1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
4  *
5  * Copyright (c) 2013 Texas Instruments Inc.
6  * David Griego, <dagriego@biglakesoftware.com>
7  * Dale Farnsworth, <dale@farnsworth.org>
8  * Archit Taneja, <archit@ti.com>
9  *
10  * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
11  * Pawel Osciak, <pawel@osciak.com>
12  * Marek Szyprowski, <m.szyprowski@samsung.com>
13  *
14  * Based on the virtual v4l2-mem2mem example device
15  */
16 
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/fs.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/videodev2.h>
31 #include <linux/log2.h>
32 #include <linux/sizes.h>
33 
34 #include <media/v4l2-common.h>
35 #include <media/v4l2-ctrls.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-event.h>
38 #include <media/v4l2-ioctl.h>
39 #include <media/v4l2-mem2mem.h>
40 #include <media/videobuf2-v4l2.h>
41 #include <media/videobuf2-dma-contig.h>
42 
43 #include "vpdma.h"
44 #include "vpdma_priv.h"
45 #include "vpe_regs.h"
46 #include "sc.h"
47 #include "csc.h"
48 
49 #define VPE_MODULE_NAME "vpe"
50 
51 /* minimum and maximum frame sizes */
52 #define MIN_W		32
53 #define MIN_H		32
54 #define MAX_W		2048
55 #define MAX_H		1184
56 
57 /* required alignments */
58 #define S_ALIGN		0	/* multiple of 1 */
59 #define H_ALIGN		1	/* multiple of 2 */
60 
61 /* flags that indicate a format can be used for capture/output */
62 #define VPE_FMT_TYPE_CAPTURE	(1 << 0)
63 #define VPE_FMT_TYPE_OUTPUT	(1 << 1)
64 
65 /* used as plane indices */
66 #define VPE_MAX_PLANES	2
67 #define VPE_LUMA	0
68 #define VPE_CHROMA	1
69 
70 /* per m2m context info */
71 #define VPE_MAX_SRC_BUFS	3	/* need 3 src fields to de-interlace */
72 
73 #define VPE_DEF_BUFS_PER_JOB	1	/* default one buffer per batch job */
74 
75 /*
76  * each VPE context can need up to 3 config descriptors, 7 input descriptors,
77  * 3 output descriptors, and 10 control descriptors
78  */
79 #define VPE_DESC_LIST_SIZE	(10 * VPDMA_DTD_DESC_SIZE +	\
80 					13 * VPDMA_CFD_CTD_DESC_SIZE)
81 
82 #define vpe_dbg(vpedev, fmt, arg...)	\
83 		dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
84 #define vpe_err(vpedev, fmt, arg...)	\
85 		dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
86 
87 struct vpe_us_coeffs {
88 	unsigned short	anchor_fid0_c0;
89 	unsigned short	anchor_fid0_c1;
90 	unsigned short	anchor_fid0_c2;
91 	unsigned short	anchor_fid0_c3;
92 	unsigned short	interp_fid0_c0;
93 	unsigned short	interp_fid0_c1;
94 	unsigned short	interp_fid0_c2;
95 	unsigned short	interp_fid0_c3;
96 	unsigned short	anchor_fid1_c0;
97 	unsigned short	anchor_fid1_c1;
98 	unsigned short	anchor_fid1_c2;
99 	unsigned short	anchor_fid1_c3;
100 	unsigned short	interp_fid1_c0;
101 	unsigned short	interp_fid1_c1;
102 	unsigned short	interp_fid1_c2;
103 	unsigned short	interp_fid1_c3;
104 };
105 
106 /*
107  * Default upsampler coefficients
108  */
109 static const struct vpe_us_coeffs us_coeffs[] = {
110 	{
111 		/* Coefficients for progressive input */
112 		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
113 		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
114 	},
115 	{
116 		/* Coefficients for Top Field Interlaced input */
117 		0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
118 		/* Coefficients for Bottom Field Interlaced input */
119 		0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
120 	},
121 };
122 
123 /*
124  * the following registers are for configuring some of the parameters of the
125  * motion and edge detection blocks inside DEI, these generally remain the same,
126  * these could be passed later via userspace if some one needs to tweak these.
127  */
128 struct vpe_dei_regs {
129 	unsigned long mdt_spacial_freq_thr_reg;		/* VPE_DEI_REG2 */
130 	unsigned long edi_config_reg;			/* VPE_DEI_REG3 */
131 	unsigned long edi_lut_reg0;			/* VPE_DEI_REG4 */
132 	unsigned long edi_lut_reg1;			/* VPE_DEI_REG5 */
133 	unsigned long edi_lut_reg2;			/* VPE_DEI_REG6 */
134 	unsigned long edi_lut_reg3;			/* VPE_DEI_REG7 */
135 };
136 
137 /*
138  * default expert DEI register values, unlikely to be modified.
139  */
140 static const struct vpe_dei_regs dei_regs = {
141 	.mdt_spacial_freq_thr_reg = 0x020C0804u,
142 	.edi_config_reg = 0x0118100Cu,
143 	.edi_lut_reg0 = 0x08040200u,
144 	.edi_lut_reg1 = 0x1010100Cu,
145 	.edi_lut_reg2 = 0x10101010u,
146 	.edi_lut_reg3 = 0x10101010u,
147 };
148 
149 /*
150  * The port_data structure contains per-port data.
151  */
152 struct vpe_port_data {
153 	enum vpdma_channel channel;	/* VPDMA channel */
154 	u8	vb_index;		/* input frame f, f-1, f-2 index */
155 	u8	vb_part;		/* plane index for co-panar formats */
156 };
157 
158 /*
159  * Define indices into the port_data tables
160  */
161 #define VPE_PORT_LUMA1_IN	0
162 #define VPE_PORT_CHROMA1_IN	1
163 #define VPE_PORT_LUMA2_IN	2
164 #define VPE_PORT_CHROMA2_IN	3
165 #define VPE_PORT_LUMA3_IN	4
166 #define VPE_PORT_CHROMA3_IN	5
167 #define VPE_PORT_MV_IN		6
168 #define VPE_PORT_MV_OUT		7
169 #define VPE_PORT_LUMA_OUT	8
170 #define VPE_PORT_CHROMA_OUT	9
171 #define VPE_PORT_RGB_OUT	10
172 
173 static const struct vpe_port_data port_data[11] = {
174 	[VPE_PORT_LUMA1_IN] = {
175 		.channel	= VPE_CHAN_LUMA1_IN,
176 		.vb_index	= 0,
177 		.vb_part	= VPE_LUMA,
178 	},
179 	[VPE_PORT_CHROMA1_IN] = {
180 		.channel	= VPE_CHAN_CHROMA1_IN,
181 		.vb_index	= 0,
182 		.vb_part	= VPE_CHROMA,
183 	},
184 	[VPE_PORT_LUMA2_IN] = {
185 		.channel	= VPE_CHAN_LUMA2_IN,
186 		.vb_index	= 1,
187 		.vb_part	= VPE_LUMA,
188 	},
189 	[VPE_PORT_CHROMA2_IN] = {
190 		.channel	= VPE_CHAN_CHROMA2_IN,
191 		.vb_index	= 1,
192 		.vb_part	= VPE_CHROMA,
193 	},
194 	[VPE_PORT_LUMA3_IN] = {
195 		.channel	= VPE_CHAN_LUMA3_IN,
196 		.vb_index	= 2,
197 		.vb_part	= VPE_LUMA,
198 	},
199 	[VPE_PORT_CHROMA3_IN] = {
200 		.channel	= VPE_CHAN_CHROMA3_IN,
201 		.vb_index	= 2,
202 		.vb_part	= VPE_CHROMA,
203 	},
204 	[VPE_PORT_MV_IN] = {
205 		.channel	= VPE_CHAN_MV_IN,
206 	},
207 	[VPE_PORT_MV_OUT] = {
208 		.channel	= VPE_CHAN_MV_OUT,
209 	},
210 	[VPE_PORT_LUMA_OUT] = {
211 		.channel	= VPE_CHAN_LUMA_OUT,
212 		.vb_part	= VPE_LUMA,
213 	},
214 	[VPE_PORT_CHROMA_OUT] = {
215 		.channel	= VPE_CHAN_CHROMA_OUT,
216 		.vb_part	= VPE_CHROMA,
217 	},
218 	[VPE_PORT_RGB_OUT] = {
219 		.channel	= VPE_CHAN_RGB_OUT,
220 		.vb_part	= VPE_LUMA,
221 	},
222 };
223 
224 
225 /* driver info for each of the supported video formats */
226 struct vpe_fmt {
227 	u32	fourcc;			/* standard format identifier */
228 	u8	types;			/* CAPTURE and/or OUTPUT */
229 	u8	coplanar;		/* set for unpacked Luma and Chroma */
230 	/* vpdma format info for each plane */
231 	struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
232 };
233 
234 static struct vpe_fmt vpe_formats[] = {
235 	{
236 		.fourcc		= V4L2_PIX_FMT_NV16,
237 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
238 		.coplanar	= 1,
239 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
240 				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
241 				  },
242 	},
243 	{
244 		.fourcc		= V4L2_PIX_FMT_NV12,
245 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
246 		.coplanar	= 1,
247 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
248 				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
249 				  },
250 	},
251 	{
252 		.fourcc		= V4L2_PIX_FMT_YUYV,
253 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
254 		.coplanar	= 0,
255 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
256 				  },
257 	},
258 	{
259 		.fourcc		= V4L2_PIX_FMT_UYVY,
260 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
261 		.coplanar	= 0,
262 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
263 				  },
264 	},
265 	{
266 		.fourcc		= V4L2_PIX_FMT_RGB24,
267 		.types		= VPE_FMT_TYPE_CAPTURE,
268 		.coplanar	= 0,
269 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
270 				  },
271 	},
272 	{
273 		.fourcc		= V4L2_PIX_FMT_RGB32,
274 		.types		= VPE_FMT_TYPE_CAPTURE,
275 		.coplanar	= 0,
276 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
277 				  },
278 	},
279 	{
280 		.fourcc		= V4L2_PIX_FMT_BGR24,
281 		.types		= VPE_FMT_TYPE_CAPTURE,
282 		.coplanar	= 0,
283 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
284 				  },
285 	},
286 	{
287 		.fourcc		= V4L2_PIX_FMT_BGR32,
288 		.types		= VPE_FMT_TYPE_CAPTURE,
289 		.coplanar	= 0,
290 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
291 				  },
292 	},
293 	{
294 		.fourcc		= V4L2_PIX_FMT_RGB565,
295 		.types		= VPE_FMT_TYPE_CAPTURE,
296 		.coplanar	= 0,
297 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
298 				  },
299 	},
300 	{
301 		.fourcc		= V4L2_PIX_FMT_RGB555,
302 		.types		= VPE_FMT_TYPE_CAPTURE,
303 		.coplanar	= 0,
304 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
305 				  },
306 	},
307 };
308 
309 /*
310  * per-queue, driver-specific private data.
311  * there is one source queue and one destination queue for each m2m context.
312  */
313 struct vpe_q_data {
314 	unsigned int		width;				/* frame width */
315 	unsigned int		height;				/* frame height */
316 	unsigned int		nplanes;			/* Current number of planes */
317 	unsigned int		bytesperline[VPE_MAX_PLANES];	/* bytes per line in memory */
318 	enum v4l2_colorspace	colorspace;
319 	enum v4l2_field		field;				/* supported field value */
320 	unsigned int		flags;
321 	unsigned int		sizeimage[VPE_MAX_PLANES];	/* image size in memory */
322 	struct v4l2_rect	c_rect;				/* crop/compose rectangle */
323 	struct vpe_fmt		*fmt;				/* format info */
324 };
325 
326 /* vpe_q_data flag bits */
327 #define	Q_DATA_FRAME_1D			BIT(0)
328 #define	Q_DATA_MODE_TILED		BIT(1)
329 #define	Q_DATA_INTERLACED_ALTERNATE	BIT(2)
330 #define	Q_DATA_INTERLACED_SEQ_TB	BIT(3)
331 
332 #define Q_IS_INTERLACED		(Q_DATA_INTERLACED_ALTERNATE | \
333 				Q_DATA_INTERLACED_SEQ_TB)
334 
335 enum {
336 	Q_DATA_SRC = 0,
337 	Q_DATA_DST = 1,
338 };
339 
340 /* find our format description corresponding to the passed v4l2_format */
find_format(struct v4l2_format * f)341 static struct vpe_fmt *find_format(struct v4l2_format *f)
342 {
343 	struct vpe_fmt *fmt;
344 	unsigned int k;
345 
346 	for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
347 		fmt = &vpe_formats[k];
348 		if (fmt->fourcc == f->fmt.pix.pixelformat)
349 			return fmt;
350 	}
351 
352 	return NULL;
353 }
354 
355 /*
356  * there is one vpe_dev structure in the driver, it is shared by
357  * all instances.
358  */
359 struct vpe_dev {
360 	struct v4l2_device	v4l2_dev;
361 	struct video_device	vfd;
362 	struct v4l2_m2m_dev	*m2m_dev;
363 
364 	atomic_t		num_instances;	/* count of driver instances */
365 	dma_addr_t		loaded_mmrs;	/* shadow mmrs in device */
366 	struct mutex		dev_mutex;
367 	spinlock_t		lock;
368 
369 	int			irq;
370 	void __iomem		*base;
371 	struct resource		*res;
372 
373 	struct vpdma_data	vpdma_data;
374 	struct vpdma_data	*vpdma;		/* vpdma data handle */
375 	struct sc_data		*sc;		/* scaler data handle */
376 	struct csc_data		*csc;		/* csc data handle */
377 };
378 
379 /*
380  * There is one vpe_ctx structure for each m2m context.
381  */
382 struct vpe_ctx {
383 	struct v4l2_fh		fh;
384 	struct vpe_dev		*dev;
385 	struct v4l2_ctrl_handler hdl;
386 
387 	unsigned int		field;			/* current field */
388 	unsigned int		sequence;		/* current frame/field seq */
389 	unsigned int		aborting;		/* abort after next irq */
390 
391 	unsigned int		bufs_per_job;		/* input buffers per batch */
392 	unsigned int		bufs_completed;		/* bufs done in this batch */
393 
394 	struct vpe_q_data	q_data[2];		/* src & dst queue data */
395 	struct vb2_v4l2_buffer	*src_vbs[VPE_MAX_SRC_BUFS];
396 	struct vb2_v4l2_buffer	*dst_vb;
397 
398 	dma_addr_t		mv_buf_dma[2];		/* dma addrs of motion vector in/out bufs */
399 	void			*mv_buf[2];		/* virtual addrs of motion vector bufs */
400 	size_t			mv_buf_size;		/* current motion vector buffer size */
401 	struct vpdma_buf	mmr_adb;		/* shadow reg addr/data block */
402 	struct vpdma_buf	sc_coeff_h;		/* h coeff buffer */
403 	struct vpdma_buf	sc_coeff_v;		/* v coeff buffer */
404 	struct vpdma_desc_list	desc_list;		/* DMA descriptor list */
405 
406 	bool			deinterlacing;		/* using de-interlacer */
407 	bool			load_mmrs;		/* have new shadow reg values */
408 
409 	unsigned int		src_mv_buf_selector;
410 };
411 
412 
413 /*
414  * M2M devices get 2 queues.
415  * Return the queue given the type.
416  */
get_q_data(struct vpe_ctx * ctx,enum v4l2_buf_type type)417 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
418 				     enum v4l2_buf_type type)
419 {
420 	switch (type) {
421 	case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
422 	case V4L2_BUF_TYPE_VIDEO_OUTPUT:
423 		return &ctx->q_data[Q_DATA_SRC];
424 	case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
425 	case V4L2_BUF_TYPE_VIDEO_CAPTURE:
426 		return &ctx->q_data[Q_DATA_DST];
427 	default:
428 		return NULL;
429 	}
430 	return NULL;
431 }
432 
read_reg(struct vpe_dev * dev,int offset)433 static u32 read_reg(struct vpe_dev *dev, int offset)
434 {
435 	return ioread32(dev->base + offset);
436 }
437 
write_reg(struct vpe_dev * dev,int offset,u32 value)438 static void write_reg(struct vpe_dev *dev, int offset, u32 value)
439 {
440 	iowrite32(value, dev->base + offset);
441 }
442 
443 /* register field read/write helpers */
get_field(u32 value,u32 mask,int shift)444 static int get_field(u32 value, u32 mask, int shift)
445 {
446 	return (value & (mask << shift)) >> shift;
447 }
448 
read_field_reg(struct vpe_dev * dev,int offset,u32 mask,int shift)449 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
450 {
451 	return get_field(read_reg(dev, offset), mask, shift);
452 }
453 
write_field(u32 * valp,u32 field,u32 mask,int shift)454 static void write_field(u32 *valp, u32 field, u32 mask, int shift)
455 {
456 	u32 val = *valp;
457 
458 	val &= ~(mask << shift);
459 	val |= (field & mask) << shift;
460 	*valp = val;
461 }
462 
write_field_reg(struct vpe_dev * dev,int offset,u32 field,u32 mask,int shift)463 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
464 		u32 mask, int shift)
465 {
466 	u32 val = read_reg(dev, offset);
467 
468 	write_field(&val, field, mask, shift);
469 
470 	write_reg(dev, offset, val);
471 }
472 
473 /*
474  * DMA address/data block for the shadow registers
475  */
476 struct vpe_mmr_adb {
477 	struct vpdma_adb_hdr	out_fmt_hdr;
478 	u32			out_fmt_reg[1];
479 	u32			out_fmt_pad[3];
480 	struct vpdma_adb_hdr	us1_hdr;
481 	u32			us1_regs[8];
482 	struct vpdma_adb_hdr	us2_hdr;
483 	u32			us2_regs[8];
484 	struct vpdma_adb_hdr	us3_hdr;
485 	u32			us3_regs[8];
486 	struct vpdma_adb_hdr	dei_hdr;
487 	u32			dei_regs[8];
488 	struct vpdma_adb_hdr	sc_hdr0;
489 	u32			sc_regs0[7];
490 	u32			sc_pad0[1];
491 	struct vpdma_adb_hdr	sc_hdr8;
492 	u32			sc_regs8[6];
493 	u32			sc_pad8[2];
494 	struct vpdma_adb_hdr	sc_hdr17;
495 	u32			sc_regs17[9];
496 	u32			sc_pad17[3];
497 	struct vpdma_adb_hdr	csc_hdr;
498 	u32			csc_regs[6];
499 	u32			csc_pad[2];
500 };
501 
502 #define GET_OFFSET_TOP(ctx, obj, reg)	\
503 	((obj)->res->start - ctx->dev->res->start + reg)
504 
505 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a)	\
506 	VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
507 /*
508  * Set the headers for all of the address/data block structures.
509  */
init_adb_hdrs(struct vpe_ctx * ctx)510 static void init_adb_hdrs(struct vpe_ctx *ctx)
511 {
512 	VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
513 	VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
514 	VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
515 	VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
516 	VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
517 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
518 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
519 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
520 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
521 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
522 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
523 	VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
524 		GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
525 };
526 
527 /*
528  * Allocate or re-allocate the motion vector DMA buffers
529  * There are two buffers, one for input and one for output.
530  * However, the roles are reversed after each field is processed.
531  * In other words, after each field is processed, the previous
532  * output (dst) MV buffer becomes the new input (src) MV buffer.
533  */
realloc_mv_buffers(struct vpe_ctx * ctx,size_t size)534 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
535 {
536 	struct device *dev = ctx->dev->v4l2_dev.dev;
537 
538 	if (ctx->mv_buf_size == size)
539 		return 0;
540 
541 	if (ctx->mv_buf[0])
542 		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
543 			ctx->mv_buf_dma[0]);
544 
545 	if (ctx->mv_buf[1])
546 		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
547 			ctx->mv_buf_dma[1]);
548 
549 	if (size == 0)
550 		return 0;
551 
552 	ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
553 				GFP_KERNEL);
554 	if (!ctx->mv_buf[0]) {
555 		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
556 		return -ENOMEM;
557 	}
558 
559 	ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
560 				GFP_KERNEL);
561 	if (!ctx->mv_buf[1]) {
562 		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
563 		dma_free_coherent(dev, size, ctx->mv_buf[0],
564 			ctx->mv_buf_dma[0]);
565 
566 		return -ENOMEM;
567 	}
568 
569 	ctx->mv_buf_size = size;
570 	ctx->src_mv_buf_selector = 0;
571 
572 	return 0;
573 }
574 
free_mv_buffers(struct vpe_ctx * ctx)575 static void free_mv_buffers(struct vpe_ctx *ctx)
576 {
577 	realloc_mv_buffers(ctx, 0);
578 }
579 
580 /*
581  * While de-interlacing, we keep the two most recent input buffers
582  * around.  This function frees those two buffers when we have
583  * finished processing the current stream.
584  */
free_vbs(struct vpe_ctx * ctx)585 static void free_vbs(struct vpe_ctx *ctx)
586 {
587 	struct vpe_dev *dev = ctx->dev;
588 	unsigned long flags;
589 
590 	if (ctx->src_vbs[2] == NULL)
591 		return;
592 
593 	spin_lock_irqsave(&dev->lock, flags);
594 	if (ctx->src_vbs[2]) {
595 		v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
596 		if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
597 			v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
598 		ctx->src_vbs[2] = NULL;
599 		ctx->src_vbs[1] = NULL;
600 	}
601 	spin_unlock_irqrestore(&dev->lock, flags);
602 }
603 
604 /*
605  * Enable or disable the VPE clocks
606  */
vpe_set_clock_enable(struct vpe_dev * dev,bool on)607 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
608 {
609 	u32 val = 0;
610 
611 	if (on)
612 		val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
613 	write_reg(dev, VPE_CLK_ENABLE, val);
614 }
615 
vpe_top_reset(struct vpe_dev * dev)616 static void vpe_top_reset(struct vpe_dev *dev)
617 {
618 
619 	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
620 		VPE_DATA_PATH_CLK_RESET_SHIFT);
621 
622 	usleep_range(100, 150);
623 
624 	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
625 		VPE_DATA_PATH_CLK_RESET_SHIFT);
626 }
627 
vpe_top_vpdma_reset(struct vpe_dev * dev)628 static void vpe_top_vpdma_reset(struct vpe_dev *dev)
629 {
630 	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
631 		VPE_VPDMA_CLK_RESET_SHIFT);
632 
633 	usleep_range(100, 150);
634 
635 	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
636 		VPE_VPDMA_CLK_RESET_SHIFT);
637 }
638 
639 /*
640  * Load the correct of upsampler coefficients into the shadow MMRs
641  */
set_us_coefficients(struct vpe_ctx * ctx)642 static void set_us_coefficients(struct vpe_ctx *ctx)
643 {
644 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
645 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
646 	u32 *us1_reg = &mmr_adb->us1_regs[0];
647 	u32 *us2_reg = &mmr_adb->us2_regs[0];
648 	u32 *us3_reg = &mmr_adb->us3_regs[0];
649 	const unsigned short *cp, *end_cp;
650 
651 	cp = &us_coeffs[0].anchor_fid0_c0;
652 
653 	if (s_q_data->flags & Q_IS_INTERLACED)		/* interlaced */
654 		cp += sizeof(us_coeffs[0]) / sizeof(*cp);
655 
656 	end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
657 
658 	while (cp < end_cp) {
659 		write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
660 		write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
661 		*us2_reg++ = *us1_reg;
662 		*us3_reg++ = *us1_reg++;
663 	}
664 	ctx->load_mmrs = true;
665 }
666 
667 /*
668  * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
669  */
set_cfg_modes(struct vpe_ctx * ctx)670 static void set_cfg_modes(struct vpe_ctx *ctx)
671 {
672 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
673 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
674 	u32 *us1_reg0 = &mmr_adb->us1_regs[0];
675 	u32 *us2_reg0 = &mmr_adb->us2_regs[0];
676 	u32 *us3_reg0 = &mmr_adb->us3_regs[0];
677 	int cfg_mode = 1;
678 
679 	/*
680 	 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
681 	 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
682 	 */
683 
684 	if (fmt->fourcc == V4L2_PIX_FMT_NV12)
685 		cfg_mode = 0;
686 
687 	write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
688 	write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
689 	write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
690 
691 	ctx->load_mmrs = true;
692 }
693 
set_line_modes(struct vpe_ctx * ctx)694 static void set_line_modes(struct vpe_ctx *ctx)
695 {
696 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
697 	int line_mode = 1;
698 
699 	if (fmt->fourcc == V4L2_PIX_FMT_NV12)
700 		line_mode = 0;		/* double lines to line buffer */
701 
702 	/* regs for now */
703 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
704 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
705 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
706 
707 	/* frame start for input luma */
708 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
709 		VPE_CHAN_LUMA1_IN);
710 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
711 		VPE_CHAN_LUMA2_IN);
712 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
713 		VPE_CHAN_LUMA3_IN);
714 
715 	/* frame start for input chroma */
716 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
717 		VPE_CHAN_CHROMA1_IN);
718 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
719 		VPE_CHAN_CHROMA2_IN);
720 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
721 		VPE_CHAN_CHROMA3_IN);
722 
723 	/* frame start for MV in client */
724 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
725 		VPE_CHAN_MV_IN);
726 }
727 
728 /*
729  * Set the shadow registers that are modified when the source
730  * format changes.
731  */
set_src_registers(struct vpe_ctx * ctx)732 static void set_src_registers(struct vpe_ctx *ctx)
733 {
734 	set_us_coefficients(ctx);
735 }
736 
737 /*
738  * Set the shadow registers that are modified when the destination
739  * format changes.
740  */
set_dst_registers(struct vpe_ctx * ctx)741 static void set_dst_registers(struct vpe_ctx *ctx)
742 {
743 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
744 	enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
745 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
746 	u32 val = 0;
747 
748 	if (clrspc == V4L2_COLORSPACE_SRGB) {
749 		val |= VPE_RGB_OUT_SELECT;
750 		vpdma_set_bg_color(ctx->dev->vpdma,
751 			(struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
752 	} else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
753 		val |= VPE_COLOR_SEPARATE_422;
754 
755 	/*
756 	 * the source of CHR_DS and CSC is always the scaler, irrespective of
757 	 * whether it's used or not
758 	 */
759 	val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
760 
761 	if (fmt->fourcc != V4L2_PIX_FMT_NV12)
762 		val |= VPE_DS_BYPASS;
763 
764 	mmr_adb->out_fmt_reg[0] = val;
765 
766 	ctx->load_mmrs = true;
767 }
768 
769 /*
770  * Set the de-interlacer shadow register values
771  */
set_dei_regs(struct vpe_ctx * ctx)772 static void set_dei_regs(struct vpe_ctx *ctx)
773 {
774 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
775 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
776 	unsigned int src_h = s_q_data->c_rect.height;
777 	unsigned int src_w = s_q_data->c_rect.width;
778 	u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
779 	bool deinterlace = true;
780 	u32 val = 0;
781 
782 	/*
783 	 * according to TRM, we should set DEI in progressive bypass mode when
784 	 * the input content is progressive, however, DEI is bypassed correctly
785 	 * for both progressive and interlace content in interlace bypass mode.
786 	 * It has been recommended not to use progressive bypass mode.
787 	 */
788 	if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
789 		deinterlace = false;
790 		val = VPE_DEI_INTERLACE_BYPASS;
791 	}
792 
793 	src_h = deinterlace ? src_h * 2 : src_h;
794 
795 	val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
796 		(src_w << VPE_DEI_WIDTH_SHIFT) |
797 		VPE_DEI_FIELD_FLUSH;
798 
799 	*dei_mmr0 = val;
800 
801 	ctx->load_mmrs = true;
802 }
803 
set_dei_shadow_registers(struct vpe_ctx * ctx)804 static void set_dei_shadow_registers(struct vpe_ctx *ctx)
805 {
806 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
807 	u32 *dei_mmr = &mmr_adb->dei_regs[0];
808 	const struct vpe_dei_regs *cur = &dei_regs;
809 
810 	dei_mmr[2]  = cur->mdt_spacial_freq_thr_reg;
811 	dei_mmr[3]  = cur->edi_config_reg;
812 	dei_mmr[4]  = cur->edi_lut_reg0;
813 	dei_mmr[5]  = cur->edi_lut_reg1;
814 	dei_mmr[6]  = cur->edi_lut_reg2;
815 	dei_mmr[7]  = cur->edi_lut_reg3;
816 
817 	ctx->load_mmrs = true;
818 }
819 
config_edi_input_mode(struct vpe_ctx * ctx,int mode)820 static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
821 {
822 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
823 	u32 *edi_config_reg = &mmr_adb->dei_regs[3];
824 
825 	if (mode & 0x2)
826 		write_field(edi_config_reg, 1, 1, 2);	/* EDI_ENABLE_3D */
827 
828 	if (mode & 0x3)
829 		write_field(edi_config_reg, 1, 1, 3);	/* EDI_CHROMA_3D  */
830 
831 	write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
832 		VPE_EDI_INP_MODE_SHIFT);
833 
834 	ctx->load_mmrs = true;
835 }
836 
837 /*
838  * Set the shadow registers whose values are modified when either the
839  * source or destination format is changed.
840  */
set_srcdst_params(struct vpe_ctx * ctx)841 static int set_srcdst_params(struct vpe_ctx *ctx)
842 {
843 	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
844 	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
845 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
846 	unsigned int src_w = s_q_data->c_rect.width;
847 	unsigned int src_h = s_q_data->c_rect.height;
848 	unsigned int dst_w = d_q_data->c_rect.width;
849 	unsigned int dst_h = d_q_data->c_rect.height;
850 	size_t mv_buf_size;
851 	int ret;
852 
853 	ctx->sequence = 0;
854 	ctx->field = V4L2_FIELD_TOP;
855 
856 	if ((s_q_data->flags & Q_IS_INTERLACED) &&
857 			!(d_q_data->flags & Q_IS_INTERLACED)) {
858 		int bytes_per_line;
859 		const struct vpdma_data_format *mv =
860 			&vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
861 
862 		/*
863 		 * we make sure that the source image has a 16 byte aligned
864 		 * stride, we need to do the same for the motion vector buffer
865 		 * by aligning it's stride to the next 16 byte boundary. this
866 		 * extra space will not be used by the de-interlacer, but will
867 		 * ensure that vpdma operates correctly
868 		 */
869 		bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
870 					VPDMA_STRIDE_ALIGN);
871 		mv_buf_size = bytes_per_line * s_q_data->height;
872 
873 		ctx->deinterlacing = true;
874 		src_h <<= 1;
875 	} else {
876 		ctx->deinterlacing = false;
877 		mv_buf_size = 0;
878 	}
879 
880 	free_vbs(ctx);
881 	ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
882 
883 	ret = realloc_mv_buffers(ctx, mv_buf_size);
884 	if (ret)
885 		return ret;
886 
887 	set_cfg_modes(ctx);
888 	set_dei_regs(ctx);
889 
890 	csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
891 		s_q_data->colorspace, d_q_data->colorspace);
892 
893 	sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
894 	sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
895 
896 	sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
897 		&mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
898 		src_w, src_h, dst_w, dst_h);
899 
900 	return 0;
901 }
902 
903 /*
904  * Return the vpe_ctx structure for a given struct file
905  */
file2ctx(struct file * file)906 static struct vpe_ctx *file2ctx(struct file *file)
907 {
908 	return container_of(file->private_data, struct vpe_ctx, fh);
909 }
910 
911 /*
912  * mem2mem callbacks
913  */
914 
915 /*
916  * job_ready() - check whether an instance is ready to be scheduled to run
917  */
job_ready(void * priv)918 static int job_ready(void *priv)
919 {
920 	struct vpe_ctx *ctx = priv;
921 
922 	/*
923 	 * This check is needed as this might be called directly from driver
924 	 * When called by m2m framework, this will always satisfy, but when
925 	 * called from vpe_irq, this might fail. (src stream with zero buffers)
926 	 */
927 	if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
928 		v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
929 		return 0;
930 
931 	return 1;
932 }
933 
job_abort(void * priv)934 static void job_abort(void *priv)
935 {
936 	struct vpe_ctx *ctx = priv;
937 
938 	/* Will cancel the transaction in the next interrupt handler */
939 	ctx->aborting = 1;
940 }
941 
vpe_dump_regs(struct vpe_dev * dev)942 static void vpe_dump_regs(struct vpe_dev *dev)
943 {
944 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
945 
946 	vpe_dbg(dev, "VPE Registers:\n");
947 
948 	DUMPREG(PID);
949 	DUMPREG(SYSCONFIG);
950 	DUMPREG(INT0_STATUS0_RAW);
951 	DUMPREG(INT0_STATUS0);
952 	DUMPREG(INT0_ENABLE0);
953 	DUMPREG(INT0_STATUS1_RAW);
954 	DUMPREG(INT0_STATUS1);
955 	DUMPREG(INT0_ENABLE1);
956 	DUMPREG(CLK_ENABLE);
957 	DUMPREG(CLK_RESET);
958 	DUMPREG(CLK_FORMAT_SELECT);
959 	DUMPREG(CLK_RANGE_MAP);
960 	DUMPREG(US1_R0);
961 	DUMPREG(US1_R1);
962 	DUMPREG(US1_R2);
963 	DUMPREG(US1_R3);
964 	DUMPREG(US1_R4);
965 	DUMPREG(US1_R5);
966 	DUMPREG(US1_R6);
967 	DUMPREG(US1_R7);
968 	DUMPREG(US2_R0);
969 	DUMPREG(US2_R1);
970 	DUMPREG(US2_R2);
971 	DUMPREG(US2_R3);
972 	DUMPREG(US2_R4);
973 	DUMPREG(US2_R5);
974 	DUMPREG(US2_R6);
975 	DUMPREG(US2_R7);
976 	DUMPREG(US3_R0);
977 	DUMPREG(US3_R1);
978 	DUMPREG(US3_R2);
979 	DUMPREG(US3_R3);
980 	DUMPREG(US3_R4);
981 	DUMPREG(US3_R5);
982 	DUMPREG(US3_R6);
983 	DUMPREG(US3_R7);
984 	DUMPREG(DEI_FRAME_SIZE);
985 	DUMPREG(MDT_BYPASS);
986 	DUMPREG(MDT_SF_THRESHOLD);
987 	DUMPREG(EDI_CONFIG);
988 	DUMPREG(DEI_EDI_LUT_R0);
989 	DUMPREG(DEI_EDI_LUT_R1);
990 	DUMPREG(DEI_EDI_LUT_R2);
991 	DUMPREG(DEI_EDI_LUT_R3);
992 	DUMPREG(DEI_FMD_WINDOW_R0);
993 	DUMPREG(DEI_FMD_WINDOW_R1);
994 	DUMPREG(DEI_FMD_CONTROL_R0);
995 	DUMPREG(DEI_FMD_CONTROL_R1);
996 	DUMPREG(DEI_FMD_STATUS_R0);
997 	DUMPREG(DEI_FMD_STATUS_R1);
998 	DUMPREG(DEI_FMD_STATUS_R2);
999 #undef DUMPREG
1000 
1001 	sc_dump_regs(dev->sc);
1002 	csc_dump_regs(dev->csc);
1003 }
1004 
add_out_dtd(struct vpe_ctx * ctx,int port)1005 static void add_out_dtd(struct vpe_ctx *ctx, int port)
1006 {
1007 	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
1008 	const struct vpe_port_data *p_data = &port_data[port];
1009 	struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
1010 	struct vpe_fmt *fmt = q_data->fmt;
1011 	const struct vpdma_data_format *vpdma_fmt;
1012 	int mv_buf_selector = !ctx->src_mv_buf_selector;
1013 	dma_addr_t dma_addr;
1014 	u32 flags = 0;
1015 	u32 offset = 0;
1016 
1017 	if (port == VPE_PORT_MV_OUT) {
1018 		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1019 		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1020 		q_data = &ctx->q_data[Q_DATA_SRC];
1021 	} else {
1022 		/* to incorporate interleaved formats */
1023 		int plane = fmt->coplanar ? p_data->vb_part : 0;
1024 
1025 		vpdma_fmt = fmt->vpdma_fmt[plane];
1026 		/*
1027 		 * If we are using a single plane buffer and
1028 		 * we need to set a separate vpdma chroma channel.
1029 		 */
1030 		if (q_data->nplanes == 1 && plane) {
1031 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1032 			/* Compute required offset */
1033 			offset = q_data->bytesperline[0] * q_data->height;
1034 		} else {
1035 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1036 			/* Use address as is, no offset */
1037 			offset = 0;
1038 		}
1039 		if (!dma_addr) {
1040 			vpe_err(ctx->dev,
1041 				"acquiring output buffer(%d) dma_addr failed\n",
1042 				port);
1043 			return;
1044 		}
1045 		/* Apply the offset */
1046 		dma_addr += offset;
1047 	}
1048 
1049 	if (q_data->flags & Q_DATA_FRAME_1D)
1050 		flags |= VPDMA_DATA_FRAME_1D;
1051 	if (q_data->flags & Q_DATA_MODE_TILED)
1052 		flags |= VPDMA_DATA_MODE_TILED;
1053 
1054 	vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
1055 			   MAX_W, MAX_H);
1056 
1057 	vpdma_add_out_dtd(&ctx->desc_list, q_data->width,
1058 			  q_data->bytesperline[VPE_LUMA], &q_data->c_rect,
1059 			  vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
1060 			  MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
1061 }
1062 
add_in_dtd(struct vpe_ctx * ctx,int port)1063 static void add_in_dtd(struct vpe_ctx *ctx, int port)
1064 {
1065 	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1066 	const struct vpe_port_data *p_data = &port_data[port];
1067 	struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
1068 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1069 	struct vpe_fmt *fmt = q_data->fmt;
1070 	const struct vpdma_data_format *vpdma_fmt;
1071 	int mv_buf_selector = ctx->src_mv_buf_selector;
1072 	int field = vbuf->field == V4L2_FIELD_BOTTOM;
1073 	int frame_width, frame_height;
1074 	dma_addr_t dma_addr;
1075 	u32 flags = 0;
1076 	u32 offset = 0;
1077 
1078 	if (port == VPE_PORT_MV_IN) {
1079 		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1080 		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1081 	} else {
1082 		/* to incorporate interleaved formats */
1083 		int plane = fmt->coplanar ? p_data->vb_part : 0;
1084 
1085 		vpdma_fmt = fmt->vpdma_fmt[plane];
1086 		/*
1087 		 * If we are using a single plane buffer and
1088 		 * we need to set a separate vpdma chroma channel.
1089 		 */
1090 		if (q_data->nplanes == 1 && plane) {
1091 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1092 			/* Compute required offset */
1093 			offset = q_data->bytesperline[0] * q_data->height;
1094 		} else {
1095 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1096 			/* Use address as is, no offset */
1097 			offset = 0;
1098 		}
1099 		if (!dma_addr) {
1100 			vpe_err(ctx->dev,
1101 				"acquiring output buffer(%d) dma_addr failed\n",
1102 				port);
1103 			return;
1104 		}
1105 		/* Apply the offset */
1106 		dma_addr += offset;
1107 
1108 		if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) {
1109 			/*
1110 			 * Use top or bottom field from same vb alternately
1111 			 * f,f-1,f-2 = TBT when seq is even
1112 			 * f,f-1,f-2 = BTB when seq is odd
1113 			 */
1114 			field = (p_data->vb_index + (ctx->sequence % 2)) % 2;
1115 
1116 			if (field) {
1117 				/*
1118 				 * bottom field of a SEQ_TB buffer
1119 				 * Skip the top field data by
1120 				 */
1121 				int height = q_data->height / 2;
1122 				int bpp = fmt->fourcc == V4L2_PIX_FMT_NV12 ?
1123 						1 : (vpdma_fmt->depth >> 3);
1124 				if (plane)
1125 					height /= 2;
1126 				dma_addr += q_data->width * height * bpp;
1127 			}
1128 		}
1129 	}
1130 
1131 	if (q_data->flags & Q_DATA_FRAME_1D)
1132 		flags |= VPDMA_DATA_FRAME_1D;
1133 	if (q_data->flags & Q_DATA_MODE_TILED)
1134 		flags |= VPDMA_DATA_MODE_TILED;
1135 
1136 	frame_width = q_data->c_rect.width;
1137 	frame_height = q_data->c_rect.height;
1138 
1139 	if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
1140 		frame_height /= 2;
1141 
1142 	vpdma_add_in_dtd(&ctx->desc_list, q_data->width,
1143 			 q_data->bytesperline[VPE_LUMA], &q_data->c_rect,
1144 		vpdma_fmt, dma_addr, p_data->channel, field, flags, frame_width,
1145 		frame_height, 0, 0);
1146 }
1147 
1148 /*
1149  * Enable the expected IRQ sources
1150  */
enable_irqs(struct vpe_ctx * ctx)1151 static void enable_irqs(struct vpe_ctx *ctx)
1152 {
1153 	write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1154 	write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1155 				VPE_DS1_UV_ERROR_INT);
1156 
1157 	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
1158 }
1159 
disable_irqs(struct vpe_ctx * ctx)1160 static void disable_irqs(struct vpe_ctx *ctx)
1161 {
1162 	write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1163 	write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1164 
1165 	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
1166 }
1167 
1168 /* device_run() - prepares and starts the device
1169  *
1170  * This function is only called when both the source and destination
1171  * buffers are in place.
1172  */
device_run(void * priv)1173 static void device_run(void *priv)
1174 {
1175 	struct vpe_ctx *ctx = priv;
1176 	struct sc_data *sc = ctx->dev->sc;
1177 	struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1178 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
1179 
1180 	if (ctx->deinterlacing && s_q_data->flags & Q_DATA_INTERLACED_SEQ_TB &&
1181 		ctx->sequence % 2 == 0) {
1182 		/* When using SEQ_TB buffers, When using it first time,
1183 		 * No need to remove the buffer as the next field is present
1184 		 * in the same buffer. (so that job_ready won't fail)
1185 		 * It will be removed when using bottom field
1186 		 */
1187 		ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
1188 		WARN_ON(ctx->src_vbs[0] == NULL);
1189 	} else {
1190 		ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1191 		WARN_ON(ctx->src_vbs[0] == NULL);
1192 	}
1193 
1194 	ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1195 	WARN_ON(ctx->dst_vb == NULL);
1196 
1197 	if (ctx->deinterlacing) {
1198 
1199 		if (ctx->src_vbs[2] == NULL) {
1200 			ctx->src_vbs[2] = ctx->src_vbs[0];
1201 			WARN_ON(ctx->src_vbs[2] == NULL);
1202 			ctx->src_vbs[1] = ctx->src_vbs[0];
1203 			WARN_ON(ctx->src_vbs[1] == NULL);
1204 		}
1205 
1206 		/*
1207 		 * we have output the first 2 frames through line average, we
1208 		 * now switch to EDI de-interlacer
1209 		 */
1210 		if (ctx->sequence == 2)
1211 			config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
1212 	}
1213 
1214 	/* config descriptors */
1215 	if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1216 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1217 		vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1218 
1219 		set_line_modes(ctx);
1220 
1221 		ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1222 		ctx->load_mmrs = false;
1223 	}
1224 
1225 	if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1226 			sc->load_coeff_h) {
1227 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1228 		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1229 			&ctx->sc_coeff_h, 0);
1230 
1231 		sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1232 		sc->load_coeff_h = false;
1233 	}
1234 
1235 	if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1236 			sc->load_coeff_v) {
1237 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1238 		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1239 			&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1240 
1241 		sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1242 		sc->load_coeff_v = false;
1243 	}
1244 
1245 	/* output data descriptors */
1246 	if (ctx->deinterlacing)
1247 		add_out_dtd(ctx, VPE_PORT_MV_OUT);
1248 
1249 	if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1250 		add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1251 	} else {
1252 		add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1253 		if (d_q_data->fmt->coplanar)
1254 			add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1255 	}
1256 
1257 	/* input data descriptors */
1258 	if (ctx->deinterlacing) {
1259 		add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1260 		add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1261 
1262 		add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1263 		add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1264 	}
1265 
1266 	add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1267 	add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1268 
1269 	if (ctx->deinterlacing)
1270 		add_in_dtd(ctx, VPE_PORT_MV_IN);
1271 
1272 	/* sync on channel control descriptors for input ports */
1273 	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1274 	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1275 
1276 	if (ctx->deinterlacing) {
1277 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1278 			VPE_CHAN_LUMA2_IN);
1279 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1280 			VPE_CHAN_CHROMA2_IN);
1281 
1282 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1283 			VPE_CHAN_LUMA3_IN);
1284 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1285 			VPE_CHAN_CHROMA3_IN);
1286 
1287 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1288 	}
1289 
1290 	/* sync on channel control descriptors for output ports */
1291 	if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1292 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1293 			VPE_CHAN_RGB_OUT);
1294 	} else {
1295 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1296 			VPE_CHAN_LUMA_OUT);
1297 		if (d_q_data->fmt->coplanar)
1298 			vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1299 				VPE_CHAN_CHROMA_OUT);
1300 	}
1301 
1302 	if (ctx->deinterlacing)
1303 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1304 
1305 	enable_irqs(ctx);
1306 
1307 	vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1308 	vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
1309 }
1310 
dei_error(struct vpe_ctx * ctx)1311 static void dei_error(struct vpe_ctx *ctx)
1312 {
1313 	dev_warn(ctx->dev->v4l2_dev.dev,
1314 		"received DEI error interrupt\n");
1315 }
1316 
ds1_uv_error(struct vpe_ctx * ctx)1317 static void ds1_uv_error(struct vpe_ctx *ctx)
1318 {
1319 	dev_warn(ctx->dev->v4l2_dev.dev,
1320 		"received downsampler error interrupt\n");
1321 }
1322 
vpe_irq(int irq_vpe,void * data)1323 static irqreturn_t vpe_irq(int irq_vpe, void *data)
1324 {
1325 	struct vpe_dev *dev = (struct vpe_dev *)data;
1326 	struct vpe_ctx *ctx;
1327 	struct vpe_q_data *d_q_data;
1328 	struct vb2_v4l2_buffer *s_vb, *d_vb;
1329 	unsigned long flags;
1330 	u32 irqst0, irqst1;
1331 	bool list_complete = false;
1332 
1333 	irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1334 	if (irqst0) {
1335 		write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1336 		vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1337 	}
1338 
1339 	irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1340 	if (irqst1) {
1341 		write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1342 		vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1343 	}
1344 
1345 	ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1346 	if (!ctx) {
1347 		vpe_err(dev, "instance released before end of transaction\n");
1348 		goto handled;
1349 	}
1350 
1351 	if (irqst1) {
1352 		if (irqst1 & VPE_DEI_ERROR_INT) {
1353 			irqst1 &= ~VPE_DEI_ERROR_INT;
1354 			dei_error(ctx);
1355 		}
1356 		if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1357 			irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1358 			ds1_uv_error(ctx);
1359 		}
1360 	}
1361 
1362 	if (irqst0) {
1363 		if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1364 			vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
1365 
1366 		irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1367 		list_complete = true;
1368 	}
1369 
1370 	if (irqst0 | irqst1) {
1371 		dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1372 			irqst0, irqst1);
1373 	}
1374 
1375 	/*
1376 	 * Setup next operation only when list complete IRQ occurs
1377 	 * otherwise, skip the following code
1378 	 */
1379 	if (!list_complete)
1380 		goto handled;
1381 
1382 	disable_irqs(ctx);
1383 
1384 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1385 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1386 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1387 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1388 
1389 	vpdma_reset_desc_list(&ctx->desc_list);
1390 
1391 	 /* the previous dst mv buffer becomes the next src mv buffer */
1392 	ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1393 
1394 	if (ctx->aborting)
1395 		goto finished;
1396 
1397 	s_vb = ctx->src_vbs[0];
1398 	d_vb = ctx->dst_vb;
1399 
1400 	d_vb->flags = s_vb->flags;
1401 	d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
1402 
1403 	if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1404 		d_vb->timecode = s_vb->timecode;
1405 
1406 	d_vb->sequence = ctx->sequence;
1407 
1408 	d_q_data = &ctx->q_data[Q_DATA_DST];
1409 	if (d_q_data->flags & Q_IS_INTERLACED) {
1410 		d_vb->field = ctx->field;
1411 		if (ctx->field == V4L2_FIELD_BOTTOM) {
1412 			ctx->sequence++;
1413 			ctx->field = V4L2_FIELD_TOP;
1414 		} else {
1415 			WARN_ON(ctx->field != V4L2_FIELD_TOP);
1416 			ctx->field = V4L2_FIELD_BOTTOM;
1417 		}
1418 	} else {
1419 		d_vb->field = V4L2_FIELD_NONE;
1420 		ctx->sequence++;
1421 	}
1422 
1423 	if (ctx->deinterlacing) {
1424 		/*
1425 		 * Allow source buffer to be dequeued only if it won't be used
1426 		 * in the next iteration. All vbs are initialized to first
1427 		 * buffer and we are shifting buffers every iteration, for the
1428 		 * first two iterations, no buffer will be dequeued.
1429 		 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1430 		 * field when deinterlacing is enabled
1431 		 */
1432 		if (ctx->src_vbs[2] != ctx->src_vbs[1])
1433 			s_vb = ctx->src_vbs[2];
1434 		else
1435 			s_vb = NULL;
1436 	}
1437 
1438 	spin_lock_irqsave(&dev->lock, flags);
1439 
1440 	if (s_vb)
1441 		v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1442 
1443 	v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1444 
1445 	spin_unlock_irqrestore(&dev->lock, flags);
1446 
1447 	if (ctx->deinterlacing) {
1448 		ctx->src_vbs[2] = ctx->src_vbs[1];
1449 		ctx->src_vbs[1] = ctx->src_vbs[0];
1450 	}
1451 
1452 	/*
1453 	 * Since the vb2_buf_done has already been called fir therse
1454 	 * buffer we can now NULL them out so that we won't try
1455 	 * to clean out stray pointer later on.
1456 	*/
1457 	ctx->src_vbs[0] = NULL;
1458 	ctx->dst_vb = NULL;
1459 
1460 	ctx->bufs_completed++;
1461 	if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
1462 		device_run(ctx);
1463 		goto handled;
1464 	}
1465 
1466 finished:
1467 	vpe_dbg(ctx->dev, "finishing transaction\n");
1468 	ctx->bufs_completed = 0;
1469 	v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1470 handled:
1471 	return IRQ_HANDLED;
1472 }
1473 
1474 /*
1475  * video ioctls
1476  */
vpe_querycap(struct file * file,void * priv,struct v4l2_capability * cap)1477 static int vpe_querycap(struct file *file, void *priv,
1478 			struct v4l2_capability *cap)
1479 {
1480 	strscpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver));
1481 	strscpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card));
1482 	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1483 		VPE_MODULE_NAME);
1484 	return 0;
1485 }
1486 
__enum_fmt(struct v4l2_fmtdesc * f,u32 type)1487 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1488 {
1489 	int i, index;
1490 	struct vpe_fmt *fmt = NULL;
1491 
1492 	index = 0;
1493 	for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1494 		if (vpe_formats[i].types & type) {
1495 			if (index == f->index) {
1496 				fmt = &vpe_formats[i];
1497 				break;
1498 			}
1499 			index++;
1500 		}
1501 	}
1502 
1503 	if (!fmt)
1504 		return -EINVAL;
1505 
1506 	f->pixelformat = fmt->fourcc;
1507 	return 0;
1508 }
1509 
vpe_enum_fmt(struct file * file,void * priv,struct v4l2_fmtdesc * f)1510 static int vpe_enum_fmt(struct file *file, void *priv,
1511 				struct v4l2_fmtdesc *f)
1512 {
1513 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1514 		return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1515 
1516 	return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1517 }
1518 
vpe_g_fmt(struct file * file,void * priv,struct v4l2_format * f)1519 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1520 {
1521 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1522 	struct vpe_ctx *ctx = file2ctx(file);
1523 	struct vb2_queue *vq;
1524 	struct vpe_q_data *q_data;
1525 	int i;
1526 
1527 	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1528 	if (!vq)
1529 		return -EINVAL;
1530 
1531 	q_data = get_q_data(ctx, f->type);
1532 
1533 	pix->width = q_data->width;
1534 	pix->height = q_data->height;
1535 	pix->pixelformat = q_data->fmt->fourcc;
1536 	pix->field = q_data->field;
1537 
1538 	if (V4L2_TYPE_IS_OUTPUT(f->type)) {
1539 		pix->colorspace = q_data->colorspace;
1540 	} else {
1541 		struct vpe_q_data *s_q_data;
1542 
1543 		/* get colorspace from the source queue */
1544 		s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1545 
1546 		pix->colorspace = s_q_data->colorspace;
1547 	}
1548 
1549 	pix->num_planes = q_data->nplanes;
1550 
1551 	for (i = 0; i < pix->num_planes; i++) {
1552 		pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
1553 		pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
1554 	}
1555 
1556 	return 0;
1557 }
1558 
__vpe_try_fmt(struct vpe_ctx * ctx,struct v4l2_format * f,struct vpe_fmt * fmt,int type)1559 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1560 		       struct vpe_fmt *fmt, int type)
1561 {
1562 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1563 	struct v4l2_plane_pix_format *plane_fmt;
1564 	unsigned int w_align;
1565 	int i, depth, depth_bytes, height;
1566 	unsigned int stride = 0;
1567 
1568 	if (!fmt || !(fmt->types & type)) {
1569 		vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1570 			pix->pixelformat);
1571 		return -EINVAL;
1572 	}
1573 
1574 	if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE
1575 			&& pix->field != V4L2_FIELD_SEQ_TB)
1576 		pix->field = V4L2_FIELD_NONE;
1577 
1578 	depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1579 
1580 	/*
1581 	 * the line stride should 16 byte aligned for VPDMA to work, based on
1582 	 * the bytes per pixel, figure out how much the width should be aligned
1583 	 * to make sure line stride is 16 byte aligned
1584 	 */
1585 	depth_bytes = depth >> 3;
1586 
1587 	if (depth_bytes == 3) {
1588 		/*
1589 		 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1590 		 * really help in ensuring line stride is 16 byte aligned
1591 		 */
1592 		w_align = 4;
1593 	} else {
1594 		/*
1595 		 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1596 		 * can ensure a line stride alignment of 16 bytes. For example,
1597 		 * if bpp is 2, then the line stride can be 16 byte aligned if
1598 		 * the width is 8 byte aligned
1599 		 */
1600 
1601 		/*
1602 		 * HACK: using order_base_2() here causes lots of asm output
1603 		 * errors with smatch, on i386:
1604 		 * ./arch/x86/include/asm/bitops.h:457:22:
1605 		 *		 warning: asm output is not an lvalue
1606 		 * Perhaps some gcc optimization is doing the wrong thing
1607 		 * there.
1608 		 * Let's get rid of them by doing the calculus on two steps
1609 		 */
1610 		w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
1611 		w_align = ilog2(w_align);
1612 	}
1613 
1614 	v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1615 			      &pix->height, MIN_H, MAX_H, H_ALIGN,
1616 			      S_ALIGN);
1617 
1618 	if (!pix->num_planes)
1619 		pix->num_planes = fmt->coplanar ? 2 : 1;
1620 	else if (pix->num_planes > 1 && !fmt->coplanar)
1621 		pix->num_planes = 1;
1622 
1623 	pix->pixelformat = fmt->fourcc;
1624 
1625 	/*
1626 	 * For the actual image parameters, we need to consider the field
1627 	 * height of the image for SEQ_TB buffers.
1628 	 */
1629 	if (pix->field == V4L2_FIELD_SEQ_TB)
1630 		height = pix->height / 2;
1631 	else
1632 		height = pix->height;
1633 
1634 	if (!pix->colorspace) {
1635 		if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
1636 				fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
1637 				fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
1638 				fmt->fourcc == V4L2_PIX_FMT_BGR32) {
1639 			pix->colorspace = V4L2_COLORSPACE_SRGB;
1640 		} else {
1641 			if (height > 1280)	/* HD */
1642 				pix->colorspace = V4L2_COLORSPACE_REC709;
1643 			else			/* SD */
1644 				pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1645 		}
1646 	}
1647 
1648 	memset(pix->reserved, 0, sizeof(pix->reserved));
1649 	for (i = 0; i < pix->num_planes; i++) {
1650 		plane_fmt = &pix->plane_fmt[i];
1651 		depth = fmt->vpdma_fmt[i]->depth;
1652 
1653 		stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
1654 		if (stride > plane_fmt->bytesperline)
1655 			plane_fmt->bytesperline = stride;
1656 
1657 		plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline,
1658 						VPDMA_STRIDE_ALIGN);
1659 
1660 		if (i == VPE_LUMA) {
1661 			plane_fmt->sizeimage = pix->height *
1662 					       plane_fmt->bytesperline;
1663 
1664 			if (pix->num_planes == 1 && fmt->coplanar)
1665 				plane_fmt->sizeimage += pix->height *
1666 					plane_fmt->bytesperline *
1667 					fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3;
1668 
1669 		} else { /* i == VIP_CHROMA */
1670 			plane_fmt->sizeimage = (pix->height *
1671 					       plane_fmt->bytesperline *
1672 					       depth) >> 3;
1673 		}
1674 		memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1675 	}
1676 
1677 	return 0;
1678 }
1679 
vpe_try_fmt(struct file * file,void * priv,struct v4l2_format * f)1680 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1681 {
1682 	struct vpe_ctx *ctx = file2ctx(file);
1683 	struct vpe_fmt *fmt = find_format(f);
1684 
1685 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1686 		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1687 	else
1688 		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1689 }
1690 
__vpe_s_fmt(struct vpe_ctx * ctx,struct v4l2_format * f)1691 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1692 {
1693 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1694 	struct v4l2_plane_pix_format *plane_fmt;
1695 	struct vpe_q_data *q_data;
1696 	struct vb2_queue *vq;
1697 	int i;
1698 
1699 	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1700 	if (!vq)
1701 		return -EINVAL;
1702 
1703 	if (vb2_is_busy(vq)) {
1704 		vpe_err(ctx->dev, "queue busy\n");
1705 		return -EBUSY;
1706 	}
1707 
1708 	q_data = get_q_data(ctx, f->type);
1709 	if (!q_data)
1710 		return -EINVAL;
1711 
1712 	q_data->fmt		= find_format(f);
1713 	q_data->width		= pix->width;
1714 	q_data->height		= pix->height;
1715 	q_data->colorspace	= pix->colorspace;
1716 	q_data->field		= pix->field;
1717 	q_data->nplanes		= pix->num_planes;
1718 
1719 	for (i = 0; i < pix->num_planes; i++) {
1720 		plane_fmt = &pix->plane_fmt[i];
1721 
1722 		q_data->bytesperline[i]	= plane_fmt->bytesperline;
1723 		q_data->sizeimage[i]	= plane_fmt->sizeimage;
1724 	}
1725 
1726 	q_data->c_rect.left	= 0;
1727 	q_data->c_rect.top	= 0;
1728 	q_data->c_rect.width	= q_data->width;
1729 	q_data->c_rect.height	= q_data->height;
1730 
1731 	if (q_data->field == V4L2_FIELD_ALTERNATE)
1732 		q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
1733 	else if (q_data->field == V4L2_FIELD_SEQ_TB)
1734 		q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
1735 	else
1736 		q_data->flags &= ~Q_IS_INTERLACED;
1737 
1738 	/* the crop height is halved for the case of SEQ_TB buffers */
1739 	if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1740 		q_data->c_rect.height /= 2;
1741 
1742 	vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1743 		f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
1744 		q_data->bytesperline[VPE_LUMA]);
1745 	if (q_data->nplanes == 2)
1746 		vpe_dbg(ctx->dev, " bpl_uv %d\n",
1747 			q_data->bytesperline[VPE_CHROMA]);
1748 
1749 	return 0;
1750 }
1751 
vpe_s_fmt(struct file * file,void * priv,struct v4l2_format * f)1752 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1753 {
1754 	int ret;
1755 	struct vpe_ctx *ctx = file2ctx(file);
1756 
1757 	ret = vpe_try_fmt(file, priv, f);
1758 	if (ret)
1759 		return ret;
1760 
1761 	ret = __vpe_s_fmt(ctx, f);
1762 	if (ret)
1763 		return ret;
1764 
1765 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1766 		set_src_registers(ctx);
1767 	else
1768 		set_dst_registers(ctx);
1769 
1770 	return set_srcdst_params(ctx);
1771 }
1772 
__vpe_try_selection(struct vpe_ctx * ctx,struct v4l2_selection * s)1773 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1774 {
1775 	struct vpe_q_data *q_data;
1776 	int height;
1777 
1778 	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1779 	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1780 		return -EINVAL;
1781 
1782 	q_data = get_q_data(ctx, s->type);
1783 	if (!q_data)
1784 		return -EINVAL;
1785 
1786 	switch (s->target) {
1787 	case V4L2_SEL_TGT_COMPOSE:
1788 		/*
1789 		 * COMPOSE target is only valid for capture buffer type, return
1790 		 * error for output buffer type
1791 		 */
1792 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1793 			return -EINVAL;
1794 		break;
1795 	case V4L2_SEL_TGT_CROP:
1796 		/*
1797 		 * CROP target is only valid for output buffer type, return
1798 		 * error for capture buffer type
1799 		 */
1800 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1801 			return -EINVAL;
1802 		break;
1803 	/*
1804 	 * bound and default crop/compose targets are invalid targets to
1805 	 * try/set
1806 	 */
1807 	default:
1808 		return -EINVAL;
1809 	}
1810 
1811 	/*
1812 	 * For SEQ_TB buffers, crop height should be less than the height of
1813 	 * the field height, not the buffer height
1814 	 */
1815 	if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1816 		height = q_data->height / 2;
1817 	else
1818 		height = q_data->height;
1819 
1820 	if (s->r.top < 0 || s->r.left < 0) {
1821 		vpe_err(ctx->dev, "negative values for top and left\n");
1822 		s->r.top = s->r.left = 0;
1823 	}
1824 
1825 	v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
1826 		&s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
1827 
1828 	/* adjust left/top if cropping rectangle is out of bounds */
1829 	if (s->r.left + s->r.width > q_data->width)
1830 		s->r.left = q_data->width - s->r.width;
1831 	if (s->r.top + s->r.height > q_data->height)
1832 		s->r.top = q_data->height - s->r.height;
1833 
1834 	return 0;
1835 }
1836 
vpe_g_selection(struct file * file,void * fh,struct v4l2_selection * s)1837 static int vpe_g_selection(struct file *file, void *fh,
1838 		struct v4l2_selection *s)
1839 {
1840 	struct vpe_ctx *ctx = file2ctx(file);
1841 	struct vpe_q_data *q_data;
1842 	bool use_c_rect = false;
1843 
1844 	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1845 	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1846 		return -EINVAL;
1847 
1848 	q_data = get_q_data(ctx, s->type);
1849 	if (!q_data)
1850 		return -EINVAL;
1851 
1852 	switch (s->target) {
1853 	case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1854 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1855 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1856 			return -EINVAL;
1857 		break;
1858 	case V4L2_SEL_TGT_CROP_BOUNDS:
1859 	case V4L2_SEL_TGT_CROP_DEFAULT:
1860 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1861 			return -EINVAL;
1862 		break;
1863 	case V4L2_SEL_TGT_COMPOSE:
1864 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1865 			return -EINVAL;
1866 		use_c_rect = true;
1867 		break;
1868 	case V4L2_SEL_TGT_CROP:
1869 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1870 			return -EINVAL;
1871 		use_c_rect = true;
1872 		break;
1873 	default:
1874 		return -EINVAL;
1875 	}
1876 
1877 	if (use_c_rect) {
1878 		/*
1879 		 * for CROP/COMPOSE target type, return c_rect params from the
1880 		 * respective buffer type
1881 		 */
1882 		s->r = q_data->c_rect;
1883 	} else {
1884 		/*
1885 		 * for DEFAULT/BOUNDS target type, return width and height from
1886 		 * S_FMT of the respective buffer type
1887 		 */
1888 		s->r.left = 0;
1889 		s->r.top = 0;
1890 		s->r.width = q_data->width;
1891 		s->r.height = q_data->height;
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 
vpe_s_selection(struct file * file,void * fh,struct v4l2_selection * s)1898 static int vpe_s_selection(struct file *file, void *fh,
1899 		struct v4l2_selection *s)
1900 {
1901 	struct vpe_ctx *ctx = file2ctx(file);
1902 	struct vpe_q_data *q_data;
1903 	struct v4l2_selection sel = *s;
1904 	int ret;
1905 
1906 	ret = __vpe_try_selection(ctx, &sel);
1907 	if (ret)
1908 		return ret;
1909 
1910 	q_data = get_q_data(ctx, sel.type);
1911 	if (!q_data)
1912 		return -EINVAL;
1913 
1914 	if ((q_data->c_rect.left == sel.r.left) &&
1915 			(q_data->c_rect.top == sel.r.top) &&
1916 			(q_data->c_rect.width == sel.r.width) &&
1917 			(q_data->c_rect.height == sel.r.height)) {
1918 		vpe_dbg(ctx->dev,
1919 			"requested crop/compose values are already set\n");
1920 		return 0;
1921 	}
1922 
1923 	q_data->c_rect = sel.r;
1924 
1925 	return set_srcdst_params(ctx);
1926 }
1927 
1928 /*
1929  * defines number of buffers/frames a context can process with VPE before
1930  * switching to a different context. default value is 1 buffer per context
1931  */
1932 #define V4L2_CID_VPE_BUFS_PER_JOB		(V4L2_CID_USER_TI_VPE_BASE + 0)
1933 
vpe_s_ctrl(struct v4l2_ctrl * ctrl)1934 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1935 {
1936 	struct vpe_ctx *ctx =
1937 		container_of(ctrl->handler, struct vpe_ctx, hdl);
1938 
1939 	switch (ctrl->id) {
1940 	case V4L2_CID_VPE_BUFS_PER_JOB:
1941 		ctx->bufs_per_job = ctrl->val;
1942 		break;
1943 
1944 	default:
1945 		vpe_err(ctx->dev, "Invalid control\n");
1946 		return -EINVAL;
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1953 	.s_ctrl = vpe_s_ctrl,
1954 };
1955 
1956 static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1957 	.vidioc_querycap		= vpe_querycap,
1958 
1959 	.vidioc_enum_fmt_vid_cap	= vpe_enum_fmt,
1960 	.vidioc_g_fmt_vid_cap_mplane	= vpe_g_fmt,
1961 	.vidioc_try_fmt_vid_cap_mplane	= vpe_try_fmt,
1962 	.vidioc_s_fmt_vid_cap_mplane	= vpe_s_fmt,
1963 
1964 	.vidioc_enum_fmt_vid_out	= vpe_enum_fmt,
1965 	.vidioc_g_fmt_vid_out_mplane	= vpe_g_fmt,
1966 	.vidioc_try_fmt_vid_out_mplane	= vpe_try_fmt,
1967 	.vidioc_s_fmt_vid_out_mplane	= vpe_s_fmt,
1968 
1969 	.vidioc_g_selection		= vpe_g_selection,
1970 	.vidioc_s_selection		= vpe_s_selection,
1971 
1972 	.vidioc_reqbufs			= v4l2_m2m_ioctl_reqbufs,
1973 	.vidioc_querybuf		= v4l2_m2m_ioctl_querybuf,
1974 	.vidioc_qbuf			= v4l2_m2m_ioctl_qbuf,
1975 	.vidioc_dqbuf			= v4l2_m2m_ioctl_dqbuf,
1976 	.vidioc_expbuf			= v4l2_m2m_ioctl_expbuf,
1977 	.vidioc_streamon		= v4l2_m2m_ioctl_streamon,
1978 	.vidioc_streamoff		= v4l2_m2m_ioctl_streamoff,
1979 
1980 	.vidioc_subscribe_event		= v4l2_ctrl_subscribe_event,
1981 	.vidioc_unsubscribe_event	= v4l2_event_unsubscribe,
1982 };
1983 
1984 /*
1985  * Queue operations
1986  */
vpe_queue_setup(struct vb2_queue * vq,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],struct device * alloc_devs[])1987 static int vpe_queue_setup(struct vb2_queue *vq,
1988 			   unsigned int *nbuffers, unsigned int *nplanes,
1989 			   unsigned int sizes[], struct device *alloc_devs[])
1990 {
1991 	int i;
1992 	struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
1993 	struct vpe_q_data *q_data;
1994 
1995 	q_data = get_q_data(ctx, vq->type);
1996 
1997 	*nplanes = q_data->nplanes;
1998 
1999 	for (i = 0; i < *nplanes; i++)
2000 		sizes[i] = q_data->sizeimage[i];
2001 
2002 	vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
2003 		sizes[VPE_LUMA]);
2004 	if (q_data->nplanes == 2)
2005 		vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
2006 
2007 	return 0;
2008 }
2009 
vpe_buf_prepare(struct vb2_buffer * vb)2010 static int vpe_buf_prepare(struct vb2_buffer *vb)
2011 {
2012 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2013 	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2014 	struct vpe_q_data *q_data;
2015 	int i, num_planes;
2016 
2017 	vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
2018 
2019 	q_data = get_q_data(ctx, vb->vb2_queue->type);
2020 	num_planes = q_data->nplanes;
2021 
2022 	if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
2023 		if (!(q_data->flags & Q_IS_INTERLACED)) {
2024 			vbuf->field = V4L2_FIELD_NONE;
2025 		} else {
2026 			if (vbuf->field != V4L2_FIELD_TOP &&
2027 			    vbuf->field != V4L2_FIELD_BOTTOM &&
2028 			    vbuf->field != V4L2_FIELD_SEQ_TB)
2029 				return -EINVAL;
2030 		}
2031 	}
2032 
2033 	for (i = 0; i < num_planes; i++) {
2034 		if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
2035 			vpe_err(ctx->dev,
2036 				"data will not fit into plane (%lu < %lu)\n",
2037 				vb2_plane_size(vb, i),
2038 				(long) q_data->sizeimage[i]);
2039 			return -EINVAL;
2040 		}
2041 	}
2042 
2043 	for (i = 0; i < num_planes; i++)
2044 		vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
2045 
2046 	return 0;
2047 }
2048 
vpe_buf_queue(struct vb2_buffer * vb)2049 static void vpe_buf_queue(struct vb2_buffer *vb)
2050 {
2051 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2052 	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2053 
2054 	v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
2055 }
2056 
check_srcdst_sizes(struct vpe_ctx * ctx)2057 static int check_srcdst_sizes(struct vpe_ctx *ctx)
2058 {
2059 	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
2060 	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
2061 	unsigned int src_w = s_q_data->c_rect.width;
2062 	unsigned int src_h = s_q_data->c_rect.height;
2063 	unsigned int dst_w = d_q_data->c_rect.width;
2064 	unsigned int dst_h = d_q_data->c_rect.height;
2065 
2066 	if (src_w == dst_w && src_h == dst_h)
2067 		return 0;
2068 
2069 	if (src_h <= SC_MAX_PIXEL_HEIGHT &&
2070 	    src_w <= SC_MAX_PIXEL_WIDTH &&
2071 	    dst_h <= SC_MAX_PIXEL_HEIGHT &&
2072 	    dst_w <= SC_MAX_PIXEL_WIDTH)
2073 		return 0;
2074 
2075 	return -1;
2076 }
2077 
vpe_return_all_buffers(struct vpe_ctx * ctx,struct vb2_queue * q,enum vb2_buffer_state state)2078 static void vpe_return_all_buffers(struct vpe_ctx *ctx,  struct vb2_queue *q,
2079 				   enum vb2_buffer_state state)
2080 {
2081 	struct vb2_v4l2_buffer *vb;
2082 	unsigned long flags;
2083 
2084 	for (;;) {
2085 		if (V4L2_TYPE_IS_OUTPUT(q->type))
2086 			vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
2087 		else
2088 			vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
2089 		if (!vb)
2090 			break;
2091 		spin_lock_irqsave(&ctx->dev->lock, flags);
2092 		v4l2_m2m_buf_done(vb, state);
2093 		spin_unlock_irqrestore(&ctx->dev->lock, flags);
2094 	}
2095 
2096 	/*
2097 	 * Cleanup the in-transit vb2 buffers that have been
2098 	 * removed from their respective queue already but for
2099 	 * which procecessing has not been completed yet.
2100 	 */
2101 	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2102 		spin_lock_irqsave(&ctx->dev->lock, flags);
2103 
2104 		if (ctx->src_vbs[2])
2105 			v4l2_m2m_buf_done(ctx->src_vbs[2], state);
2106 
2107 		if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
2108 			v4l2_m2m_buf_done(ctx->src_vbs[1], state);
2109 
2110 		if (ctx->src_vbs[0] &&
2111 		    (ctx->src_vbs[0] != ctx->src_vbs[1]) &&
2112 		    (ctx->src_vbs[0] != ctx->src_vbs[2]))
2113 			v4l2_m2m_buf_done(ctx->src_vbs[0], state);
2114 
2115 		ctx->src_vbs[2] = NULL;
2116 		ctx->src_vbs[1] = NULL;
2117 		ctx->src_vbs[0] = NULL;
2118 
2119 		spin_unlock_irqrestore(&ctx->dev->lock, flags);
2120 	} else {
2121 		if (ctx->dst_vb) {
2122 			spin_lock_irqsave(&ctx->dev->lock, flags);
2123 
2124 			v4l2_m2m_buf_done(ctx->dst_vb, state);
2125 			ctx->dst_vb = NULL;
2126 			spin_unlock_irqrestore(&ctx->dev->lock, flags);
2127 		}
2128 	}
2129 }
2130 
vpe_start_streaming(struct vb2_queue * q,unsigned int count)2131 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
2132 {
2133 	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2134 
2135 	/* Check any of the size exceed maximum scaling sizes */
2136 	if (check_srcdst_sizes(ctx)) {
2137 		vpe_err(ctx->dev,
2138 			"Conversion setup failed, check source and destination parameters\n"
2139 			);
2140 		vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
2141 		return -EINVAL;
2142 	}
2143 
2144 	if (ctx->deinterlacing)
2145 		config_edi_input_mode(ctx, 0x0);
2146 
2147 	if (ctx->sequence != 0)
2148 		set_srcdst_params(ctx);
2149 
2150 	return 0;
2151 }
2152 
vpe_stop_streaming(struct vb2_queue * q)2153 static void vpe_stop_streaming(struct vb2_queue *q)
2154 {
2155 	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2156 
2157 	vpe_dump_regs(ctx->dev);
2158 	vpdma_dump_regs(ctx->dev->vpdma);
2159 
2160 	vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
2161 }
2162 
2163 static const struct vb2_ops vpe_qops = {
2164 	.queue_setup	 = vpe_queue_setup,
2165 	.buf_prepare	 = vpe_buf_prepare,
2166 	.buf_queue	 = vpe_buf_queue,
2167 	.wait_prepare	 = vb2_ops_wait_prepare,
2168 	.wait_finish	 = vb2_ops_wait_finish,
2169 	.start_streaming = vpe_start_streaming,
2170 	.stop_streaming  = vpe_stop_streaming,
2171 };
2172 
queue_init(void * priv,struct vb2_queue * src_vq,struct vb2_queue * dst_vq)2173 static int queue_init(void *priv, struct vb2_queue *src_vq,
2174 		      struct vb2_queue *dst_vq)
2175 {
2176 	struct vpe_ctx *ctx = priv;
2177 	struct vpe_dev *dev = ctx->dev;
2178 	int ret;
2179 
2180 	memset(src_vq, 0, sizeof(*src_vq));
2181 	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2182 	src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2183 	src_vq->drv_priv = ctx;
2184 	src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2185 	src_vq->ops = &vpe_qops;
2186 	src_vq->mem_ops = &vb2_dma_contig_memops;
2187 	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2188 	src_vq->lock = &dev->dev_mutex;
2189 	src_vq->dev = dev->v4l2_dev.dev;
2190 
2191 	ret = vb2_queue_init(src_vq);
2192 	if (ret)
2193 		return ret;
2194 
2195 	memset(dst_vq, 0, sizeof(*dst_vq));
2196 	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2197 	dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2198 	dst_vq->drv_priv = ctx;
2199 	dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2200 	dst_vq->ops = &vpe_qops;
2201 	dst_vq->mem_ops = &vb2_dma_contig_memops;
2202 	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2203 	dst_vq->lock = &dev->dev_mutex;
2204 	dst_vq->dev = dev->v4l2_dev.dev;
2205 
2206 	return vb2_queue_init(dst_vq);
2207 }
2208 
2209 static const struct v4l2_ctrl_config vpe_bufs_per_job = {
2210 	.ops = &vpe_ctrl_ops,
2211 	.id = V4L2_CID_VPE_BUFS_PER_JOB,
2212 	.name = "Buffers Per Transaction",
2213 	.type = V4L2_CTRL_TYPE_INTEGER,
2214 	.def = VPE_DEF_BUFS_PER_JOB,
2215 	.min = 1,
2216 	.max = VIDEO_MAX_FRAME,
2217 	.step = 1,
2218 };
2219 
2220 /*
2221  * File operations
2222  */
vpe_open(struct file * file)2223 static int vpe_open(struct file *file)
2224 {
2225 	struct vpe_dev *dev = video_drvdata(file);
2226 	struct vpe_q_data *s_q_data;
2227 	struct v4l2_ctrl_handler *hdl;
2228 	struct vpe_ctx *ctx;
2229 	int ret;
2230 
2231 	vpe_dbg(dev, "vpe_open\n");
2232 
2233 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2234 	if (!ctx)
2235 		return -ENOMEM;
2236 
2237 	ctx->dev = dev;
2238 
2239 	if (mutex_lock_interruptible(&dev->dev_mutex)) {
2240 		ret = -ERESTARTSYS;
2241 		goto free_ctx;
2242 	}
2243 
2244 	ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
2245 			VPDMA_LIST_TYPE_NORMAL);
2246 	if (ret != 0)
2247 		goto unlock;
2248 
2249 	ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
2250 	if (ret != 0)
2251 		goto free_desc_list;
2252 
2253 	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
2254 	if (ret != 0)
2255 		goto free_mmr_adb;
2256 
2257 	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
2258 	if (ret != 0)
2259 		goto free_sc_h;
2260 
2261 	init_adb_hdrs(ctx);
2262 
2263 	v4l2_fh_init(&ctx->fh, video_devdata(file));
2264 	file->private_data = &ctx->fh;
2265 
2266 	hdl = &ctx->hdl;
2267 	v4l2_ctrl_handler_init(hdl, 1);
2268 	v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
2269 	if (hdl->error) {
2270 		ret = hdl->error;
2271 		goto exit_fh;
2272 	}
2273 	ctx->fh.ctrl_handler = hdl;
2274 	v4l2_ctrl_handler_setup(hdl);
2275 
2276 	s_q_data = &ctx->q_data[Q_DATA_SRC];
2277 	s_q_data->fmt = &vpe_formats[2];
2278 	s_q_data->width = 1920;
2279 	s_q_data->height = 1080;
2280 	s_q_data->nplanes = 1;
2281 	s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
2282 			s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2283 	s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
2284 			s_q_data->height);
2285 	s_q_data->colorspace = V4L2_COLORSPACE_REC709;
2286 	s_q_data->field = V4L2_FIELD_NONE;
2287 	s_q_data->c_rect.left = 0;
2288 	s_q_data->c_rect.top = 0;
2289 	s_q_data->c_rect.width = s_q_data->width;
2290 	s_q_data->c_rect.height = s_q_data->height;
2291 	s_q_data->flags = 0;
2292 
2293 	ctx->q_data[Q_DATA_DST] = *s_q_data;
2294 
2295 	set_dei_shadow_registers(ctx);
2296 	set_src_registers(ctx);
2297 	set_dst_registers(ctx);
2298 	ret = set_srcdst_params(ctx);
2299 	if (ret)
2300 		goto exit_fh;
2301 
2302 	ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2303 
2304 	if (IS_ERR(ctx->fh.m2m_ctx)) {
2305 		ret = PTR_ERR(ctx->fh.m2m_ctx);
2306 		goto exit_fh;
2307 	}
2308 
2309 	v4l2_fh_add(&ctx->fh);
2310 
2311 	/*
2312 	 * for now, just report the creation of the first instance, we can later
2313 	 * optimize the driver to enable or disable clocks when the first
2314 	 * instance is created or the last instance released
2315 	 */
2316 	if (atomic_inc_return(&dev->num_instances) == 1)
2317 		vpe_dbg(dev, "first instance created\n");
2318 
2319 	ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2320 
2321 	ctx->load_mmrs = true;
2322 
2323 	vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2324 		ctx, ctx->fh.m2m_ctx);
2325 
2326 	mutex_unlock(&dev->dev_mutex);
2327 
2328 	return 0;
2329 exit_fh:
2330 	v4l2_ctrl_handler_free(hdl);
2331 	v4l2_fh_exit(&ctx->fh);
2332 	vpdma_free_desc_buf(&ctx->sc_coeff_v);
2333 free_sc_h:
2334 	vpdma_free_desc_buf(&ctx->sc_coeff_h);
2335 free_mmr_adb:
2336 	vpdma_free_desc_buf(&ctx->mmr_adb);
2337 free_desc_list:
2338 	vpdma_free_desc_list(&ctx->desc_list);
2339 unlock:
2340 	mutex_unlock(&dev->dev_mutex);
2341 free_ctx:
2342 	kfree(ctx);
2343 	return ret;
2344 }
2345 
vpe_release(struct file * file)2346 static int vpe_release(struct file *file)
2347 {
2348 	struct vpe_dev *dev = video_drvdata(file);
2349 	struct vpe_ctx *ctx = file2ctx(file);
2350 
2351 	vpe_dbg(dev, "releasing instance %p\n", ctx);
2352 
2353 	mutex_lock(&dev->dev_mutex);
2354 	free_mv_buffers(ctx);
2355 	vpdma_free_desc_list(&ctx->desc_list);
2356 	vpdma_free_desc_buf(&ctx->mmr_adb);
2357 
2358 	vpdma_free_desc_buf(&ctx->sc_coeff_v);
2359 	vpdma_free_desc_buf(&ctx->sc_coeff_h);
2360 
2361 	v4l2_fh_del(&ctx->fh);
2362 	v4l2_fh_exit(&ctx->fh);
2363 	v4l2_ctrl_handler_free(&ctx->hdl);
2364 	v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2365 
2366 	kfree(ctx);
2367 
2368 	/*
2369 	 * for now, just report the release of the last instance, we can later
2370 	 * optimize the driver to enable or disable clocks when the first
2371 	 * instance is created or the last instance released
2372 	 */
2373 	if (atomic_dec_return(&dev->num_instances) == 0)
2374 		vpe_dbg(dev, "last instance released\n");
2375 
2376 	mutex_unlock(&dev->dev_mutex);
2377 
2378 	return 0;
2379 }
2380 
2381 static const struct v4l2_file_operations vpe_fops = {
2382 	.owner		= THIS_MODULE,
2383 	.open		= vpe_open,
2384 	.release	= vpe_release,
2385 	.poll		= v4l2_m2m_fop_poll,
2386 	.unlocked_ioctl	= video_ioctl2,
2387 	.mmap		= v4l2_m2m_fop_mmap,
2388 };
2389 
2390 static const struct video_device vpe_videodev = {
2391 	.name		= VPE_MODULE_NAME,
2392 	.fops		= &vpe_fops,
2393 	.ioctl_ops	= &vpe_ioctl_ops,
2394 	.minor		= -1,
2395 	.release	= video_device_release_empty,
2396 	.vfl_dir	= VFL_DIR_M2M,
2397 	.device_caps	= V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2398 };
2399 
2400 static const struct v4l2_m2m_ops m2m_ops = {
2401 	.device_run	= device_run,
2402 	.job_ready	= job_ready,
2403 	.job_abort	= job_abort,
2404 };
2405 
vpe_runtime_get(struct platform_device * pdev)2406 static int vpe_runtime_get(struct platform_device *pdev)
2407 {
2408 	int r;
2409 
2410 	dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2411 
2412 	r = pm_runtime_get_sync(&pdev->dev);
2413 	WARN_ON(r < 0);
2414 	return r < 0 ? r : 0;
2415 }
2416 
vpe_runtime_put(struct platform_device * pdev)2417 static void vpe_runtime_put(struct platform_device *pdev)
2418 {
2419 
2420 	int r;
2421 
2422 	dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2423 
2424 	r = pm_runtime_put_sync(&pdev->dev);
2425 	WARN_ON(r < 0 && r != -ENOSYS);
2426 }
2427 
vpe_fw_cb(struct platform_device * pdev)2428 static void vpe_fw_cb(struct platform_device *pdev)
2429 {
2430 	struct vpe_dev *dev = platform_get_drvdata(pdev);
2431 	struct video_device *vfd;
2432 	int ret;
2433 
2434 	vfd = &dev->vfd;
2435 	*vfd = vpe_videodev;
2436 	vfd->lock = &dev->dev_mutex;
2437 	vfd->v4l2_dev = &dev->v4l2_dev;
2438 
2439 	ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2440 	if (ret) {
2441 		vpe_err(dev, "Failed to register video device\n");
2442 
2443 		vpe_set_clock_enable(dev, 0);
2444 		vpe_runtime_put(pdev);
2445 		pm_runtime_disable(&pdev->dev);
2446 		v4l2_m2m_release(dev->m2m_dev);
2447 		v4l2_device_unregister(&dev->v4l2_dev);
2448 
2449 		return;
2450 	}
2451 
2452 	video_set_drvdata(vfd, dev);
2453 	dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2454 		vfd->num);
2455 }
2456 
vpe_probe(struct platform_device * pdev)2457 static int vpe_probe(struct platform_device *pdev)
2458 {
2459 	struct vpe_dev *dev;
2460 	int ret, irq, func;
2461 
2462 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2463 	if (!dev)
2464 		return -ENOMEM;
2465 
2466 	spin_lock_init(&dev->lock);
2467 
2468 	ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2469 	if (ret)
2470 		return ret;
2471 
2472 	atomic_set(&dev->num_instances, 0);
2473 	mutex_init(&dev->dev_mutex);
2474 
2475 	dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2476 			"vpe_top");
2477 	/*
2478 	 * HACK: we get resource info from device tree in the form of a list of
2479 	 * VPE sub blocks, the driver currently uses only the base of vpe_top
2480 	 * for register access, the driver should be changed later to access
2481 	 * registers based on the sub block base addresses
2482 	 */
2483 	dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2484 	if (!dev->base) {
2485 		ret = -ENOMEM;
2486 		goto v4l2_dev_unreg;
2487 	}
2488 
2489 	irq = platform_get_irq(pdev, 0);
2490 	ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2491 			dev);
2492 	if (ret)
2493 		goto v4l2_dev_unreg;
2494 
2495 	platform_set_drvdata(pdev, dev);
2496 
2497 	dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2498 	if (IS_ERR(dev->m2m_dev)) {
2499 		vpe_err(dev, "Failed to init mem2mem device\n");
2500 		ret = PTR_ERR(dev->m2m_dev);
2501 		goto v4l2_dev_unreg;
2502 	}
2503 
2504 	pm_runtime_enable(&pdev->dev);
2505 
2506 	ret = vpe_runtime_get(pdev);
2507 	if (ret)
2508 		goto rel_m2m;
2509 
2510 	/* Perform clk enable followed by reset */
2511 	vpe_set_clock_enable(dev, 1);
2512 
2513 	vpe_top_reset(dev);
2514 
2515 	func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2516 		VPE_PID_FUNC_SHIFT);
2517 	vpe_dbg(dev, "VPE PID function %x\n", func);
2518 
2519 	vpe_top_vpdma_reset(dev);
2520 
2521 	dev->sc = sc_create(pdev, "sc");
2522 	if (IS_ERR(dev->sc)) {
2523 		ret = PTR_ERR(dev->sc);
2524 		goto runtime_put;
2525 	}
2526 
2527 	dev->csc = csc_create(pdev, "csc");
2528 	if (IS_ERR(dev->csc)) {
2529 		ret = PTR_ERR(dev->csc);
2530 		goto runtime_put;
2531 	}
2532 
2533 	dev->vpdma = &dev->vpdma_data;
2534 	ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
2535 	if (ret)
2536 		goto runtime_put;
2537 
2538 	return 0;
2539 
2540 runtime_put:
2541 	vpe_runtime_put(pdev);
2542 rel_m2m:
2543 	pm_runtime_disable(&pdev->dev);
2544 	v4l2_m2m_release(dev->m2m_dev);
2545 v4l2_dev_unreg:
2546 	v4l2_device_unregister(&dev->v4l2_dev);
2547 
2548 	return ret;
2549 }
2550 
vpe_remove(struct platform_device * pdev)2551 static int vpe_remove(struct platform_device *pdev)
2552 {
2553 	struct vpe_dev *dev = platform_get_drvdata(pdev);
2554 
2555 	v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2556 
2557 	v4l2_m2m_release(dev->m2m_dev);
2558 	video_unregister_device(&dev->vfd);
2559 	v4l2_device_unregister(&dev->v4l2_dev);
2560 
2561 	vpe_set_clock_enable(dev, 0);
2562 	vpe_runtime_put(pdev);
2563 	pm_runtime_disable(&pdev->dev);
2564 
2565 	return 0;
2566 }
2567 
2568 #if defined(CONFIG_OF)
2569 static const struct of_device_id vpe_of_match[] = {
2570 	{
2571 		.compatible = "ti,vpe",
2572 	},
2573 	{},
2574 };
2575 MODULE_DEVICE_TABLE(of, vpe_of_match);
2576 #endif
2577 
2578 static struct platform_driver vpe_pdrv = {
2579 	.probe		= vpe_probe,
2580 	.remove		= vpe_remove,
2581 	.driver		= {
2582 		.name	= VPE_MODULE_NAME,
2583 		.of_match_table = of_match_ptr(vpe_of_match),
2584 	},
2585 };
2586 
2587 module_platform_driver(vpe_pdrv);
2588 
2589 MODULE_DESCRIPTION("TI VPE driver");
2590 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2591 MODULE_LICENSE("GPL");
2592