1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI CAL camera interface driver
4 *
5 * Copyright (c) 2015 Texas Instruments Inc.
6 * Benoit Parrot, <bparrot@ti.com>
7 */
8
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/ioctl.h>
12 #include <linux/module.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/slab.h>
17 #include <linux/videodev2.h>
18 #include <linux/of_device.h>
19 #include <linux/of_graph.h>
20
21 #include <media/v4l2-fwnode.h>
22 #include <media/v4l2-async.h>
23 #include <media/v4l2-common.h>
24 #include <media/v4l2-ctrls.h>
25 #include <media/v4l2-device.h>
26 #include <media/v4l2-event.h>
27 #include <media/v4l2-ioctl.h>
28 #include <media/v4l2-fh.h>
29 #include <media/videobuf2-core.h>
30 #include <media/videobuf2-dma-contig.h>
31 #include "cal_regs.h"
32
33 #define CAL_MODULE_NAME "cal"
34
35 #define MAX_WIDTH 1920
36 #define MAX_HEIGHT 1200
37
38 #define CAL_VERSION "0.1.0"
39
40 MODULE_DESCRIPTION("TI CAL driver");
41 MODULE_AUTHOR("Benoit Parrot, <bparrot@ti.com>");
42 MODULE_LICENSE("GPL v2");
43 MODULE_VERSION(CAL_VERSION);
44
45 static unsigned video_nr = -1;
46 module_param(video_nr, uint, 0644);
47 MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect");
48
49 static unsigned debug;
50 module_param(debug, uint, 0644);
51 MODULE_PARM_DESC(debug, "activates debug info");
52
53 /* timeperframe: min/max and default */
54 static const struct v4l2_fract
55 tpf_default = {.numerator = 1001, .denominator = 30000};
56
57 #define cal_dbg(level, caldev, fmt, arg...) \
58 v4l2_dbg(level, debug, &caldev->v4l2_dev, fmt, ##arg)
59 #define cal_info(caldev, fmt, arg...) \
60 v4l2_info(&caldev->v4l2_dev, fmt, ##arg)
61 #define cal_err(caldev, fmt, arg...) \
62 v4l2_err(&caldev->v4l2_dev, fmt, ##arg)
63
64 #define ctx_dbg(level, ctx, fmt, arg...) \
65 v4l2_dbg(level, debug, &ctx->v4l2_dev, fmt, ##arg)
66 #define ctx_info(ctx, fmt, arg...) \
67 v4l2_info(&ctx->v4l2_dev, fmt, ##arg)
68 #define ctx_err(ctx, fmt, arg...) \
69 v4l2_err(&ctx->v4l2_dev, fmt, ##arg)
70
71 #define CAL_NUM_INPUT 1
72 #define CAL_NUM_CONTEXT 2
73
74 #define bytes_per_line(pixel, bpp) (ALIGN(pixel * bpp, 16))
75
76 #define reg_read(dev, offset) ioread32(dev->base + offset)
77 #define reg_write(dev, offset, val) iowrite32(val, dev->base + offset)
78
79 #define reg_read_field(dev, offset, mask) get_field(reg_read(dev, offset), \
80 mask)
81 #define reg_write_field(dev, offset, field, mask) { \
82 u32 val = reg_read(dev, offset); \
83 set_field(&val, field, mask); \
84 reg_write(dev, offset, val); }
85
86 /* ------------------------------------------------------------------
87 * Basic structures
88 * ------------------------------------------------------------------
89 */
90
91 struct cal_fmt {
92 u32 fourcc;
93 u32 code;
94 u8 depth;
95 };
96
97 static struct cal_fmt cal_formats[] = {
98 {
99 .fourcc = V4L2_PIX_FMT_YUYV,
100 .code = MEDIA_BUS_FMT_YUYV8_2X8,
101 .depth = 16,
102 }, {
103 .fourcc = V4L2_PIX_FMT_UYVY,
104 .code = MEDIA_BUS_FMT_UYVY8_2X8,
105 .depth = 16,
106 }, {
107 .fourcc = V4L2_PIX_FMT_YVYU,
108 .code = MEDIA_BUS_FMT_YVYU8_2X8,
109 .depth = 16,
110 }, {
111 .fourcc = V4L2_PIX_FMT_VYUY,
112 .code = MEDIA_BUS_FMT_VYUY8_2X8,
113 .depth = 16,
114 }, {
115 .fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
116 .code = MEDIA_BUS_FMT_RGB565_2X8_LE,
117 .depth = 16,
118 }, {
119 .fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */
120 .code = MEDIA_BUS_FMT_RGB565_2X8_BE,
121 .depth = 16,
122 }, {
123 .fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */
124 .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE,
125 .depth = 16,
126 }, {
127 .fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */
128 .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE,
129 .depth = 16,
130 }, {
131 .fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
132 .code = MEDIA_BUS_FMT_RGB888_2X12_LE,
133 .depth = 24,
134 }, {
135 .fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
136 .code = MEDIA_BUS_FMT_RGB888_2X12_BE,
137 .depth = 24,
138 }, {
139 .fourcc = V4L2_PIX_FMT_RGB32, /* argb */
140 .code = MEDIA_BUS_FMT_ARGB8888_1X32,
141 .depth = 32,
142 }, {
143 .fourcc = V4L2_PIX_FMT_SBGGR8,
144 .code = MEDIA_BUS_FMT_SBGGR8_1X8,
145 .depth = 8,
146 }, {
147 .fourcc = V4L2_PIX_FMT_SGBRG8,
148 .code = MEDIA_BUS_FMT_SGBRG8_1X8,
149 .depth = 8,
150 }, {
151 .fourcc = V4L2_PIX_FMT_SGRBG8,
152 .code = MEDIA_BUS_FMT_SGRBG8_1X8,
153 .depth = 8,
154 }, {
155 .fourcc = V4L2_PIX_FMT_SRGGB8,
156 .code = MEDIA_BUS_FMT_SRGGB8_1X8,
157 .depth = 8,
158 }, {
159 .fourcc = V4L2_PIX_FMT_SBGGR10,
160 .code = MEDIA_BUS_FMT_SBGGR10_1X10,
161 .depth = 16,
162 }, {
163 .fourcc = V4L2_PIX_FMT_SGBRG10,
164 .code = MEDIA_BUS_FMT_SGBRG10_1X10,
165 .depth = 16,
166 }, {
167 .fourcc = V4L2_PIX_FMT_SGRBG10,
168 .code = MEDIA_BUS_FMT_SGRBG10_1X10,
169 .depth = 16,
170 }, {
171 .fourcc = V4L2_PIX_FMT_SRGGB10,
172 .code = MEDIA_BUS_FMT_SRGGB10_1X10,
173 .depth = 16,
174 }, {
175 .fourcc = V4L2_PIX_FMT_SBGGR12,
176 .code = MEDIA_BUS_FMT_SBGGR12_1X12,
177 .depth = 16,
178 }, {
179 .fourcc = V4L2_PIX_FMT_SGBRG12,
180 .code = MEDIA_BUS_FMT_SGBRG12_1X12,
181 .depth = 16,
182 }, {
183 .fourcc = V4L2_PIX_FMT_SGRBG12,
184 .code = MEDIA_BUS_FMT_SGRBG12_1X12,
185 .depth = 16,
186 }, {
187 .fourcc = V4L2_PIX_FMT_SRGGB12,
188 .code = MEDIA_BUS_FMT_SRGGB12_1X12,
189 .depth = 16,
190 },
191 };
192
193 /* Print Four-character-code (FOURCC) */
fourcc_to_str(u32 fmt)194 static char *fourcc_to_str(u32 fmt)
195 {
196 static char code[5];
197
198 code[0] = (unsigned char)(fmt & 0xff);
199 code[1] = (unsigned char)((fmt >> 8) & 0xff);
200 code[2] = (unsigned char)((fmt >> 16) & 0xff);
201 code[3] = (unsigned char)((fmt >> 24) & 0xff);
202 code[4] = '\0';
203
204 return code;
205 }
206
207 /* buffer for one video frame */
208 struct cal_buffer {
209 /* common v4l buffer stuff -- must be first */
210 struct vb2_v4l2_buffer vb;
211 struct list_head list;
212 const struct cal_fmt *fmt;
213 };
214
215 struct cal_dmaqueue {
216 struct list_head active;
217
218 /* Counters to control fps rate */
219 int frame;
220 int ini_jiffies;
221 };
222
223 struct cm_data {
224 void __iomem *base;
225 struct resource *res;
226
227 unsigned int camerrx_control;
228
229 struct platform_device *pdev;
230 };
231
232 struct cc_data {
233 void __iomem *base;
234 struct resource *res;
235
236 struct platform_device *pdev;
237 };
238
239 /*
240 * there is one cal_dev structure in the driver, it is shared by
241 * all instances.
242 */
243 struct cal_dev {
244 int irq;
245 void __iomem *base;
246 struct resource *res;
247 struct platform_device *pdev;
248 struct v4l2_device v4l2_dev;
249
250 /* Control Module handle */
251 struct cm_data *cm;
252 /* Camera Core Module handle */
253 struct cc_data *cc[CAL_NUM_CSI2_PORTS];
254
255 struct cal_ctx *ctx[CAL_NUM_CONTEXT];
256 };
257
258 /*
259 * There is one cal_ctx structure for each camera core context.
260 */
261 struct cal_ctx {
262 struct v4l2_device v4l2_dev;
263 struct v4l2_ctrl_handler ctrl_handler;
264 struct video_device vdev;
265 struct v4l2_async_notifier notifier;
266 struct v4l2_subdev *sensor;
267 struct v4l2_fwnode_endpoint endpoint;
268
269 struct v4l2_async_subdev asd;
270
271 struct v4l2_fh fh;
272 struct cal_dev *dev;
273 struct cc_data *cc;
274
275 /* v4l2_ioctl mutex */
276 struct mutex mutex;
277 /* v4l2 buffers lock */
278 spinlock_t slock;
279
280 /* Several counters */
281 unsigned long jiffies;
282
283 struct cal_dmaqueue vidq;
284
285 /* Input Number */
286 int input;
287
288 /* video capture */
289 const struct cal_fmt *fmt;
290 /* Used to store current pixel format */
291 struct v4l2_format v_fmt;
292 /* Used to store current mbus frame format */
293 struct v4l2_mbus_framefmt m_fmt;
294
295 /* Current subdev enumerated format */
296 struct cal_fmt *active_fmt[ARRAY_SIZE(cal_formats)];
297 int num_active_fmt;
298
299 struct v4l2_fract timeperframe;
300 unsigned int sequence;
301 unsigned int external_rate;
302 struct vb2_queue vb_vidq;
303 unsigned int seq_count;
304 unsigned int csi2_port;
305 unsigned int virtual_channel;
306
307 /* Pointer pointing to current v4l2_buffer */
308 struct cal_buffer *cur_frm;
309 /* Pointer pointing to next v4l2_buffer */
310 struct cal_buffer *next_frm;
311 };
312
find_format_by_pix(struct cal_ctx * ctx,u32 pixelformat)313 static const struct cal_fmt *find_format_by_pix(struct cal_ctx *ctx,
314 u32 pixelformat)
315 {
316 const struct cal_fmt *fmt;
317 unsigned int k;
318
319 for (k = 0; k < ctx->num_active_fmt; k++) {
320 fmt = ctx->active_fmt[k];
321 if (fmt->fourcc == pixelformat)
322 return fmt;
323 }
324
325 return NULL;
326 }
327
find_format_by_code(struct cal_ctx * ctx,u32 code)328 static const struct cal_fmt *find_format_by_code(struct cal_ctx *ctx,
329 u32 code)
330 {
331 const struct cal_fmt *fmt;
332 unsigned int k;
333
334 for (k = 0; k < ctx->num_active_fmt; k++) {
335 fmt = ctx->active_fmt[k];
336 if (fmt->code == code)
337 return fmt;
338 }
339
340 return NULL;
341 }
342
notifier_to_ctx(struct v4l2_async_notifier * n)343 static inline struct cal_ctx *notifier_to_ctx(struct v4l2_async_notifier *n)
344 {
345 return container_of(n, struct cal_ctx, notifier);
346 }
347
get_field(u32 value,u32 mask)348 static inline int get_field(u32 value, u32 mask)
349 {
350 return (value & mask) >> __ffs(mask);
351 }
352
set_field(u32 * valp,u32 field,u32 mask)353 static inline void set_field(u32 *valp, u32 field, u32 mask)
354 {
355 u32 val = *valp;
356
357 val &= ~mask;
358 val |= (field << __ffs(mask)) & mask;
359 *valp = val;
360 }
361
362 /*
363 * Control Module block access
364 */
cm_create(struct cal_dev * dev)365 static struct cm_data *cm_create(struct cal_dev *dev)
366 {
367 struct platform_device *pdev = dev->pdev;
368 struct cm_data *cm;
369
370 cm = devm_kzalloc(&pdev->dev, sizeof(*cm), GFP_KERNEL);
371 if (!cm)
372 return ERR_PTR(-ENOMEM);
373
374 cm->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
375 "camerrx_control");
376 cm->base = devm_ioremap_resource(&pdev->dev, cm->res);
377 if (IS_ERR(cm->base)) {
378 cal_err(dev, "failed to ioremap\n");
379 return ERR_CAST(cm->base);
380 }
381
382 cal_dbg(1, dev, "ioresource %s at %pa - %pa\n",
383 cm->res->name, &cm->res->start, &cm->res->end);
384
385 return cm;
386 }
387
camerarx_phy_enable(struct cal_ctx * ctx)388 static void camerarx_phy_enable(struct cal_ctx *ctx)
389 {
390 u32 val;
391
392 if (!ctx->dev->cm->base) {
393 ctx_err(ctx, "cm not mapped\n");
394 return;
395 }
396
397 val = reg_read(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL);
398 if (ctx->csi2_port == 1) {
399 set_field(&val, 1, CM_CAMERRX_CTRL_CSI0_CTRLCLKEN_MASK);
400 set_field(&val, 0, CM_CAMERRX_CTRL_CSI0_CAMMODE_MASK);
401 /* enable all lanes by default */
402 set_field(&val, 0xf, CM_CAMERRX_CTRL_CSI0_LANEENABLE_MASK);
403 set_field(&val, 1, CM_CAMERRX_CTRL_CSI0_MODE_MASK);
404 } else if (ctx->csi2_port == 2) {
405 set_field(&val, 1, CM_CAMERRX_CTRL_CSI1_CTRLCLKEN_MASK);
406 set_field(&val, 0, CM_CAMERRX_CTRL_CSI1_CAMMODE_MASK);
407 /* enable all lanes by default */
408 set_field(&val, 0x3, CM_CAMERRX_CTRL_CSI1_LANEENABLE_MASK);
409 set_field(&val, 1, CM_CAMERRX_CTRL_CSI1_MODE_MASK);
410 }
411 reg_write(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL, val);
412 }
413
camerarx_phy_disable(struct cal_ctx * ctx)414 static void camerarx_phy_disable(struct cal_ctx *ctx)
415 {
416 u32 val;
417
418 if (!ctx->dev->cm->base) {
419 ctx_err(ctx, "cm not mapped\n");
420 return;
421 }
422
423 val = reg_read(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL);
424 if (ctx->csi2_port == 1)
425 set_field(&val, 0x0, CM_CAMERRX_CTRL_CSI0_CTRLCLKEN_MASK);
426 else if (ctx->csi2_port == 2)
427 set_field(&val, 0x0, CM_CAMERRX_CTRL_CSI1_CTRLCLKEN_MASK);
428 reg_write(ctx->dev->cm, CM_CTRL_CORE_CAMERRX_CONTROL, val);
429 }
430
431 /*
432 * Camera Instance access block
433 */
cc_create(struct cal_dev * dev,unsigned int core)434 static struct cc_data *cc_create(struct cal_dev *dev, unsigned int core)
435 {
436 struct platform_device *pdev = dev->pdev;
437 struct cc_data *cc;
438
439 cc = devm_kzalloc(&pdev->dev, sizeof(*cc), GFP_KERNEL);
440 if (!cc)
441 return ERR_PTR(-ENOMEM);
442
443 cc->res = platform_get_resource_byname(pdev,
444 IORESOURCE_MEM,
445 (core == 0) ?
446 "cal_rx_core0" :
447 "cal_rx_core1");
448 cc->base = devm_ioremap_resource(&pdev->dev, cc->res);
449 if (IS_ERR(cc->base)) {
450 cal_err(dev, "failed to ioremap\n");
451 return ERR_CAST(cc->base);
452 }
453
454 cal_dbg(1, dev, "ioresource %s at %pa - %pa\n",
455 cc->res->name, &cc->res->start, &cc->res->end);
456
457 return cc;
458 }
459
460 /*
461 * Get Revision and HW info
462 */
cal_get_hwinfo(struct cal_dev * dev)463 static void cal_get_hwinfo(struct cal_dev *dev)
464 {
465 u32 revision = 0;
466 u32 hwinfo = 0;
467
468 revision = reg_read(dev, CAL_HL_REVISION);
469 cal_dbg(3, dev, "CAL_HL_REVISION = 0x%08x (expecting 0x40000200)\n",
470 revision);
471
472 hwinfo = reg_read(dev, CAL_HL_HWINFO);
473 cal_dbg(3, dev, "CAL_HL_HWINFO = 0x%08x (expecting 0xA3C90469)\n",
474 hwinfo);
475 }
476
cal_runtime_get(struct cal_dev * dev)477 static inline int cal_runtime_get(struct cal_dev *dev)
478 {
479 return pm_runtime_get_sync(&dev->pdev->dev);
480 }
481
cal_runtime_put(struct cal_dev * dev)482 static inline void cal_runtime_put(struct cal_dev *dev)
483 {
484 pm_runtime_put_sync(&dev->pdev->dev);
485 }
486
cal_quickdump_regs(struct cal_dev * dev)487 static void cal_quickdump_regs(struct cal_dev *dev)
488 {
489 cal_info(dev, "CAL Registers @ 0x%pa:\n", &dev->res->start);
490 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
491 (__force const void *)dev->base,
492 resource_size(dev->res), false);
493
494 if (dev->ctx[0]) {
495 cal_info(dev, "CSI2 Core 0 Registers @ %pa:\n",
496 &dev->ctx[0]->cc->res->start);
497 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
498 (__force const void *)dev->ctx[0]->cc->base,
499 resource_size(dev->ctx[0]->cc->res),
500 false);
501 }
502
503 if (dev->ctx[1]) {
504 cal_info(dev, "CSI2 Core 1 Registers @ %pa:\n",
505 &dev->ctx[1]->cc->res->start);
506 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
507 (__force const void *)dev->ctx[1]->cc->base,
508 resource_size(dev->ctx[1]->cc->res),
509 false);
510 }
511
512 cal_info(dev, "CAMERRX_Control Registers @ %pa:\n",
513 &dev->cm->res->start);
514 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
515 (__force const void *)dev->cm->base,
516 resource_size(dev->cm->res), false);
517 }
518
519 /*
520 * Enable the expected IRQ sources
521 */
enable_irqs(struct cal_ctx * ctx)522 static void enable_irqs(struct cal_ctx *ctx)
523 {
524 /* Enable IRQ_WDMA_END 0/1 */
525 reg_write_field(ctx->dev,
526 CAL_HL_IRQENABLE_SET(2),
527 CAL_HL_IRQ_ENABLE,
528 CAL_HL_IRQ_MASK(ctx->csi2_port));
529 /* Enable IRQ_WDMA_START 0/1 */
530 reg_write_field(ctx->dev,
531 CAL_HL_IRQENABLE_SET(3),
532 CAL_HL_IRQ_ENABLE,
533 CAL_HL_IRQ_MASK(ctx->csi2_port));
534 /* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
535 reg_write(ctx->dev, CAL_CSI2_VC_IRQENABLE(1), 0xFF000000);
536 }
537
disable_irqs(struct cal_ctx * ctx)538 static void disable_irqs(struct cal_ctx *ctx)
539 {
540 /* Disable IRQ_WDMA_END 0/1 */
541 reg_write_field(ctx->dev,
542 CAL_HL_IRQENABLE_CLR(2),
543 CAL_HL_IRQ_CLEAR,
544 CAL_HL_IRQ_MASK(ctx->csi2_port));
545 /* Disable IRQ_WDMA_START 0/1 */
546 reg_write_field(ctx->dev,
547 CAL_HL_IRQENABLE_CLR(3),
548 CAL_HL_IRQ_CLEAR,
549 CAL_HL_IRQ_MASK(ctx->csi2_port));
550 /* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
551 reg_write(ctx->dev, CAL_CSI2_VC_IRQENABLE(1), 0);
552 }
553
csi2_init(struct cal_ctx * ctx)554 static void csi2_init(struct cal_ctx *ctx)
555 {
556 int i;
557 u32 val;
558
559 val = reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port));
560 set_field(&val, CAL_GEN_ENABLE,
561 CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
562 set_field(&val, CAL_GEN_ENABLE,
563 CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
564 set_field(&val, CAL_GEN_DISABLE,
565 CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
566 set_field(&val, 407, CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
567 reg_write(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port), val);
568 ctx_dbg(3, ctx, "CAL_CSI2_TIMING(%d) = 0x%08x\n", ctx->csi2_port,
569 reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port)));
570
571 val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port));
572 set_field(&val, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
573 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
574 set_field(&val, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON,
575 CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
576 reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val);
577 for (i = 0; i < 10; i++) {
578 if (reg_read_field(ctx->dev,
579 CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port),
580 CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK) ==
581 CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_STATE_ON)
582 break;
583 usleep_range(1000, 1100);
584 }
585 ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n", ctx->csi2_port,
586 reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)));
587
588 val = reg_read(ctx->dev, CAL_CTRL);
589 set_field(&val, CAL_CTRL_BURSTSIZE_BURST128, CAL_CTRL_BURSTSIZE_MASK);
590 set_field(&val, 0xF, CAL_CTRL_TAGCNT_MASK);
591 set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED,
592 CAL_CTRL_POSTED_WRITES_MASK);
593 set_field(&val, 0xFF, CAL_CTRL_MFLAGL_MASK);
594 set_field(&val, 0xFF, CAL_CTRL_MFLAGH_MASK);
595 reg_write(ctx->dev, CAL_CTRL, val);
596 ctx_dbg(3, ctx, "CAL_CTRL = 0x%08x\n", reg_read(ctx->dev, CAL_CTRL));
597 }
598
csi2_lane_config(struct cal_ctx * ctx)599 static void csi2_lane_config(struct cal_ctx *ctx)
600 {
601 u32 val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port));
602 u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
603 u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
604 struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
605 &ctx->endpoint.bus.mipi_csi2;
606 int lane;
607
608 set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
609 set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
610 for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
611 /*
612 * Every lane are one nibble apart starting with the
613 * clock followed by the data lanes so shift masks by 4.
614 */
615 lane_mask <<= 4;
616 polarity_mask <<= 4;
617 set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
618 set_field(&val, mipi_csi2->lane_polarities[lane + 1],
619 polarity_mask);
620 }
621
622 reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val);
623 ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
624 ctx->csi2_port, val);
625 }
626
csi2_ppi_enable(struct cal_ctx * ctx)627 static void csi2_ppi_enable(struct cal_ctx *ctx)
628 {
629 reg_write_field(ctx->dev, CAL_CSI2_PPI_CTRL(ctx->csi2_port),
630 CAL_GEN_ENABLE, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
631 }
632
csi2_ppi_disable(struct cal_ctx * ctx)633 static void csi2_ppi_disable(struct cal_ctx *ctx)
634 {
635 reg_write_field(ctx->dev, CAL_CSI2_PPI_CTRL(ctx->csi2_port),
636 CAL_GEN_DISABLE, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
637 }
638
csi2_ctx_config(struct cal_ctx * ctx)639 static void csi2_ctx_config(struct cal_ctx *ctx)
640 {
641 u32 val;
642
643 val = reg_read(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port));
644 set_field(&val, ctx->csi2_port, CAL_CSI2_CTX_CPORT_MASK);
645 /*
646 * DT type: MIPI CSI-2 Specs
647 * 0x1: All - DT filter is disabled
648 * 0x24: RGB888 1 pixel = 3 bytes
649 * 0x2B: RAW10 4 pixels = 5 bytes
650 * 0x2A: RAW8 1 pixel = 1 byte
651 * 0x1E: YUV422 2 pixels = 4 bytes
652 */
653 set_field(&val, 0x1, CAL_CSI2_CTX_DT_MASK);
654 /* Virtual Channel from the CSI2 sensor usually 0! */
655 set_field(&val, ctx->virtual_channel, CAL_CSI2_CTX_VC_MASK);
656 /* NUM_LINES_PER_FRAME => 0 means auto detect */
657 set_field(&val, 0, CAL_CSI2_CTX_LINES_MASK);
658 set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK);
659 set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE,
660 CAL_CSI2_CTX_PACK_MODE_MASK);
661 reg_write(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port), val);
662 ctx_dbg(3, ctx, "CAL_CSI2_CTX0(%d) = 0x%08x\n", ctx->csi2_port,
663 reg_read(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port)));
664 }
665
pix_proc_config(struct cal_ctx * ctx)666 static void pix_proc_config(struct cal_ctx *ctx)
667 {
668 u32 val;
669
670 val = reg_read(ctx->dev, CAL_PIX_PROC(ctx->csi2_port));
671 set_field(&val, CAL_PIX_PROC_EXTRACT_B8, CAL_PIX_PROC_EXTRACT_MASK);
672 set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK);
673 set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK);
674 set_field(&val, CAL_PIX_PROC_PACK_B8, CAL_PIX_PROC_PACK_MASK);
675 set_field(&val, ctx->csi2_port, CAL_PIX_PROC_CPORT_MASK);
676 set_field(&val, CAL_GEN_ENABLE, CAL_PIX_PROC_EN_MASK);
677 reg_write(ctx->dev, CAL_PIX_PROC(ctx->csi2_port), val);
678 ctx_dbg(3, ctx, "CAL_PIX_PROC(%d) = 0x%08x\n", ctx->csi2_port,
679 reg_read(ctx->dev, CAL_PIX_PROC(ctx->csi2_port)));
680 }
681
cal_wr_dma_config(struct cal_ctx * ctx,unsigned int width)682 static void cal_wr_dma_config(struct cal_ctx *ctx,
683 unsigned int width)
684 {
685 u32 val;
686
687 val = reg_read(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port));
688 set_field(&val, ctx->csi2_port, CAL_WR_DMA_CTRL_CPORT_MASK);
689 set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT,
690 CAL_WR_DMA_CTRL_DTAG_MASK);
691 set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST,
692 CAL_WR_DMA_CTRL_MODE_MASK);
693 set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR,
694 CAL_WR_DMA_CTRL_PATTERN_MASK);
695 set_field(&val, CAL_GEN_ENABLE, CAL_WR_DMA_CTRL_STALL_RD_MASK);
696 reg_write(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port), val);
697 ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->csi2_port,
698 reg_read(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port)));
699
700 /*
701 * width/16 not sure but giving it a whirl.
702 * zero does not work right
703 */
704 reg_write_field(ctx->dev,
705 CAL_WR_DMA_OFST(ctx->csi2_port),
706 (width / 16),
707 CAL_WR_DMA_OFST_MASK);
708 ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->csi2_port,
709 reg_read(ctx->dev, CAL_WR_DMA_OFST(ctx->csi2_port)));
710
711 val = reg_read(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port));
712 /* 64 bit word means no skipping */
713 set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK);
714 /*
715 * (width*8)/64 this should be size of an entire line
716 * in 64bit word but 0 means all data until the end
717 * is detected automagically
718 */
719 set_field(&val, (width / 8), CAL_WR_DMA_XSIZE_MASK);
720 reg_write(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port), val);
721 ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->csi2_port,
722 reg_read(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port)));
723 }
724
cal_wr_dma_addr(struct cal_ctx * ctx,unsigned int dmaaddr)725 static void cal_wr_dma_addr(struct cal_ctx *ctx, unsigned int dmaaddr)
726 {
727 reg_write(ctx->dev, CAL_WR_DMA_ADDR(ctx->csi2_port), dmaaddr);
728 }
729
730 /*
731 * TCLK values are OK at their reset values
732 */
733 #define TCLK_TERM 0
734 #define TCLK_MISS 1
735 #define TCLK_SETTLE 14
736 #define THS_SETTLE 15
737
csi2_phy_config(struct cal_ctx * ctx)738 static void csi2_phy_config(struct cal_ctx *ctx)
739 {
740 unsigned int reg0, reg1;
741 unsigned int ths_term, ths_settle;
742 unsigned int ddrclkperiod_us;
743
744 /*
745 * THS_TERM: Programmed value = floor(20 ns/DDRClk period) - 2.
746 */
747 ddrclkperiod_us = ctx->external_rate / 2000000;
748 ddrclkperiod_us = 1000000 / ddrclkperiod_us;
749 ctx_dbg(1, ctx, "ddrclkperiod_us: %d\n", ddrclkperiod_us);
750
751 ths_term = 20000 / ddrclkperiod_us;
752 ths_term = (ths_term >= 2) ? ths_term - 2 : ths_term;
753 ctx_dbg(1, ctx, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
754
755 /*
756 * THS_SETTLE: Programmed value = floor(176.3 ns/CtrlClk period) - 1.
757 * Since CtrlClk is fixed at 96Mhz then we get
758 * ths_settle = floor(176.3 / 10.416) - 1 = 15
759 * If we ever switch to a dynamic clock then this code might be useful
760 *
761 * unsigned int ctrlclkperiod_us;
762 * ctrlclkperiod_us = 96000000 / 1000000;
763 * ctrlclkperiod_us = 1000000 / ctrlclkperiod_us;
764 * ctx_dbg(1, ctx, "ctrlclkperiod_us: %d\n", ctrlclkperiod_us);
765
766 * ths_settle = 176300 / ctrlclkperiod_us;
767 * ths_settle = (ths_settle > 1) ? ths_settle - 1 : ths_settle;
768 */
769
770 ths_settle = THS_SETTLE;
771 ctx_dbg(1, ctx, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
772
773 reg0 = reg_read(ctx->cc, CAL_CSI2_PHY_REG0);
774 set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
775 CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
776 set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
777 set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
778
779 ctx_dbg(1, ctx, "CSI2_%d_REG0 = 0x%08x\n", (ctx->csi2_port - 1), reg0);
780 reg_write(ctx->cc, CAL_CSI2_PHY_REG0, reg0);
781
782 reg1 = reg_read(ctx->cc, CAL_CSI2_PHY_REG1);
783 set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
784 set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
785 set_field(®1, TCLK_MISS, CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
786 set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
787
788 ctx_dbg(1, ctx, "CSI2_%d_REG1 = 0x%08x\n", (ctx->csi2_port - 1), reg1);
789 reg_write(ctx->cc, CAL_CSI2_PHY_REG1, reg1);
790 }
791
cal_get_external_info(struct cal_ctx * ctx)792 static int cal_get_external_info(struct cal_ctx *ctx)
793 {
794 struct v4l2_ctrl *ctrl;
795
796 if (!ctx->sensor)
797 return -ENODEV;
798
799 ctrl = v4l2_ctrl_find(ctx->sensor->ctrl_handler, V4L2_CID_PIXEL_RATE);
800 if (!ctrl) {
801 ctx_err(ctx, "no pixel rate control in subdev: %s\n",
802 ctx->sensor->name);
803 return -EPIPE;
804 }
805
806 ctx->external_rate = v4l2_ctrl_g_ctrl_int64(ctrl);
807 ctx_dbg(3, ctx, "sensor Pixel Rate: %d\n", ctx->external_rate);
808
809 return 0;
810 }
811
cal_schedule_next_buffer(struct cal_ctx * ctx)812 static inline void cal_schedule_next_buffer(struct cal_ctx *ctx)
813 {
814 struct cal_dmaqueue *dma_q = &ctx->vidq;
815 struct cal_buffer *buf;
816 unsigned long addr;
817
818 buf = list_entry(dma_q->active.next, struct cal_buffer, list);
819 ctx->next_frm = buf;
820 list_del(&buf->list);
821
822 addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
823 cal_wr_dma_addr(ctx, addr);
824 }
825
cal_process_buffer_complete(struct cal_ctx * ctx)826 static inline void cal_process_buffer_complete(struct cal_ctx *ctx)
827 {
828 ctx->cur_frm->vb.vb2_buf.timestamp = ktime_get_ns();
829 ctx->cur_frm->vb.field = ctx->m_fmt.field;
830 ctx->cur_frm->vb.sequence = ctx->sequence++;
831
832 vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE);
833 ctx->cur_frm = ctx->next_frm;
834 }
835
836 #define isvcirqset(irq, vc, ff) (irq & \
837 (CAL_CSI2_VC_IRQENABLE_ ##ff ##_IRQ_##vc ##_MASK))
838
839 #define isportirqset(irq, port) (irq & CAL_HL_IRQ_MASK(port))
840
cal_irq(int irq_cal,void * data)841 static irqreturn_t cal_irq(int irq_cal, void *data)
842 {
843 struct cal_dev *dev = (struct cal_dev *)data;
844 struct cal_ctx *ctx;
845 struct cal_dmaqueue *dma_q;
846 u32 irqst2, irqst3;
847
848 /* Check which DMA just finished */
849 irqst2 = reg_read(dev, CAL_HL_IRQSTATUS(2));
850 if (irqst2) {
851 /* Clear Interrupt status */
852 reg_write(dev, CAL_HL_IRQSTATUS(2), irqst2);
853
854 /* Need to check both port */
855 if (isportirqset(irqst2, 1)) {
856 ctx = dev->ctx[0];
857
858 if (ctx->cur_frm != ctx->next_frm)
859 cal_process_buffer_complete(ctx);
860 }
861
862 if (isportirqset(irqst2, 2)) {
863 ctx = dev->ctx[1];
864
865 if (ctx->cur_frm != ctx->next_frm)
866 cal_process_buffer_complete(ctx);
867 }
868 }
869
870 /* Check which DMA just started */
871 irqst3 = reg_read(dev, CAL_HL_IRQSTATUS(3));
872 if (irqst3) {
873 /* Clear Interrupt status */
874 reg_write(dev, CAL_HL_IRQSTATUS(3), irqst3);
875
876 /* Need to check both port */
877 if (isportirqset(irqst3, 1)) {
878 ctx = dev->ctx[0];
879 dma_q = &ctx->vidq;
880
881 spin_lock(&ctx->slock);
882 if (!list_empty(&dma_q->active) &&
883 ctx->cur_frm == ctx->next_frm)
884 cal_schedule_next_buffer(ctx);
885 spin_unlock(&ctx->slock);
886 }
887
888 if (isportirqset(irqst3, 2)) {
889 ctx = dev->ctx[1];
890 dma_q = &ctx->vidq;
891
892 spin_lock(&ctx->slock);
893 if (!list_empty(&dma_q->active) &&
894 ctx->cur_frm == ctx->next_frm)
895 cal_schedule_next_buffer(ctx);
896 spin_unlock(&ctx->slock);
897 }
898 }
899
900 return IRQ_HANDLED;
901 }
902
903 /*
904 * video ioctls
905 */
cal_querycap(struct file * file,void * priv,struct v4l2_capability * cap)906 static int cal_querycap(struct file *file, void *priv,
907 struct v4l2_capability *cap)
908 {
909 struct cal_ctx *ctx = video_drvdata(file);
910
911 strscpy(cap->driver, CAL_MODULE_NAME, sizeof(cap->driver));
912 strscpy(cap->card, CAL_MODULE_NAME, sizeof(cap->card));
913
914 snprintf(cap->bus_info, sizeof(cap->bus_info),
915 "platform:%s", ctx->v4l2_dev.name);
916 return 0;
917 }
918
cal_enum_fmt_vid_cap(struct file * file,void * priv,struct v4l2_fmtdesc * f)919 static int cal_enum_fmt_vid_cap(struct file *file, void *priv,
920 struct v4l2_fmtdesc *f)
921 {
922 struct cal_ctx *ctx = video_drvdata(file);
923 const struct cal_fmt *fmt = NULL;
924
925 if (f->index >= ctx->num_active_fmt)
926 return -EINVAL;
927
928 fmt = ctx->active_fmt[f->index];
929
930 f->pixelformat = fmt->fourcc;
931 f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
932 return 0;
933 }
934
__subdev_get_format(struct cal_ctx * ctx,struct v4l2_mbus_framefmt * fmt)935 static int __subdev_get_format(struct cal_ctx *ctx,
936 struct v4l2_mbus_framefmt *fmt)
937 {
938 struct v4l2_subdev_format sd_fmt;
939 struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format;
940 int ret;
941
942 sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
943 sd_fmt.pad = 0;
944
945 ret = v4l2_subdev_call(ctx->sensor, pad, get_fmt, NULL, &sd_fmt);
946 if (ret)
947 return ret;
948
949 *fmt = *mbus_fmt;
950
951 ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__,
952 fmt->width, fmt->height, fmt->code);
953
954 return 0;
955 }
956
__subdev_set_format(struct cal_ctx * ctx,struct v4l2_mbus_framefmt * fmt)957 static int __subdev_set_format(struct cal_ctx *ctx,
958 struct v4l2_mbus_framefmt *fmt)
959 {
960 struct v4l2_subdev_format sd_fmt;
961 struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format;
962 int ret;
963
964 sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
965 sd_fmt.pad = 0;
966 *mbus_fmt = *fmt;
967
968 ret = v4l2_subdev_call(ctx->sensor, pad, set_fmt, NULL, &sd_fmt);
969 if (ret)
970 return ret;
971
972 ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__,
973 fmt->width, fmt->height, fmt->code);
974
975 return 0;
976 }
977
cal_calc_format_size(struct cal_ctx * ctx,const struct cal_fmt * fmt,struct v4l2_format * f)978 static int cal_calc_format_size(struct cal_ctx *ctx,
979 const struct cal_fmt *fmt,
980 struct v4l2_format *f)
981 {
982 if (!fmt) {
983 ctx_dbg(3, ctx, "No cal_fmt provided!\n");
984 return -EINVAL;
985 }
986
987 v4l_bound_align_image(&f->fmt.pix.width, 48, MAX_WIDTH, 2,
988 &f->fmt.pix.height, 32, MAX_HEIGHT, 0, 0);
989 f->fmt.pix.bytesperline = bytes_per_line(f->fmt.pix.width,
990 fmt->depth >> 3);
991 f->fmt.pix.sizeimage = f->fmt.pix.height *
992 f->fmt.pix.bytesperline;
993
994 ctx_dbg(3, ctx, "%s: fourcc: %s size: %dx%d bpl:%d img_size:%d\n",
995 __func__, fourcc_to_str(f->fmt.pix.pixelformat),
996 f->fmt.pix.width, f->fmt.pix.height,
997 f->fmt.pix.bytesperline, f->fmt.pix.sizeimage);
998
999 return 0;
1000 }
1001
cal_g_fmt_vid_cap(struct file * file,void * priv,struct v4l2_format * f)1002 static int cal_g_fmt_vid_cap(struct file *file, void *priv,
1003 struct v4l2_format *f)
1004 {
1005 struct cal_ctx *ctx = video_drvdata(file);
1006
1007 *f = ctx->v_fmt;
1008
1009 return 0;
1010 }
1011
cal_try_fmt_vid_cap(struct file * file,void * priv,struct v4l2_format * f)1012 static int cal_try_fmt_vid_cap(struct file *file, void *priv,
1013 struct v4l2_format *f)
1014 {
1015 struct cal_ctx *ctx = video_drvdata(file);
1016 const struct cal_fmt *fmt;
1017 struct v4l2_subdev_frame_size_enum fse;
1018 int ret, found;
1019
1020 fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat);
1021 if (!fmt) {
1022 ctx_dbg(3, ctx, "Fourcc format (0x%08x) not found.\n",
1023 f->fmt.pix.pixelformat);
1024
1025 /* Just get the first one enumerated */
1026 fmt = ctx->active_fmt[0];
1027 f->fmt.pix.pixelformat = fmt->fourcc;
1028 }
1029
1030 f->fmt.pix.field = ctx->v_fmt.fmt.pix.field;
1031
1032 /* check for/find a valid width/height */
1033 ret = 0;
1034 found = false;
1035 fse.pad = 0;
1036 fse.code = fmt->code;
1037 fse.which = V4L2_SUBDEV_FORMAT_ACTIVE;
1038 for (fse.index = 0; ; fse.index++) {
1039 ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_size,
1040 NULL, &fse);
1041 if (ret)
1042 break;
1043
1044 if ((f->fmt.pix.width == fse.max_width) &&
1045 (f->fmt.pix.height == fse.max_height)) {
1046 found = true;
1047 break;
1048 } else if ((f->fmt.pix.width >= fse.min_width) &&
1049 (f->fmt.pix.width <= fse.max_width) &&
1050 (f->fmt.pix.height >= fse.min_height) &&
1051 (f->fmt.pix.height <= fse.max_height)) {
1052 found = true;
1053 break;
1054 }
1055 }
1056
1057 if (!found) {
1058 /* use existing values as default */
1059 f->fmt.pix.width = ctx->v_fmt.fmt.pix.width;
1060 f->fmt.pix.height = ctx->v_fmt.fmt.pix.height;
1061 }
1062
1063 /*
1064 * Use current colorspace for now, it will get
1065 * updated properly during s_fmt
1066 */
1067 f->fmt.pix.colorspace = ctx->v_fmt.fmt.pix.colorspace;
1068 return cal_calc_format_size(ctx, fmt, f);
1069 }
1070
cal_s_fmt_vid_cap(struct file * file,void * priv,struct v4l2_format * f)1071 static int cal_s_fmt_vid_cap(struct file *file, void *priv,
1072 struct v4l2_format *f)
1073 {
1074 struct cal_ctx *ctx = video_drvdata(file);
1075 struct vb2_queue *q = &ctx->vb_vidq;
1076 const struct cal_fmt *fmt;
1077 struct v4l2_mbus_framefmt mbus_fmt;
1078 int ret;
1079
1080 if (vb2_is_busy(q)) {
1081 ctx_dbg(3, ctx, "%s device busy\n", __func__);
1082 return -EBUSY;
1083 }
1084
1085 ret = cal_try_fmt_vid_cap(file, priv, f);
1086 if (ret < 0)
1087 return ret;
1088
1089 fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat);
1090
1091 v4l2_fill_mbus_format(&mbus_fmt, &f->fmt.pix, fmt->code);
1092
1093 ret = __subdev_set_format(ctx, &mbus_fmt);
1094 if (ret)
1095 return ret;
1096
1097 /* Just double check nothing has gone wrong */
1098 if (mbus_fmt.code != fmt->code) {
1099 ctx_dbg(3, ctx,
1100 "%s subdev changed format on us, this should not happen\n",
1101 __func__);
1102 return -EINVAL;
1103 }
1104
1105 v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt);
1106 ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1107 ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc;
1108 cal_calc_format_size(ctx, fmt, &ctx->v_fmt);
1109 ctx->fmt = fmt;
1110 ctx->m_fmt = mbus_fmt;
1111 *f = ctx->v_fmt;
1112
1113 return 0;
1114 }
1115
cal_enum_framesizes(struct file * file,void * fh,struct v4l2_frmsizeenum * fsize)1116 static int cal_enum_framesizes(struct file *file, void *fh,
1117 struct v4l2_frmsizeenum *fsize)
1118 {
1119 struct cal_ctx *ctx = video_drvdata(file);
1120 const struct cal_fmt *fmt;
1121 struct v4l2_subdev_frame_size_enum fse;
1122 int ret;
1123
1124 /* check for valid format */
1125 fmt = find_format_by_pix(ctx, fsize->pixel_format);
1126 if (!fmt) {
1127 ctx_dbg(3, ctx, "Invalid pixel code: %x\n",
1128 fsize->pixel_format);
1129 return -EINVAL;
1130 }
1131
1132 fse.index = fsize->index;
1133 fse.pad = 0;
1134 fse.code = fmt->code;
1135
1136 ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_size, NULL, &fse);
1137 if (ret)
1138 return ret;
1139
1140 ctx_dbg(1, ctx, "%s: index: %d code: %x W:[%d,%d] H:[%d,%d]\n",
1141 __func__, fse.index, fse.code, fse.min_width, fse.max_width,
1142 fse.min_height, fse.max_height);
1143
1144 fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1145 fsize->discrete.width = fse.max_width;
1146 fsize->discrete.height = fse.max_height;
1147
1148 return 0;
1149 }
1150
cal_enum_input(struct file * file,void * priv,struct v4l2_input * inp)1151 static int cal_enum_input(struct file *file, void *priv,
1152 struct v4l2_input *inp)
1153 {
1154 if (inp->index >= CAL_NUM_INPUT)
1155 return -EINVAL;
1156
1157 inp->type = V4L2_INPUT_TYPE_CAMERA;
1158 sprintf(inp->name, "Camera %u", inp->index);
1159 return 0;
1160 }
1161
cal_g_input(struct file * file,void * priv,unsigned int * i)1162 static int cal_g_input(struct file *file, void *priv, unsigned int *i)
1163 {
1164 struct cal_ctx *ctx = video_drvdata(file);
1165
1166 *i = ctx->input;
1167 return 0;
1168 }
1169
cal_s_input(struct file * file,void * priv,unsigned int i)1170 static int cal_s_input(struct file *file, void *priv, unsigned int i)
1171 {
1172 struct cal_ctx *ctx = video_drvdata(file);
1173
1174 if (i >= CAL_NUM_INPUT)
1175 return -EINVAL;
1176
1177 ctx->input = i;
1178 return 0;
1179 }
1180
1181 /* timeperframe is arbitrary and continuous */
cal_enum_frameintervals(struct file * file,void * priv,struct v4l2_frmivalenum * fival)1182 static int cal_enum_frameintervals(struct file *file, void *priv,
1183 struct v4l2_frmivalenum *fival)
1184 {
1185 struct cal_ctx *ctx = video_drvdata(file);
1186 const struct cal_fmt *fmt;
1187 struct v4l2_subdev_frame_interval_enum fie = {
1188 .index = fival->index,
1189 .width = fival->width,
1190 .height = fival->height,
1191 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1192 };
1193 int ret;
1194
1195 fmt = find_format_by_pix(ctx, fival->pixel_format);
1196 if (!fmt)
1197 return -EINVAL;
1198
1199 fie.code = fmt->code;
1200 ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_interval,
1201 NULL, &fie);
1202 if (ret)
1203 return ret;
1204 fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1205 fival->discrete = fie.interval;
1206
1207 return 0;
1208 }
1209
1210 /*
1211 * Videobuf operations
1212 */
cal_queue_setup(struct vb2_queue * vq,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],struct device * alloc_devs[])1213 static int cal_queue_setup(struct vb2_queue *vq,
1214 unsigned int *nbuffers, unsigned int *nplanes,
1215 unsigned int sizes[], struct device *alloc_devs[])
1216 {
1217 struct cal_ctx *ctx = vb2_get_drv_priv(vq);
1218 unsigned size = ctx->v_fmt.fmt.pix.sizeimage;
1219
1220 if (vq->num_buffers + *nbuffers < 3)
1221 *nbuffers = 3 - vq->num_buffers;
1222
1223 if (*nplanes) {
1224 if (sizes[0] < size)
1225 return -EINVAL;
1226 size = sizes[0];
1227 }
1228
1229 *nplanes = 1;
1230 sizes[0] = size;
1231
1232 ctx_dbg(3, ctx, "nbuffers=%d, size=%d\n", *nbuffers, sizes[0]);
1233
1234 return 0;
1235 }
1236
cal_buffer_prepare(struct vb2_buffer * vb)1237 static int cal_buffer_prepare(struct vb2_buffer *vb)
1238 {
1239 struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1240 struct cal_buffer *buf = container_of(vb, struct cal_buffer,
1241 vb.vb2_buf);
1242 unsigned long size;
1243
1244 if (WARN_ON(!ctx->fmt))
1245 return -EINVAL;
1246
1247 size = ctx->v_fmt.fmt.pix.sizeimage;
1248 if (vb2_plane_size(vb, 0) < size) {
1249 ctx_err(ctx,
1250 "data will not fit into plane (%lu < %lu)\n",
1251 vb2_plane_size(vb, 0), size);
1252 return -EINVAL;
1253 }
1254
1255 vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size);
1256 return 0;
1257 }
1258
cal_buffer_queue(struct vb2_buffer * vb)1259 static void cal_buffer_queue(struct vb2_buffer *vb)
1260 {
1261 struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1262 struct cal_buffer *buf = container_of(vb, struct cal_buffer,
1263 vb.vb2_buf);
1264 struct cal_dmaqueue *vidq = &ctx->vidq;
1265 unsigned long flags = 0;
1266
1267 /* recheck locking */
1268 spin_lock_irqsave(&ctx->slock, flags);
1269 list_add_tail(&buf->list, &vidq->active);
1270 spin_unlock_irqrestore(&ctx->slock, flags);
1271 }
1272
cal_start_streaming(struct vb2_queue * vq,unsigned int count)1273 static int cal_start_streaming(struct vb2_queue *vq, unsigned int count)
1274 {
1275 struct cal_ctx *ctx = vb2_get_drv_priv(vq);
1276 struct cal_dmaqueue *dma_q = &ctx->vidq;
1277 struct cal_buffer *buf, *tmp;
1278 unsigned long addr = 0;
1279 unsigned long flags;
1280 int ret;
1281
1282 spin_lock_irqsave(&ctx->slock, flags);
1283 if (list_empty(&dma_q->active)) {
1284 spin_unlock_irqrestore(&ctx->slock, flags);
1285 ctx_dbg(3, ctx, "buffer queue is empty\n");
1286 return -EIO;
1287 }
1288
1289 buf = list_entry(dma_q->active.next, struct cal_buffer, list);
1290 ctx->cur_frm = buf;
1291 ctx->next_frm = buf;
1292 list_del(&buf->list);
1293 spin_unlock_irqrestore(&ctx->slock, flags);
1294
1295 addr = vb2_dma_contig_plane_dma_addr(&ctx->cur_frm->vb.vb2_buf, 0);
1296 ctx->sequence = 0;
1297
1298 ret = cal_get_external_info(ctx);
1299 if (ret < 0)
1300 goto err;
1301
1302 cal_runtime_get(ctx->dev);
1303
1304 enable_irqs(ctx);
1305 camerarx_phy_enable(ctx);
1306 csi2_init(ctx);
1307 csi2_phy_config(ctx);
1308 csi2_lane_config(ctx);
1309 csi2_ctx_config(ctx);
1310 pix_proc_config(ctx);
1311 cal_wr_dma_config(ctx, ctx->v_fmt.fmt.pix.bytesperline);
1312 cal_wr_dma_addr(ctx, addr);
1313 csi2_ppi_enable(ctx);
1314
1315 ret = v4l2_subdev_call(ctx->sensor, video, s_stream, 1);
1316 if (ret) {
1317 ctx_err(ctx, "stream on failed in subdev\n");
1318 cal_runtime_put(ctx->dev);
1319 goto err;
1320 }
1321
1322 if (debug >= 4)
1323 cal_quickdump_regs(ctx->dev);
1324
1325 return 0;
1326
1327 err:
1328 list_for_each_entry_safe(buf, tmp, &dma_q->active, list) {
1329 list_del(&buf->list);
1330 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
1331 }
1332 return ret;
1333 }
1334
cal_stop_streaming(struct vb2_queue * vq)1335 static void cal_stop_streaming(struct vb2_queue *vq)
1336 {
1337 struct cal_ctx *ctx = vb2_get_drv_priv(vq);
1338 struct cal_dmaqueue *dma_q = &ctx->vidq;
1339 struct cal_buffer *buf, *tmp;
1340 unsigned long flags;
1341
1342 if (v4l2_subdev_call(ctx->sensor, video, s_stream, 0))
1343 ctx_err(ctx, "stream off failed in subdev\n");
1344
1345 csi2_ppi_disable(ctx);
1346 disable_irqs(ctx);
1347
1348 /* Release all active buffers */
1349 spin_lock_irqsave(&ctx->slock, flags);
1350 list_for_each_entry_safe(buf, tmp, &dma_q->active, list) {
1351 list_del(&buf->list);
1352 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
1353 }
1354
1355 if (ctx->cur_frm == ctx->next_frm) {
1356 vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR);
1357 } else {
1358 vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR);
1359 vb2_buffer_done(&ctx->next_frm->vb.vb2_buf,
1360 VB2_BUF_STATE_ERROR);
1361 }
1362 ctx->cur_frm = NULL;
1363 ctx->next_frm = NULL;
1364 spin_unlock_irqrestore(&ctx->slock, flags);
1365
1366 cal_runtime_put(ctx->dev);
1367 }
1368
1369 static const struct vb2_ops cal_video_qops = {
1370 .queue_setup = cal_queue_setup,
1371 .buf_prepare = cal_buffer_prepare,
1372 .buf_queue = cal_buffer_queue,
1373 .start_streaming = cal_start_streaming,
1374 .stop_streaming = cal_stop_streaming,
1375 .wait_prepare = vb2_ops_wait_prepare,
1376 .wait_finish = vb2_ops_wait_finish,
1377 };
1378
1379 static const struct v4l2_file_operations cal_fops = {
1380 .owner = THIS_MODULE,
1381 .open = v4l2_fh_open,
1382 .release = vb2_fop_release,
1383 .read = vb2_fop_read,
1384 .poll = vb2_fop_poll,
1385 .unlocked_ioctl = video_ioctl2, /* V4L2 ioctl handler */
1386 .mmap = vb2_fop_mmap,
1387 };
1388
1389 static const struct v4l2_ioctl_ops cal_ioctl_ops = {
1390 .vidioc_querycap = cal_querycap,
1391 .vidioc_enum_fmt_vid_cap = cal_enum_fmt_vid_cap,
1392 .vidioc_g_fmt_vid_cap = cal_g_fmt_vid_cap,
1393 .vidioc_try_fmt_vid_cap = cal_try_fmt_vid_cap,
1394 .vidioc_s_fmt_vid_cap = cal_s_fmt_vid_cap,
1395 .vidioc_enum_framesizes = cal_enum_framesizes,
1396 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1397 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1398 .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1399 .vidioc_querybuf = vb2_ioctl_querybuf,
1400 .vidioc_qbuf = vb2_ioctl_qbuf,
1401 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1402 .vidioc_enum_input = cal_enum_input,
1403 .vidioc_g_input = cal_g_input,
1404 .vidioc_s_input = cal_s_input,
1405 .vidioc_enum_frameintervals = cal_enum_frameintervals,
1406 .vidioc_streamon = vb2_ioctl_streamon,
1407 .vidioc_streamoff = vb2_ioctl_streamoff,
1408 .vidioc_log_status = v4l2_ctrl_log_status,
1409 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1410 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1411 };
1412
1413 static const struct video_device cal_videodev = {
1414 .name = CAL_MODULE_NAME,
1415 .fops = &cal_fops,
1416 .ioctl_ops = &cal_ioctl_ops,
1417 .minor = -1,
1418 .release = video_device_release_empty,
1419 .device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING |
1420 V4L2_CAP_READWRITE,
1421 };
1422
1423 /* -----------------------------------------------------------------
1424 * Initialization and module stuff
1425 * ------------------------------------------------------------------
1426 */
1427 static int cal_complete_ctx(struct cal_ctx *ctx);
1428
cal_async_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)1429 static int cal_async_bound(struct v4l2_async_notifier *notifier,
1430 struct v4l2_subdev *subdev,
1431 struct v4l2_async_subdev *asd)
1432 {
1433 struct cal_ctx *ctx = notifier_to_ctx(notifier);
1434 struct v4l2_subdev_mbus_code_enum mbus_code;
1435 int ret = 0;
1436 int i, j, k;
1437
1438 if (ctx->sensor) {
1439 ctx_info(ctx, "Rejecting subdev %s (Already set!!)",
1440 subdev->name);
1441 return 0;
1442 }
1443
1444 ctx->sensor = subdev;
1445 ctx_dbg(1, ctx, "Using sensor %s for capture\n", subdev->name);
1446
1447 /* Enumerate sub device formats and enable all matching local formats */
1448 ctx->num_active_fmt = 0;
1449 for (j = 0, i = 0; ret != -EINVAL; ++j) {
1450 struct cal_fmt *fmt;
1451
1452 memset(&mbus_code, 0, sizeof(mbus_code));
1453 mbus_code.index = j;
1454 ret = v4l2_subdev_call(subdev, pad, enum_mbus_code,
1455 NULL, &mbus_code);
1456 if (ret)
1457 continue;
1458
1459 ctx_dbg(2, ctx,
1460 "subdev %s: code: %04x idx: %d\n",
1461 subdev->name, mbus_code.code, j);
1462
1463 for (k = 0; k < ARRAY_SIZE(cal_formats); k++) {
1464 fmt = &cal_formats[k];
1465
1466 if (mbus_code.code == fmt->code) {
1467 ctx->active_fmt[i] = fmt;
1468 ctx_dbg(2, ctx,
1469 "matched fourcc: %s: code: %04x idx: %d\n",
1470 fourcc_to_str(fmt->fourcc),
1471 fmt->code, i);
1472 ctx->num_active_fmt = ++i;
1473 }
1474 }
1475 }
1476
1477 if (i == 0) {
1478 ctx_err(ctx, "No suitable format reported by subdev %s\n",
1479 subdev->name);
1480 return -EINVAL;
1481 }
1482
1483 cal_complete_ctx(ctx);
1484
1485 return 0;
1486 }
1487
cal_async_complete(struct v4l2_async_notifier * notifier)1488 static int cal_async_complete(struct v4l2_async_notifier *notifier)
1489 {
1490 struct cal_ctx *ctx = notifier_to_ctx(notifier);
1491 const struct cal_fmt *fmt;
1492 struct v4l2_mbus_framefmt mbus_fmt;
1493 int ret;
1494
1495 ret = __subdev_get_format(ctx, &mbus_fmt);
1496 if (ret)
1497 return ret;
1498
1499 fmt = find_format_by_code(ctx, mbus_fmt.code);
1500 if (!fmt) {
1501 ctx_dbg(3, ctx, "mbus code format (0x%08x) not found.\n",
1502 mbus_fmt.code);
1503 return -EINVAL;
1504 }
1505
1506 /* Save current subdev format */
1507 v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt);
1508 ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1509 ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc;
1510 cal_calc_format_size(ctx, fmt, &ctx->v_fmt);
1511 ctx->fmt = fmt;
1512 ctx->m_fmt = mbus_fmt;
1513
1514 return 0;
1515 }
1516
1517 static const struct v4l2_async_notifier_operations cal_async_ops = {
1518 .bound = cal_async_bound,
1519 .complete = cal_async_complete,
1520 };
1521
cal_complete_ctx(struct cal_ctx * ctx)1522 static int cal_complete_ctx(struct cal_ctx *ctx)
1523 {
1524 struct video_device *vfd;
1525 struct vb2_queue *q;
1526 int ret;
1527
1528 ctx->timeperframe = tpf_default;
1529 ctx->external_rate = 192000000;
1530
1531 /* initialize locks */
1532 spin_lock_init(&ctx->slock);
1533 mutex_init(&ctx->mutex);
1534
1535 /* initialize queue */
1536 q = &ctx->vb_vidq;
1537 q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1538 q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ;
1539 q->drv_priv = ctx;
1540 q->buf_struct_size = sizeof(struct cal_buffer);
1541 q->ops = &cal_video_qops;
1542 q->mem_ops = &vb2_dma_contig_memops;
1543 q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1544 q->lock = &ctx->mutex;
1545 q->min_buffers_needed = 3;
1546 q->dev = ctx->v4l2_dev.dev;
1547
1548 ret = vb2_queue_init(q);
1549 if (ret)
1550 return ret;
1551
1552 /* init video dma queues */
1553 INIT_LIST_HEAD(&ctx->vidq.active);
1554
1555 vfd = &ctx->vdev;
1556 *vfd = cal_videodev;
1557 vfd->v4l2_dev = &ctx->v4l2_dev;
1558 vfd->queue = q;
1559
1560 /*
1561 * Provide a mutex to v4l2 core. It will be used to protect
1562 * all fops and v4l2 ioctls.
1563 */
1564 vfd->lock = &ctx->mutex;
1565 video_set_drvdata(vfd, ctx);
1566
1567 ret = video_register_device(vfd, VFL_TYPE_GRABBER, video_nr);
1568 if (ret < 0)
1569 return ret;
1570
1571 v4l2_info(&ctx->v4l2_dev, "V4L2 device registered as %s\n",
1572 video_device_node_name(vfd));
1573
1574 return 0;
1575 }
1576
1577 static struct device_node *
of_get_next_port(const struct device_node * parent,struct device_node * prev)1578 of_get_next_port(const struct device_node *parent,
1579 struct device_node *prev)
1580 {
1581 struct device_node *port = NULL;
1582
1583 if (!parent)
1584 return NULL;
1585
1586 if (!prev) {
1587 struct device_node *ports;
1588 /*
1589 * It's the first call, we have to find a port subnode
1590 * within this node or within an optional 'ports' node.
1591 */
1592 ports = of_get_child_by_name(parent, "ports");
1593 if (ports)
1594 parent = ports;
1595
1596 port = of_get_child_by_name(parent, "port");
1597
1598 /* release the 'ports' node */
1599 of_node_put(ports);
1600 } else {
1601 struct device_node *ports;
1602
1603 ports = of_get_parent(prev);
1604 if (!ports)
1605 return NULL;
1606
1607 do {
1608 port = of_get_next_child(ports, prev);
1609 if (!port) {
1610 of_node_put(ports);
1611 return NULL;
1612 }
1613 prev = port;
1614 } while (!of_node_name_eq(port, "port"));
1615 of_node_put(ports);
1616 }
1617
1618 return port;
1619 }
1620
1621 static struct device_node *
of_get_next_endpoint(const struct device_node * parent,struct device_node * prev)1622 of_get_next_endpoint(const struct device_node *parent,
1623 struct device_node *prev)
1624 {
1625 struct device_node *ep = NULL;
1626
1627 if (!parent)
1628 return NULL;
1629
1630 do {
1631 ep = of_get_next_child(parent, prev);
1632 if (!ep)
1633 return NULL;
1634 prev = ep;
1635 } while (!of_node_name_eq(ep, "endpoint"));
1636
1637 return ep;
1638 }
1639
of_cal_create_instance(struct cal_ctx * ctx,int inst)1640 static int of_cal_create_instance(struct cal_ctx *ctx, int inst)
1641 {
1642 struct platform_device *pdev = ctx->dev->pdev;
1643 struct device_node *ep_node, *port, *sensor_node, *parent;
1644 struct v4l2_fwnode_endpoint *endpoint;
1645 struct v4l2_async_subdev *asd;
1646 u32 regval = 0;
1647 int ret, index, found_port = 0, lane;
1648
1649 parent = pdev->dev.of_node;
1650
1651 asd = &ctx->asd;
1652 endpoint = &ctx->endpoint;
1653
1654 ep_node = NULL;
1655 port = NULL;
1656 sensor_node = NULL;
1657 ret = -EINVAL;
1658
1659 ctx_dbg(3, ctx, "Scanning Port node for csi2 port: %d\n", inst);
1660 for (index = 0; index < CAL_NUM_CSI2_PORTS; index++) {
1661 port = of_get_next_port(parent, port);
1662 if (!port) {
1663 ctx_dbg(1, ctx, "No port node found for csi2 port:%d\n",
1664 index);
1665 goto cleanup_exit;
1666 }
1667
1668 /* Match the slice number with <REG> */
1669 of_property_read_u32(port, "reg", ®val);
1670 ctx_dbg(3, ctx, "port:%d inst:%d <reg>:%d\n",
1671 index, inst, regval);
1672 if ((regval == inst) && (index == inst)) {
1673 found_port = 1;
1674 break;
1675 }
1676 }
1677
1678 if (!found_port) {
1679 ctx_dbg(1, ctx, "No port node matches csi2 port:%d\n",
1680 inst);
1681 goto cleanup_exit;
1682 }
1683
1684 ctx_dbg(3, ctx, "Scanning sub-device for csi2 port: %d\n",
1685 inst);
1686
1687 ep_node = of_get_next_endpoint(port, ep_node);
1688 if (!ep_node) {
1689 ctx_dbg(3, ctx, "can't get next endpoint\n");
1690 goto cleanup_exit;
1691 }
1692
1693 sensor_node = of_graph_get_remote_port_parent(ep_node);
1694 if (!sensor_node) {
1695 ctx_dbg(3, ctx, "can't get remote parent\n");
1696 goto cleanup_exit;
1697 }
1698 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
1699 asd->match.fwnode = of_fwnode_handle(sensor_node);
1700
1701 v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
1702
1703 if (endpoint->bus_type != V4L2_MBUS_CSI2_DPHY) {
1704 ctx_err(ctx, "Port:%d sub-device %pOFn is not a CSI2 device\n",
1705 inst, sensor_node);
1706 goto cleanup_exit;
1707 }
1708
1709 /* Store Virtual Channel number */
1710 ctx->virtual_channel = endpoint->base.id;
1711
1712 ctx_dbg(3, ctx, "Port:%d v4l2-endpoint: CSI2\n", inst);
1713 ctx_dbg(3, ctx, "Virtual Channel=%d\n", ctx->virtual_channel);
1714 ctx_dbg(3, ctx, "flags=0x%08x\n", endpoint->bus.mipi_csi2.flags);
1715 ctx_dbg(3, ctx, "clock_lane=%d\n", endpoint->bus.mipi_csi2.clock_lane);
1716 ctx_dbg(3, ctx, "num_data_lanes=%d\n",
1717 endpoint->bus.mipi_csi2.num_data_lanes);
1718 ctx_dbg(3, ctx, "data_lanes= <\n");
1719 for (lane = 0; lane < endpoint->bus.mipi_csi2.num_data_lanes; lane++)
1720 ctx_dbg(3, ctx, "\t%d\n",
1721 endpoint->bus.mipi_csi2.data_lanes[lane]);
1722 ctx_dbg(3, ctx, "\t>\n");
1723
1724 ctx_dbg(1, ctx, "Port: %d found sub-device %pOFn\n",
1725 inst, sensor_node);
1726
1727 v4l2_async_notifier_init(&ctx->notifier);
1728
1729 ret = v4l2_async_notifier_add_subdev(&ctx->notifier, asd);
1730 if (ret) {
1731 ctx_err(ctx, "Error adding asd\n");
1732 goto cleanup_exit;
1733 }
1734
1735 ctx->notifier.ops = &cal_async_ops;
1736 ret = v4l2_async_notifier_register(&ctx->v4l2_dev,
1737 &ctx->notifier);
1738 if (ret) {
1739 ctx_err(ctx, "Error registering async notifier\n");
1740 v4l2_async_notifier_cleanup(&ctx->notifier);
1741 ret = -EINVAL;
1742 }
1743
1744 /*
1745 * On success we need to keep reference on sensor_node, or
1746 * if notifier_cleanup was called above, sensor_node was
1747 * already put.
1748 */
1749 sensor_node = NULL;
1750
1751 cleanup_exit:
1752 of_node_put(sensor_node);
1753 of_node_put(ep_node);
1754 of_node_put(port);
1755
1756 return ret;
1757 }
1758
cal_create_instance(struct cal_dev * dev,int inst)1759 static struct cal_ctx *cal_create_instance(struct cal_dev *dev, int inst)
1760 {
1761 struct cal_ctx *ctx;
1762 struct v4l2_ctrl_handler *hdl;
1763 int ret;
1764
1765 ctx = devm_kzalloc(&dev->pdev->dev, sizeof(*ctx), GFP_KERNEL);
1766 if (!ctx)
1767 return NULL;
1768
1769 /* save the cal_dev * for future ref */
1770 ctx->dev = dev;
1771
1772 snprintf(ctx->v4l2_dev.name, sizeof(ctx->v4l2_dev.name),
1773 "%s-%03d", CAL_MODULE_NAME, inst);
1774 ret = v4l2_device_register(&dev->pdev->dev, &ctx->v4l2_dev);
1775 if (ret)
1776 goto err_exit;
1777
1778 hdl = &ctx->ctrl_handler;
1779 ret = v4l2_ctrl_handler_init(hdl, 11);
1780 if (ret) {
1781 ctx_err(ctx, "Failed to init ctrl handler\n");
1782 goto unreg_dev;
1783 }
1784 ctx->v4l2_dev.ctrl_handler = hdl;
1785
1786 /* Make sure Camera Core H/W register area is available */
1787 ctx->cc = dev->cc[inst];
1788
1789 /* Store the instance id */
1790 ctx->csi2_port = inst + 1;
1791
1792 ret = of_cal_create_instance(ctx, inst);
1793 if (ret) {
1794 ret = -EINVAL;
1795 goto free_hdl;
1796 }
1797 return ctx;
1798
1799 free_hdl:
1800 v4l2_ctrl_handler_free(hdl);
1801 unreg_dev:
1802 v4l2_device_unregister(&ctx->v4l2_dev);
1803 err_exit:
1804 return NULL;
1805 }
1806
cal_probe(struct platform_device * pdev)1807 static int cal_probe(struct platform_device *pdev)
1808 {
1809 struct cal_dev *dev;
1810 struct cal_ctx *ctx;
1811 int ret;
1812 int irq;
1813 int i;
1814
1815 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1816 if (!dev)
1817 return -ENOMEM;
1818
1819 /* set pseudo v4l2 device name so we can use v4l2_printk */
1820 strscpy(dev->v4l2_dev.name, CAL_MODULE_NAME,
1821 sizeof(dev->v4l2_dev.name));
1822
1823 /* save pdev pointer */
1824 dev->pdev = pdev;
1825
1826 dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1827 "cal_top");
1828 dev->base = devm_ioremap_resource(&pdev->dev, dev->res);
1829 if (IS_ERR(dev->base))
1830 return PTR_ERR(dev->base);
1831
1832 cal_dbg(1, dev, "ioresource %s at %pa - %pa\n",
1833 dev->res->name, &dev->res->start, &dev->res->end);
1834
1835 irq = platform_get_irq(pdev, 0);
1836 cal_dbg(1, dev, "got irq# %d\n", irq);
1837 ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME,
1838 dev);
1839 if (ret)
1840 return ret;
1841
1842 platform_set_drvdata(pdev, dev);
1843
1844 dev->cm = cm_create(dev);
1845 if (IS_ERR(dev->cm))
1846 return PTR_ERR(dev->cm);
1847
1848 dev->cc[0] = cc_create(dev, 0);
1849 if (IS_ERR(dev->cc[0]))
1850 return PTR_ERR(dev->cc[0]);
1851
1852 dev->cc[1] = cc_create(dev, 1);
1853 if (IS_ERR(dev->cc[1]))
1854 return PTR_ERR(dev->cc[1]);
1855
1856 dev->ctx[0] = NULL;
1857 dev->ctx[1] = NULL;
1858
1859 dev->ctx[0] = cal_create_instance(dev, 0);
1860 dev->ctx[1] = cal_create_instance(dev, 1);
1861 if (!dev->ctx[0] && !dev->ctx[1]) {
1862 cal_err(dev, "Neither port is configured, no point in staying up\n");
1863 return -ENODEV;
1864 }
1865
1866 pm_runtime_enable(&pdev->dev);
1867
1868 ret = cal_runtime_get(dev);
1869 if (ret)
1870 goto runtime_disable;
1871
1872 /* Just check we can actually access the module */
1873 cal_get_hwinfo(dev);
1874
1875 cal_runtime_put(dev);
1876
1877 return 0;
1878
1879 runtime_disable:
1880 pm_runtime_disable(&pdev->dev);
1881 for (i = 0; i < CAL_NUM_CONTEXT; i++) {
1882 ctx = dev->ctx[i];
1883 if (ctx) {
1884 v4l2_async_notifier_unregister(&ctx->notifier);
1885 v4l2_async_notifier_cleanup(&ctx->notifier);
1886 v4l2_ctrl_handler_free(&ctx->ctrl_handler);
1887 v4l2_device_unregister(&ctx->v4l2_dev);
1888 }
1889 }
1890
1891 return ret;
1892 }
1893
cal_remove(struct platform_device * pdev)1894 static int cal_remove(struct platform_device *pdev)
1895 {
1896 struct cal_dev *dev =
1897 (struct cal_dev *)platform_get_drvdata(pdev);
1898 struct cal_ctx *ctx;
1899 int i;
1900
1901 cal_dbg(1, dev, "Removing %s\n", CAL_MODULE_NAME);
1902
1903 cal_runtime_get(dev);
1904
1905 for (i = 0; i < CAL_NUM_CONTEXT; i++) {
1906 ctx = dev->ctx[i];
1907 if (ctx) {
1908 ctx_dbg(1, ctx, "unregistering %s\n",
1909 video_device_node_name(&ctx->vdev));
1910 camerarx_phy_disable(ctx);
1911 v4l2_async_notifier_unregister(&ctx->notifier);
1912 v4l2_async_notifier_cleanup(&ctx->notifier);
1913 v4l2_ctrl_handler_free(&ctx->ctrl_handler);
1914 v4l2_device_unregister(&ctx->v4l2_dev);
1915 video_unregister_device(&ctx->vdev);
1916 }
1917 }
1918
1919 cal_runtime_put(dev);
1920 pm_runtime_disable(&pdev->dev);
1921
1922 return 0;
1923 }
1924
1925 #if defined(CONFIG_OF)
1926 static const struct of_device_id cal_of_match[] = {
1927 { .compatible = "ti,dra72-cal", },
1928 {},
1929 };
1930 MODULE_DEVICE_TABLE(of, cal_of_match);
1931 #endif
1932
1933 static struct platform_driver cal_pdrv = {
1934 .probe = cal_probe,
1935 .remove = cal_remove,
1936 .driver = {
1937 .name = CAL_MODULE_NAME,
1938 .of_match_table = of_match_ptr(cal_of_match),
1939 },
1940 };
1941
1942 module_platform_driver(cal_pdrv);
1943