress or start anew */
225 spin_unlock_bh(&txdata->lock);
226 /* napi_synchronize waits for completion of the current NAPI but will
227 * not prevent the next NAPI run.
228 * Add a memory barrier to guarantee that txdata->enabled is zeroed
229 * before napi_synchronize so that the next scheduled NAPI will not
230 * handle this vring
231 */
232 wmb();
233 /* make sure NAPI won't touch this vring */
234 if (test_bit(wil_status_napi_en, wil->status))
235 napi_synchronize(&wil->napi_tx);
236
237 wil->txrx_ops.ring_fini_tx(wil, ring);
238 }
239
wil_vif_is_connected(struct wil6210_priv * wil,u8 mid)240 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
241 {
242 int i;
243
244 for (i = 0; i < wil->max_assoc_sta; i++) {
245 if (wil->sta[i].mid == mid &&
246 wil->sta[i].status == wil_sta_connected)
247 return true;
248 }
249
250 return false;
251 }
252
wil_disconnect_cid_complete(struct wil6210_vif * vif,int cid,u16 reason_code)253 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
254 u16 reason_code)
255 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
256 {
257 uint i;
258 struct wil6210_priv *wil = vif_to_wil(vif);
259 struct net_device *ndev = vif_to_ndev(vif);
260 struct wireless_dev *wdev = vif_to_wdev(vif);
261 struct wil_sta_info *sta = &wil->sta[cid];
262 int min_ring_id = wil_get_min_tx_ring_id(wil);
263
264 might_sleep();
265 wil_dbg_misc(wil,
266 "disconnect_cid_complete: CID %d, MID %d, status %d\n",
267 cid, sta->mid, sta->status);
268 /* inform upper layers */
269 if (sta->status != wil_sta_unused) {
270 if (vif->mid != sta->mid) {
271 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
272 vif->mid);
273 }
274
275 switch (wdev->iftype) {
276 case NL80211_IFTYPE_AP:
277 case NL80211_IFTYPE_P2P_GO:
278 /* AP-like interface */
279 cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
280 break;
281 default:
282 break;
283 }
284 sta->status = wil_sta_unused;
285 sta->mid = U8_MAX;
286 }
287 /* reorder buffers */
288 for (i = 0; i < WIL_STA_TID_NUM; i++) {
289 struct wil_tid_ampdu_rx *r;
290
291 spin_lock_bh(&sta->tid_rx_lock);
292
293 r = sta->tid_rx[i];
294 sta->tid_rx[i] = NULL;
295 wil_tid_ampdu_rx_free(wil, r);
296
297 spin_unlock_bh(&sta->tid_rx_lock);
298 }
299 /* crypto context */
300 memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
301 memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
302 /* release vrings */
303 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
304 if (wil->ring2cid_tid[i][0] == cid)
305 wil_ring_fini_tx(wil, i);
306 }
307 /* statistics */
308 memset(&sta->stats, 0, sizeof(sta->stats));
309 sta->stats.tx_latency_min_us = U32_MAX;
310 }
311
_wil6210_disconnect_complete(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)312 static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
313 const u8 *bssid, u16 reason_code)
314 {
315 struct wil6210_priv *wil = vif_to_wil(vif);
316 int cid = -ENOENT;
317 struct net_device *ndev;
318 struct wireless_dev *wdev;
319
320 ndev = vif_to_ndev(vif);
321 wdev = vif_to_wdev(vif);
322
323 might_sleep();
324 wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
325 bssid, reason_code);
326
327 /* Cases are:
328 * - disconnect single STA, still connected
329 * - disconnect single STA, already disconnected
330 * - disconnect all
331 *
332 * For "disconnect all", there are 3 options:
333 * - bssid == NULL
334 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
335 * - bssid is our MAC address
336 */
337 if (bssid && !is_broadcast_ether_addr(bssid) &&
338 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
339 cid = wil_find_cid(wil, vif->mid, bssid);
340 wil_dbg_misc(wil,
341 "Disconnect complete %pM, CID=%d, reason=%d\n",
342 bssid, cid, reason_code);
343 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
344 wil_disconnect_cid_complete(vif, cid, reason_code);
345 } else { /* all */
346 wil_dbg_misc(wil, "Disconnect complete all\n");
347 for (cid = 0; cid < wil->max_assoc_sta; cid++)
348 wil_disconnect_cid_complete(vif, cid, reason_code);
349 }
350
351 /* link state */
352 switch (wdev->iftype) {
353 case NL80211_IFTYPE_STATION:
354 case NL80211_IFTYPE_P2P_CLIENT:
355 wil_bcast_fini(vif);
356 wil_update_net_queues_bh(wil, vif, NULL, true);
357 netif_carrier_off(ndev);
358 if (!wil_has_other_active_ifaces(wil, ndev, false, true))
359 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
360
361 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
362 atomic_dec(&wil->connected_vifs);
363 cfg80211_disconnected(ndev, reason_code,
364 NULL, 0,
365 vif->locally_generated_disc,
366 GFP_KERNEL);
367 vif->locally_generated_disc = false;
368 } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
369 cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
370 WLAN_STATUS_UNSPECIFIED_FAILURE,
371 GFP_KERNEL);
372 vif->bss = NULL;
373 }
374 clear_bit(wil_vif_fwconnecting, vif->status);
375 clear_bit(wil_vif_ft_roam, vif->status);
376 vif->ptk_rekey_state = WIL_REKEY_IDLE;
377
378 break;
379 case NL80211_IFTYPE_AP:
380 case NL80211_IFTYPE_P2P_GO:
381 if (!wil_vif_is_connected(wil, vif->mid)) {
382 wil_update_net_queues_bh(wil, vif, NULL, true);
383 if (test_and_clear_bit(wil_vif_fwconnected,
384 vif->status))
385 atomic_dec(&wil->connected_vifs);
386 } else {
387 wil_update_net_queues_bh(wil, vif, NULL, false);
388 }
389 break;
390 default:
391 break;
392 }
393 }
394
wil_disconnect_cid(struct wil6210_vif * vif,int cid,u16 reason_code)395 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
396 u16 reason_code)
397 {
398 struct wil6210_priv *wil = vif_to_wil(vif);
399 struct wireless_dev *wdev = vif_to_wdev(vif);
400 struct wil_sta_info *sta = &wil->sta[cid];
401 bool del_sta = false;
402
403 might_sleep();
404 wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
405 cid, sta->mid, sta->status);
406
407 if (sta->status == wil_sta_unused)
408 return 0;
409
410 if (vif->mid != sta->mid) {
411 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
412 return -EINVAL;
413 }
414
415 /* inform lower layers */
416 if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
417 del_sta = true;
418
419 /* disconnect by sending command disconnect/del_sta and wait
420 * synchronously for WMI_DISCONNECT_EVENTID event.
421 */
422 return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
423 }
424
_wil6210_disconnect(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)425 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
426 u16 reason_code)
427 {
428 struct wil6210_priv *wil;
429 struct net_device *ndev;
430 int cid = -ENOENT;
431
432 if (unlikely(!vif))
433 return;
434
435 wil = vif_to_wil(vif);
436 ndev = vif_to_ndev(vif);
437
438 might_sleep();
439 wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
440
441 /* Cases are:
442 * - disconnect single STA, still connected
443 * - disconnect single STA, already disconnected
444 * - disconnect all
445 *
446 * For "disconnect all", there are 3 options:
447 * - bssid == NULL
448 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
449 * - bssid is our MAC address
450 */
451 if (bssid && !is_broadcast_ether_addr(bssid) &&
452 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
453 cid = wil_find_cid(wil, vif->mid, bssid);
454 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
455 bssid, cid, reason_code);
456 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
457 wil_disconnect_cid(vif, cid, reason_code);
458 } else { /* all */
459 wil_dbg_misc(wil, "Disconnect all\n");
460 for (cid = 0; cid < wil->max_assoc_sta; cid++)
461 wil_disconnect_cid(vif, cid, reason_code);
462 }
463
464 /* call event handler manually after processing wmi_call,
465 * to avoid deadlock - disconnect event handler acquires
466 * wil->mutex while it is already held here
467 */
468 _wil6210_disconnect_complete(vif, bssid, reason_code);
469 }
470
wil_disconnect_worker(struct work_struct * work)471 void wil_disconnect_worker(struct work_struct *work)
472 {
473 struct wil6210_vif *vif = container_of(work,
474 struct wil6210_vif, disconnect_worker);
475 struct wil6210_priv *wil = vif_to_wil(vif);
476 struct net_device *ndev = vif_to_ndev(vif);
477 int rc;
478 struct {
479 struct wmi_cmd_hdr wmi;
480 struct wmi_disconnect_event evt;
481 } __packed reply;
482
483 if (test_bit(wil_vif_fwconnected, vif->status))
484 /* connect succeeded after all */
485 return;
486
487 if (!test_bit(wil_vif_fwconnecting, vif->status))
488 /* already disconnected */
489 return;
490
491 memset(&reply, 0, sizeof(reply));
492
493 rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
494 WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
495 WIL6210_DISCONNECT_TO_MS);
496 if (rc) {
497 wil_err(wil, "disconnect error %d\n", rc);
498 return;
499 }
500
501 wil_update_net_queues_bh(wil, vif, NULL, true);
502 netif_carrier_off(ndev);
503 cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
504 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
505 clear_bit(wil_vif_fwconnecting, vif->status);
506 }
507
wil_wait_for_recovery(struct wil6210_priv * wil)508 static int wil_wait_for_recovery(struct wil6210_priv *wil)
509 {
510 if (wait_event_interruptible(wil->wq, wil->recovery_state !=
511 fw_recovery_pending)) {
512 wil_err(wil, "Interrupt, canceling recovery\n");
513 return -ERESTARTSYS;
514 }
515 if (wil->recovery_state != fw_recovery_running) {
516 wil_info(wil, "Recovery cancelled\n");
517 return -EINTR;
518 }
519 wil_info(wil, "Proceed with recovery\n");
520 return 0;
521 }
522
wil_set_recovery_state(struct wil6210_priv * wil,int state)523 void wil_set_recovery_state(struct wil6210_priv *wil, int state)
524 {
525 wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
526 wil->recovery_state, state);
527
528 wil->recovery_state = state;
529 wake_up_interruptible(&wil->wq);
530 }
531
wil_is_recovery_blocked(struct wil6210_priv * wil)532 bool wil_is_recovery_blocked(struct wil6210_priv *wil)
533 {
534 return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
535 }
536
wil_fw_error_worker(struct work_struct * work)537 static void wil_fw_error_worker(struct work_struct *work)
538 {
539 struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
540 fw_error_worker);
541 struct net_device *ndev = wil->main_ndev;
542 struct wireless_dev *wdev;
543
544 wil_dbg_misc(wil, "fw error worker\n");
545
546 if (!ndev || !(ndev->flags & IFF_UP)) {
547 wil_info(wil, "No recovery - interface is down\n");
548 return;
549 }
550 wdev = ndev->ieee80211_ptr;
551
552 /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
553 * passed since last recovery attempt
554 */
555 if (time_is_after_jiffies(wil->last_fw_recovery +
556 WIL6210_FW_RECOVERY_TO))
557 wil->recovery_count++;
558 else
559 wil->recovery_count = 1; /* fw was alive for a long time */
560
561 if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
562 wil_err(wil, "too many recovery attempts (%d), giving up\n",
563 wil->recovery_count);
564 return;
565 }
566
567 wil->last_fw_recovery = jiffies;
568
569 wil_info(wil, "fw error recovery requested (try %d)...\n",
570 wil->recovery_count);
571 if (!no_fw_recovery)
572 wil->recovery_state = fw_recovery_running;
573 if (wil_wait_for_recovery(wil) != 0)
574 return;
575
576 rtnl_lock();
577 mutex_lock(&wil->mutex);
578 /* Needs adaptation for multiple VIFs
579 * need to go over all VIFs and consider the appropriate
580 * recovery because each one can have different iftype.
581 */
582 switch (wdev->iftype) {
583 case NL80211_IFTYPE_STATION:
584 case NL80211_IFTYPE_P2P_CLIENT:
585 case NL80211_IFTYPE_MONITOR:
586 /* silent recovery, upper layers will see disconnect */
587 __wil_down(wil);
588 __wil_up(wil);
589 break;
590 case NL80211_IFTYPE_AP:
591 case NL80211_IFTYPE_P2P_GO:
592 if (no_fw_recovery) /* upper layers do recovery */
593 break;
594 /* silent recovery, upper layers will see disconnect */
595 __wil_down(wil);
596 __wil_up(wil);
597 mutex_unlock(&wil->mutex);
598 wil_cfg80211_ap_recovery(wil);
599 mutex_lock(&wil->mutex);
600 wil_info(wil, "... completed\n");
601 break;
602 default:
603 wil_err(wil, "No recovery - unknown interface type %d\n",
604 wdev->iftype);
605 break;
606 }
607
608 mutex_unlock(&wil->mutex);
609 rtnl_unlock();
610 }
611
wil_find_free_ring(struct wil6210_priv * wil)612 static int wil_find_free_ring(struct wil6210_priv *wil)
613 {
614 int i;
615 int min_ring_id = wil_get_min_tx_ring_id(wil);
616
617 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
618 if (!wil->ring_tx[i].va)
619 return i;
620 }
621 return -EINVAL;
622 }
623
wil_ring_init_tx(struct wil6210_vif * vif,int cid)624 int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
625 {
626 struct wil6210_priv *wil = vif_to_wil(vif);
627 int rc = -EINVAL, ringid;
628
629 if (cid < 0) {
630 wil_err(wil, "No connection pending\n");
631 goto out;
632 }
633 ringid = wil_find_free_ring(wil);
634 if (ringid < 0) {
635 wil_err(wil, "No free vring found\n");
636 goto out;
637 }
638
639 wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
640 cid, vif->mid, ringid);
641
642 rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
643 cid, 0);
644 if (rc)
645 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
646 cid, vif->mid, ringid);
647
648 out:
649 return rc;
650 }
651
wil_bcast_init(struct wil6210_vif * vif)652 int wil_bcast_init(struct wil6210_vif *vif)
653 {
654 struct wil6210_priv *wil = vif_to_wil(vif);
655 int ri = vif->bcast_ring, rc;
656
657 if (ri >= 0 && wil->ring_tx[ri].va)
658 return 0;
659
660 ri = wil_find_free_ring(wil);
661 if (ri < 0)
662 return ri;
663
664 vif->bcast_ring = ri;
665 rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
666 if (rc)
667 vif->bcast_ring = -1;
668
669 return rc;
670 }
671
wil_bcast_fini(struct wil6210_vif * vif)672 void wil_bcast_fini(struct wil6210_vif *vif)
673 {
674 struct wil6210_priv *wil = vif_to_wil(vif);
675 int ri = vif->bcast_ring;
676
677 if (ri < 0)
678 return;
679
680 vif->bcast_ring = -1;
681 wil_ring_fini_tx(wil, ri);
682 }
683
wil_bcast_fini_all(struct wil6210_priv * wil)684 void wil_bcast_fini_all(struct wil6210_priv *wil)
685 {
686 int i;
687 struct wil6210_vif *vif;
688
689 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
690 vif = wil->vifs[i];
691 if (vif)
692 wil_bcast_fini(vif);
693 }
694 }
695
wil_priv_init(struct wil6210_priv * wil)696 int wil_priv_init(struct wil6210_priv *wil)
697 {
698 uint i;
699
700 wil_dbg_misc(wil, "priv_init\n");
701
702 memset(wil->sta, 0, sizeof(wil->sta));
703 for (i = 0; i < WIL6210_MAX_CID; i++) {
704 spin_lock_init(&wil->sta[i].tid_rx_lock);
705 wil->sta[i].mid = U8_MAX;
706 }
707
708 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
709 spin_lock_init(&wil->ring_tx_data[i].lock);
710 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
711 }
712
713 mutex_init(&wil->mutex);
714 mutex_init(&wil->vif_mutex);
715 mutex_init(&wil->wmi_mutex);
716 mutex_init(&wil->halp.lock);
717
718 init_completion(&wil->wmi_ready);
719 init_completion(&wil->wmi_call);
720 init_completion(&wil->halp.comp);
721
722 INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
723 INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
724
725 INIT_LIST_HEAD(&wil->pending_wmi_ev);
726 spin_lock_init(&wil->wmi_ev_lock);
727 spin_lock_init(&wil->net_queue_lock);
728 spin_lock_init(&wil->eap_lock);
729
730 init_waitqueue_head(&wil->wq);
731 init_rwsem(&wil->mem_lock);
732
733 wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
734 if (!wil->wmi_wq)
735 return -EAGAIN;
736
737 wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
738 if (!wil->wq_service)
739 goto out_wmi_wq;
740
741 wil->last_fw_recovery = jiffies;
742 wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
743 wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
744 wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
745 wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
746
747 if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
748 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
749
750 wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT;
751
752 wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
753 WMI_WAKEUP_TRIGGER_BCAST;
754 memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
755 wil->ring_idle_trsh = 16;
756
757 wil->reply_mid = U8_MAX;
758 wil->max_vifs = 1;
759 wil->max_assoc_sta = max_assoc_sta;
760
761 /* edma configuration can be updated via debugfs before allocation */
762 wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
763 wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
764
765 /* Rx status ring size should be bigger than the number of RX buffers
766 * in order to prevent backpressure on the status ring, which may
767 * cause HW freeze.
768 */
769 wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
770 /* Number of RX buffer IDs should be bigger than the RX descriptor
771 * ring size as in HW reorder flow, the HW can consume additional
772 * buffers before releasing the previous ones.
773 */
774 wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
775
776 wil->amsdu_en = 1;
777
778 return 0;
779
780 out_wmi_wq:
781 destroy_workqueue(wil->wmi_wq);
782
783 return -EAGAIN;
784 }
785
wil6210_bus_request(struct wil6210_priv * wil,u32 kbps)786 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
787 {
788 if (wil->platform_ops.bus_request) {
789 wil->bus_request_kbps = kbps;
790 wil->platform_ops.bus_request(wil->platform_handle, kbps);
791 }
792 }
793
794 /**
795 * wil6210_disconnect - disconnect one connection
796 * @vif: virtual interface context
797 * @bssid: peer to disconnect, NULL to disconnect all
798 * @reason_code: Reason code for the Disassociation frame
799 *
800 * Disconnect and release associated resources. Issue WMI
801 * command(s) to trigger MAC disconnect. When command was issued
802 * successfully, call the wil6210_disconnect_complete function
803 * to handle the event synchronously
804 */
wil6210_disconnect(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)805 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
806 u16 reason_code)
807 {
808 struct wil6210_priv *wil = vif_to_wil(vif);
809
810 wil_dbg_misc(wil, "disconnecting\n");
811
812 del_timer_sync(&vif->connect_timer);
813 _wil6210_disconnect(vif, bssid, reason_code);
814 }
815
816 /**
817 * wil6210_disconnect_complete - handle disconnect event
818 * @vif: virtual interface context
819 * @bssid: peer to disconnect, NULL to disconnect all
820 * @reason_code: Reason code for the Disassociation frame
821 *
822 * Release associated resources and indicate upper layers the
823 * connection is terminated.
824 */
wil6210_disconnect_complete(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)825 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
826 u16 reason_code)
827 {
828 struct wil6210_priv *wil = vif_to_wil(vif);
829
830 wil_dbg_misc(wil, "got disconnect\n");
831
832 del_timer_sync(&vif->connect_timer);
833 _wil6210_disconnect_complete(vif, bssid, reason_code);
834 }
835
wil_priv_deinit(struct wil6210_priv * wil)836 void wil_priv_deinit(struct wil6210_priv *wil)
837 {
838 wil_dbg_misc(wil, "priv_deinit\n");
839
840 wil_set_recovery_state(wil, fw_recovery_idle);
841 cancel_work_sync(&wil->fw_error_worker);
842 wmi_event_flush(wil);
843 destroy_workqueue(wil->wq_service);
844 destroy_workqueue(wil->wmi_wq);
845 kfree(wil->brd_info);
846 }
847
wil_shutdown_bl(struct wil6210_priv * wil)848 static void wil_shutdown_bl(struct wil6210_priv *wil)
849 {
850 u32 val;
851
852 wil_s(wil, RGF_USER_BL +
853 offsetof(struct bl_dedicated_registers_v1,
854 bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
855
856 usleep_range(100, 150);
857
858 val = wil_r(wil, RGF_USER_BL +
859 offsetof(struct bl_dedicated_registers_v1,
860 bl_shutdown_handshake));
861 if (val & BL_SHUTDOWN_HS_RTD) {
862 wil_dbg_misc(wil, "BL is ready for halt\n");
863 return;
864 }
865
866 wil_err(wil, "BL did not report ready for halt\n");
867 }
868
869 /* this format is used by ARC embedded CPU for instruction memory */
ARC_me_imm32(u32 d)870 static inline u32 ARC_me_imm32(u32 d)
871 {
872 return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
873 }
874
875 /* defines access to interrupt vectors for wil_freeze_bl */
876 #define ARC_IRQ_VECTOR_OFFSET(N) ((N) * 8)
877 /* ARC long jump instruction */
878 #define ARC_JAL_INST (0x20200f80)
879
wil_freeze_bl(struct wil6210_priv * wil)880 static void wil_freeze_bl(struct wil6210_priv *wil)
881 {
882 u32 jal, upc, saved;
883 u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
884
885 jal = wil_r(wil, wil->iccm_base + ivt3);
886 if (jal != ARC_me_imm32(ARC_JAL_INST)) {
887 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
888 return;
889 }
890
891 /* prevent the target from entering deep sleep
892 * and disabling memory access
893 */
894 saved = wil_r(wil, RGF_USER_USAGE_8);
895 wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
896 usleep_range(20, 25); /* let the BL process the bit */
897
898 /* redirect to endless loop in the INT_L1 context and let it trap */
899 wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
900 usleep_range(20, 25); /* let the BL get into the trap */
901
902 /* verify the BL is frozen */
903 upc = wil_r(wil, RGF_USER_CPU_PC);
904 if (upc < ivt3 || (upc > (ivt3 + 8)))
905 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
906
907 wil_w(wil, RGF_USER_USAGE_8, saved);
908 }
909
wil_bl_prepare_halt(struct wil6210_priv * wil)910 static void wil_bl_prepare_halt(struct wil6210_priv *wil)
911 {
912 u32 tmp, ver;
913
914 /* before halting device CPU driver must make sure BL is not accessing
915 * host memory. This is done differently depending on BL version:
916 * 1. For very old BL versions the procedure is skipped
917 * (not supported).
918 * 2. For old BL version we use a special trick to freeze the BL
919 * 3. For new BL versions we shutdown the BL using handshake procedure.
920 */
921 tmp = wil_r(wil, RGF_USER_BL +
922 offsetof(struct bl_dedicated_registers_v0,
923 boot_loader_struct_version));
924 if (!tmp) {
925 wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
926 return;
927 }
928
929 tmp = wil_r(wil, RGF_USER_BL +
930 offsetof(struct bl_dedicated_registers_v1,
931 bl_shutdown_handshake));
932 ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
933
934 if (ver > 0)
935 wil_shutdown_bl(wil);
936 else
937 wil_freeze_bl(wil);
938 }
939
wil_halt_cpu(struct wil6210_priv * wil)940 static inline void wil_halt_cpu(struct wil6210_priv *wil)
941 {
942 if (wil->hw_version >= HW_VER_TALYN_MB) {
943 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
944 BIT_USER_USER_CPU_MAN_RST);
945 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
946 BIT_USER_MAC_CPU_MAN_RST);
947 } else {
948 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
949 wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST);
950 }
951 }
952
wil_release_cpu(struct wil6210_priv * wil)953 static inline void wil_release_cpu(struct wil6210_priv *wil)
954 {
955 /* Start CPU */
956 if (wil->hw_version >= HW_VER_TALYN_MB)
957 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
958 else
959 wil_w(wil, RGF_USER_USER_CPU_0, 1);
960 }
961
wil_set_oob_mode(struct wil6210_priv * wil,u8 mode)962 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
963 {
964 wil_info(wil, "oob_mode to %d\n", mode);
965 switch (mode) {
966 case 0:
967 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
968 BIT_USER_OOB_R2_MODE);
969 break;
970 case 1:
971 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
972 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
973 break;
974 case 2:
975 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
976 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
977 break;
978 default:
979 wil_err(wil, "invalid oob_mode: %d\n", mode);
980 }
981 }
982
wil_wait_device_ready(struct wil6210_priv * wil,int no_flash)983 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
984 {
985 int delay = 0;
986 u32 x, x1 = 0;
987
988 /* wait until device ready. */
989 if (no_flash) {
990 msleep(PMU_READY_DELAY_MS);
991
992 wil_dbg_misc(wil, "Reset completed\n");
993 } else {
994 do {
995 msleep(RST_DELAY);
996 x = wil_r(wil, RGF_USER_BL +
997 offsetof(struct bl_dedicated_registers_v0,
998 boot_loader_ready));
999 if (x1 != x) {
1000 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
1001 x1, x);
1002 x1 = x;
1003 }
1004 if (delay++ > RST_COUNT) {
1005 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
1006 x);
1007 return -ETIME;
1008 }
1009 } while (x != BL_READY);
1010
1011 wil_dbg_misc(wil, "Reset completed in %d ms\n",
1012 delay * RST_DELAY);
1013 }
1014
1015 return 0;
1016 }
1017
wil_wait_device_ready_talyn_mb(struct wil6210_priv * wil)1018 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1019 {
1020 u32 otp_hw;
1021 u8 signature_status;
1022 bool otp_signature_err;
1023 bool hw_section_done;
1024 u32 otp_qc_secured;
1025 int delay = 0;
1026
1027 /* Wait for OTP signature test to complete */
1028 usleep_range(2000, 2200);
1029
1030 wil->boot_config = WIL_BOOT_ERR;
1031
1032 /* Poll until OTP signature status is valid.
1033 * In vanilla and development modes, when signature test is complete
1034 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1035 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1036 * for signature status change to 2 or 3.
1037 */
1038 do {
1039 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1040 signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1041 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1042
1043 if (otp_signature_err &&
1044 signature_status == WIL_SIG_STATUS_VANILLA) {
1045 wil->boot_config = WIL_BOOT_VANILLA;
1046 break;
1047 }
1048 if (otp_signature_err &&
1049 signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1050 wil->boot_config = WIL_BOOT_DEVELOPMENT;
1051 break;
1052 }
1053 if (!otp_signature_err &&
1054 signature_status == WIL_SIG_STATUS_PRODUCTION) {
1055 wil->boot_config = WIL_BOOT_PRODUCTION;
1056 break;
1057 }
1058 if (!otp_signature_err &&
1059 signature_status ==
1060 WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1061 /* Unrecognized OTP signature found. Possibly a
1062 * corrupted production signature, access control
1063 * is applied as in production mode, therefore
1064 * do not fail
1065 */
1066 wil->boot_config = WIL_BOOT_PRODUCTION;
1067 break;
1068 }
1069 if (delay++ > OTP_HW_COUNT)
1070 break;
1071
1072 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1073 } while (!otp_signature_err && signature_status == 0);
1074
1075 if (wil->boot_config == WIL_BOOT_ERR) {
1076 wil_err(wil,
1077 "invalid boot config, signature_status %d otp_signature_err %d\n",
1078 signature_status, otp_signature_err);
1079 return -ETIME;
1080 }
1081
1082 wil_dbg_misc(wil,
1083 "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1084 delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1085
1086 if (wil->boot_config == WIL_BOOT_VANILLA)
1087 /* Assuming not SPI boot (currently not supported) */
1088 goto out;
1089
1090 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1091 delay = 0;
1092
1093 while (!hw_section_done) {
1094 msleep(RST_DELAY);
1095
1096 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1097 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1098
1099 if (delay++ > RST_COUNT) {
1100 wil_err(wil, "TO waiting for hw_section_done\n");
1101 return -ETIME;
1102 }
1103 }
1104
1105 wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1106
1107 otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1108 wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1109 wil_dbg_misc(wil, "secured boot is %sabled\n",
1110 wil->secured_boot ? "en" : "dis");
1111
1112 out:
1113 wil_dbg_misc(wil, "Reset completed\n");
1114
1115 return 0;
1116 }
1117
wil_target_reset(struct wil6210_priv * wil,int no_flash)1118 static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1119 {
1120 u32 x;
1121 int rc;
1122
1123 wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1124
1125 if (wil->hw_version < HW_VER_TALYN) {
1126 /* Clear MAC link up */
1127 wil_s(wil, RGF_HP_CTRL, BIT(15));
1128 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1129 BIT_HPAL_PERST_FROM_PAD);
1130 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1131 }
1132
1133 wil_halt_cpu(wil);
1134
1135 if (!no_flash) {
1136 /* clear all boot loader "ready" bits */
1137 wil_w(wil, RGF_USER_BL +
1138 offsetof(struct bl_dedicated_registers_v0,
1139 boot_loader_ready), 0);
1140 /* this should be safe to write even with old BLs */
1141 wil_w(wil, RGF_USER_BL +
1142 offsetof(struct bl_dedicated_registers_v1,
1143 bl_shutdown_handshake), 0);
1144 }
1145 /* Clear Fw Download notification */
1146 wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1147
1148 wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1149 /* XTAL stabilization should take about 3ms */
1150 usleep_range(5000, 7000);
1151 x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1152 if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1153 wil_err(wil, "Xtal stabilization timeout\n"
1154 "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1155 return -ETIME;
1156 }
1157 /* switch 10k to XTAL*/
1158 wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1159 /* 40 MHz */
1160 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1161
1162 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1163 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1164
1165 if (wil->hw_version >= HW_VER_TALYN_MB) {
1166 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1167 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1168 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1169 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1170 } else {
1171 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1172 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1173 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1174 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1175 }
1176
1177 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1178 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1179
1180 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1181 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1182 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1183 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1184
1185 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1186 /* reset A2 PCIE AHB */
1187 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1188
1189 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1190
1191 if (wil->hw_version == HW_VER_TALYN_MB)
1192 rc = wil_wait_device_ready_talyn_mb(wil);
1193 else
1194 rc = wil_wait_device_ready(wil, no_flash);
1195 if (rc)
1196 return rc;
1197
1198 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1199
1200 /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1201 wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1202 BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1203
1204 if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1205 /* Reset OTP HW vectors to fit 40MHz */
1206 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1207 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1208 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1209 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1210 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1211 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1212 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1213 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1214 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1215 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1216 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1217 }
1218
1219 return 0;
1220 }
1221
wil_collect_fw_info(struct wil6210_priv * wil)1222 static void wil_collect_fw_info(struct wil6210_priv *wil)
1223 {
1224 struct wiphy *wiphy = wil_to_wiphy(wil);
1225 u8 retry_short;
1226 int rc;
1227
1228 wil_refresh_fw_capabilities(wil);
1229
1230 rc = wmi_get_mgmt_retry(wil, &retry_short);
1231 if (!rc) {
1232 wiphy->retry_short = retry_short;
1233 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1234 }
1235 }
1236
wil_refresh_fw_capabilities(struct wil6210_priv * wil)1237 void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1238 {
1239 struct wiphy *wiphy = wil_to_wiphy(wil);
1240 int features;
1241
1242 wil->keep_radio_on_during_sleep =
1243 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1244 wil->platform_capa) &&
1245 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1246
1247 wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1248 wil->keep_radio_on_during_sleep);
1249
1250 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1251 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1252 else
1253 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1254
1255 if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1256 wiphy->max_sched_scan_reqs = 1;
1257 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1258 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1259 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1260 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1261 }
1262
1263 if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1264 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1265
1266 if (wil->platform_ops.set_features) {
1267 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1268 wil->fw_capabilities) &&
1269 test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1270 wil->platform_capa)) ?
1271 BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1272
1273 if (wil->n_msi == 3)
1274 features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1275
1276 wil->platform_ops.set_features(wil->platform_handle, features);
1277 }
1278
1279 if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1280 wil->fw_capabilities)) {
1281 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1282 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1283 } else {
1284 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1285 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1286 }
1287
1288 update_supported_bands(wil);
1289 }
1290
wil_mbox_ring_le2cpus(struct wil6210_mbox_ring * r)1291 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1292 {
1293 le32_to_cpus(&r->base);
1294 le16_to_cpus(&r->entry_size);
1295 le16_to_cpus(&r->size);
1296 le32_to_cpus(&r->tail);
1297 le32_to_cpus(&r->head);
1298 }
1299
1300 /* construct actual board file name to use */
wil_get_board_file(struct wil6210_priv * wil,char * buf,size_t len)1301 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1302 {
1303 const char *board_file;
1304 const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1305 WIL_FW_NAME_TALYN;
1306
1307 if (wil->board_file) {
1308 board_file = wil->board_file;
1309 } else {
1310 /* If specific FW file is used for Talyn,
1311 * use specific board file
1312 */
1313 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1314 board_file = WIL_BRD_NAME_TALYN;
1315 else
1316 board_file = WIL_BOARD_FILE_NAME;
1317 }
1318
1319 strlcpy(buf, board_file, len);
1320 }
1321
wil_get_bl_info(struct wil6210_priv * wil)1322 static int wil_get_bl_info(struct wil6210_priv *wil)
1323 {
1324 struct net_device *ndev = wil->main_ndev;
1325 struct wiphy *wiphy = wil_to_wiphy(wil);
1326 union {
1327 struct bl_dedicated_registers_v0 bl0;
1328 struct bl_dedicated_registers_v1 bl1;
1329 } bl;
1330 u32 bl_ver;
1331 u8 *mac;
1332 u16 rf_status;
1333
1334 wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1335 sizeof(bl));
1336 bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1337 mac = bl.bl0.mac_address;
1338
1339 if (bl_ver == 0) {
1340 le32_to_cpus(&bl.bl0.rf_type);
1341 le32_to_cpus(&bl.bl0.baseband_type);
1342 rf_status = 0; /* actually, unknown */
1343 wil_info(wil,
1344 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1345 bl_ver, mac,
1346 bl.bl0.rf_type, bl.bl0.baseband_type);
1347 wil_info(wil, "Boot Loader build unknown for struct v0\n");
1348 } else {
1349 le16_to_cpus(&bl.bl1.rf_type);
1350 rf_status = le16_to_cpu(bl.bl1.rf_status);
1351 le32_to_cpus(&bl.bl1.baseband_type);
1352 le16_to_cpus(&bl.bl1.bl_version_subminor);
1353 le16_to_cpus(&bl.bl1.bl_version_build);
1354 wil_info(wil,
1355 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1356 bl_ver, mac,
1357 bl.bl1.rf_type, rf_status,
1358 bl.bl1.baseband_type);
1359 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1360 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1361 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1362 }
1363
1364 if (!is_valid_ether_addr(mac)) {
1365 wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1366 return -EINVAL;
1367 }
1368
1369 ether_addr_copy(ndev->perm_addr, mac);
1370 ether_addr_copy(wiphy->perm_addr, mac);
1371 if (!is_valid_ether_addr(ndev->dev_addr))
1372 ether_addr_copy(ndev->dev_addr, mac);
1373
1374 if (rf_status) {/* bad RF cable? */
1375 wil_err(wil, "RF communication error 0x%04x",
1376 rf_status);
1377 return -EAGAIN;
1378 }
1379
1380 return 0;
1381 }
1382
wil_bl_crash_info(struct wil6210_priv * wil,bool is_err)1383 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1384 {
1385 u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1386 u32 bl_ver = wil_r(wil, RGF_USER_BL +
1387 offsetof(struct bl_dedicated_registers_v0,
1388 boot_loader_struct_version));
1389
1390 if (bl_ver < 2)
1391 return;
1392
1393 bl_assert_code = wil_r(wil, RGF_USER_BL +
1394 offsetof(struct bl_dedicated_registers_v1,
1395 bl_assert_code));
1396 bl_assert_blink = wil_r(wil, RGF_USER_BL +
1397 offsetof(struct bl_dedicated_registers_v1,
1398 bl_assert_blink));
1399 bl_magic_number = wil_r(wil, RGF_USER_BL +
1400 offsetof(struct bl_dedicated_registers_v1,
1401 bl_magic_number));
1402
1403 if (is_err) {
1404 wil_err(wil,
1405 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1406 bl_assert_code, bl_assert_blink, bl_magic_number);
1407 } else {
1408 wil_dbg_misc(wil,
1409 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1410 bl_assert_code, bl_assert_blink, bl_magic_number);
1411 }
1412 }
1413
wil_get_otp_info(struct wil6210_priv * wil)1414 static int wil_get_otp_info(struct wil6210_priv *wil)
1415 {
1416 struct net_device *ndev = wil->main_ndev;
1417 struct wiphy *wiphy = wil_to_wiphy(wil);
1418 u8 mac[8];
1419 int mac_addr;
1420
1421 /* OEM MAC has precedence */
1422 mac_addr = RGF_OTP_OEM_MAC;
1423 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1424
1425 if (is_valid_ether_addr(mac)) {
1426 wil_info(wil, "using OEM MAC %pM\n", mac);
1427 } else {
1428 if (wil->hw_version >= HW_VER_TALYN_MB)
1429 mac_addr = RGF_OTP_MAC_TALYN_MB;
1430 else
1431 mac_addr = RGF_OTP_MAC;
1432
1433 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1434 sizeof(mac));
1435 }
1436
1437 if (!is_valid_ether_addr(mac)) {
1438 wil_err(wil, "Invalid MAC %pM\n", mac);
1439 return -EINVAL;
1440 }
1441
1442 ether_addr_copy(ndev->perm_addr, mac);
1443 ether_addr_copy(wiphy->perm_addr, mac);
1444 if (!is_valid_ether_addr(ndev->dev_addr))
1445 ether_addr_copy(ndev->dev_addr, mac);
1446
1447 return 0;
1448 }
1449
wil_wait_for_fw_ready(struct wil6210_priv * wil)1450 static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1451 {
1452 ulong to = msecs_to_jiffies(2000);
1453 ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1454
1455 if (0 == left) {
1456 wil_err(wil, "Firmware not ready\n");
1457 return -ETIME;
1458 } else {
1459 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1460 jiffies_to_msecs(to-left), wil->hw_version);
1461 }
1462 return 0;
1463 }
1464
wil_abort_scan(struct wil6210_vif * vif,bool sync)1465 void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1466 {
1467 struct wil6210_priv *wil = vif_to_wil(vif);
1468 int rc;
1469 struct cfg80211_scan_info info = {
1470 .aborted = true,
1471 };
1472
1473 lockdep_assert_held(&wil->vif_mutex);
1474
1475 if (!vif->scan_request)
1476 return;
1477
1478 wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1479 del_timer_sync(&vif->scan_timer);
1480 mutex_unlock(&wil->vif_mutex);
1481 rc = wmi_abort_scan(vif);
1482 if (!rc && sync)
1483 wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1484 msecs_to_jiffies(
1485 WAIT_FOR_SCAN_ABORT_MS));
1486
1487 mutex_lock(&wil->vif_mutex);
1488 if (vif->scan_request) {
1489 cfg80211_scan_done(vif->scan_request, &info);
1490 vif->scan_request = NULL;
1491 }
1492 }
1493
wil_abort_scan_all_vifs(struct wil6210_priv * wil,bool sync)1494 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1495 {
1496 int i;
1497
1498 lockdep_assert_held(&wil->vif_mutex);
1499
1500 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1501 struct wil6210_vif *vif = wil->vifs[i];
1502
1503 if (vif)
1504 wil_abort_scan(vif, sync);
1505 }
1506 }
1507
wil_ps_update(struct wil6210_priv * wil,enum wmi_ps_profile_type ps_profile)1508 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1509 {
1510 int rc;
1511
1512 if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1513 wil_err(wil, "set_power_mgmt not supported\n");
1514 return -EOPNOTSUPP;
1515 }
1516
1517 rc = wmi_ps_dev_profile_cfg(wil, ps_profile);
1518 if (rc)
1519 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1520 else
1521 wil->ps_profile = ps_profile;
1522
1523 return rc;
1524 }
1525
wil_pre_fw_config(struct wil6210_priv * wil)1526 static void wil_pre_fw_config(struct wil6210_priv *wil)
1527 {
1528 wil_clear_fw_log_addr(wil);
1529 /* Mark FW as loaded from host */
1530 wil_s(wil, RGF_USER_USAGE_6, 1);
1531
1532 /* clear any interrupts which on-card-firmware
1533 * may have set
1534 */
1535 wil6210_clear_irq(wil);
1536 /* CAF_ICR - clear and mask */
1537 /* it is W1C, clear by writing back same value */
1538 if (wil->hw_version < HW_VER_TALYN_MB) {
1539 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1540 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1541 }
1542 /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1543 * In Talyn-MB host cannot access this register due to
1544 * access control, hence PAL_UNIT_ICR is cleared by the FW
1545 */
1546 if (wil->hw_version < HW_VER_TALYN_MB)
1547 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1548 0);
1549
1550 if (wil->fw_calib_result > 0) {
1551 __le32 val = cpu_to_le32(wil->fw_calib_result |
1552 (CALIB_RESULT_SIGNATURE << 8));
1553 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1554 }
1555 }
1556
wil_restore_vifs(struct wil6210_priv * wil)1557 static int wil_restore_vifs(struct wil6210_priv *wil)
1558 {
1559 struct wil6210_vif *vif;
1560 struct net_device *ndev;
1561 struct wireless_dev *wdev;
1562 int i, rc;
1563
1564 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1565 vif = wil->vifs[i];
1566 if (!vif)
1567 continue;
1568 vif->ap_isolate = 0;
1569 if (vif->mid) {
1570 ndev = vif_to_ndev(vif);
1571 wdev = vif_to_wdev(vif);
1572 rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1573 wdev->iftype);
1574 if (rc) {
1575 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1576 i, wdev->iftype, rc);
1577 return rc;
1578 }
1579 }
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1587 * driver clears the addresses before FW starts and FW initializes the address
1588 * when it is ready to send logs.
1589 */
wil_clear_fw_log_addr(struct wil6210_priv * wil)1590 void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1591 {
1592 /* FW log addr */
1593 wil_w(wil, RGF_USER_USAGE_1, 0);
1594 /* ucode log addr */
1595 wil_w(wil, RGF_USER_USAGE_2, 0);
1596 wil_dbg_misc(wil, "Cleared FW and ucode log address");
1597 }
1598
1599 /*
1600 * We reset all the structures, and we reset the UMAC.
1601 * After calling this routine, you're expected to reload
1602 * the firmware.
1603 */
wil_reset(struct wil6210_priv * wil,bool load_fw)1604 int wil_reset(struct wil6210_priv *wil, bool load_fw)
1605 {
1606 int rc, i;
1607 unsigned long status_flags = BIT(wil_status_resetting);
1608 int no_flash;
1609 struct wil6210_vif *vif;
1610
1611 wil_dbg_misc(wil, "reset\n");
1612
1613 WARN_ON(!mutex_is_locked(&wil->mutex));
1614 WARN_ON(test_bit(wil_status_napi_en, wil->status));
1615
1616 if (debug_fw) {
1617 static const u8 mac[ETH_ALEN] = {
1618 0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1619 };
1620 struct net_device *ndev = wil->main_ndev;
1621
1622 ether_addr_copy(ndev->perm_addr, mac);
1623 ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1624 return 0;
1625 }
1626
1627 if (wil->hw_version == HW_VER_UNKNOWN)
1628 return -ENODEV;
1629
1630 if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1631 wil->hw_version < HW_VER_TALYN_MB) {
1632 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1633 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1634 }
1635
1636 if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1637 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1638 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1639 }
1640
1641 if (wil->platform_ops.notify) {
1642 rc = wil->platform_ops.notify(wil->platform_handle,
1643 WIL_PLATFORM_EVT_PRE_RESET);
1644 if (rc)
1645 wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1646 rc);
1647 }
1648
1649 set_bit(wil_status_resetting, wil->status);
1650 mutex_lock(&wil->vif_mutex);
1651 wil_abort_scan_all_vifs(wil, false);
1652 mutex_unlock(&wil->vif_mutex);
1653
1654 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1655 vif = wil->vifs[i];
1656 if (vif) {
1657 cancel_work_sync(&vif->disconnect_worker);
1658 wil6210_disconnect(vif, NULL,
1659 WLAN_REASON_DEAUTH_LEAVING);
1660 vif->ptk_rekey_state = WIL_REKEY_IDLE;
1661 }
1662 }
1663 wil_bcast_fini_all(wil);
1664
1665 /* Disable device led before reset*/
1666 wmi_led_cfg(wil, false);
1667
1668 /* prevent NAPI from being scheduled and prevent wmi commands */
1669 mutex_lock(&wil->wmi_mutex);
1670 if (test_bit(wil_status_suspending, wil->status))
1671 status_flags |= BIT(wil_status_suspending);
1672 bitmap_and(wil->status, wil->status, &status_flags,
1673 wil_status_last);
1674 wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1675 mutex_unlock(&wil->wmi_mutex);
1676
1677 wil_mask_irq(wil);
1678
1679 wmi_event_flush(wil);
1680
1681 flush_workqueue(wil->wq_service);
1682 flush_workqueue(wil->wmi_wq);
1683
1684 no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1685 if (!no_flash)
1686 wil_bl_crash_info(wil, false);
1687 wil_disable_irq(wil);
1688 rc = wil_target_reset(wil, no_flash);
1689 wil6210_clear_irq(wil);
1690 wil_enable_irq(wil);
1691 wil->txrx_ops.rx_fini(wil);
1692 wil->txrx_ops.tx_fini(wil);
1693 if (rc) {
1694 if (!no_flash)
1695 wil_bl_crash_info(wil, true);
1696 goto out;
1697 }
1698
1699 if (no_flash) {
1700 rc = wil_get_otp_info(wil);
1701 } else {
1702 rc = wil_get_bl_info(wil);
1703 if (rc == -EAGAIN && !load_fw)
1704 /* ignore RF error if not going up */
1705 rc = 0;
1706 }
1707 if (rc)
1708 goto out;
1709
1710 wil_set_oob_mode(wil, oob_mode);
1711 if (load_fw) {
1712 char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1713
1714 if (wil->secured_boot) {
1715 wil_err(wil, "secured boot is not supported\n");
1716 return -ENOTSUPP;
1717 }
1718
1719 board_file[0] = '\0';
1720 wil_get_board_file(wil, board_file, sizeof(board_file));
1721 wil_info(wil, "Use firmware <%s> + board <%s>\n",
1722 wil->wil_fw_name, board_file);
1723
1724 if (!no_flash)
1725 wil_bl_prepare_halt(wil);
1726
1727 wil_halt_cpu(wil);
1728 memset(wil->fw_version, 0, sizeof(wil->fw_version));
1729 /* Loading f/w from the file */
1730 rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1731 if (rc)
1732 goto out;
1733 if (wil->num_of_brd_entries)
1734 rc = wil_request_board(wil, board_file);
1735 else
1736 rc = wil_request_firmware(wil, board_file, true);
1737 if (rc)
1738 goto out;
1739
1740 wil_pre_fw_config(wil);
1741 wil_release_cpu(wil);
1742 }
1743
1744 /* init after reset */
1745 reinit_completion(&wil->wmi_ready);
1746 reinit_completion(&wil->wmi_call);
1747 reinit_completion(&wil->halp.comp);
1748
1749 clear_bit(wil_status_resetting, wil->status);
1750
1751 if (load_fw) {
1752 wil_unmask_irq(wil);
1753
1754 /* we just started MAC, wait for FW ready */
1755 rc = wil_wait_for_fw_ready(wil);
1756 if (rc)
1757 return rc;
1758
1759 /* check FW is responsive */
1760 rc = wmi_echo(wil);
1761 if (rc) {
1762 wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1763 return rc;
1764 }
1765
1766 wil->txrx_ops.configure_interrupt_moderation(wil);
1767
1768 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1769 * while there is back-pressure from Host during RX
1770 */
1771 if (wil->hw_version >= HW_VER_TALYN_MB)
1772 wil_s(wil, RGF_DMA_MISC_CTL,
1773 BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1774
1775 rc = wil_restore_vifs(wil);
1776 if (rc) {
1777 wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1778 return rc;
1779 }
1780
1781 wil_collect_fw_info(wil);
1782
1783 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1784 wil_ps_update(wil, wil->ps_profile);
1785
1786 if (wil->platform_ops.notify) {
1787 rc = wil->platform_ops.notify(wil->platform_handle,
1788 WIL_PLATFORM_EVT_FW_RDY);
1789 if (rc) {
1790 wil_err(wil, "FW_RDY notify failed, rc %d\n",
1791 rc);
1792 rc = 0;
1793 }
1794 }
1795 }
1796
1797 return rc;
1798
1799 out:
1800 clear_bit(wil_status_resetting, wil->status);
1801 return rc;
1802 }
1803
wil_fw_error_recovery(struct wil6210_priv * wil)1804 void wil_fw_error_recovery(struct wil6210_priv *wil)
1805 {
1806 wil_dbg_misc(wil, "starting fw error recovery\n");
1807
1808 if (test_bit(wil_status_resetting, wil->status)) {
1809 wil_info(wil, "Reset already in progress\n");
1810 return;
1811 }
1812
1813 wil->recovery_state = fw_recovery_pending;
1814 schedule_work(&wil->fw_error_worker);
1815 }
1816
__wil_up(struct wil6210_priv * wil)1817 int __wil_up(struct wil6210_priv *wil)
1818 {
1819 struct net_device *ndev = wil->main_ndev;
1820 struct wireless_dev *wdev = ndev->ieee80211_ptr;
1821 int rc;
1822
1823 WARN_ON(!mutex_is_locked(&wil->mutex));
1824
1825 down_write(&wil->mem_lock);
1826 rc = wil_reset(wil, true);
1827 up_write(&wil->mem_lock);
1828 if (rc)
1829 return rc;
1830
1831 /* Rx RING. After MAC and beacon */
1832 if (rx_ring_order == 0)
1833 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1834 WIL_RX_RING_SIZE_ORDER_DEFAULT :
1835 WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1836
1837 rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1838 if (rc)
1839 return rc;
1840
1841 rc = wil->txrx_ops.tx_init(wil);
1842 if (rc)
1843 return rc;
1844
1845 switch (wdev->iftype) {
1846 case NL80211_IFTYPE_STATION:
1847 wil_dbg_misc(wil, "type: STATION\n");
1848 ndev->type = ARPHRD_ETHER;
1849 break;
1850 case NL80211_IFTYPE_AP:
1851 wil_dbg_misc(wil, "type: AP\n");
1852 ndev->type = ARPHRD_ETHER;
1853 break;
1854 case NL80211_IFTYPE_P2P_CLIENT:
1855 wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1856 ndev->type = ARPHRD_ETHER;
1857 break;
1858 case NL80211_IFTYPE_P2P_GO:
1859 wil_dbg_misc(wil, "type: P2P_GO\n");
1860 ndev->type = ARPHRD_ETHER;
1861 break;
1862 case NL80211_IFTYPE_MONITOR:
1863 wil_dbg_misc(wil, "type: Monitor\n");
1864 ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1865 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1866 break;
1867 default:
1868 return -EOPNOTSUPP;
1869 }
1870
1871 /* MAC address - pre-requisite for other commands */
1872 wmi_set_mac_address(wil, ndev->dev_addr);
1873
1874 wil_dbg_misc(wil, "NAPI enable\n");
1875 napi_enable(&wil->napi_rx);
1876 napi_enable(&wil->napi_tx);
1877 set_bit(wil_status_napi_en, wil->status);
1878
1879 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1880
1881 return 0;
1882 }
1883
wil_up(struct wil6210_priv * wil)1884 int wil_up(struct wil6210_priv *wil)
1885 {
1886 int rc;
1887
1888 wil_dbg_misc(wil, "up\n");
1889
1890 mutex_lock(&wil->mutex);
1891 rc = __wil_up(wil);
1892 mutex_unlock(&wil->mutex);
1893
1894 return rc;
1895 }
1896
__wil_down(struct wil6210_priv * wil)1897 int __wil_down(struct wil6210_priv *wil)
1898 {
1899 int rc;
1900 WARN_ON(!mutex_is_locked(&wil->mutex));
1901
1902 set_bit(wil_status_resetting, wil->status);
1903
1904 wil6210_bus_request(wil, 0);
1905
1906 wil_disable_irq(wil);
1907 if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1908 napi_disable(&wil->napi_rx);
1909 napi_disable(&wil->napi_tx);
1910 wil_dbg_misc(wil, "NAPI disable\n");
1911 }
1912 wil_enable_irq(wil);
1913
1914 mutex_lock(&wil->vif_mutex);
1915 wil_p2p_stop_radio_operations(wil);
1916 wil_abort_scan_all_vifs(wil, false);
1917 mutex_unlock(&wil->vif_mutex);
1918
1919 down_write(&wil->mem_lock);
1920 rc = wil_reset(wil, false);
1921 up_write(&wil->mem_lock);
1922
1923 return rc;
1924 }
1925
wil_down(struct wil6210_priv * wil)1926 int wil_down(struct wil6210_priv *wil)
1927 {
1928 int rc;
1929
1930 wil_dbg_misc(wil, "down\n");
1931
1932 wil_set_recovery_state(wil, fw_recovery_idle);
1933 mutex_lock(&wil->mutex);
1934 rc = __wil_down(wil);
1935 mutex_unlock(&wil->mutex);
1936
1937 return rc;
1938 }
1939
wil_find_cid(struct wil6210_priv * wil,u8 mid,const u8 * mac)1940 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1941 {
1942 int i;
1943 int rc = -ENOENT;
1944
1945 for (i = 0; i < wil->max_assoc_sta; i++) {
1946 if (wil->sta[i].mid == mid &&
1947 wil->sta[i].status != wil_sta_unused &&
1948 ether_addr_equal(wil->sta[i].addr, mac)) {
1949 rc = i;
1950 break;
1951 }
1952 }
1953
1954 return rc;
1955 }
1956
wil_halp_vote(struct wil6210_priv * wil)1957 void wil_halp_vote(struct wil6210_priv *wil)
1958 {
1959 unsigned long rc;
1960 unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1961
1962 if (wil->hw_version >= HW_VER_TALYN_MB)
1963 return;
1964
1965 mutex_lock(&wil->halp.lock);
1966
1967 wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1968 wil->halp.ref_cnt);
1969
1970 if (++wil->halp.ref_cnt == 1) {
1971 reinit_completion(&wil->halp.comp);
1972 /* mark to IRQ context to handle HALP ICR */
1973 wil->halp.handle_icr = true;
1974 wil6210_set_halp(wil);
1975 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1976 if (!rc) {
1977 wil_err(wil, "HALP vote timed out\n");
1978 /* Mask HALP as done in case the interrupt is raised */
1979 wil->halp.handle_icr = false;
1980 wil6210_mask_halp(wil);
1981 } else {
1982 wil_dbg_irq(wil,
1983 "halp_vote: HALP vote completed after %d ms\n",
1984 jiffies_to_msecs(to_jiffies - rc));
1985 }
1986 }
1987
1988 wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1989 wil->halp.ref_cnt);
1990
1991 mutex_unlock(&wil->halp.lock);
1992 }
1993
wil_halp_unvote(struct wil6210_priv * wil)1994 void wil_halp_unvote(struct wil6210_priv *wil)
1995 {
1996 if (wil->hw_version >= HW_VER_TALYN_MB)
1997 return;
1998
1999 WARN_ON(wil->halp.ref_cnt == 0);
2000
2001 mutex_lock(&wil->halp.lock);
2002
2003 wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
2004 wil->halp.ref_cnt);
2005
2006 if (--wil->halp.ref_cnt == 0) {
2007 wil6210_clear_halp(wil);
2008 wil_dbg_irq(wil, "HALP unvote\n");
2009 }
2010
2011 wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2012 wil->halp.ref_cnt);
2013
2014 mutex_unlock(&wil->halp.lock);
2015 }
2016
wil_init_txrx_ops(struct wil6210_priv * wil)2017 void wil_init_txrx_ops(struct wil6210_priv *wil)
2018 {
2019 if (wil->use_enhanced_dma_hw)
2020 wil_init_txrx_ops_edma(wil);
2021 else
2022 wil_init_txrx_ops_legacy_dma(wil);
2023 }
2024