1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4  *                            FireStream  50 (MB86695) device driver
5  */
6 
7 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd
10  */
11 
12 /*
13 */
14 
15 
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/pci.h>
21 #include <linux/poison.h>
22 #include <linux/errno.h>
23 #include <linux/atm.h>
24 #include <linux/atmdev.h>
25 #include <linux/sonet.h>
26 #include <linux/skbuff.h>
27 #include <linux/netdevice.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h> /* for request_region */
30 #include <linux/uio.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/capability.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <asm/byteorder.h>
37 #include <asm/string.h>
38 #include <asm/io.h>
39 #include <linux/atomic.h>
40 #include <linux/uaccess.h>
41 #include <linux/wait.h>
42 
43 #include "firestream.h"
44 
45 static int loopback = 0;
46 static int num=0x5a;
47 
48 /* According to measurements (but they look suspicious to me!) done in
49  * '97, 37% of the packets are one cell in size. So it pays to have
50  * buffers allocated at that size. A large jump in percentage of
51  * packets occurs at packets around 536 bytes in length. So it also
52  * pays to have those pre-allocated. Unfortunately, we can't fully
53  * take advantage of this as the majority of the packets is likely to
54  * be TCP/IP (As where obviously the measurement comes from) There the
55  * link would be opened with say a 1500 byte MTU, and we can't handle
56  * smaller buffers more efficiently than the larger ones. -- REW
57  */
58 
59 /* Due to the way Linux memory management works, specifying "576" as
60  * an allocation size here isn't going to help. They are allocated
61  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62  * large), it doesn't pay to allocate the smallest size (64) -- REW */
63 
64 /* This is all guesswork. Hard numbers to back this up or disprove this,
65  * are appreciated. -- REW */
66 
67 /* The last entry should be about 64k. However, the "buffer size" is
68  * passed to the chip in a 16 bit field. I don't know how "65536"
69  * would be interpreted. -- REW */
70 
71 #define NP FS_NR_FREE_POOLS
72 static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
73 /* log2:                 7     8     9    10    11    12    14     16 */
74 
75 #if 0
76 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
77 #else
78 /* debug */
79 static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
80 #endif
81 /* log2:                 10    10    9    8     7     6     5      5  */
82 /* sumlog2:              17    18    18   18    18    18    19     21 */
83 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
84 /* tot mem: almost 4M */
85 
86 /* NP is shorter, so that it fits on a single line. */
87 #undef NP
88 
89 
90 /* Small hardware gotcha:
91 
92    The FS50 CAM (VP/VC match registers) always take the lowest channel
93    number that matches. This is not a problem.
94 
95    However, they also ignore whether the channel is enabled or
96    not. This means that if you allocate channel 0 to 1.2 and then
97    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98    match channel for channel 0 will "steal" the traffic from channel
99    1, even if you correctly disable channel 0.
100 
101    Workaround:
102 
103    - When disabling channels, write an invalid VP/VC value to the
104    match register. (We use 0xffffffff, which in the worst case
105    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106    anything as some "when not in use, program to 0" bits are now
107    programmed to 1...)
108 
109    - Don't initialize the match registers to 0, as 0.0 is a valid
110    channel.
111 */
112 
113 
114 /* Optimization hints and tips.
115 
116    The FireStream chips are very capable of reducing the amount of
117    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118    action. You could try to minimize this a bit.
119 
120    Besides that, the userspace->kernel copy and the PCI bus are the
121    performance limiting issues for this driver.
122 
123    You could queue up a bunch of outgoing packets without telling the
124    FireStream. I'm not sure that's going to win you much though. The
125    Linux layer won't tell us in advance when it's not going to give us
126    any more packets in a while. So this is tricky to implement right without
127    introducing extra delays.
128 
129    -- REW
130  */
131 
132 
133 
134 
135 /* The strings that define what the RX queue entry is all about. */
136 /* Fujitsu: Please tell me which ones can have a pointer to a
137    freepool descriptor! */
138 static char *res_strings[] = {
139 	"RX OK: streaming not EOP",
140 	"RX OK: streaming EOP",
141 	"RX OK: Single buffer packet",
142 	"RX OK: packet mode",
143 	"RX OK: F4 OAM (end to end)",
144 	"RX OK: F4 OAM (Segment)",
145 	"RX OK: F5 OAM (end to end)",
146 	"RX OK: F5 OAM (Segment)",
147 	"RX OK: RM cell",
148 	"RX OK: TRANSP cell",
149 	"RX OK: TRANSPC cell",
150 	"Unmatched cell",
151 	"reserved 12",
152 	"reserved 13",
153 	"reserved 14",
154 	"Unrecognized cell",
155 	"reserved 16",
156 	"reassembly abort: AAL5 abort",
157 	"packet purged",
158 	"packet ageing timeout",
159 	"channel ageing timeout",
160 	"calculated length error",
161 	"programmed length limit error",
162 	"aal5 crc32 error",
163 	"oam transp or transpc crc10 error",
164 	"reserved 25",
165 	"reserved 26",
166 	"reserved 27",
167 	"reserved 28",
168 	"reserved 29",
169 	"reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 	"reassembly abort: no buffers",
171 	"receive buffer overflow",
172 	"change in GFC",
173 	"receive buffer full",
174 	"low priority discard - no receive descriptor",
175 	"low priority discard - missing end of packet",
176 	"reserved 37",
177 	"reserved 38",
178 	"reserved 39",
179 	"reserved 40",
180 	"reserved 41",
181 	"reserved 42",
182 	"reserved 43",
183 	"reserved 44",
184 	"reserved 45",
185 	"reserved 46",
186 	"reserved 47",
187 	"reserved 48",
188 	"reserved 49",
189 	"reserved 50",
190 	"reserved 51",
191 	"reserved 52",
192 	"reserved 53",
193 	"reserved 54",
194 	"reserved 55",
195 	"reserved 56",
196 	"reserved 57",
197 	"reserved 58",
198 	"reserved 59",
199 	"reserved 60",
200 	"reserved 61",
201 	"reserved 62",
202 	"reserved 63",
203 };
204 
205 static char *irq_bitname[] = {
206 	"LPCO",
207 	"DPCO",
208 	"RBRQ0_W",
209 	"RBRQ1_W",
210 	"RBRQ2_W",
211 	"RBRQ3_W",
212 	"RBRQ0_NF",
213 	"RBRQ1_NF",
214 	"RBRQ2_NF",
215 	"RBRQ3_NF",
216 	"BFP_SC",
217 	"INIT",
218 	"INIT_ERR",
219 	"USCEO",
220 	"UPEC0",
221 	"VPFCO",
222 	"CRCCO",
223 	"HECO",
224 	"TBRQ_W",
225 	"TBRQ_NF",
226 	"CTPQ_E",
227 	"GFC_C0",
228 	"PCI_FTL",
229 	"CSQ_W",
230 	"CSQ_NF",
231 	"EXT_INT",
232 	"RXDMA_S"
233 };
234 
235 
236 #define PHY_EOF -1
237 #define PHY_CLEARALL -2
238 
239 struct reginit_item {
240 	int reg, val;
241 };
242 
243 
244 static struct reginit_item PHY_NTC_INIT[] = {
245 	{ PHY_CLEARALL, 0x40 },
246 	{ 0x12,  0x0001 },
247 	{ 0x13,  0x7605 },
248 	{ 0x1A,  0x0001 },
249 	{ 0x1B,  0x0005 },
250 	{ 0x38,  0x0003 },
251 	{ 0x39,  0x0006 },   /* changed here to make loopback */
252 	{ 0x01,  0x5262 },
253 	{ 0x15,  0x0213 },
254 	{ 0x00,  0x0003 },
255 	{ PHY_EOF, 0},    /* -1 signals end of list */
256 };
257 
258 
259 /* Safetyfeature: If the card interrupts more than this number of times
260    in a jiffy (1/100th of a second) then we just disable the interrupt and
261    print a message. This prevents the system from hanging.
262 
263    150000 packets per second is close to the limit a PC is going to have
264    anyway. We therefore have to disable this for production. -- REW */
265 #undef IRQ_RATE_LIMIT // 100
266 
267 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
268    that great without interrupts. -- REW */
269 #undef FS_POLL_FREQ // 100
270 
271 /*
272    This driver can spew a whole lot of debugging output at you. If you
273    need maximum performance, you should disable the DEBUG define. To
274    aid in debugging in the field, I'm leaving the compile-time debug
275    features enabled, and disable them "runtime". That allows me to
276    instruct people with problems to enable debugging without requiring
277    them to recompile... -- REW
278 */
279 #define DEBUG
280 
281 #ifdef DEBUG
282 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283 #else
284 #define fs_dprintk(f, str...) /* nothing */
285 #endif
286 
287 
288 static int fs_keystream = 0;
289 
290 #ifdef DEBUG
291 /* I didn't forget to set this to zero before shipping. Hit me with a stick
292    if you get this with the debug default not set to zero again. -- REW */
293 static int fs_debug = 0;
294 #else
295 #define fs_debug 0
296 #endif
297 
298 #ifdef MODULE
299 #ifdef DEBUG
300 module_param(fs_debug, int, 0644);
301 #endif
302 module_param(loopback, int, 0);
303 module_param(num, int, 0);
304 module_param(fs_keystream, int, 0);
305 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306 #endif
307 
308 
309 #define FS_DEBUG_FLOW    0x00000001
310 #define FS_DEBUG_OPEN    0x00000002
311 #define FS_DEBUG_QUEUE   0x00000004
312 #define FS_DEBUG_IRQ     0x00000008
313 #define FS_DEBUG_INIT    0x00000010
314 #define FS_DEBUG_SEND    0x00000020
315 #define FS_DEBUG_PHY     0x00000040
316 #define FS_DEBUG_CLEANUP 0x00000080
317 #define FS_DEBUG_QOS     0x00000100
318 #define FS_DEBUG_TXQ     0x00000200
319 #define FS_DEBUG_ALLOC   0x00000400
320 #define FS_DEBUG_TXMEM   0x00000800
321 #define FS_DEBUG_QSIZE   0x00001000
322 
323 
324 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325 #define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
326 
327 
328 static struct fs_dev *fs_boards = NULL;
329 
330 #ifdef DEBUG
331 
my_hd(void * addr,int len)332 static void my_hd (void *addr, int len)
333 {
334 	int j, ch;
335 	unsigned char *ptr = addr;
336 
337 	while (len > 0) {
338 		printk ("%p ", ptr);
339 		for (j=0;j < ((len < 16)?len:16);j++) {
340 			printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 		}
342 		for (  ;j < 16;j++) {
343 			printk ("   %s", (j==7)?" ":"");
344 		}
345 		for (j=0;j < ((len < 16)?len:16);j++) {
346 			ch = ptr[j];
347 			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 		}
349 		printk ("\n");
350 		ptr += 16;
351 		len -= 16;
352 	}
353 }
354 #else /* DEBUG */
my_hd(void * addr,int len)355 static void my_hd (void *addr, int len){}
356 #endif /* DEBUG */
357 
358 /********** free an skb (as per ATM device driver documentation) **********/
359 
360 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361  * I copied it over from the ambassador driver. -- REW */
362 
fs_kfree_skb(struct sk_buff * skb)363 static inline void fs_kfree_skb (struct sk_buff * skb)
364 {
365 	if (ATM_SKB(skb)->vcc->pop)
366 		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 	else
368 		dev_kfree_skb_any (skb);
369 }
370 
371 
372 
373 
374 /* It seems the ATM forum recommends this horribly complicated 16bit
375  * floating point format. Turns out the Ambassador uses the exact same
376  * encoding. I just copied it over. If Mitch agrees, I'll move it over
377  * to the atm_misc file or something like that. (and remove it from
378  * here and the ambassador driver) -- REW
379  */
380 
381 /* The good thing about this format is that it is monotonic. So,
382    a conversion routine need not be very complicated. To be able to
383    round "nearest" we need to take along a few extra bits. Lets
384    put these after 16 bits, so that we can just return the top 16
385    bits of the 32bit number as the result:
386 
387    int mr (unsigned int rate, int r)
388      {
389      int e = 16+9;
390      static int round[4]={0, 0, 0xffff, 0x8000};
391      if (!rate) return 0;
392      while (rate & 0xfc000000) {
393        rate >>= 1;
394        e++;
395      }
396      while (! (rate & 0xfe000000)) {
397        rate <<= 1;
398        e--;
399      }
400 
401 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402      rate &= ~0x02000000;
403 // Next add in the exponent
404      rate |= e << (16+9);
405 // And perform the rounding:
406      return (rate + round[r]) >> 16;
407    }
408 
409    14 lines-of-code. Compare that with the 120 that the Ambassador
410    guys needed. (would be 8 lines shorter if I'd try to really reduce
411    the number of lines:
412 
413    int mr (unsigned int rate, int r)
414    {
415      int e = 16+9;
416      static int round[4]={0, 0, 0xffff, 0x8000};
417      if (!rate) return 0;
418      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
419      for (;!(rate & 0xfe000000);rate <<= 1, e--);
420      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421    }
422 
423    Exercise for the reader: Remove one more line-of-code, without
424    cheating. (Just joining two lines is cheating). (I know it's
425    possible, don't think you've beat me if you found it... If you
426    manage to lose two lines or more, keep me updated! ;-)
427 
428    -- REW */
429 
430 
431 #define ROUND_UP      1
432 #define ROUND_DOWN    2
433 #define ROUND_NEAREST 3
434 /********** make rate (not quite as much fun as Horizon) **********/
435 
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)436 static int make_rate(unsigned int rate, int r,
437 		      u16 *bits, unsigned int *actual)
438 {
439 	unsigned char exp = -1; /* hush gcc */
440 	unsigned int man = -1;  /* hush gcc */
441 
442 	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443 
444 	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 	   given 5-bit e and 9-bit m:
446 	   rate = EITHER (1+m/2^9)*2^e    OR 0
447 	   bits = EITHER 1<<14 | e<<9 | m OR 0
448 	   (bit 15 is "reserved", bit 14 "non-zero")
449 	   smallest rate is 0 (special representation)
450 	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 	   simple algorithm:
453 	   find position of top bit, this gives e
454 	   remove top bit and shift (rounding if feeling clever) by 9-e
455 	*/
456 	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 	   representable. // This should move into the ambassador driver
458 	   when properly merged. -- REW */
459 
460 	if (rate > 0xffc00000U) {
461 		/* larger than largest representable rate */
462 
463 		if (r == ROUND_UP) {
464 			return -EINVAL;
465 		} else {
466 			exp = 31;
467 			man = 511;
468 		}
469 
470 	} else if (rate) {
471 		/* representable rate */
472 
473 		exp = 31;
474 		man = rate;
475 
476 		/* invariant: rate = man*2^(exp-31) */
477 		while (!(man & (1<<31))) {
478 			exp = exp - 1;
479 			man = man<<1;
480 		}
481 
482 		/* man has top bit set
483 		   rate = (2^31+(man-2^31))*2^(exp-31)
484 		   rate = (1+(man-2^31)/2^31)*2^exp
485 		*/
486 		man = man<<1;
487 		man &= 0xffffffffU; /* a nop on 32-bit systems */
488 		/* rate = (1+man/2^32)*2^exp
489 
490 		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 		   time to lose significance... we want m in the range 0 to 2^9-1
492 		   rounding presents a minor problem... we first decide which way
493 		   we are rounding (based on given rounding direction and possibly
494 		   the bits of the mantissa that are to be discarded).
495 		*/
496 
497 		switch (r) {
498 		case ROUND_DOWN: {
499 			/* just truncate */
500 			man = man>>(32-9);
501 			break;
502 		}
503 		case ROUND_UP: {
504 			/* check all bits that we are discarding */
505 			if (man & (~0U>>9)) {
506 				man = (man>>(32-9)) + 1;
507 				if (man == (1<<9)) {
508 					/* no need to check for round up outside of range */
509 					man = 0;
510 					exp += 1;
511 				}
512 			} else {
513 				man = (man>>(32-9));
514 			}
515 			break;
516 		}
517 		case ROUND_NEAREST: {
518 			/* check msb that we are discarding */
519 			if (man & (1<<(32-9-1))) {
520 				man = (man>>(32-9)) + 1;
521 				if (man == (1<<9)) {
522 					/* no need to check for round up outside of range */
523 					man = 0;
524 					exp += 1;
525 				}
526 			} else {
527 				man = (man>>(32-9));
528 			}
529 			break;
530 		}
531 		}
532 
533 	} else {
534 		/* zero rate - not representable */
535 
536 		if (r == ROUND_DOWN) {
537 			return -EINVAL;
538 		} else {
539 			exp = 0;
540 			man = 0;
541 		}
542 	}
543 
544 	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545 
546 	if (bits)
547 		*bits = /* (1<<14) | */ (exp<<9) | man;
548 
549 	if (actual)
550 		*actual = (exp >= 9)
551 			? (1 << exp) + (man << (exp-9))
552 			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553 
554 	return 0;
555 }
556 
557 
558 
559 
560 /* FireStream access routines */
561 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562    certain registers or to just log all accesses. */
563 
write_fs(struct fs_dev * dev,int offset,u32 val)564 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565 {
566 	writel (val, dev->base + offset);
567 }
568 
569 
read_fs(struct fs_dev * dev,int offset)570 static inline u32  read_fs (struct fs_dev *dev, int offset)
571 {
572 	return readl (dev->base + offset);
573 }
574 
575 
576 
get_qentry(struct fs_dev * dev,struct queue * q)577 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578 {
579 	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580 }
581 
582 
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)583 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584 {
585 	u32 wp;
586 	struct FS_QENTRY *cqe;
587 
588 	/* XXX Sanity check: the write pointer can be checked to be
589 	   still the same as the value passed as qe... -- REW */
590 	/*  udelay (5); */
591 	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 			    q->offset);
594 		schedule ();
595 	}
596 
597 	wp &= ~0xf;
598 	cqe = bus_to_virt (wp);
599 	if (qe != cqe) {
600 		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 	}
602 
603 	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604 
605 	{
606 		static int c;
607 		if (!(c++ % 100))
608 			{
609 				int rp, wp;
610 				rp =  read_fs (dev, Q_RP(q->offset));
611 				wp =  read_fs (dev, Q_WP(q->offset));
612 				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 					    q->offset, rp, wp, wp-rp);
614 			}
615 	}
616 }
617 
618 #ifdef DEBUG_EXTRA
619 static struct FS_QENTRY pq[60];
620 static int qp;
621 
622 static struct FS_BPENTRY dq[60];
623 static int qd;
624 static void *da[60];
625 #endif
626 
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)627 static void submit_queue (struct fs_dev *dev, struct queue *q,
628 			  u32 cmd, u32 p1, u32 p2, u32 p3)
629 {
630 	struct FS_QENTRY *qe;
631 
632 	qe = get_qentry (dev, q);
633 	qe->cmd = cmd;
634 	qe->p0 = p1;
635 	qe->p1 = p2;
636 	qe->p2 = p3;
637 	submit_qentry (dev,  q, qe);
638 
639 #ifdef DEBUG_EXTRA
640 	pq[qp].cmd = cmd;
641 	pq[qp].p0 = p1;
642 	pq[qp].p1 = p2;
643 	pq[qp].p2 = p3;
644 	qp++;
645 	if (qp >= 60) qp = 0;
646 #endif
647 }
648 
649 /* Test the "other" way one day... -- REW */
650 #if 1
651 #define submit_command submit_queue
652 #else
653 
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)654 static void submit_command (struct fs_dev *dev, struct queue *q,
655 			    u32 cmd, u32 p1, u32 p2, u32 p3)
656 {
657 	write_fs (dev, CMDR0, cmd);
658 	write_fs (dev, CMDR1, p1);
659 	write_fs (dev, CMDR2, p2);
660 	write_fs (dev, CMDR3, p3);
661 }
662 #endif
663 
664 
665 
process_return_queue(struct fs_dev * dev,struct queue * q)666 static void process_return_queue (struct fs_dev *dev, struct queue *q)
667 {
668 	long rq;
669 	struct FS_QENTRY *qe;
670 	void *tc;
671 
672 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 		qe = bus_to_virt (rq);
675 
676 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678 
679 		switch (STATUS_CODE (qe)) {
680 		case 5:
681 			tc = bus_to_virt (qe->p0);
682 			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 			kfree (tc);
684 			break;
685 		}
686 
687 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 	}
689 }
690 
691 
process_txdone_queue(struct fs_dev * dev,struct queue * q)692 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693 {
694 	long rq;
695 	long tmp;
696 	struct FS_QENTRY *qe;
697 	struct sk_buff *skb;
698 	struct FS_BPENTRY *td;
699 
700 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 		qe = bus_to_virt (rq);
703 
704 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706 
707 		if (STATUS_CODE (qe) != 2)
708 			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710 
711 
712 		switch (STATUS_CODE (qe)) {
713 		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 			/* Fall through */
715 		case 0x02:
716 			/* Process a real txdone entry. */
717 			tmp = qe->p0;
718 			if (tmp & 0x0f)
719 				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 			tmp &= ~0x0f;
721 			td = bus_to_virt (tmp);
722 
723 			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725 
726 			skb = td->skb;
727 			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 			}
731 			td->dev->ntxpckts--;
732 
733 			{
734 				static int c=0;
735 
736 				if (!(c++ % 100)) {
737 					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 				}
739 			}
740 
741 			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742 
743 			fs_dprintk (FS_DEBUG_TXMEM, "i");
744 			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 			fs_kfree_skb (skb);
746 
747 			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 			kfree (td);
750 			break;
751 		default:
752 			/* Here we get the tx purge inhibit command ... */
753 			/* Action, I believe, is "don't do anything". -- REW */
754 			;
755 		}
756 
757 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 	}
759 }
760 
761 
process_incoming(struct fs_dev * dev,struct queue * q)762 static void process_incoming (struct fs_dev *dev, struct queue *q)
763 {
764 	long rq;
765 	struct FS_QENTRY *qe;
766 	struct FS_BPENTRY *pe;
767 	struct sk_buff *skb;
768 	unsigned int channo;
769 	struct atm_vcc *atm_vcc;
770 
771 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 		qe = bus_to_virt (rq);
774 
775 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ",
776 			    qe->cmd, qe->p0, qe->p1, qe->p2);
777 
778 		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 			    STATUS_CODE (qe),
780 			    res_strings[STATUS_CODE(qe)]);
781 
782 		pe = bus_to_virt (qe->p0);
783 		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 			    pe->skb, pe->fp);
786 
787 		channo = qe->cmd & 0xffff;
788 
789 		if (channo < dev->nchannels)
790 			atm_vcc = dev->atm_vccs[channo];
791 		else
792 			atm_vcc = NULL;
793 
794 		/* Single buffer packet */
795 		switch (STATUS_CODE (qe)) {
796 		case 0x1:
797 			/* Fall through for streaming mode */
798 		case 0x2:/* Packet received OK.... */
799 			if (atm_vcc) {
800 				skb = pe->skb;
801 				pe->fp->n--;
802 #if 0
803 				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
804 				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
805 #endif
806 				skb_put (skb, qe->p1 & 0xffff);
807 				ATM_SKB(skb)->vcc = atm_vcc;
808 				atomic_inc(&atm_vcc->stats->rx);
809 				__net_timestamp(skb);
810 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
811 				atm_vcc->push (atm_vcc, skb);
812 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
813 				kfree (pe);
814 			} else {
815 				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
816 			}
817 			break;
818 		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
819 			     has been consumed and needs to be processed. -- REW */
820 			if (qe->p1 & 0xffff) {
821 				pe = bus_to_virt (qe->p0);
822 				pe->fp->n--;
823 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
824 				dev_kfree_skb_any (pe->skb);
825 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
826 				kfree (pe);
827 			}
828 			if (atm_vcc)
829 				atomic_inc(&atm_vcc->stats->rx_drop);
830 			break;
831 		case 0x1f: /*  Reassembly abort: no buffers. */
832 			/* Silently increment error counter. */
833 			if (atm_vcc)
834 				atomic_inc(&atm_vcc->stats->rx_drop);
835 			break;
836 		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
837 			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
838 				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
839 		}
840 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
841 	}
842 }
843 
844 
845 
846 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
847 
fs_open(struct atm_vcc * atm_vcc)848 static int fs_open(struct atm_vcc *atm_vcc)
849 {
850 	struct fs_dev *dev;
851 	struct fs_vcc *vcc;
852 	struct fs_transmit_config *tc;
853 	struct atm_trafprm * txtp;
854 	struct atm_trafprm * rxtp;
855 	/*  struct fs_receive_config *rc;*/
856 	/*  struct FS_QENTRY *qe; */
857 	int error;
858 	int bfp;
859 	int to;
860 	unsigned short tmc0;
861 	short vpi = atm_vcc->vpi;
862 	int vci = atm_vcc->vci;
863 
864 	func_enter ();
865 
866 	dev = FS_DEV(atm_vcc->dev);
867 	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
868 		    dev, atm_vcc);
869 
870 	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
871 		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
872 
873 	if ((atm_vcc->qos.aal != ATM_AAL5) &&
874 	    (atm_vcc->qos.aal != ATM_AAL2))
875 	  return -EINVAL; /* XXX AAL0 */
876 
877 	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
878 		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
879 
880 	/* XXX handle qos parameters (rate limiting) ? */
881 
882 	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
883 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
884 	if (!vcc) {
885 		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
886 		return -ENOMEM;
887 	}
888 
889 	atm_vcc->dev_data = vcc;
890 	vcc->last_skb = NULL;
891 
892 	init_waitqueue_head (&vcc->close_wait);
893 
894 	txtp = &atm_vcc->qos.txtp;
895 	rxtp = &atm_vcc->qos.rxtp;
896 
897 	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
898 		if (IS_FS50(dev)) {
899 			/* Increment the channel numer: take a free one next time.  */
900 			for (to=33;to;to--, dev->channo++) {
901 				/* We only have 32 channels */
902 				if (dev->channo >= 32)
903 					dev->channo = 0;
904 				/* If we need to do RX, AND the RX is inuse, try the next */
905 				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
906 					continue;
907 				/* If we need to do TX, AND the TX is inuse, try the next */
908 				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
909 					continue;
910 				/* Ok, both are free! (or not needed) */
911 				break;
912 			}
913 			if (!to) {
914 				printk ("No more free channels for FS50..\n");
915 				return -EBUSY;
916 			}
917 			vcc->channo = dev->channo;
918 			dev->channo &= dev->channel_mask;
919 
920 		} else {
921 			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
922 			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
923 			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
924 				printk ("Channel is in use for FS155.\n");
925 				return -EBUSY;
926 			}
927 		}
928 		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
929 			    vcc->channo, vcc->channo);
930 	}
931 
932 	if (DO_DIRECTION (txtp)) {
933 		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
934 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
935 			    tc, sizeof (struct fs_transmit_config));
936 		if (!tc) {
937 			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
938 			return -ENOMEM;
939 		}
940 
941 		/* Allocate the "open" entry from the high priority txq. This makes
942 		   it most likely that the chip will notice it. It also prevents us
943 		   from having to wait for completion. On the other hand, we may
944 		   need to wait for completion anyway, to see if it completed
945 		   successfully. */
946 
947 		switch (atm_vcc->qos.aal) {
948 		case ATM_AAL2:
949 		case ATM_AAL0:
950 		  tc->flags = 0
951 		    | TC_FLAGS_TRANSPARENT_PAYLOAD
952 		    | TC_FLAGS_PACKET
953 		    | (1 << 28)
954 		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
955 		    | TC_FLAGS_CAL0;
956 		  break;
957 		case ATM_AAL5:
958 		  tc->flags = 0
959 			| TC_FLAGS_AAL5
960 			| TC_FLAGS_PACKET  /* ??? */
961 			| TC_FLAGS_TYPE_CBR
962 			| TC_FLAGS_CAL0;
963 		  break;
964 		default:
965 			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
966 			tc->flags = 0;
967 		}
968 		/* Docs are vague about this atm_hdr field. By the way, the FS
969 		 * chip makes odd errors if lower bits are set.... -- REW */
970 		tc->atm_hdr =  (vpi << 20) | (vci << 4);
971 		tmc0 = 0;
972 		{
973 			int pcr = atm_pcr_goal (txtp);
974 
975 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
976 
977 			/* XXX Hmm. officially we're only allowed to do this if rounding
978 			   is round_down -- REW */
979 			if (IS_FS50(dev)) {
980 				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
981 			} else {
982 				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
983 			}
984 			if (!pcr) {
985 				/* no rate cap */
986 				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
987 			} else {
988 				int r;
989 				if (pcr < 0) {
990 					r = ROUND_DOWN;
991 					pcr = -pcr;
992 				} else {
993 					r = ROUND_UP;
994 				}
995 				error = make_rate (pcr, r, &tmc0, NULL);
996 				if (error) {
997 					kfree(tc);
998 					return error;
999 				}
1000 			}
1001 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1002 		}
1003 
1004 		tc->TMC[0] = tmc0 | 0x4000;
1005 		tc->TMC[1] = 0; /* Unused */
1006 		tc->TMC[2] = 0; /* Unused */
1007 		tc->TMC[3] = 0; /* Unused */
1008 
1009 		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1010 		tc->rtag[0] = 0; /* What should I do with routing tags???
1011 				    -- Not used -- AS -- Thanks -- REW*/
1012 		tc->rtag[1] = 0;
1013 		tc->rtag[2] = 0;
1014 
1015 		if (fs_debug & FS_DEBUG_OPEN) {
1016 			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1017 			my_hd (tc, sizeof (*tc));
1018 		}
1019 
1020 		/* We now use the "submit_command" function to submit commands to
1021 		   the firestream. There is a define up near the definition of
1022 		   that routine that switches this routine between immediate write
1023 		   to the immediate command registers and queuing the commands in
1024 		   the HPTXQ for execution. This last technique might be more
1025 		   efficient if we know we're going to submit a whole lot of
1026 		   commands in one go, but this driver is not setup to be able to
1027 		   use such a construct. So it probably doen't matter much right
1028 		   now. -- REW */
1029 
1030 		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1031 		submit_command (dev, &dev->hp_txq,
1032 				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1033 				virt_to_bus (tc), 0, 0);
1034 
1035 		submit_command (dev, &dev->hp_txq,
1036 				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1037 				0, 0, 0);
1038 		set_bit (vcc->channo, dev->tx_inuse);
1039 	}
1040 
1041 	if (DO_DIRECTION (rxtp)) {
1042 		dev->atm_vccs[vcc->channo] = atm_vcc;
1043 
1044 		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1045 			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1046 		if (bfp >= FS_NR_FREE_POOLS) {
1047 			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1048 				    atm_vcc->qos.rxtp.max_sdu);
1049 			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1050 
1051 			/* XXX clear tx inuse. Close TX part? */
1052 			dev->atm_vccs[vcc->channo] = NULL;
1053 			kfree (vcc);
1054 			return -EINVAL;
1055 		}
1056 
1057 		switch (atm_vcc->qos.aal) {
1058 		case ATM_AAL0:
1059 		case ATM_AAL2:
1060 			submit_command (dev, &dev->hp_txq,
1061 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1062 					RC_FLAGS_TRANSP |
1063 					RC_FLAGS_BFPS_BFP * bfp |
1064 					RC_FLAGS_RXBM_PSB, 0, 0);
1065 			break;
1066 		case ATM_AAL5:
1067 			submit_command (dev, &dev->hp_txq,
1068 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1069 					RC_FLAGS_AAL5 |
1070 					RC_FLAGS_BFPS_BFP * bfp |
1071 					RC_FLAGS_RXBM_PSB, 0, 0);
1072 			break;
1073 		};
1074 		if (IS_FS50 (dev)) {
1075 			submit_command (dev, &dev->hp_txq,
1076 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1077 					0x80 + vcc->channo,
1078 					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1079 		}
1080 		submit_command (dev, &dev->hp_txq,
1081 				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1082 				0, 0, 0);
1083 	}
1084 
1085 	/* Indicate we're done! */
1086 	set_bit(ATM_VF_READY, &atm_vcc->flags);
1087 
1088 	func_exit ();
1089 	return 0;
1090 }
1091 
1092 
fs_close(struct atm_vcc * atm_vcc)1093 static void fs_close(struct atm_vcc *atm_vcc)
1094 {
1095 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1096 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1097 	struct atm_trafprm * txtp;
1098 	struct atm_trafprm * rxtp;
1099 
1100 	func_enter ();
1101 
1102 	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1103 
1104 	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1105 	if (vcc->last_skb) {
1106 		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1107 			    vcc->last_skb);
1108 		/* We're going to wait for the last packet to get sent on this VC. It would
1109 		   be impolite not to send them don't you think?
1110 		   XXX
1111 		   We don't know which packets didn't get sent. So if we get interrupted in
1112 		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1113 		   On the other hand, it's awfully convenient that we can abort a "close" that
1114 		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1115 		wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1116 	}
1117 
1118 	txtp = &atm_vcc->qos.txtp;
1119 	rxtp = &atm_vcc->qos.rxtp;
1120 
1121 
1122 	/* See App note XXX (Unpublished as of now) for the reason for the
1123 	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1124 
1125 	if (DO_DIRECTION (txtp)) {
1126 		submit_command (dev,  &dev->hp_txq,
1127 				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1128 		clear_bit (vcc->channo, dev->tx_inuse);
1129 	}
1130 
1131 	if (DO_DIRECTION (rxtp)) {
1132 		submit_command (dev,  &dev->hp_txq,
1133 				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1134 		dev->atm_vccs [vcc->channo] = NULL;
1135 
1136 		/* This means that this is configured as a receive channel */
1137 		if (IS_FS50 (dev)) {
1138 			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1139 			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1140 			   (0xfff...) -- REW */
1141 			submit_command (dev, &dev->hp_txq,
1142 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1143 					0x80 + vcc->channo, -1, 0 );
1144 		}
1145 	}
1146 
1147 	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1148 	kfree (vcc);
1149 
1150 	func_exit ();
1151 }
1152 
1153 
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1154 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1155 {
1156 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1157 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1158 	struct FS_BPENTRY *td;
1159 
1160 	func_enter ();
1161 
1162 	fs_dprintk (FS_DEBUG_TXMEM, "I");
1163 	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1164 		    atm_vcc, skb, vcc, dev);
1165 
1166 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1167 
1168 	ATM_SKB(skb)->vcc = atm_vcc;
1169 
1170 	vcc->last_skb = skb;
1171 
1172 	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1173 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1174 	if (!td) {
1175 		/* Oops out of mem */
1176 		return -ENOMEM;
1177 	}
1178 
1179 	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1180 		    *(int *) skb->data);
1181 
1182 	td->flags =  TD_EPI | TD_DATA | skb->len;
1183 	td->next = 0;
1184 	td->bsa  = virt_to_bus (skb->data);
1185 	td->skb = skb;
1186 	td->dev = dev;
1187 	dev->ntxpckts++;
1188 
1189 #ifdef DEBUG_EXTRA
1190 	da[qd] = td;
1191 	dq[qd].flags = td->flags;
1192 	dq[qd].next  = td->next;
1193 	dq[qd].bsa   = td->bsa;
1194 	dq[qd].skb   = td->skb;
1195 	dq[qd].dev   = td->dev;
1196 	qd++;
1197 	if (qd >= 60) qd = 0;
1198 #endif
1199 
1200 	submit_queue (dev, &dev->hp_txq,
1201 		      QE_TRANSMIT_DE | vcc->channo,
1202 		      virt_to_bus (td), 0,
1203 		      virt_to_bus (td));
1204 
1205 	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1206 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1207 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1208 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1209 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1210 
1211 	func_exit ();
1212 	return 0;
1213 }
1214 
1215 
1216 /* Some function placeholders for functions we don't yet support. */
1217 
1218 #if 0
1219 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1220 {
1221 	func_enter ();
1222 	func_exit ();
1223 	return -ENOIOCTLCMD;
1224 }
1225 
1226 
1227 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1228 			 void __user *optval,int optlen)
1229 {
1230 	func_enter ();
1231 	func_exit ();
1232 	return 0;
1233 }
1234 
1235 
1236 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1237 			 void __user *optval,unsigned int optlen)
1238 {
1239 	func_enter ();
1240 	func_exit ();
1241 	return 0;
1242 }
1243 
1244 
1245 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1246 		       unsigned long addr)
1247 {
1248 	func_enter ();
1249 	func_exit ();
1250 }
1251 
1252 
1253 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1254 {
1255 	func_enter ();
1256 	func_exit ();
1257 	return 0;
1258 }
1259 
1260 
1261 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1262 {
1263 	func_enter ();
1264 	func_exit ();
1265 	return 0;
1266 };
1267 
1268 #endif
1269 
1270 
1271 static const struct atmdev_ops ops = {
1272 	.open =         fs_open,
1273 	.close =        fs_close,
1274 	.send =         fs_send,
1275 	.owner =        THIS_MODULE,
1276 	/* ioctl:          fs_ioctl, */
1277 	/* getsockopt:     fs_getsockopt, */
1278 	/* setsockopt:     fs_setsockopt, */
1279 	/* change_qos:     fs_change_qos, */
1280 
1281 	/* For now implement these internally here... */
1282 	/* phy_put:        fs_phy_put, */
1283 	/* phy_get:        fs_phy_get, */
1284 };
1285 
1286 
undocumented_pci_fix(struct pci_dev * pdev)1287 static void undocumented_pci_fix(struct pci_dev *pdev)
1288 {
1289 	u32 tint;
1290 
1291 	/* The Windows driver says: */
1292 	/* Switch off FireStream Retry Limit Threshold
1293 	 */
1294 
1295 	/* The register at 0x28 is documented as "reserved", no further
1296 	   comments. */
1297 
1298 	pci_read_config_dword (pdev, 0x28, &tint);
1299 	if (tint != 0x80) {
1300 		tint = 0x80;
1301 		pci_write_config_dword (pdev, 0x28, tint);
1302 	}
1303 }
1304 
1305 
1306 
1307 /**************************************************************************
1308  *                              PHY routines                              *
1309  **************************************************************************/
1310 
write_phy(struct fs_dev * dev,int regnum,int val)1311 static void write_phy(struct fs_dev *dev, int regnum, int val)
1312 {
1313 	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1314 			regnum, val, 0);
1315 }
1316 
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1317 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1318 {
1319 	int i;
1320 
1321 	func_enter ();
1322 	while (reginit->reg != PHY_EOF) {
1323 		if (reginit->reg == PHY_CLEARALL) {
1324 			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1325 			for (i=0;i<reginit->val;i++) {
1326 				write_phy (dev, i, 0);
1327 			}
1328 		} else {
1329 			write_phy (dev, reginit->reg, reginit->val);
1330 		}
1331 		reginit++;
1332 	}
1333 	func_exit ();
1334 	return 0;
1335 }
1336 
reset_chip(struct fs_dev * dev)1337 static void reset_chip (struct fs_dev *dev)
1338 {
1339 	int i;
1340 
1341 	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1342 
1343 	/* Undocumented delay */
1344 	udelay (128);
1345 
1346 	/* The "internal registers are documented to all reset to zero, but
1347 	   comments & code in the Windows driver indicates that the pools are
1348 	   NOT reset. */
1349 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1350 		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1351 		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1352 		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1353 		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1354 		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1355 	}
1356 
1357 	/* The same goes for the match channel registers, although those are
1358 	   NOT documented that way in the Windows driver. -- REW */
1359 	/* The Windows driver DOES write 0 to these registers somewhere in
1360 	   the init sequence. However, a small hardware-feature, will
1361 	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1362 	   allocated happens to have no disabled channels that have a lower
1363 	   number. -- REW */
1364 
1365 	/* Clear the match channel registers. */
1366 	if (IS_FS50 (dev)) {
1367 		for (i=0;i<FS50_NR_CHANNELS;i++) {
1368 			write_fs (dev, 0x200 + i * 4, -1);
1369 		}
1370 	}
1371 }
1372 
aligned_kmalloc(int size,gfp_t flags,int alignment)1373 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1374 {
1375 	void  *t;
1376 
1377 	if (alignment <= 0x10) {
1378 		t = kmalloc (size, flags);
1379 		if ((unsigned long)t & (alignment-1)) {
1380 			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1381 			kfree (t);
1382 			return aligned_kmalloc (size, flags, alignment * 4);
1383 		}
1384 		return t;
1385 	}
1386 	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1387 	return NULL;
1388 }
1389 
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1390 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1391 		  int nentries, int is_rq)
1392 {
1393 	int sz = nentries * sizeof (struct FS_QENTRY);
1394 	struct FS_QENTRY *p;
1395 
1396 	func_enter ();
1397 
1398 	fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1399 		    queue, nentries);
1400 
1401 	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1402 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1403 
1404 	if (!p) return 0;
1405 
1406 	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1407 	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1408 	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1409 	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1410 	if (is_rq) {
1411 		/* Configuration for the receive queue: 0: interrupt immediately,
1412 		   no pre-warning to empty queues: We do our best to keep the
1413 		   queue filled anyway. */
1414 		write_fs (dev, Q_CNF(queue), 0 );
1415 	}
1416 
1417 	txq->sa = p;
1418 	txq->ea = p;
1419 	txq->offset = queue;
1420 
1421 	func_exit ();
1422 	return 1;
1423 }
1424 
1425 
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1426 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1427 		   int bufsize, int nr_buffers)
1428 {
1429 	func_enter ();
1430 
1431 	fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1432 
1433 	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1434 	write_fs (dev, FP_SA(queue),  0);
1435 	write_fs (dev, FP_EA(queue),  0);
1436 	write_fs (dev, FP_CTU(queue), 0);
1437 	write_fs (dev, FP_CNT(queue), 0);
1438 
1439 	fp->offset = queue;
1440 	fp->bufsize = bufsize;
1441 	fp->nr_buffers = nr_buffers;
1442 
1443 	func_exit ();
1444 	return 1;
1445 }
1446 
1447 
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1448 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1449 {
1450 #if 0
1451 	/* This seems to be unreliable.... */
1452 	return read_fs (dev, FP_CNT (fp->offset));
1453 #else
1454 	return fp->n;
1455 #endif
1456 }
1457 
1458 
1459 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1460    does. I've seen "receive abort: no buffers" and things started
1461    working again after that...  -- REW */
1462 
top_off_fp(struct fs_dev * dev,struct freepool * fp,gfp_t gfp_flags)1463 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1464 			gfp_t gfp_flags)
1465 {
1466 	struct FS_BPENTRY *qe, *ne;
1467 	struct sk_buff *skb;
1468 	int n = 0;
1469 	u32 qe_tmp;
1470 
1471 	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1472 		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1473 		    fp->nr_buffers);
1474 	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1475 
1476 		skb = alloc_skb (fp->bufsize, gfp_flags);
1477 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1478 		if (!skb) break;
1479 		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1480 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1481 		if (!ne) {
1482 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1483 			dev_kfree_skb_any (skb);
1484 			break;
1485 		}
1486 
1487 		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1488 			    skb, ne, skb->data, skb->head);
1489 		n++;
1490 		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1491 		ne->next  = virt_to_bus (NULL);
1492 		ne->bsa   = virt_to_bus (skb->data);
1493 		ne->aal_bufsize = fp->bufsize;
1494 		ne->skb = skb;
1495 		ne->fp = fp;
1496 
1497 		/*
1498 		 * FIXME: following code encodes and decodes
1499 		 * machine pointers (could be 64-bit) into a
1500 		 * 32-bit register.
1501 		 */
1502 
1503 		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1504 		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1505 		if (qe_tmp) {
1506 			qe = bus_to_virt ((long) qe_tmp);
1507 			qe->next = virt_to_bus(ne);
1508 			qe->flags &= ~FP_FLAGS_EPI;
1509 		} else
1510 			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1511 
1512 		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1513 		fp->n++;   /* XXX Atomic_inc? */
1514 		write_fs (dev, FP_CTU(fp->offset), 1);
1515 	}
1516 
1517 	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1518 }
1519 
free_queue(struct fs_dev * dev,struct queue * txq)1520 static void free_queue(struct fs_dev *dev, struct queue *txq)
1521 {
1522 	func_enter ();
1523 
1524 	write_fs (dev, Q_SA(txq->offset), 0);
1525 	write_fs (dev, Q_EA(txq->offset), 0);
1526 	write_fs (dev, Q_RP(txq->offset), 0);
1527 	write_fs (dev, Q_WP(txq->offset), 0);
1528 	/* Configuration ? */
1529 
1530 	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1531 	kfree (txq->sa);
1532 
1533 	func_exit ();
1534 }
1535 
free_freepool(struct fs_dev * dev,struct freepool * fp)1536 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1537 {
1538 	func_enter ();
1539 
1540 	write_fs (dev, FP_CNF(fp->offset), 0);
1541 	write_fs (dev, FP_SA (fp->offset), 0);
1542 	write_fs (dev, FP_EA (fp->offset), 0);
1543 	write_fs (dev, FP_CNT(fp->offset), 0);
1544 	write_fs (dev, FP_CTU(fp->offset), 0);
1545 
1546 	func_exit ();
1547 }
1548 
1549 
1550 
fs_irq(int irq,void * dev_id)1551 static irqreturn_t fs_irq (int irq, void *dev_id)
1552 {
1553 	int i;
1554 	u32 status;
1555 	struct fs_dev *dev = dev_id;
1556 
1557 	status = read_fs (dev, ISR);
1558 	if (!status)
1559 		return IRQ_NONE;
1560 
1561 	func_enter ();
1562 
1563 #ifdef IRQ_RATE_LIMIT
1564 	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1565 	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1566 	{
1567 		static int lastjif;
1568 		static int nintr=0;
1569 
1570 		if (lastjif == jiffies) {
1571 			if (++nintr > IRQ_RATE_LIMIT) {
1572 				free_irq (dev->irq, dev_id);
1573 				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1574 					dev->irq);
1575 			}
1576 		} else {
1577 			lastjif = jiffies;
1578 			nintr = 0;
1579 		}
1580 	}
1581 #endif
1582 	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1583 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1584 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1585 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1586 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1587 
1588 	/* print the bits in the ISR register. */
1589 	if (fs_debug & FS_DEBUG_IRQ) {
1590 		/* The FS_DEBUG things are unnecessary here. But this way it is
1591 		   clear for grep that these are debug prints. */
1592 		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1593 		for (i=0;i<27;i++)
1594 			if (status & (1 << i))
1595 				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1596 		fs_dprintk (FS_DEBUG_IRQ, "\n");
1597 	}
1598 
1599 	if (status & ISR_RBRQ0_W) {
1600 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1601 		process_incoming (dev, &dev->rx_rq[0]);
1602 		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1603 		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1604 		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1605 	}
1606 
1607 	if (status & ISR_RBRQ1_W) {
1608 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1609 		process_incoming (dev, &dev->rx_rq[1]);
1610 		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1611 		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1612 	}
1613 
1614 	if (status & ISR_RBRQ2_W) {
1615 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1616 		process_incoming (dev, &dev->rx_rq[2]);
1617 		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1618 		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1619 	}
1620 
1621 	if (status & ISR_RBRQ3_W) {
1622 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1623 		process_incoming (dev, &dev->rx_rq[3]);
1624 		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1625 		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1626 	}
1627 
1628 	if (status & ISR_CSQ_W) {
1629 		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1630 		process_return_queue (dev, &dev->st_q);
1631 	}
1632 
1633 	if (status & ISR_TBRQ_W) {
1634 		fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1635 		process_txdone_queue (dev, &dev->tx_relq);
1636 	}
1637 
1638 	func_exit ();
1639 	return IRQ_HANDLED;
1640 }
1641 
1642 
1643 #ifdef FS_POLL_FREQ
fs_poll(struct timer_list * t)1644 static void fs_poll (struct timer_list *t)
1645 {
1646 	struct fs_dev *dev = from_timer(dev, t, timer);
1647 
1648 	fs_irq (0, dev);
1649 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1650 	add_timer (&dev->timer);
1651 }
1652 #endif
1653 
fs_init(struct fs_dev * dev)1654 static int fs_init(struct fs_dev *dev)
1655 {
1656 	struct pci_dev  *pci_dev;
1657 	int isr, to;
1658 	int i;
1659 
1660 	func_enter ();
1661 	pci_dev = dev->pci_dev;
1662 
1663 	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1664 		IS_FS50(dev)?50:155,
1665 		(unsigned long long)pci_resource_start(pci_dev, 0),
1666 		dev->pci_dev->irq);
1667 
1668 	if (fs_debug & FS_DEBUG_INIT)
1669 		my_hd ((unsigned char *) dev, sizeof (*dev));
1670 
1671 	undocumented_pci_fix (pci_dev);
1672 
1673 	dev->hw_base = pci_resource_start(pci_dev, 0);
1674 
1675 	dev->base = ioremap(dev->hw_base, 0x1000);
1676 
1677 	reset_chip (dev);
1678 
1679 	write_fs (dev, SARMODE0, 0
1680 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1681 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1682 		  | (1 * SARMODE0_CWRE)
1683 		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1684 			  SARMODE0_PRPWT_FS155_3)
1685 		  | (1 * SARMODE0_CALSUP_1)
1686 		  | (IS_FS50(dev) ? (0
1687 				   | SARMODE0_RXVCS_32
1688 				   | SARMODE0_ABRVCS_32
1689 				   | SARMODE0_TXVCS_32):
1690 		                  (0
1691 				   | SARMODE0_RXVCS_1k
1692 				   | SARMODE0_ABRVCS_1k
1693 				   | SARMODE0_TXVCS_1k)));
1694 
1695 	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1696 	   1ms. */
1697 	to = 100;
1698 	while (--to) {
1699 		isr = read_fs (dev, ISR);
1700 
1701 		/* This bit is documented as "RESERVED" */
1702 		if (isr & ISR_INIT_ERR) {
1703 			printk (KERN_ERR "Error initializing the FS... \n");
1704 			goto unmap;
1705 		}
1706 		if (isr & ISR_INIT) {
1707 			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1708 			break;
1709 		}
1710 
1711 		/* Try again after 10ms. */
1712 		msleep(10);
1713 	}
1714 
1715 	if (!to) {
1716 		printk (KERN_ERR "timeout initializing the FS... \n");
1717 		goto unmap;
1718 	}
1719 
1720 	/* XXX fix for fs155 */
1721 	dev->channel_mask = 0x1f;
1722 	dev->channo = 0;
1723 
1724 	/* AN3: 10 */
1725 	write_fs (dev, SARMODE1, 0
1726 		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1727 		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1728 		  | (1 * SARMODE1_DCRM)
1729 		  | (1 * SARMODE1_DCOAM)
1730 		  | (0 * SARMODE1_OAMCRC)
1731 		  | (0 * SARMODE1_DUMPE)
1732 		  | (0 * SARMODE1_GPLEN)
1733 		  | (0 * SARMODE1_GNAM)
1734 		  | (0 * SARMODE1_GVAS)
1735 		  | (0 * SARMODE1_GPAS)
1736 		  | (1 * SARMODE1_GPRI)
1737 		  | (0 * SARMODE1_PMS)
1738 		  | (0 * SARMODE1_GFCR)
1739 		  | (1 * SARMODE1_HECM2)
1740 		  | (1 * SARMODE1_HECM1)
1741 		  | (1 * SARMODE1_HECM0)
1742 		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1743 		  | (0 * 0xff) /* XXX FS155 */);
1744 
1745 
1746 	/* Cal prescale etc */
1747 
1748 	/* AN3: 11 */
1749 	write_fs (dev, TMCONF, 0x0000000f);
1750 	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1751 	write_fs (dev, 0x80, 0x000F00E4);
1752 
1753 	/* AN3: 12 */
1754 	write_fs (dev, CELLOSCONF, 0
1755 		  | (   0 * CELLOSCONF_CEN)
1756 		  | (       CELLOSCONF_SC1)
1757 		  | (0x80 * CELLOSCONF_COBS)
1758 		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1759 		  | (num  * CELLOSCONF_COST));/* after a hint from Hang.
1760 					       * performance jumped 50->70... */
1761 
1762 	/* Magic value by Hang */
1763 	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1764 
1765 	if (IS_FS50 (dev)) {
1766 		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1767 		dev->atm_dev->ci_range.vpi_bits = 12;
1768 		dev->atm_dev->ci_range.vci_bits = 16;
1769 		dev->nchannels = FS50_NR_CHANNELS;
1770 	} else {
1771 		write_fs (dev, RAS0, RAS0_DCD_XHLT
1772 			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1773 			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1774 		/* We can chose the split arbitrarily. We might be able to
1775 		   support more. Whatever. This should do for now. */
1776 		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1777 		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1778 
1779 		/* Address bits we can't use should be compared to 0. */
1780 		write_fs (dev, RAC, 0);
1781 
1782 		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1783 		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1784 		 * other bits, then compare with 0, which is exactly what we
1785 		 * want. */
1786 		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1787 		dev->nchannels = FS155_NR_CHANNELS;
1788 	}
1789 	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1790 				 GFP_KERNEL);
1791 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1792 		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1793 
1794 	if (!dev->atm_vccs) {
1795 		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1796 		/* XXX Clean up..... */
1797 		goto unmap;
1798 	}
1799 
1800 	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1801 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1802 		    dev->atm_vccs, dev->nchannels / 8);
1803 
1804 	if (!dev->tx_inuse) {
1805 		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1806 		/* XXX Clean up..... */
1807 		goto unmap;
1808 	}
1809 	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1810 	/* -- RAS2 : FS50 only: Default is OK. */
1811 
1812 	/* DMAMODE, default should be OK. -- REW */
1813 	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1814 
1815 	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1816 	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1817 	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1818 	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1819 
1820 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1821 		init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1822 			 rx_buf_sizes[i], rx_pool_sizes[i]);
1823 		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1824 	}
1825 
1826 
1827 	for (i=0;i < FS_NR_RX_QUEUES;i++)
1828 		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1829 
1830 	dev->irq = pci_dev->irq;
1831 	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1832 		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1833 		/* XXX undo all previous stuff... */
1834 		goto unmap;
1835 	}
1836 	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1837 
1838 	/* We want to be notified of most things. Just the statistics count
1839 	   overflows are not interesting */
1840 	write_fs (dev, IMR, 0
1841 		  | ISR_RBRQ0_W
1842 		  | ISR_RBRQ1_W
1843 		  | ISR_RBRQ2_W
1844 		  | ISR_RBRQ3_W
1845 		  | ISR_TBRQ_W
1846 		  | ISR_CSQ_W);
1847 
1848 	write_fs (dev, SARMODE0, 0
1849 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1850 		  | (1 * SARMODE0_GINT)
1851 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1852 		  | (0 * SARMODE0_CWRE)
1853 		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1854 		                  SARMODE0_PRPWT_FS155_3)
1855 		  | (1 * SARMODE0_CALSUP_1)
1856 		  | (IS_FS50 (dev)?(0
1857 				    | SARMODE0_RXVCS_32
1858 				    | SARMODE0_ABRVCS_32
1859 				    | SARMODE0_TXVCS_32):
1860 		                   (0
1861 				    | SARMODE0_RXVCS_1k
1862 				    | SARMODE0_ABRVCS_1k
1863 				    | SARMODE0_TXVCS_1k))
1864 		  | (1 * SARMODE0_RUN));
1865 
1866 	init_phy (dev, PHY_NTC_INIT);
1867 
1868 	if (loopback == 2) {
1869 		write_phy (dev, 0x39, 0x000e);
1870 	}
1871 
1872 #ifdef FS_POLL_FREQ
1873 	timer_setup(&dev->timer, fs_poll, 0);
1874 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1875 	add_timer (&dev->timer);
1876 #endif
1877 
1878 	dev->atm_dev->dev_data = dev;
1879 
1880 	func_exit ();
1881 	return 0;
1882 unmap:
1883 	iounmap(dev->base);
1884 	return 1;
1885 }
1886 
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1887 static int firestream_init_one(struct pci_dev *pci_dev,
1888 			       const struct pci_device_id *ent)
1889 {
1890 	struct atm_dev *atm_dev;
1891 	struct fs_dev *fs_dev;
1892 
1893 	if (pci_enable_device(pci_dev))
1894 		goto err_out;
1895 
1896 	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1897 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1898 		    fs_dev, sizeof (struct fs_dev));
1899 	if (!fs_dev)
1900 		goto err_out;
1901 	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1902 	if (!atm_dev)
1903 		goto err_out_free_fs_dev;
1904 
1905 	fs_dev->pci_dev = pci_dev;
1906 	fs_dev->atm_dev = atm_dev;
1907 	fs_dev->flags = ent->driver_data;
1908 
1909 	if (fs_init(fs_dev))
1910 		goto err_out_free_atm_dev;
1911 
1912 	fs_dev->next = fs_boards;
1913 	fs_boards = fs_dev;
1914 	return 0;
1915 
1916  err_out_free_atm_dev:
1917 	atm_dev_deregister(atm_dev);
1918  err_out_free_fs_dev:
1919  	kfree(fs_dev);
1920  err_out:
1921 	return -ENODEV;
1922 }
1923 
firestream_remove_one(struct pci_dev * pdev)1924 static void firestream_remove_one(struct pci_dev *pdev)
1925 {
1926 	int i;
1927 	struct fs_dev *dev, *nxtdev;
1928 	struct fs_vcc *vcc;
1929 	struct FS_BPENTRY *fp, *nxt;
1930 
1931 	func_enter ();
1932 
1933 #if 0
1934 	printk ("hptxq:\n");
1935 	for (i=0;i<60;i++) {
1936 		printk ("%d: %08x %08x %08x %08x \n",
1937 			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1938 		qp++;
1939 		if (qp >= 60) qp = 0;
1940 	}
1941 
1942 	printk ("descriptors:\n");
1943 	for (i=0;i<60;i++) {
1944 		printk ("%d: %p: %08x %08x %p %p\n",
1945 			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1946 		qd++;
1947 		if (qd >= 60) qd = 0;
1948 	}
1949 #endif
1950 
1951 	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1952 		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1953 
1954 		/* XXX Hit all the tx channels too! */
1955 
1956 		for (i=0;i < dev->nchannels;i++) {
1957 			if (dev->atm_vccs[i]) {
1958 				vcc = FS_VCC (dev->atm_vccs[i]);
1959 				submit_command (dev,  &dev->hp_txq,
1960 						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1961 				submit_command (dev,  &dev->hp_txq,
1962 						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1963 
1964 			}
1965 		}
1966 
1967 		/* XXX Wait a while for the chip to release all buffers. */
1968 
1969 		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1970 			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1971 			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1972 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1973 				dev_kfree_skb_any (fp->skb);
1974 				nxt = bus_to_virt (fp->next);
1975 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1976 				kfree (fp);
1977 			}
1978 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1979 			dev_kfree_skb_any (fp->skb);
1980 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1981 			kfree (fp);
1982 		}
1983 
1984 		/* Hang the chip in "reset", prevent it clobbering memory that is
1985 		   no longer ours. */
1986 		reset_chip (dev);
1987 
1988 		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1989 		free_irq (dev->irq, dev);
1990 		del_timer_sync (&dev->timer);
1991 
1992 		atm_dev_deregister(dev->atm_dev);
1993 		free_queue (dev, &dev->hp_txq);
1994 		free_queue (dev, &dev->lp_txq);
1995 		free_queue (dev, &dev->tx_relq);
1996 		free_queue (dev, &dev->st_q);
1997 
1998 		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
1999 		kfree (dev->atm_vccs);
2000 
2001 		for (i=0;i< FS_NR_FREE_POOLS;i++)
2002 			free_freepool (dev, &dev->rx_fp[i]);
2003 
2004 		for (i=0;i < FS_NR_RX_QUEUES;i++)
2005 			free_queue (dev, &dev->rx_rq[i]);
2006 
2007 		iounmap(dev->base);
2008 		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2009 		nxtdev = dev->next;
2010 		kfree (dev);
2011 	}
2012 
2013 	func_exit ();
2014 }
2015 
2016 static const struct pci_device_id firestream_pci_tbl[] = {
2017 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2018 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2019 	{ 0, }
2020 };
2021 
2022 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2023 
2024 static struct pci_driver firestream_driver = {
2025 	.name		= "firestream",
2026 	.id_table	= firestream_pci_tbl,
2027 	.probe		= firestream_init_one,
2028 	.remove		= firestream_remove_one,
2029 };
2030 
firestream_init_module(void)2031 static int __init firestream_init_module (void)
2032 {
2033 	int error;
2034 
2035 	func_enter ();
2036 	error = pci_register_driver(&firestream_driver);
2037 	func_exit ();
2038 	return error;
2039 }
2040 
firestream_cleanup_module(void)2041 static void __exit firestream_cleanup_module(void)
2042 {
2043 	pci_unregister_driver(&firestream_driver);
2044 }
2045 
2046 module_init(firestream_init_module);
2047 module_exit(firestream_cleanup_module);
2048 
2049 MODULE_LICENSE("GPL");
2050 
2051 
2052 
2053