1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <asm/syscalls.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/debugreg.h>
36 #include <asm/nmi.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mce.h>
39 #include <asm/vm86.h>
40 #include <asm/switch_to.h>
41 #include <asm/desc.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/proto.h>
45 
46 #include "process.h"
47 
48 /*
49  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50  * no more per-task TSS's. The TSS size is kept cacheline-aligned
51  * so they are allowed to end up in the .data..cacheline_aligned
52  * section. Since TSS's are completely CPU-local, we want them
53  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
54  */
55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
56 	.x86_tss = {
57 		/*
58 		 * .sp0 is only used when entering ring 0 from a lower
59 		 * privilege level.  Since the init task never runs anything
60 		 * but ring 0 code, there is no need for a valid value here.
61 		 * Poison it.
62 		 */
63 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
64 
65 		/*
66 		 * .sp1 is cpu_current_top_of_stack.  The init task never
67 		 * runs user code, but cpu_current_top_of_stack should still
68 		 * be well defined before the first context switch.
69 		 */
70 		.sp1 = TOP_OF_INIT_STACK,
71 
72 #ifdef CONFIG_X86_32
73 		.ss0 = __KERNEL_DS,
74 		.ss1 = __KERNEL_CS,
75 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
76 #endif
77 	 },
78 #ifdef CONFIG_X86_32
79 	 /*
80 	  * Note that the .io_bitmap member must be extra-big. This is because
81 	  * the CPU will access an additional byte beyond the end of the IO
82 	  * permission bitmap. The extra byte must be all 1 bits, and must
83 	  * be within the limit.
84 	  */
85 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
86 #endif
87 };
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
89 
90 DEFINE_PER_CPU(bool, __tss_limit_invalid);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
92 
93 /*
94  * this gets called so that we can store lazy state into memory and copy the
95  * current task into the new thread.
96  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
98 {
99 	memcpy(dst, src, arch_task_struct_size);
100 #ifdef CONFIG_VM86
101 	dst->thread.vm86 = NULL;
102 #endif
103 
104 	return fpu__copy(dst, src);
105 }
106 
107 /*
108  * Free current thread data structures etc..
109  */
exit_thread(struct task_struct * tsk)110 void exit_thread(struct task_struct *tsk)
111 {
112 	struct thread_struct *t = &tsk->thread;
113 	unsigned long *bp = t->io_bitmap_ptr;
114 	struct fpu *fpu = &t->fpu;
115 
116 	if (bp) {
117 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118 
119 		t->io_bitmap_ptr = NULL;
120 		clear_thread_flag(TIF_IO_BITMAP);
121 		/*
122 		 * Careful, clear this in the TSS too:
123 		 */
124 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125 		t->io_bitmap_max = 0;
126 		put_cpu();
127 		kfree(bp);
128 	}
129 
130 	free_vm86(t);
131 
132 	fpu__drop(fpu);
133 }
134 
flush_thread(void)135 void flush_thread(void)
136 {
137 	struct task_struct *tsk = current;
138 
139 	flush_ptrace_hw_breakpoint(tsk);
140 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141 
142 	fpu__clear(&tsk->thread.fpu);
143 }
144 
disable_TSC(void)145 void disable_TSC(void)
146 {
147 	preempt_disable();
148 	if (!test_and_set_thread_flag(TIF_NOTSC))
149 		/*
150 		 * Must flip the CPU state synchronously with
151 		 * TIF_NOTSC in the current running context.
152 		 */
153 		cr4_set_bits(X86_CR4_TSD);
154 	preempt_enable();
155 }
156 
enable_TSC(void)157 static void enable_TSC(void)
158 {
159 	preempt_disable();
160 	if (test_and_clear_thread_flag(TIF_NOTSC))
161 		/*
162 		 * Must flip the CPU state synchronously with
163 		 * TIF_NOTSC in the current running context.
164 		 */
165 		cr4_clear_bits(X86_CR4_TSD);
166 	preempt_enable();
167 }
168 
get_tsc_mode(unsigned long adr)169 int get_tsc_mode(unsigned long adr)
170 {
171 	unsigned int val;
172 
173 	if (test_thread_flag(TIF_NOTSC))
174 		val = PR_TSC_SIGSEGV;
175 	else
176 		val = PR_TSC_ENABLE;
177 
178 	return put_user(val, (unsigned int __user *)adr);
179 }
180 
set_tsc_mode(unsigned int val)181 int set_tsc_mode(unsigned int val)
182 {
183 	if (val == PR_TSC_SIGSEGV)
184 		disable_TSC();
185 	else if (val == PR_TSC_ENABLE)
186 		enable_TSC();
187 	else
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194 
set_cpuid_faulting(bool on)195 static void set_cpuid_faulting(bool on)
196 {
197 	u64 msrval;
198 
199 	msrval = this_cpu_read(msr_misc_features_shadow);
200 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202 	this_cpu_write(msr_misc_features_shadow, msrval);
203 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204 }
205 
disable_cpuid(void)206 static void disable_cpuid(void)
207 {
208 	preempt_disable();
209 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210 		/*
211 		 * Must flip the CPU state synchronously with
212 		 * TIF_NOCPUID in the current running context.
213 		 */
214 		set_cpuid_faulting(true);
215 	}
216 	preempt_enable();
217 }
218 
enable_cpuid(void)219 static void enable_cpuid(void)
220 {
221 	preempt_disable();
222 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223 		/*
224 		 * Must flip the CPU state synchronously with
225 		 * TIF_NOCPUID in the current running context.
226 		 */
227 		set_cpuid_faulting(false);
228 	}
229 	preempt_enable();
230 }
231 
get_cpuid_mode(void)232 static int get_cpuid_mode(void)
233 {
234 	return !test_thread_flag(TIF_NOCPUID);
235 }
236 
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238 {
239 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
240 		return -ENODEV;
241 
242 	if (cpuid_enabled)
243 		enable_cpuid();
244 	else
245 		disable_cpuid();
246 
247 	return 0;
248 }
249 
250 /*
251  * Called immediately after a successful exec.
252  */
arch_setup_new_exec(void)253 void arch_setup_new_exec(void)
254 {
255 	/* If cpuid was previously disabled for this task, re-enable it. */
256 	if (test_thread_flag(TIF_NOCPUID))
257 		enable_cpuid();
258 
259 	/*
260 	 * Don't inherit TIF_SSBD across exec boundary when
261 	 * PR_SPEC_DISABLE_NOEXEC is used.
262 	 */
263 	if (test_thread_flag(TIF_SSBD) &&
264 	    task_spec_ssb_noexec(current)) {
265 		clear_thread_flag(TIF_SSBD);
266 		task_clear_spec_ssb_disable(current);
267 		task_clear_spec_ssb_noexec(current);
268 		speculation_ctrl_update(task_thread_info(current)->flags);
269 	}
270 }
271 
switch_to_bitmap(struct thread_struct * prev,struct thread_struct * next,unsigned long tifp,unsigned long tifn)272 static inline void switch_to_bitmap(struct thread_struct *prev,
273 				    struct thread_struct *next,
274 				    unsigned long tifp, unsigned long tifn)
275 {
276 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
277 
278 	if (tifn & _TIF_IO_BITMAP) {
279 		/*
280 		 * Copy the relevant range of the IO bitmap.
281 		 * Normally this is 128 bytes or less:
282 		 */
283 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
284 		       max(prev->io_bitmap_max, next->io_bitmap_max));
285 		/*
286 		 * Make sure that the TSS limit is correct for the CPU
287 		 * to notice the IO bitmap.
288 		 */
289 		refresh_tss_limit();
290 	} else if (tifp & _TIF_IO_BITMAP) {
291 		/*
292 		 * Clear any possible leftover bits:
293 		 */
294 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
295 	}
296 }
297 
298 #ifdef CONFIG_SMP
299 
300 struct ssb_state {
301 	struct ssb_state	*shared_state;
302 	raw_spinlock_t		lock;
303 	unsigned int		disable_state;
304 	unsigned long		local_state;
305 };
306 
307 #define LSTATE_SSB	0
308 
309 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
310 
speculative_store_bypass_ht_init(void)311 void speculative_store_bypass_ht_init(void)
312 {
313 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
314 	unsigned int this_cpu = smp_processor_id();
315 	unsigned int cpu;
316 
317 	st->local_state = 0;
318 
319 	/*
320 	 * Shared state setup happens once on the first bringup
321 	 * of the CPU. It's not destroyed on CPU hotunplug.
322 	 */
323 	if (st->shared_state)
324 		return;
325 
326 	raw_spin_lock_init(&st->lock);
327 
328 	/*
329 	 * Go over HT siblings and check whether one of them has set up the
330 	 * shared state pointer already.
331 	 */
332 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
333 		if (cpu == this_cpu)
334 			continue;
335 
336 		if (!per_cpu(ssb_state, cpu).shared_state)
337 			continue;
338 
339 		/* Link it to the state of the sibling: */
340 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
341 		return;
342 	}
343 
344 	/*
345 	 * First HT sibling to come up on the core.  Link shared state of
346 	 * the first HT sibling to itself. The siblings on the same core
347 	 * which come up later will see the shared state pointer and link
348 	 * themself to the state of this CPU.
349 	 */
350 	st->shared_state = st;
351 }
352 
353 /*
354  * Logic is: First HT sibling enables SSBD for both siblings in the core
355  * and last sibling to disable it, disables it for the whole core. This how
356  * MSR_SPEC_CTRL works in "hardware":
357  *
358  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
359  */
amd_set_core_ssb_state(unsigned long tifn)360 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
361 {
362 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
363 	u64 msr = x86_amd_ls_cfg_base;
364 
365 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
366 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
367 		wrmsrl(MSR_AMD64_LS_CFG, msr);
368 		return;
369 	}
370 
371 	if (tifn & _TIF_SSBD) {
372 		/*
373 		 * Since this can race with prctl(), block reentry on the
374 		 * same CPU.
375 		 */
376 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
377 			return;
378 
379 		msr |= x86_amd_ls_cfg_ssbd_mask;
380 
381 		raw_spin_lock(&st->shared_state->lock);
382 		/* First sibling enables SSBD: */
383 		if (!st->shared_state->disable_state)
384 			wrmsrl(MSR_AMD64_LS_CFG, msr);
385 		st->shared_state->disable_state++;
386 		raw_spin_unlock(&st->shared_state->lock);
387 	} else {
388 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
389 			return;
390 
391 		raw_spin_lock(&st->shared_state->lock);
392 		st->shared_state->disable_state--;
393 		if (!st->shared_state->disable_state)
394 			wrmsrl(MSR_AMD64_LS_CFG, msr);
395 		raw_spin_unlock(&st->shared_state->lock);
396 	}
397 }
398 #else
amd_set_core_ssb_state(unsigned long tifn)399 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
400 {
401 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
402 
403 	wrmsrl(MSR_AMD64_LS_CFG, msr);
404 }
405 #endif
406 
amd_set_ssb_virt_state(unsigned long tifn)407 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
408 {
409 	/*
410 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
411 	 * so ssbd_tif_to_spec_ctrl() just works.
412 	 */
413 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
414 }
415 
416 /*
417  * Update the MSRs managing speculation control, during context switch.
418  *
419  * tifp: Previous task's thread flags
420  * tifn: Next task's thread flags
421  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)422 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
423 						      unsigned long tifn)
424 {
425 	unsigned long tif_diff = tifp ^ tifn;
426 	u64 msr = x86_spec_ctrl_base;
427 	bool updmsr = false;
428 
429 	lockdep_assert_irqs_disabled();
430 
431 	/*
432 	 * If TIF_SSBD is different, select the proper mitigation
433 	 * method. Note that if SSBD mitigation is disabled or permanentely
434 	 * enabled this branch can't be taken because nothing can set
435 	 * TIF_SSBD.
436 	 */
437 	if (tif_diff & _TIF_SSBD) {
438 		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
439 			amd_set_ssb_virt_state(tifn);
440 		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
441 			amd_set_core_ssb_state(tifn);
442 		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
443 			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
444 			msr |= ssbd_tif_to_spec_ctrl(tifn);
445 			updmsr  = true;
446 		}
447 	}
448 
449 	/*
450 	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
451 	 * otherwise avoid the MSR write.
452 	 */
453 	if (IS_ENABLED(CONFIG_SMP) &&
454 	    static_branch_unlikely(&switch_to_cond_stibp)) {
455 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
456 		msr |= stibp_tif_to_spec_ctrl(tifn);
457 	}
458 
459 	if (updmsr)
460 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
461 }
462 
speculation_ctrl_update_tif(struct task_struct * tsk)463 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
464 {
465 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
466 		if (task_spec_ssb_disable(tsk))
467 			set_tsk_thread_flag(tsk, TIF_SSBD);
468 		else
469 			clear_tsk_thread_flag(tsk, TIF_SSBD);
470 
471 		if (task_spec_ib_disable(tsk))
472 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
473 		else
474 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
475 	}
476 	/* Return the updated threadinfo flags*/
477 	return task_thread_info(tsk)->flags;
478 }
479 
speculation_ctrl_update(unsigned long tif)480 void speculation_ctrl_update(unsigned long tif)
481 {
482 	unsigned long flags;
483 
484 	/* Forced update. Make sure all relevant TIF flags are different */
485 	local_irq_save(flags);
486 	__speculation_ctrl_update(~tif, tif);
487 	local_irq_restore(flags);
488 }
489 
490 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)491 void speculation_ctrl_update_current(void)
492 {
493 	preempt_disable();
494 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
495 	preempt_enable();
496 }
497 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)498 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
499 {
500 	struct thread_struct *prev, *next;
501 	unsigned long tifp, tifn;
502 
503 	prev = &prev_p->thread;
504 	next = &next_p->thread;
505 
506 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
507 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
508 	switch_to_bitmap(prev, next, tifp, tifn);
509 
510 	propagate_user_return_notify(prev_p, next_p);
511 
512 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
513 	    arch_has_block_step()) {
514 		unsigned long debugctl, msk;
515 
516 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
517 		debugctl &= ~DEBUGCTLMSR_BTF;
518 		msk = tifn & _TIF_BLOCKSTEP;
519 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
520 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
521 	}
522 
523 	if ((tifp ^ tifn) & _TIF_NOTSC)
524 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
525 
526 	if ((tifp ^ tifn) & _TIF_NOCPUID)
527 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
528 
529 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
530 		__speculation_ctrl_update(tifp, tifn);
531 	} else {
532 		speculation_ctrl_update_tif(prev_p);
533 		tifn = speculation_ctrl_update_tif(next_p);
534 
535 		/* Enforce MSR update to ensure consistent state */
536 		__speculation_ctrl_update(~tifn, tifn);
537 	}
538 }
539 
540 /*
541  * Idle related variables and functions
542  */
543 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
544 EXPORT_SYMBOL(boot_option_idle_override);
545 
546 static void (*x86_idle)(void);
547 
548 #ifndef CONFIG_SMP
play_dead(void)549 static inline void play_dead(void)
550 {
551 	BUG();
552 }
553 #endif
554 
arch_cpu_idle_enter(void)555 void arch_cpu_idle_enter(void)
556 {
557 	tsc_verify_tsc_adjust(false);
558 	local_touch_nmi();
559 }
560 
arch_cpu_idle_dead(void)561 void arch_cpu_idle_dead(void)
562 {
563 	play_dead();
564 }
565 
566 /*
567  * Called from the generic idle code.
568  */
arch_cpu_idle(void)569 void arch_cpu_idle(void)
570 {
571 	x86_idle();
572 }
573 
574 /*
575  * We use this if we don't have any better idle routine..
576  */
default_idle(void)577 void __cpuidle default_idle(void)
578 {
579 	trace_cpu_idle_rcuidle(1, smp_processor_id());
580 	safe_halt();
581 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
582 }
583 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
584 EXPORT_SYMBOL(default_idle);
585 #endif
586 
587 #ifdef CONFIG_XEN
xen_set_default_idle(void)588 bool xen_set_default_idle(void)
589 {
590 	bool ret = !!x86_idle;
591 
592 	x86_idle = default_idle;
593 
594 	return ret;
595 }
596 #endif
597 
stop_this_cpu(void * dummy)598 void stop_this_cpu(void *dummy)
599 {
600 	local_irq_disable();
601 	/*
602 	 * Remove this CPU:
603 	 */
604 	set_cpu_online(smp_processor_id(), false);
605 	disable_local_APIC();
606 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
607 
608 	/*
609 	 * Use wbinvd on processors that support SME. This provides support
610 	 * for performing a successful kexec when going from SME inactive
611 	 * to SME active (or vice-versa). The cache must be cleared so that
612 	 * if there are entries with the same physical address, both with and
613 	 * without the encryption bit, they don't race each other when flushed
614 	 * and potentially end up with the wrong entry being committed to
615 	 * memory.
616 	 */
617 	if (boot_cpu_has(X86_FEATURE_SME))
618 		native_wbinvd();
619 	for (;;) {
620 		/*
621 		 * Use native_halt() so that memory contents don't change
622 		 * (stack usage and variables) after possibly issuing the
623 		 * native_wbinvd() above.
624 		 */
625 		native_halt();
626 	}
627 }
628 
629 /*
630  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
631  * states (local apic timer and TSC stop).
632  */
amd_e400_idle(void)633 static void amd_e400_idle(void)
634 {
635 	/*
636 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
637 	 * gets set after static_cpu_has() places have been converted via
638 	 * alternatives.
639 	 */
640 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
641 		default_idle();
642 		return;
643 	}
644 
645 	tick_broadcast_enter();
646 
647 	default_idle();
648 
649 	/*
650 	 * The switch back from broadcast mode needs to be called with
651 	 * interrupts disabled.
652 	 */
653 	local_irq_disable();
654 	tick_broadcast_exit();
655 	local_irq_enable();
656 }
657 
658 /*
659  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
660  * We can't rely on cpuidle installing MWAIT, because it will not load
661  * on systems that support only C1 -- so the boot default must be MWAIT.
662  *
663  * Some AMD machines are the opposite, they depend on using HALT.
664  *
665  * So for default C1, which is used during boot until cpuidle loads,
666  * use MWAIT-C1 on Intel HW that has it, else use HALT.
667  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)668 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
669 {
670 	if (c->x86_vendor != X86_VENDOR_INTEL)
671 		return 0;
672 
673 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
674 		return 0;
675 
676 	return 1;
677 }
678 
679 /*
680  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
681  * with interrupts enabled and no flags, which is backwards compatible with the
682  * original MWAIT implementation.
683  */
mwait_idle(void)684 static __cpuidle void mwait_idle(void)
685 {
686 	if (!current_set_polling_and_test()) {
687 		trace_cpu_idle_rcuidle(1, smp_processor_id());
688 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
689 			mb(); /* quirk */
690 			clflush((void *)&current_thread_info()->flags);
691 			mb(); /* quirk */
692 		}
693 
694 		__monitor((void *)&current_thread_info()->flags, 0, 0);
695 		if (!need_resched())
696 			__sti_mwait(0, 0);
697 		else
698 			local_irq_enable();
699 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
700 	} else {
701 		local_irq_enable();
702 	}
703 	__current_clr_polling();
704 }
705 
select_idle_routine(const struct cpuinfo_x86 * c)706 void select_idle_routine(const struct cpuinfo_x86 *c)
707 {
708 #ifdef CONFIG_SMP
709 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
710 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
711 #endif
712 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
713 		return;
714 
715 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
716 		pr_info("using AMD E400 aware idle routine\n");
717 		x86_idle = amd_e400_idle;
718 	} else if (prefer_mwait_c1_over_halt(c)) {
719 		pr_info("using mwait in idle threads\n");
720 		x86_idle = mwait_idle;
721 	} else
722 		x86_idle = default_idle;
723 }
724 
amd_e400_c1e_apic_setup(void)725 void amd_e400_c1e_apic_setup(void)
726 {
727 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
728 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
729 		local_irq_disable();
730 		tick_broadcast_force();
731 		local_irq_enable();
732 	}
733 }
734 
arch_post_acpi_subsys_init(void)735 void __init arch_post_acpi_subsys_init(void)
736 {
737 	u32 lo, hi;
738 
739 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
740 		return;
741 
742 	/*
743 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
744 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
745 	 * MSR_K8_INT_PENDING_MSG.
746 	 */
747 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
748 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
749 		return;
750 
751 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
752 
753 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
754 		mark_tsc_unstable("TSC halt in AMD C1E");
755 	pr_info("System has AMD C1E enabled\n");
756 }
757 
idle_setup(char * str)758 static int __init idle_setup(char *str)
759 {
760 	if (!str)
761 		return -EINVAL;
762 
763 	if (!strcmp(str, "poll")) {
764 		pr_info("using polling idle threads\n");
765 		boot_option_idle_override = IDLE_POLL;
766 		cpu_idle_poll_ctrl(true);
767 	} else if (!strcmp(str, "halt")) {
768 		/*
769 		 * When the boot option of idle=halt is added, halt is
770 		 * forced to be used for CPU idle. In such case CPU C2/C3
771 		 * won't be used again.
772 		 * To continue to load the CPU idle driver, don't touch
773 		 * the boot_option_idle_override.
774 		 */
775 		x86_idle = default_idle;
776 		boot_option_idle_override = IDLE_HALT;
777 	} else if (!strcmp(str, "nomwait")) {
778 		/*
779 		 * If the boot option of "idle=nomwait" is added,
780 		 * it means that mwait will be disabled for CPU C2/C3
781 		 * states. In such case it won't touch the variable
782 		 * of boot_option_idle_override.
783 		 */
784 		boot_option_idle_override = IDLE_NOMWAIT;
785 	} else
786 		return -1;
787 
788 	return 0;
789 }
790 early_param("idle", idle_setup);
791 
arch_align_stack(unsigned long sp)792 unsigned long arch_align_stack(unsigned long sp)
793 {
794 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
795 		sp -= get_random_int() % 8192;
796 	return sp & ~0xf;
797 }
798 
arch_randomize_brk(struct mm_struct * mm)799 unsigned long arch_randomize_brk(struct mm_struct *mm)
800 {
801 	return randomize_page(mm->brk, 0x02000000);
802 }
803 
804 /*
805  * Called from fs/proc with a reference on @p to find the function
806  * which called into schedule(). This needs to be done carefully
807  * because the task might wake up and we might look at a stack
808  * changing under us.
809  */
get_wchan(struct task_struct * p)810 unsigned long get_wchan(struct task_struct *p)
811 {
812 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
813 	int count = 0;
814 
815 	if (p == current || p->state == TASK_RUNNING)
816 		return 0;
817 
818 	if (!try_get_task_stack(p))
819 		return 0;
820 
821 	start = (unsigned long)task_stack_page(p);
822 	if (!start)
823 		goto out;
824 
825 	/*
826 	 * Layout of the stack page:
827 	 *
828 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
829 	 * PADDING
830 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
831 	 * stack
832 	 * ----------- bottom = start
833 	 *
834 	 * The tasks stack pointer points at the location where the
835 	 * framepointer is stored. The data on the stack is:
836 	 * ... IP FP ... IP FP
837 	 *
838 	 * We need to read FP and IP, so we need to adjust the upper
839 	 * bound by another unsigned long.
840 	 */
841 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
842 	top -= 2 * sizeof(unsigned long);
843 	bottom = start;
844 
845 	sp = READ_ONCE(p->thread.sp);
846 	if (sp < bottom || sp > top)
847 		goto out;
848 
849 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
850 	do {
851 		if (fp < bottom || fp > top)
852 			goto out;
853 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
854 		if (!in_sched_functions(ip)) {
855 			ret = ip;
856 			goto out;
857 		}
858 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
859 	} while (count++ < 16 && p->state != TASK_RUNNING);
860 
861 out:
862 	put_task_stack(p);
863 	return ret;
864 }
865 
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)866 long do_arch_prctl_common(struct task_struct *task, int option,
867 			  unsigned long cpuid_enabled)
868 {
869 	switch (option) {
870 	case ARCH_GET_CPUID:
871 		return get_cpuid_mode();
872 	case ARCH_SET_CPUID:
873 		return set_cpuid_mode(task, cpuid_enabled);
874 	}
875 
876 	return -EINVAL;
877 }
878