1 /*
2 * Copyright(c) 2015 - 2019 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/err.h>
49 #include <linux/vmalloc.h>
50 #include <linux/hash.h>
51 #include <linux/module.h>
52 #include <linux/seq_file.h>
53 #include <rdma/rdma_vt.h>
54 #include <rdma/rdmavt_qp.h>
55 #include <rdma/ib_verbs.h>
56
57 #include "hfi.h"
58 #include "qp.h"
59 #include "trace.h"
60 #include "verbs_txreq.h"
61
62 unsigned int hfi1_qp_table_size = 256;
63 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
64 MODULE_PARM_DESC(qp_table_size, "QP table size");
65
66 static void flush_tx_list(struct rvt_qp *qp);
67 static int iowait_sleep(
68 struct sdma_engine *sde,
69 struct iowait_work *wait,
70 struct sdma_txreq *stx,
71 unsigned int seq,
72 bool pkts_sent);
73 static void iowait_wakeup(struct iowait *wait, int reason);
74 static void iowait_sdma_drained(struct iowait *wait);
75 static void qp_pio_drain(struct rvt_qp *qp);
76
77 const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
78 [IB_WR_RDMA_WRITE] = {
79 .length = sizeof(struct ib_rdma_wr),
80 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
81 },
82
83 [IB_WR_RDMA_READ] = {
84 .length = sizeof(struct ib_rdma_wr),
85 .qpt_support = BIT(IB_QPT_RC),
86 .flags = RVT_OPERATION_ATOMIC,
87 },
88
89 [IB_WR_ATOMIC_CMP_AND_SWP] = {
90 .length = sizeof(struct ib_atomic_wr),
91 .qpt_support = BIT(IB_QPT_RC),
92 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
93 },
94
95 [IB_WR_ATOMIC_FETCH_AND_ADD] = {
96 .length = sizeof(struct ib_atomic_wr),
97 .qpt_support = BIT(IB_QPT_RC),
98 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
99 },
100
101 [IB_WR_RDMA_WRITE_WITH_IMM] = {
102 .length = sizeof(struct ib_rdma_wr),
103 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
104 },
105
106 [IB_WR_SEND] = {
107 .length = sizeof(struct ib_send_wr),
108 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
109 BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
110 },
111
112 [IB_WR_SEND_WITH_IMM] = {
113 .length = sizeof(struct ib_send_wr),
114 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
115 BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
116 },
117
118 [IB_WR_REG_MR] = {
119 .length = sizeof(struct ib_reg_wr),
120 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
121 .flags = RVT_OPERATION_LOCAL,
122 },
123
124 [IB_WR_LOCAL_INV] = {
125 .length = sizeof(struct ib_send_wr),
126 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
127 .flags = RVT_OPERATION_LOCAL,
128 },
129
130 [IB_WR_SEND_WITH_INV] = {
131 .length = sizeof(struct ib_send_wr),
132 .qpt_support = BIT(IB_QPT_RC),
133 },
134
135 [IB_WR_OPFN] = {
136 .length = sizeof(struct ib_atomic_wr),
137 .qpt_support = BIT(IB_QPT_RC),
138 .flags = RVT_OPERATION_USE_RESERVE,
139 },
140
141 [IB_WR_TID_RDMA_WRITE] = {
142 .length = sizeof(struct ib_rdma_wr),
143 .qpt_support = BIT(IB_QPT_RC),
144 .flags = RVT_OPERATION_IGN_RNR_CNT,
145 },
146
147 };
148
flush_list_head(struct list_head * l)149 static void flush_list_head(struct list_head *l)
150 {
151 while (!list_empty(l)) {
152 struct sdma_txreq *tx;
153
154 tx = list_first_entry(
155 l,
156 struct sdma_txreq,
157 list);
158 list_del_init(&tx->list);
159 hfi1_put_txreq(
160 container_of(tx, struct verbs_txreq, txreq));
161 }
162 }
163
flush_tx_list(struct rvt_qp * qp)164 static void flush_tx_list(struct rvt_qp *qp)
165 {
166 struct hfi1_qp_priv *priv = qp->priv;
167
168 flush_list_head(&iowait_get_ib_work(&priv->s_iowait)->tx_head);
169 flush_list_head(&iowait_get_tid_work(&priv->s_iowait)->tx_head);
170 }
171
flush_iowait(struct rvt_qp * qp)172 static void flush_iowait(struct rvt_qp *qp)
173 {
174 struct hfi1_qp_priv *priv = qp->priv;
175 unsigned long flags;
176 seqlock_t *lock = priv->s_iowait.lock;
177
178 if (!lock)
179 return;
180 write_seqlock_irqsave(lock, flags);
181 if (!list_empty(&priv->s_iowait.list)) {
182 list_del_init(&priv->s_iowait.list);
183 priv->s_iowait.lock = NULL;
184 rvt_put_qp(qp);
185 }
186 write_sequnlock_irqrestore(lock, flags);
187 }
188
opa_mtu_enum_to_int(int mtu)189 static inline int opa_mtu_enum_to_int(int mtu)
190 {
191 switch (mtu) {
192 case OPA_MTU_8192: return 8192;
193 case OPA_MTU_10240: return 10240;
194 default: return -1;
195 }
196 }
197
198 /**
199 * This function is what we would push to the core layer if we wanted to be a
200 * "first class citizen". Instead we hide this here and rely on Verbs ULPs
201 * to blindly pass the MTU enum value from the PathRecord to us.
202 */
verbs_mtu_enum_to_int(struct ib_device * dev,enum ib_mtu mtu)203 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
204 {
205 int val;
206
207 /* Constraining 10KB packets to 8KB packets */
208 if (mtu == (enum ib_mtu)OPA_MTU_10240)
209 mtu = OPA_MTU_8192;
210 val = opa_mtu_enum_to_int((int)mtu);
211 if (val > 0)
212 return val;
213 return ib_mtu_enum_to_int(mtu);
214 }
215
hfi1_check_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)216 int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
217 int attr_mask, struct ib_udata *udata)
218 {
219 struct ib_qp *ibqp = &qp->ibqp;
220 struct hfi1_ibdev *dev = to_idev(ibqp->device);
221 struct hfi1_devdata *dd = dd_from_dev(dev);
222 u8 sc;
223
224 if (attr_mask & IB_QP_AV) {
225 sc = ah_to_sc(ibqp->device, &attr->ah_attr);
226 if (sc == 0xf)
227 return -EINVAL;
228
229 if (!qp_to_sdma_engine(qp, sc) &&
230 dd->flags & HFI1_HAS_SEND_DMA)
231 return -EINVAL;
232
233 if (!qp_to_send_context(qp, sc))
234 return -EINVAL;
235 }
236
237 if (attr_mask & IB_QP_ALT_PATH) {
238 sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
239 if (sc == 0xf)
240 return -EINVAL;
241
242 if (!qp_to_sdma_engine(qp, sc) &&
243 dd->flags & HFI1_HAS_SEND_DMA)
244 return -EINVAL;
245
246 if (!qp_to_send_context(qp, sc))
247 return -EINVAL;
248 }
249
250 return 0;
251 }
252
253 /*
254 * qp_set_16b - Set the hdr_type based on whether the slid or the
255 * dlid in the connection is extended. Only applicable for RC and UC
256 * QPs. UD QPs determine this on the fly from the ah in the wqe
257 */
qp_set_16b(struct rvt_qp * qp)258 static inline void qp_set_16b(struct rvt_qp *qp)
259 {
260 struct hfi1_pportdata *ppd;
261 struct hfi1_ibport *ibp;
262 struct hfi1_qp_priv *priv = qp->priv;
263
264 /* Update ah_attr to account for extended LIDs */
265 hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr);
266
267 /* Create 32 bit LIDs */
268 hfi1_make_opa_lid(&qp->remote_ah_attr);
269
270 if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH))
271 return;
272
273 ibp = to_iport(qp->ibqp.device, qp->port_num);
274 ppd = ppd_from_ibp(ibp);
275 priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr);
276 }
277
hfi1_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)278 void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
279 int attr_mask, struct ib_udata *udata)
280 {
281 struct ib_qp *ibqp = &qp->ibqp;
282 struct hfi1_qp_priv *priv = qp->priv;
283
284 if (attr_mask & IB_QP_AV) {
285 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
286 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
287 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
288 qp_set_16b(qp);
289 }
290
291 if (attr_mask & IB_QP_PATH_MIG_STATE &&
292 attr->path_mig_state == IB_MIG_MIGRATED &&
293 qp->s_mig_state == IB_MIG_ARMED) {
294 qp->s_flags |= HFI1_S_AHG_CLEAR;
295 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
296 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
297 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
298 qp_set_16b(qp);
299 }
300
301 opfn_qp_init(qp, attr, attr_mask);
302 }
303
304 /**
305 * hfi1_setup_wqe - set up the wqe
306 * @qp - The qp
307 * @wqe - The built wqe
308 * @call_send - Determine if the send should be posted or scheduled.
309 *
310 * Perform setup of the wqe. This is called
311 * prior to inserting the wqe into the ring but after
312 * the wqe has been setup by RDMAVT. This function
313 * allows the driver the opportunity to perform
314 * validation and additional setup of the wqe.
315 *
316 * Returns 0 on success, -EINVAL on failure
317 *
318 */
hfi1_setup_wqe(struct rvt_qp * qp,struct rvt_swqe * wqe,bool * call_send)319 int hfi1_setup_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe, bool *call_send)
320 {
321 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
322 struct rvt_ah *ah;
323 struct hfi1_pportdata *ppd;
324 struct hfi1_devdata *dd;
325
326 switch (qp->ibqp.qp_type) {
327 case IB_QPT_RC:
328 hfi1_setup_tid_rdma_wqe(qp, wqe);
329 /* fall through */
330 case IB_QPT_UC:
331 if (wqe->length > 0x80000000U)
332 return -EINVAL;
333 if (wqe->length > qp->pmtu)
334 *call_send = false;
335 break;
336 case IB_QPT_SMI:
337 /*
338 * SM packets should exclusively use VL15 and their SL is
339 * ignored (IBTA v1.3, Section 3.5.8.2). Therefore, when ah
340 * is created, SL is 0 in most cases and as a result some
341 * fields (vl and pmtu) in ah may not be set correctly,
342 * depending on the SL2SC and SC2VL tables at the time.
343 */
344 ppd = ppd_from_ibp(ibp);
345 dd = dd_from_ppd(ppd);
346 if (wqe->length > dd->vld[15].mtu)
347 return -EINVAL;
348 break;
349 case IB_QPT_GSI:
350 case IB_QPT_UD:
351 ah = rvt_get_swqe_ah(wqe);
352 if (wqe->length > (1 << ah->log_pmtu))
353 return -EINVAL;
354 if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf)
355 return -EINVAL;
356 default:
357 break;
358 }
359
360 /*
361 * System latency between send and schedule is large enough that
362 * forcing call_send to true for piothreshold packets is necessary.
363 */
364 if (wqe->length <= piothreshold)
365 *call_send = true;
366 return 0;
367 }
368
369 /**
370 * _hfi1_schedule_send - schedule progress
371 * @qp: the QP
372 *
373 * This schedules qp progress w/o regard to the s_flags.
374 *
375 * It is only used in the post send, which doesn't hold
376 * the s_lock.
377 */
_hfi1_schedule_send(struct rvt_qp * qp)378 bool _hfi1_schedule_send(struct rvt_qp *qp)
379 {
380 struct hfi1_qp_priv *priv = qp->priv;
381 struct hfi1_ibport *ibp =
382 to_iport(qp->ibqp.device, qp->port_num);
383 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
384 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
385
386 return iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
387 priv->s_sde ?
388 priv->s_sde->cpu :
389 cpumask_first(cpumask_of_node(dd->node)));
390 }
391
qp_pio_drain(struct rvt_qp * qp)392 static void qp_pio_drain(struct rvt_qp *qp)
393 {
394 struct hfi1_qp_priv *priv = qp->priv;
395
396 if (!priv->s_sendcontext)
397 return;
398 while (iowait_pio_pending(&priv->s_iowait)) {
399 write_seqlock_irq(&priv->s_sendcontext->waitlock);
400 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
401 write_sequnlock_irq(&priv->s_sendcontext->waitlock);
402 iowait_pio_drain(&priv->s_iowait);
403 write_seqlock_irq(&priv->s_sendcontext->waitlock);
404 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
405 write_sequnlock_irq(&priv->s_sendcontext->waitlock);
406 }
407 }
408
409 /**
410 * hfi1_schedule_send - schedule progress
411 * @qp: the QP
412 *
413 * This schedules qp progress and caller should hold
414 * the s_lock.
415 * @return true if the first leg is scheduled;
416 * false if the first leg is not scheduled.
417 */
hfi1_schedule_send(struct rvt_qp * qp)418 bool hfi1_schedule_send(struct rvt_qp *qp)
419 {
420 lockdep_assert_held(&qp->s_lock);
421 if (hfi1_send_ok(qp)) {
422 _hfi1_schedule_send(qp);
423 return true;
424 }
425 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
426 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
427 IOWAIT_PENDING_IB);
428 return false;
429 }
430
hfi1_qp_schedule(struct rvt_qp * qp)431 static void hfi1_qp_schedule(struct rvt_qp *qp)
432 {
433 struct hfi1_qp_priv *priv = qp->priv;
434 bool ret;
435
436 if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_IB)) {
437 ret = hfi1_schedule_send(qp);
438 if (ret)
439 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
440 }
441 if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_TID)) {
442 ret = hfi1_schedule_tid_send(qp);
443 if (ret)
444 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
445 }
446 }
447
hfi1_qp_wakeup(struct rvt_qp * qp,u32 flag)448 void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
449 {
450 unsigned long flags;
451
452 spin_lock_irqsave(&qp->s_lock, flags);
453 if (qp->s_flags & flag) {
454 qp->s_flags &= ~flag;
455 trace_hfi1_qpwakeup(qp, flag);
456 hfi1_qp_schedule(qp);
457 }
458 spin_unlock_irqrestore(&qp->s_lock, flags);
459 /* Notify hfi1_destroy_qp() if it is waiting. */
460 rvt_put_qp(qp);
461 }
462
hfi1_qp_unbusy(struct rvt_qp * qp,struct iowait_work * wait)463 void hfi1_qp_unbusy(struct rvt_qp *qp, struct iowait_work *wait)
464 {
465 struct hfi1_qp_priv *priv = qp->priv;
466
467 if (iowait_set_work_flag(wait) == IOWAIT_IB_SE) {
468 qp->s_flags &= ~RVT_S_BUSY;
469 /*
470 * If we are sending a first-leg packet from the second leg,
471 * we need to clear the busy flag from priv->s_flags to
472 * avoid a race condition when the qp wakes up before
473 * the call to hfi1_verbs_send() returns to the second
474 * leg. In that case, the second leg will terminate without
475 * being re-scheduled, resulting in failure to send TID RDMA
476 * WRITE DATA and TID RDMA ACK packets.
477 */
478 if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
479 priv->s_flags &= ~(HFI1_S_TID_BUSY_SET |
480 RVT_S_BUSY);
481 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
482 }
483 } else {
484 priv->s_flags &= ~RVT_S_BUSY;
485 }
486 }
487
iowait_sleep(struct sdma_engine * sde,struct iowait_work * wait,struct sdma_txreq * stx,uint seq,bool pkts_sent)488 static int iowait_sleep(
489 struct sdma_engine *sde,
490 struct iowait_work *wait,
491 struct sdma_txreq *stx,
492 uint seq,
493 bool pkts_sent)
494 {
495 struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
496 struct rvt_qp *qp;
497 struct hfi1_qp_priv *priv;
498 unsigned long flags;
499 int ret = 0;
500
501 qp = tx->qp;
502 priv = qp->priv;
503
504 spin_lock_irqsave(&qp->s_lock, flags);
505 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
506 /*
507 * If we couldn't queue the DMA request, save the info
508 * and try again later rather than destroying the
509 * buffer and undoing the side effects of the copy.
510 */
511 /* Make a common routine? */
512 list_add_tail(&stx->list, &wait->tx_head);
513 write_seqlock(&sde->waitlock);
514 if (sdma_progress(sde, seq, stx))
515 goto eagain;
516 if (list_empty(&priv->s_iowait.list)) {
517 struct hfi1_ibport *ibp =
518 to_iport(qp->ibqp.device, qp->port_num);
519
520 ibp->rvp.n_dmawait++;
521 qp->s_flags |= RVT_S_WAIT_DMA_DESC;
522 iowait_get_priority(&priv->s_iowait);
523 iowait_queue(pkts_sent, &priv->s_iowait,
524 &sde->dmawait);
525 priv->s_iowait.lock = &sde->waitlock;
526 trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
527 rvt_get_qp(qp);
528 }
529 write_sequnlock(&sde->waitlock);
530 hfi1_qp_unbusy(qp, wait);
531 spin_unlock_irqrestore(&qp->s_lock, flags);
532 ret = -EBUSY;
533 } else {
534 spin_unlock_irqrestore(&qp->s_lock, flags);
535 hfi1_put_txreq(tx);
536 }
537 return ret;
538 eagain:
539 write_sequnlock(&sde->waitlock);
540 spin_unlock_irqrestore(&qp->s_lock, flags);
541 list_del_init(&stx->list);
542 return -EAGAIN;
543 }
544
iowait_wakeup(struct iowait * wait,int reason)545 static void iowait_wakeup(struct iowait *wait, int reason)
546 {
547 struct rvt_qp *qp = iowait_to_qp(wait);
548
549 WARN_ON(reason != SDMA_AVAIL_REASON);
550 hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
551 }
552
iowait_sdma_drained(struct iowait * wait)553 static void iowait_sdma_drained(struct iowait *wait)
554 {
555 struct rvt_qp *qp = iowait_to_qp(wait);
556 unsigned long flags;
557
558 /*
559 * This happens when the send engine notes
560 * a QP in the error state and cannot
561 * do the flush work until that QP's
562 * sdma work has finished.
563 */
564 spin_lock_irqsave(&qp->s_lock, flags);
565 if (qp->s_flags & RVT_S_WAIT_DMA) {
566 qp->s_flags &= ~RVT_S_WAIT_DMA;
567 hfi1_schedule_send(qp);
568 }
569 spin_unlock_irqrestore(&qp->s_lock, flags);
570 }
571
hfi1_init_priority(struct iowait * w)572 static void hfi1_init_priority(struct iowait *w)
573 {
574 struct rvt_qp *qp = iowait_to_qp(w);
575 struct hfi1_qp_priv *priv = qp->priv;
576
577 if (qp->s_flags & RVT_S_ACK_PENDING)
578 w->priority++;
579 if (priv->s_flags & RVT_S_ACK_PENDING)
580 w->priority++;
581 }
582
583 /**
584 * qp_to_sdma_engine - map a qp to a send engine
585 * @qp: the QP
586 * @sc5: the 5 bit sc
587 *
588 * Return:
589 * A send engine for the qp or NULL for SMI type qp.
590 */
qp_to_sdma_engine(struct rvt_qp * qp,u8 sc5)591 struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
592 {
593 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
594 struct sdma_engine *sde;
595
596 if (!(dd->flags & HFI1_HAS_SEND_DMA))
597 return NULL;
598 switch (qp->ibqp.qp_type) {
599 case IB_QPT_SMI:
600 return NULL;
601 default:
602 break;
603 }
604 sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
605 return sde;
606 }
607
608 /*
609 * qp_to_send_context - map a qp to a send context
610 * @qp: the QP
611 * @sc5: the 5 bit sc
612 *
613 * Return:
614 * A send context for the qp
615 */
qp_to_send_context(struct rvt_qp * qp,u8 sc5)616 struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
617 {
618 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
619
620 switch (qp->ibqp.qp_type) {
621 case IB_QPT_SMI:
622 /* SMA packets to VL15 */
623 return dd->vld[15].sc;
624 default:
625 break;
626 }
627
628 return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
629 sc5);
630 }
631
632 static const char * const qp_type_str[] = {
633 "SMI", "GSI", "RC", "UC", "UD",
634 };
635
qp_idle(struct rvt_qp * qp)636 static int qp_idle(struct rvt_qp *qp)
637 {
638 return
639 qp->s_last == qp->s_acked &&
640 qp->s_acked == qp->s_cur &&
641 qp->s_cur == qp->s_tail &&
642 qp->s_tail == qp->s_head;
643 }
644
645 /**
646 * qp_iter_print - print the qp information to seq_file
647 * @s: the seq_file to emit the qp information on
648 * @iter: the iterator for the qp hash list
649 */
qp_iter_print(struct seq_file * s,struct rvt_qp_iter * iter)650 void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter)
651 {
652 struct rvt_swqe *wqe;
653 struct rvt_qp *qp = iter->qp;
654 struct hfi1_qp_priv *priv = qp->priv;
655 struct sdma_engine *sde;
656 struct send_context *send_context;
657 struct rvt_ack_entry *e = NULL;
658 struct rvt_srq *srq = qp->ibqp.srq ?
659 ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL;
660
661 sde = qp_to_sdma_engine(qp, priv->s_sc);
662 wqe = rvt_get_swqe_ptr(qp, qp->s_last);
663 send_context = qp_to_send_context(qp, priv->s_sc);
664 if (qp->s_ack_queue)
665 e = &qp->s_ack_queue[qp->s_tail_ack_queue];
666 seq_printf(s,
667 "N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n",
668 iter->n,
669 qp_idle(qp) ? "I" : "B",
670 qp->ibqp.qp_num,
671 atomic_read(&qp->refcount),
672 qp_type_str[qp->ibqp.qp_type],
673 qp->state,
674 wqe ? wqe->wr.opcode : 0,
675 qp->s_flags,
676 iowait_sdma_pending(&priv->s_iowait),
677 iowait_pio_pending(&priv->s_iowait),
678 !list_empty(&priv->s_iowait.list),
679 qp->timeout,
680 wqe ? wqe->ssn : 0,
681 qp->s_lsn,
682 qp->s_last_psn,
683 qp->s_psn, qp->s_next_psn,
684 qp->s_sending_psn, qp->s_sending_hpsn,
685 qp->r_psn,
686 qp->s_last, qp->s_acked, qp->s_cur,
687 qp->s_tail, qp->s_head, qp->s_size,
688 qp->s_avail,
689 /* ack_queue ring pointers, size */
690 qp->s_tail_ack_queue, qp->r_head_ack_queue,
691 rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi),
692 /* remote QP info */
693 qp->remote_qpn,
694 rdma_ah_get_dlid(&qp->remote_ah_attr),
695 rdma_ah_get_sl(&qp->remote_ah_attr),
696 qp->pmtu,
697 qp->s_retry,
698 qp->s_retry_cnt,
699 qp->s_rnr_retry_cnt,
700 qp->s_rnr_retry,
701 sde,
702 sde ? sde->this_idx : 0,
703 send_context,
704 send_context ? send_context->sw_index : 0,
705 ib_cq_head(qp->ibqp.send_cq),
706 ib_cq_tail(qp->ibqp.send_cq),
707 qp->pid,
708 qp->s_state,
709 qp->s_ack_state,
710 /* ack queue information */
711 e ? e->opcode : 0,
712 e ? e->psn : 0,
713 e ? e->lpsn : 0,
714 qp->r_min_rnr_timer,
715 srq ? "SRQ" : "RQ",
716 srq ? srq->rq.size : qp->r_rq.size
717 );
718 }
719
qp_priv_alloc(struct rvt_dev_info * rdi,struct rvt_qp * qp)720 void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp)
721 {
722 struct hfi1_qp_priv *priv;
723
724 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node);
725 if (!priv)
726 return ERR_PTR(-ENOMEM);
727
728 priv->owner = qp;
729
730 priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL,
731 rdi->dparms.node);
732 if (!priv->s_ahg) {
733 kfree(priv);
734 return ERR_PTR(-ENOMEM);
735 }
736 iowait_init(
737 &priv->s_iowait,
738 1,
739 _hfi1_do_send,
740 _hfi1_do_tid_send,
741 iowait_sleep,
742 iowait_wakeup,
743 iowait_sdma_drained,
744 hfi1_init_priority);
745 /* Init to a value to start the running average correctly */
746 priv->s_running_pkt_size = piothreshold / 2;
747 return priv;
748 }
749
qp_priv_free(struct rvt_dev_info * rdi,struct rvt_qp * qp)750 void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
751 {
752 struct hfi1_qp_priv *priv = qp->priv;
753
754 hfi1_qp_priv_tid_free(rdi, qp);
755 kfree(priv->s_ahg);
756 kfree(priv);
757 }
758
free_all_qps(struct rvt_dev_info * rdi)759 unsigned free_all_qps(struct rvt_dev_info *rdi)
760 {
761 struct hfi1_ibdev *verbs_dev = container_of(rdi,
762 struct hfi1_ibdev,
763 rdi);
764 struct hfi1_devdata *dd = container_of(verbs_dev,
765 struct hfi1_devdata,
766 verbs_dev);
767 int n;
768 unsigned qp_inuse = 0;
769
770 for (n = 0; n < dd->num_pports; n++) {
771 struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
772
773 rcu_read_lock();
774 if (rcu_dereference(ibp->rvp.qp[0]))
775 qp_inuse++;
776 if (rcu_dereference(ibp->rvp.qp[1]))
777 qp_inuse++;
778 rcu_read_unlock();
779 }
780
781 return qp_inuse;
782 }
783
flush_qp_waiters(struct rvt_qp * qp)784 void flush_qp_waiters(struct rvt_qp *qp)
785 {
786 lockdep_assert_held(&qp->s_lock);
787 flush_iowait(qp);
788 hfi1_tid_rdma_flush_wait(qp);
789 }
790
stop_send_queue(struct rvt_qp * qp)791 void stop_send_queue(struct rvt_qp *qp)
792 {
793 struct hfi1_qp_priv *priv = qp->priv;
794
795 iowait_cancel_work(&priv->s_iowait);
796 if (cancel_work_sync(&priv->tid_rdma.trigger_work))
797 rvt_put_qp(qp);
798 }
799
quiesce_qp(struct rvt_qp * qp)800 void quiesce_qp(struct rvt_qp *qp)
801 {
802 struct hfi1_qp_priv *priv = qp->priv;
803
804 hfi1_del_tid_reap_timer(qp);
805 hfi1_del_tid_retry_timer(qp);
806 iowait_sdma_drain(&priv->s_iowait);
807 qp_pio_drain(qp);
808 flush_tx_list(qp);
809 }
810
notify_qp_reset(struct rvt_qp * qp)811 void notify_qp_reset(struct rvt_qp *qp)
812 {
813 hfi1_qp_kern_exp_rcv_clear_all(qp);
814 qp->r_adefered = 0;
815 clear_ahg(qp);
816
817 /* Clear any OPFN state */
818 if (qp->ibqp.qp_type == IB_QPT_RC)
819 opfn_conn_error(qp);
820 }
821
822 /*
823 * Switch to alternate path.
824 * The QP s_lock should be held and interrupts disabled.
825 */
hfi1_migrate_qp(struct rvt_qp * qp)826 void hfi1_migrate_qp(struct rvt_qp *qp)
827 {
828 struct hfi1_qp_priv *priv = qp->priv;
829 struct ib_event ev;
830
831 qp->s_mig_state = IB_MIG_MIGRATED;
832 qp->remote_ah_attr = qp->alt_ah_attr;
833 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
834 qp->s_pkey_index = qp->s_alt_pkey_index;
835 qp->s_flags |= HFI1_S_AHG_CLEAR;
836 priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
837 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
838 qp_set_16b(qp);
839
840 ev.device = qp->ibqp.device;
841 ev.element.qp = &qp->ibqp;
842 ev.event = IB_EVENT_PATH_MIG;
843 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
844 }
845
mtu_to_path_mtu(u32 mtu)846 int mtu_to_path_mtu(u32 mtu)
847 {
848 return mtu_to_enum(mtu, OPA_MTU_8192);
849 }
850
mtu_from_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,u32 pmtu)851 u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
852 {
853 u32 mtu;
854 struct hfi1_ibdev *verbs_dev = container_of(rdi,
855 struct hfi1_ibdev,
856 rdi);
857 struct hfi1_devdata *dd = container_of(verbs_dev,
858 struct hfi1_devdata,
859 verbs_dev);
860 struct hfi1_ibport *ibp;
861 u8 sc, vl;
862
863 ibp = &dd->pport[qp->port_num - 1].ibport_data;
864 sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
865 vl = sc_to_vlt(dd, sc);
866
867 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
868 if (vl < PER_VL_SEND_CONTEXTS)
869 mtu = min_t(u32, mtu, dd->vld[vl].mtu);
870 return mtu;
871 }
872
get_pmtu_from_attr(struct rvt_dev_info * rdi,struct rvt_qp * qp,struct ib_qp_attr * attr)873 int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
874 struct ib_qp_attr *attr)
875 {
876 int mtu, pidx = qp->port_num - 1;
877 struct hfi1_ibdev *verbs_dev = container_of(rdi,
878 struct hfi1_ibdev,
879 rdi);
880 struct hfi1_devdata *dd = container_of(verbs_dev,
881 struct hfi1_devdata,
882 verbs_dev);
883 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
884 if (mtu == -1)
885 return -1; /* values less than 0 are error */
886
887 if (mtu > dd->pport[pidx].ibmtu)
888 return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
889 else
890 return attr->path_mtu;
891 }
892
notify_error_qp(struct rvt_qp * qp)893 void notify_error_qp(struct rvt_qp *qp)
894 {
895 struct hfi1_qp_priv *priv = qp->priv;
896 seqlock_t *lock = priv->s_iowait.lock;
897
898 if (lock) {
899 write_seqlock(lock);
900 if (!list_empty(&priv->s_iowait.list) &&
901 !(qp->s_flags & RVT_S_BUSY) &&
902 !(priv->s_flags & RVT_S_BUSY)) {
903 qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
904 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
905 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
906 list_del_init(&priv->s_iowait.list);
907 priv->s_iowait.lock = NULL;
908 rvt_put_qp(qp);
909 }
910 write_sequnlock(lock);
911 }
912
913 if (!(qp->s_flags & RVT_S_BUSY) && !(priv->s_flags & RVT_S_BUSY)) {
914 qp->s_hdrwords = 0;
915 if (qp->s_rdma_mr) {
916 rvt_put_mr(qp->s_rdma_mr);
917 qp->s_rdma_mr = NULL;
918 }
919 flush_tx_list(qp);
920 }
921 }
922
923 /**
924 * hfi1_qp_iter_cb - callback for iterator
925 * @qp - the qp
926 * @v - the sl in low bits of v
927 *
928 * This is called from the iterator callback to work
929 * on an individual qp.
930 */
hfi1_qp_iter_cb(struct rvt_qp * qp,u64 v)931 static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v)
932 {
933 int lastwqe;
934 struct ib_event ev;
935 struct hfi1_ibport *ibp =
936 to_iport(qp->ibqp.device, qp->port_num);
937 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
938 u8 sl = (u8)v;
939
940 if (qp->port_num != ppd->port ||
941 (qp->ibqp.qp_type != IB_QPT_UC &&
942 qp->ibqp.qp_type != IB_QPT_RC) ||
943 rdma_ah_get_sl(&qp->remote_ah_attr) != sl ||
944 !(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))
945 return;
946
947 spin_lock_irq(&qp->r_lock);
948 spin_lock(&qp->s_hlock);
949 spin_lock(&qp->s_lock);
950 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
951 spin_unlock(&qp->s_lock);
952 spin_unlock(&qp->s_hlock);
953 spin_unlock_irq(&qp->r_lock);
954 if (lastwqe) {
955 ev.device = qp->ibqp.device;
956 ev.element.qp = &qp->ibqp;
957 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
958 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
959 }
960 }
961
962 /**
963 * hfi1_error_port_qps - put a port's RC/UC qps into error state
964 * @ibp: the ibport.
965 * @sl: the service level.
966 *
967 * This function places all RC/UC qps with a given service level into error
968 * state. It is generally called to force upper lay apps to abandon stale qps
969 * after an sl->sc mapping change.
970 */
hfi1_error_port_qps(struct hfi1_ibport * ibp,u8 sl)971 void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
972 {
973 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
974 struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
975
976 rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb);
977 }
978