1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SPU file system -- file contents
4 *
5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 *
7 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 */
9
10 #undef DEBUG
11
12 #include <linux/fs.h>
13 #include <linux/ioctl.h>
14 #include <linux/export.h>
15 #include <linux/pagemap.h>
16 #include <linux/poll.h>
17 #include <linux/ptrace.h>
18 #include <linux/seq_file.h>
19 #include <linux/slab.h>
20
21 #include <asm/io.h>
22 #include <asm/time.h>
23 #include <asm/spu.h>
24 #include <asm/spu_info.h>
25 #include <linux/uaccess.h>
26
27 #include "spufs.h"
28 #include "sputrace.h"
29
30 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
31
32 /* Simple attribute files */
33 struct spufs_attr {
34 int (*get)(void *, u64 *);
35 int (*set)(void *, u64);
36 char get_buf[24]; /* enough to store a u64 and "\n\0" */
37 char set_buf[24];
38 void *data;
39 const char *fmt; /* format for read operation */
40 struct mutex mutex; /* protects access to these buffers */
41 };
42
spufs_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)43 static int spufs_attr_open(struct inode *inode, struct file *file,
44 int (*get)(void *, u64 *), int (*set)(void *, u64),
45 const char *fmt)
46 {
47 struct spufs_attr *attr;
48
49 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
50 if (!attr)
51 return -ENOMEM;
52
53 attr->get = get;
54 attr->set = set;
55 attr->data = inode->i_private;
56 attr->fmt = fmt;
57 mutex_init(&attr->mutex);
58 file->private_data = attr;
59
60 return nonseekable_open(inode, file);
61 }
62
spufs_attr_release(struct inode * inode,struct file * file)63 static int spufs_attr_release(struct inode *inode, struct file *file)
64 {
65 kfree(file->private_data);
66 return 0;
67 }
68
spufs_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)69 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
70 size_t len, loff_t *ppos)
71 {
72 struct spufs_attr *attr;
73 size_t size;
74 ssize_t ret;
75
76 attr = file->private_data;
77 if (!attr->get)
78 return -EACCES;
79
80 ret = mutex_lock_interruptible(&attr->mutex);
81 if (ret)
82 return ret;
83
84 if (*ppos) { /* continued read */
85 size = strlen(attr->get_buf);
86 } else { /* first read */
87 u64 val;
88 ret = attr->get(attr->data, &val);
89 if (ret)
90 goto out;
91
92 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
93 attr->fmt, (unsigned long long)val);
94 }
95
96 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
97 out:
98 mutex_unlock(&attr->mutex);
99 return ret;
100 }
101
spufs_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)102 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
103 size_t len, loff_t *ppos)
104 {
105 struct spufs_attr *attr;
106 u64 val;
107 size_t size;
108 ssize_t ret;
109
110 attr = file->private_data;
111 if (!attr->set)
112 return -EACCES;
113
114 ret = mutex_lock_interruptible(&attr->mutex);
115 if (ret)
116 return ret;
117
118 ret = -EFAULT;
119 size = min(sizeof(attr->set_buf) - 1, len);
120 if (copy_from_user(attr->set_buf, buf, size))
121 goto out;
122
123 ret = len; /* claim we got the whole input */
124 attr->set_buf[size] = '\0';
125 val = simple_strtol(attr->set_buf, NULL, 0);
126 attr->set(attr->data, val);
127 out:
128 mutex_unlock(&attr->mutex);
129 return ret;
130 }
131
132 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
133 static int __fops ## _open(struct inode *inode, struct file *file) \
134 { \
135 __simple_attr_check_format(__fmt, 0ull); \
136 return spufs_attr_open(inode, file, __get, __set, __fmt); \
137 } \
138 static const struct file_operations __fops = { \
139 .open = __fops ## _open, \
140 .release = spufs_attr_release, \
141 .read = spufs_attr_read, \
142 .write = spufs_attr_write, \
143 .llseek = generic_file_llseek, \
144 };
145
146
147 static int
spufs_mem_open(struct inode * inode,struct file * file)148 spufs_mem_open(struct inode *inode, struct file *file)
149 {
150 struct spufs_inode_info *i = SPUFS_I(inode);
151 struct spu_context *ctx = i->i_ctx;
152
153 mutex_lock(&ctx->mapping_lock);
154 file->private_data = ctx;
155 if (!i->i_openers++)
156 ctx->local_store = inode->i_mapping;
157 mutex_unlock(&ctx->mapping_lock);
158 return 0;
159 }
160
161 static int
spufs_mem_release(struct inode * inode,struct file * file)162 spufs_mem_release(struct inode *inode, struct file *file)
163 {
164 struct spufs_inode_info *i = SPUFS_I(inode);
165 struct spu_context *ctx = i->i_ctx;
166
167 mutex_lock(&ctx->mapping_lock);
168 if (!--i->i_openers)
169 ctx->local_store = NULL;
170 mutex_unlock(&ctx->mapping_lock);
171 return 0;
172 }
173
174 static ssize_t
__spufs_mem_read(struct spu_context * ctx,char __user * buffer,size_t size,loff_t * pos)175 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
176 size_t size, loff_t *pos)
177 {
178 char *local_store = ctx->ops->get_ls(ctx);
179 return simple_read_from_buffer(buffer, size, pos, local_store,
180 LS_SIZE);
181 }
182
183 static ssize_t
spufs_mem_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)184 spufs_mem_read(struct file *file, char __user *buffer,
185 size_t size, loff_t *pos)
186 {
187 struct spu_context *ctx = file->private_data;
188 ssize_t ret;
189
190 ret = spu_acquire(ctx);
191 if (ret)
192 return ret;
193 ret = __spufs_mem_read(ctx, buffer, size, pos);
194 spu_release(ctx);
195
196 return ret;
197 }
198
199 static ssize_t
spufs_mem_write(struct file * file,const char __user * buffer,size_t size,loff_t * ppos)200 spufs_mem_write(struct file *file, const char __user *buffer,
201 size_t size, loff_t *ppos)
202 {
203 struct spu_context *ctx = file->private_data;
204 char *local_store;
205 loff_t pos = *ppos;
206 int ret;
207
208 if (pos > LS_SIZE)
209 return -EFBIG;
210
211 ret = spu_acquire(ctx);
212 if (ret)
213 return ret;
214
215 local_store = ctx->ops->get_ls(ctx);
216 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
217 spu_release(ctx);
218
219 return size;
220 }
221
222 static vm_fault_t
spufs_mem_mmap_fault(struct vm_fault * vmf)223 spufs_mem_mmap_fault(struct vm_fault *vmf)
224 {
225 struct vm_area_struct *vma = vmf->vma;
226 struct spu_context *ctx = vma->vm_file->private_data;
227 unsigned long pfn, offset;
228 vm_fault_t ret;
229
230 offset = vmf->pgoff << PAGE_SHIFT;
231 if (offset >= LS_SIZE)
232 return VM_FAULT_SIGBUS;
233
234 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
235 vmf->address, offset);
236
237 if (spu_acquire(ctx))
238 return VM_FAULT_NOPAGE;
239
240 if (ctx->state == SPU_STATE_SAVED) {
241 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
242 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
243 } else {
244 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
245 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
246 }
247 ret = vmf_insert_pfn(vma, vmf->address, pfn);
248
249 spu_release(ctx);
250
251 return ret;
252 }
253
spufs_mem_mmap_access(struct vm_area_struct * vma,unsigned long address,void * buf,int len,int write)254 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
255 unsigned long address,
256 void *buf, int len, int write)
257 {
258 struct spu_context *ctx = vma->vm_file->private_data;
259 unsigned long offset = address - vma->vm_start;
260 char *local_store;
261
262 if (write && !(vma->vm_flags & VM_WRITE))
263 return -EACCES;
264 if (spu_acquire(ctx))
265 return -EINTR;
266 if ((offset + len) > vma->vm_end)
267 len = vma->vm_end - offset;
268 local_store = ctx->ops->get_ls(ctx);
269 if (write)
270 memcpy_toio(local_store + offset, buf, len);
271 else
272 memcpy_fromio(buf, local_store + offset, len);
273 spu_release(ctx);
274 return len;
275 }
276
277 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
278 .fault = spufs_mem_mmap_fault,
279 .access = spufs_mem_mmap_access,
280 };
281
spufs_mem_mmap(struct file * file,struct vm_area_struct * vma)282 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
283 {
284 if (!(vma->vm_flags & VM_SHARED))
285 return -EINVAL;
286
287 vma->vm_flags |= VM_IO | VM_PFNMAP;
288 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
289
290 vma->vm_ops = &spufs_mem_mmap_vmops;
291 return 0;
292 }
293
294 static const struct file_operations spufs_mem_fops = {
295 .open = spufs_mem_open,
296 .release = spufs_mem_release,
297 .read = spufs_mem_read,
298 .write = spufs_mem_write,
299 .llseek = generic_file_llseek,
300 .mmap = spufs_mem_mmap,
301 };
302
spufs_ps_fault(struct vm_fault * vmf,unsigned long ps_offs,unsigned long ps_size)303 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
304 unsigned long ps_offs,
305 unsigned long ps_size)
306 {
307 struct spu_context *ctx = vmf->vma->vm_file->private_data;
308 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
309 int err = 0;
310 vm_fault_t ret = VM_FAULT_NOPAGE;
311
312 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
313
314 if (offset >= ps_size)
315 return VM_FAULT_SIGBUS;
316
317 if (fatal_signal_pending(current))
318 return VM_FAULT_SIGBUS;
319
320 /*
321 * Because we release the mmap_sem, the context may be destroyed while
322 * we're in spu_wait. Grab an extra reference so it isn't destroyed
323 * in the meantime.
324 */
325 get_spu_context(ctx);
326
327 /*
328 * We have to wait for context to be loaded before we have
329 * pages to hand out to the user, but we don't want to wait
330 * with the mmap_sem held.
331 * It is possible to drop the mmap_sem here, but then we need
332 * to return VM_FAULT_NOPAGE because the mappings may have
333 * hanged.
334 */
335 if (spu_acquire(ctx))
336 goto refault;
337
338 if (ctx->state == SPU_STATE_SAVED) {
339 up_read(¤t->mm->mmap_sem);
340 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
341 err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
342 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
343 down_read(¤t->mm->mmap_sem);
344 } else {
345 area = ctx->spu->problem_phys + ps_offs;
346 ret = vmf_insert_pfn(vmf->vma, vmf->address,
347 (area + offset) >> PAGE_SHIFT);
348 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
349 }
350
351 if (!err)
352 spu_release(ctx);
353
354 refault:
355 put_spu_context(ctx);
356 return ret;
357 }
358
359 #if SPUFS_MMAP_4K
spufs_cntl_mmap_fault(struct vm_fault * vmf)360 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
361 {
362 return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
363 }
364
365 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
366 .fault = spufs_cntl_mmap_fault,
367 };
368
369 /*
370 * mmap support for problem state control area [0x4000 - 0x4fff].
371 */
spufs_cntl_mmap(struct file * file,struct vm_area_struct * vma)372 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
373 {
374 if (!(vma->vm_flags & VM_SHARED))
375 return -EINVAL;
376
377 vma->vm_flags |= VM_IO | VM_PFNMAP;
378 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
379
380 vma->vm_ops = &spufs_cntl_mmap_vmops;
381 return 0;
382 }
383 #else /* SPUFS_MMAP_4K */
384 #define spufs_cntl_mmap NULL
385 #endif /* !SPUFS_MMAP_4K */
386
spufs_cntl_get(void * data,u64 * val)387 static int spufs_cntl_get(void *data, u64 *val)
388 {
389 struct spu_context *ctx = data;
390 int ret;
391
392 ret = spu_acquire(ctx);
393 if (ret)
394 return ret;
395 *val = ctx->ops->status_read(ctx);
396 spu_release(ctx);
397
398 return 0;
399 }
400
spufs_cntl_set(void * data,u64 val)401 static int spufs_cntl_set(void *data, u64 val)
402 {
403 struct spu_context *ctx = data;
404 int ret;
405
406 ret = spu_acquire(ctx);
407 if (ret)
408 return ret;
409 ctx->ops->runcntl_write(ctx, val);
410 spu_release(ctx);
411
412 return 0;
413 }
414
spufs_cntl_open(struct inode * inode,struct file * file)415 static int spufs_cntl_open(struct inode *inode, struct file *file)
416 {
417 struct spufs_inode_info *i = SPUFS_I(inode);
418 struct spu_context *ctx = i->i_ctx;
419
420 mutex_lock(&ctx->mapping_lock);
421 file->private_data = ctx;
422 if (!i->i_openers++)
423 ctx->cntl = inode->i_mapping;
424 mutex_unlock(&ctx->mapping_lock);
425 return simple_attr_open(inode, file, spufs_cntl_get,
426 spufs_cntl_set, "0x%08lx");
427 }
428
429 static int
spufs_cntl_release(struct inode * inode,struct file * file)430 spufs_cntl_release(struct inode *inode, struct file *file)
431 {
432 struct spufs_inode_info *i = SPUFS_I(inode);
433 struct spu_context *ctx = i->i_ctx;
434
435 simple_attr_release(inode, file);
436
437 mutex_lock(&ctx->mapping_lock);
438 if (!--i->i_openers)
439 ctx->cntl = NULL;
440 mutex_unlock(&ctx->mapping_lock);
441 return 0;
442 }
443
444 static const struct file_operations spufs_cntl_fops = {
445 .open = spufs_cntl_open,
446 .release = spufs_cntl_release,
447 .read = simple_attr_read,
448 .write = simple_attr_write,
449 .llseek = no_llseek,
450 .mmap = spufs_cntl_mmap,
451 };
452
453 static int
spufs_regs_open(struct inode * inode,struct file * file)454 spufs_regs_open(struct inode *inode, struct file *file)
455 {
456 struct spufs_inode_info *i = SPUFS_I(inode);
457 file->private_data = i->i_ctx;
458 return 0;
459 }
460
461 static ssize_t
__spufs_regs_read(struct spu_context * ctx,char __user * buffer,size_t size,loff_t * pos)462 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
463 size_t size, loff_t *pos)
464 {
465 struct spu_lscsa *lscsa = ctx->csa.lscsa;
466 return simple_read_from_buffer(buffer, size, pos,
467 lscsa->gprs, sizeof lscsa->gprs);
468 }
469
470 static ssize_t
spufs_regs_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)471 spufs_regs_read(struct file *file, char __user *buffer,
472 size_t size, loff_t *pos)
473 {
474 int ret;
475 struct spu_context *ctx = file->private_data;
476
477 /* pre-check for file position: if we'd return EOF, there's no point
478 * causing a deschedule */
479 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
480 return 0;
481
482 ret = spu_acquire_saved(ctx);
483 if (ret)
484 return ret;
485 ret = __spufs_regs_read(ctx, buffer, size, pos);
486 spu_release_saved(ctx);
487 return ret;
488 }
489
490 static ssize_t
spufs_regs_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)491 spufs_regs_write(struct file *file, const char __user *buffer,
492 size_t size, loff_t *pos)
493 {
494 struct spu_context *ctx = file->private_data;
495 struct spu_lscsa *lscsa = ctx->csa.lscsa;
496 int ret;
497
498 if (*pos >= sizeof(lscsa->gprs))
499 return -EFBIG;
500
501 ret = spu_acquire_saved(ctx);
502 if (ret)
503 return ret;
504
505 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
506 buffer, size);
507
508 spu_release_saved(ctx);
509 return size;
510 }
511
512 static const struct file_operations spufs_regs_fops = {
513 .open = spufs_regs_open,
514 .read = spufs_regs_read,
515 .write = spufs_regs_write,
516 .llseek = generic_file_llseek,
517 };
518
519 static ssize_t
__spufs_fpcr_read(struct spu_context * ctx,char __user * buffer,size_t size,loff_t * pos)520 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
521 size_t size, loff_t * pos)
522 {
523 struct spu_lscsa *lscsa = ctx->csa.lscsa;
524 return simple_read_from_buffer(buffer, size, pos,
525 &lscsa->fpcr, sizeof(lscsa->fpcr));
526 }
527
528 static ssize_t
spufs_fpcr_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)529 spufs_fpcr_read(struct file *file, char __user * buffer,
530 size_t size, loff_t * pos)
531 {
532 int ret;
533 struct spu_context *ctx = file->private_data;
534
535 ret = spu_acquire_saved(ctx);
536 if (ret)
537 return ret;
538 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
539 spu_release_saved(ctx);
540 return ret;
541 }
542
543 static ssize_t
spufs_fpcr_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)544 spufs_fpcr_write(struct file *file, const char __user * buffer,
545 size_t size, loff_t * pos)
546 {
547 struct spu_context *ctx = file->private_data;
548 struct spu_lscsa *lscsa = ctx->csa.lscsa;
549 int ret;
550
551 if (*pos >= sizeof(lscsa->fpcr))
552 return -EFBIG;
553
554 ret = spu_acquire_saved(ctx);
555 if (ret)
556 return ret;
557
558 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
559 buffer, size);
560
561 spu_release_saved(ctx);
562 return size;
563 }
564
565 static const struct file_operations spufs_fpcr_fops = {
566 .open = spufs_regs_open,
567 .read = spufs_fpcr_read,
568 .write = spufs_fpcr_write,
569 .llseek = generic_file_llseek,
570 };
571
572 /* generic open function for all pipe-like files */
spufs_pipe_open(struct inode * inode,struct file * file)573 static int spufs_pipe_open(struct inode *inode, struct file *file)
574 {
575 struct spufs_inode_info *i = SPUFS_I(inode);
576 file->private_data = i->i_ctx;
577
578 return stream_open(inode, file);
579 }
580
581 /*
582 * Read as many bytes from the mailbox as possible, until
583 * one of the conditions becomes true:
584 *
585 * - no more data available in the mailbox
586 * - end of the user provided buffer
587 * - end of the mapped area
588 */
spufs_mbox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)589 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
590 size_t len, loff_t *pos)
591 {
592 struct spu_context *ctx = file->private_data;
593 u32 mbox_data, __user *udata;
594 ssize_t count;
595
596 if (len < 4)
597 return -EINVAL;
598
599 if (!access_ok(buf, len))
600 return -EFAULT;
601
602 udata = (void __user *)buf;
603
604 count = spu_acquire(ctx);
605 if (count)
606 return count;
607
608 for (count = 0; (count + 4) <= len; count += 4, udata++) {
609 int ret;
610 ret = ctx->ops->mbox_read(ctx, &mbox_data);
611 if (ret == 0)
612 break;
613
614 /*
615 * at the end of the mapped area, we can fault
616 * but still need to return the data we have
617 * read successfully so far.
618 */
619 ret = __put_user(mbox_data, udata);
620 if (ret) {
621 if (!count)
622 count = -EFAULT;
623 break;
624 }
625 }
626 spu_release(ctx);
627
628 if (!count)
629 count = -EAGAIN;
630
631 return count;
632 }
633
634 static const struct file_operations spufs_mbox_fops = {
635 .open = spufs_pipe_open,
636 .read = spufs_mbox_read,
637 .llseek = no_llseek,
638 };
639
spufs_mbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)640 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
641 size_t len, loff_t *pos)
642 {
643 struct spu_context *ctx = file->private_data;
644 ssize_t ret;
645 u32 mbox_stat;
646
647 if (len < 4)
648 return -EINVAL;
649
650 ret = spu_acquire(ctx);
651 if (ret)
652 return ret;
653
654 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
655
656 spu_release(ctx);
657
658 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
659 return -EFAULT;
660
661 return 4;
662 }
663
664 static const struct file_operations spufs_mbox_stat_fops = {
665 .open = spufs_pipe_open,
666 .read = spufs_mbox_stat_read,
667 .llseek = no_llseek,
668 };
669
670 /* low-level ibox access function */
spu_ibox_read(struct spu_context * ctx,u32 * data)671 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
672 {
673 return ctx->ops->ibox_read(ctx, data);
674 }
675
676 /* interrupt-level ibox callback function. */
spufs_ibox_callback(struct spu * spu)677 void spufs_ibox_callback(struct spu *spu)
678 {
679 struct spu_context *ctx = spu->ctx;
680
681 if (ctx)
682 wake_up_all(&ctx->ibox_wq);
683 }
684
685 /*
686 * Read as many bytes from the interrupt mailbox as possible, until
687 * one of the conditions becomes true:
688 *
689 * - no more data available in the mailbox
690 * - end of the user provided buffer
691 * - end of the mapped area
692 *
693 * If the file is opened without O_NONBLOCK, we wait here until
694 * any data is available, but return when we have been able to
695 * read something.
696 */
spufs_ibox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)697 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
698 size_t len, loff_t *pos)
699 {
700 struct spu_context *ctx = file->private_data;
701 u32 ibox_data, __user *udata;
702 ssize_t count;
703
704 if (len < 4)
705 return -EINVAL;
706
707 if (!access_ok(buf, len))
708 return -EFAULT;
709
710 udata = (void __user *)buf;
711
712 count = spu_acquire(ctx);
713 if (count)
714 goto out;
715
716 /* wait only for the first element */
717 count = 0;
718 if (file->f_flags & O_NONBLOCK) {
719 if (!spu_ibox_read(ctx, &ibox_data)) {
720 count = -EAGAIN;
721 goto out_unlock;
722 }
723 } else {
724 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
725 if (count)
726 goto out;
727 }
728
729 /* if we can't write at all, return -EFAULT */
730 count = __put_user(ibox_data, udata);
731 if (count)
732 goto out_unlock;
733
734 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
735 int ret;
736 ret = ctx->ops->ibox_read(ctx, &ibox_data);
737 if (ret == 0)
738 break;
739 /*
740 * at the end of the mapped area, we can fault
741 * but still need to return the data we have
742 * read successfully so far.
743 */
744 ret = __put_user(ibox_data, udata);
745 if (ret)
746 break;
747 }
748
749 out_unlock:
750 spu_release(ctx);
751 out:
752 return count;
753 }
754
spufs_ibox_poll(struct file * file,poll_table * wait)755 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
756 {
757 struct spu_context *ctx = file->private_data;
758 __poll_t mask;
759
760 poll_wait(file, &ctx->ibox_wq, wait);
761
762 /*
763 * For now keep this uninterruptible and also ignore the rule
764 * that poll should not sleep. Will be fixed later.
765 */
766 mutex_lock(&ctx->state_mutex);
767 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
768 spu_release(ctx);
769
770 return mask;
771 }
772
773 static const struct file_operations spufs_ibox_fops = {
774 .open = spufs_pipe_open,
775 .read = spufs_ibox_read,
776 .poll = spufs_ibox_poll,
777 .llseek = no_llseek,
778 };
779
spufs_ibox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)780 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
781 size_t len, loff_t *pos)
782 {
783 struct spu_context *ctx = file->private_data;
784 ssize_t ret;
785 u32 ibox_stat;
786
787 if (len < 4)
788 return -EINVAL;
789
790 ret = spu_acquire(ctx);
791 if (ret)
792 return ret;
793 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
794 spu_release(ctx);
795
796 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
797 return -EFAULT;
798
799 return 4;
800 }
801
802 static const struct file_operations spufs_ibox_stat_fops = {
803 .open = spufs_pipe_open,
804 .read = spufs_ibox_stat_read,
805 .llseek = no_llseek,
806 };
807
808 /* low-level mailbox write */
spu_wbox_write(struct spu_context * ctx,u32 data)809 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
810 {
811 return ctx->ops->wbox_write(ctx, data);
812 }
813
814 /* interrupt-level wbox callback function. */
spufs_wbox_callback(struct spu * spu)815 void spufs_wbox_callback(struct spu *spu)
816 {
817 struct spu_context *ctx = spu->ctx;
818
819 if (ctx)
820 wake_up_all(&ctx->wbox_wq);
821 }
822
823 /*
824 * Write as many bytes to the interrupt mailbox as possible, until
825 * one of the conditions becomes true:
826 *
827 * - the mailbox is full
828 * - end of the user provided buffer
829 * - end of the mapped area
830 *
831 * If the file is opened without O_NONBLOCK, we wait here until
832 * space is available, but return when we have been able to
833 * write something.
834 */
spufs_wbox_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)835 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
836 size_t len, loff_t *pos)
837 {
838 struct spu_context *ctx = file->private_data;
839 u32 wbox_data, __user *udata;
840 ssize_t count;
841
842 if (len < 4)
843 return -EINVAL;
844
845 udata = (void __user *)buf;
846 if (!access_ok(buf, len))
847 return -EFAULT;
848
849 if (__get_user(wbox_data, udata))
850 return -EFAULT;
851
852 count = spu_acquire(ctx);
853 if (count)
854 goto out;
855
856 /*
857 * make sure we can at least write one element, by waiting
858 * in case of !O_NONBLOCK
859 */
860 count = 0;
861 if (file->f_flags & O_NONBLOCK) {
862 if (!spu_wbox_write(ctx, wbox_data)) {
863 count = -EAGAIN;
864 goto out_unlock;
865 }
866 } else {
867 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
868 if (count)
869 goto out;
870 }
871
872
873 /* write as much as possible */
874 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
875 int ret;
876 ret = __get_user(wbox_data, udata);
877 if (ret)
878 break;
879
880 ret = spu_wbox_write(ctx, wbox_data);
881 if (ret == 0)
882 break;
883 }
884
885 out_unlock:
886 spu_release(ctx);
887 out:
888 return count;
889 }
890
spufs_wbox_poll(struct file * file,poll_table * wait)891 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
892 {
893 struct spu_context *ctx = file->private_data;
894 __poll_t mask;
895
896 poll_wait(file, &ctx->wbox_wq, wait);
897
898 /*
899 * For now keep this uninterruptible and also ignore the rule
900 * that poll should not sleep. Will be fixed later.
901 */
902 mutex_lock(&ctx->state_mutex);
903 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
904 spu_release(ctx);
905
906 return mask;
907 }
908
909 static const struct file_operations spufs_wbox_fops = {
910 .open = spufs_pipe_open,
911 .write = spufs_wbox_write,
912 .poll = spufs_wbox_poll,
913 .llseek = no_llseek,
914 };
915
spufs_wbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)916 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
917 size_t len, loff_t *pos)
918 {
919 struct spu_context *ctx = file->private_data;
920 ssize_t ret;
921 u32 wbox_stat;
922
923 if (len < 4)
924 return -EINVAL;
925
926 ret = spu_acquire(ctx);
927 if (ret)
928 return ret;
929 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
930 spu_release(ctx);
931
932 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
933 return -EFAULT;
934
935 return 4;
936 }
937
938 static const struct file_operations spufs_wbox_stat_fops = {
939 .open = spufs_pipe_open,
940 .read = spufs_wbox_stat_read,
941 .llseek = no_llseek,
942 };
943
spufs_signal1_open(struct inode * inode,struct file * file)944 static int spufs_signal1_open(struct inode *inode, struct file *file)
945 {
946 struct spufs_inode_info *i = SPUFS_I(inode);
947 struct spu_context *ctx = i->i_ctx;
948
949 mutex_lock(&ctx->mapping_lock);
950 file->private_data = ctx;
951 if (!i->i_openers++)
952 ctx->signal1 = inode->i_mapping;
953 mutex_unlock(&ctx->mapping_lock);
954 return nonseekable_open(inode, file);
955 }
956
957 static int
spufs_signal1_release(struct inode * inode,struct file * file)958 spufs_signal1_release(struct inode *inode, struct file *file)
959 {
960 struct spufs_inode_info *i = SPUFS_I(inode);
961 struct spu_context *ctx = i->i_ctx;
962
963 mutex_lock(&ctx->mapping_lock);
964 if (!--i->i_openers)
965 ctx->signal1 = NULL;
966 mutex_unlock(&ctx->mapping_lock);
967 return 0;
968 }
969
__spufs_signal1_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)970 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
971 size_t len, loff_t *pos)
972 {
973 int ret = 0;
974 u32 data;
975
976 if (len < 4)
977 return -EINVAL;
978
979 if (ctx->csa.spu_chnlcnt_RW[3]) {
980 data = ctx->csa.spu_chnldata_RW[3];
981 ret = 4;
982 }
983
984 if (!ret)
985 goto out;
986
987 if (copy_to_user(buf, &data, 4))
988 return -EFAULT;
989
990 out:
991 return ret;
992 }
993
spufs_signal1_read(struct file * file,char __user * buf,size_t len,loff_t * pos)994 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
995 size_t len, loff_t *pos)
996 {
997 int ret;
998 struct spu_context *ctx = file->private_data;
999
1000 ret = spu_acquire_saved(ctx);
1001 if (ret)
1002 return ret;
1003 ret = __spufs_signal1_read(ctx, buf, len, pos);
1004 spu_release_saved(ctx);
1005
1006 return ret;
1007 }
1008
spufs_signal1_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)1009 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1010 size_t len, loff_t *pos)
1011 {
1012 struct spu_context *ctx;
1013 ssize_t ret;
1014 u32 data;
1015
1016 ctx = file->private_data;
1017
1018 if (len < 4)
1019 return -EINVAL;
1020
1021 if (copy_from_user(&data, buf, 4))
1022 return -EFAULT;
1023
1024 ret = spu_acquire(ctx);
1025 if (ret)
1026 return ret;
1027 ctx->ops->signal1_write(ctx, data);
1028 spu_release(ctx);
1029
1030 return 4;
1031 }
1032
1033 static vm_fault_t
spufs_signal1_mmap_fault(struct vm_fault * vmf)1034 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1035 {
1036 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1037 return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1038 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1039 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1040 * signal 1 and 2 area
1041 */
1042 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1043 #else
1044 #error unsupported page size
1045 #endif
1046 }
1047
1048 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1049 .fault = spufs_signal1_mmap_fault,
1050 };
1051
spufs_signal1_mmap(struct file * file,struct vm_area_struct * vma)1052 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1053 {
1054 if (!(vma->vm_flags & VM_SHARED))
1055 return -EINVAL;
1056
1057 vma->vm_flags |= VM_IO | VM_PFNMAP;
1058 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1059
1060 vma->vm_ops = &spufs_signal1_mmap_vmops;
1061 return 0;
1062 }
1063
1064 static const struct file_operations spufs_signal1_fops = {
1065 .open = spufs_signal1_open,
1066 .release = spufs_signal1_release,
1067 .read = spufs_signal1_read,
1068 .write = spufs_signal1_write,
1069 .mmap = spufs_signal1_mmap,
1070 .llseek = no_llseek,
1071 };
1072
1073 static const struct file_operations spufs_signal1_nosched_fops = {
1074 .open = spufs_signal1_open,
1075 .release = spufs_signal1_release,
1076 .write = spufs_signal1_write,
1077 .mmap = spufs_signal1_mmap,
1078 .llseek = no_llseek,
1079 };
1080
spufs_signal2_open(struct inode * inode,struct file * file)1081 static int spufs_signal2_open(struct inode *inode, struct file *file)
1082 {
1083 struct spufs_inode_info *i = SPUFS_I(inode);
1084 struct spu_context *ctx = i->i_ctx;
1085
1086 mutex_lock(&ctx->mapping_lock);
1087 file->private_data = ctx;
1088 if (!i->i_openers++)
1089 ctx->signal2 = inode->i_mapping;
1090 mutex_unlock(&ctx->mapping_lock);
1091 return nonseekable_open(inode, file);
1092 }
1093
1094 static int
spufs_signal2_release(struct inode * inode,struct file * file)1095 spufs_signal2_release(struct inode *inode, struct file *file)
1096 {
1097 struct spufs_inode_info *i = SPUFS_I(inode);
1098 struct spu_context *ctx = i->i_ctx;
1099
1100 mutex_lock(&ctx->mapping_lock);
1101 if (!--i->i_openers)
1102 ctx->signal2 = NULL;
1103 mutex_unlock(&ctx->mapping_lock);
1104 return 0;
1105 }
1106
__spufs_signal2_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)1107 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1108 size_t len, loff_t *pos)
1109 {
1110 int ret = 0;
1111 u32 data;
1112
1113 if (len < 4)
1114 return -EINVAL;
1115
1116 if (ctx->csa.spu_chnlcnt_RW[4]) {
1117 data = ctx->csa.spu_chnldata_RW[4];
1118 ret = 4;
1119 }
1120
1121 if (!ret)
1122 goto out;
1123
1124 if (copy_to_user(buf, &data, 4))
1125 return -EFAULT;
1126
1127 out:
1128 return ret;
1129 }
1130
spufs_signal2_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1131 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1132 size_t len, loff_t *pos)
1133 {
1134 struct spu_context *ctx = file->private_data;
1135 int ret;
1136
1137 ret = spu_acquire_saved(ctx);
1138 if (ret)
1139 return ret;
1140 ret = __spufs_signal2_read(ctx, buf, len, pos);
1141 spu_release_saved(ctx);
1142
1143 return ret;
1144 }
1145
spufs_signal2_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)1146 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1147 size_t len, loff_t *pos)
1148 {
1149 struct spu_context *ctx;
1150 ssize_t ret;
1151 u32 data;
1152
1153 ctx = file->private_data;
1154
1155 if (len < 4)
1156 return -EINVAL;
1157
1158 if (copy_from_user(&data, buf, 4))
1159 return -EFAULT;
1160
1161 ret = spu_acquire(ctx);
1162 if (ret)
1163 return ret;
1164 ctx->ops->signal2_write(ctx, data);
1165 spu_release(ctx);
1166
1167 return 4;
1168 }
1169
1170 #if SPUFS_MMAP_4K
1171 static vm_fault_t
spufs_signal2_mmap_fault(struct vm_fault * vmf)1172 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1173 {
1174 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1175 return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1176 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1177 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1178 * signal 1 and 2 area
1179 */
1180 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1181 #else
1182 #error unsupported page size
1183 #endif
1184 }
1185
1186 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1187 .fault = spufs_signal2_mmap_fault,
1188 };
1189
spufs_signal2_mmap(struct file * file,struct vm_area_struct * vma)1190 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1191 {
1192 if (!(vma->vm_flags & VM_SHARED))
1193 return -EINVAL;
1194
1195 vma->vm_flags |= VM_IO | VM_PFNMAP;
1196 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1197
1198 vma->vm_ops = &spufs_signal2_mmap_vmops;
1199 return 0;
1200 }
1201 #else /* SPUFS_MMAP_4K */
1202 #define spufs_signal2_mmap NULL
1203 #endif /* !SPUFS_MMAP_4K */
1204
1205 static const struct file_operations spufs_signal2_fops = {
1206 .open = spufs_signal2_open,
1207 .release = spufs_signal2_release,
1208 .read = spufs_signal2_read,
1209 .write = spufs_signal2_write,
1210 .mmap = spufs_signal2_mmap,
1211 .llseek = no_llseek,
1212 };
1213
1214 static const struct file_operations spufs_signal2_nosched_fops = {
1215 .open = spufs_signal2_open,
1216 .release = spufs_signal2_release,
1217 .write = spufs_signal2_write,
1218 .mmap = spufs_signal2_mmap,
1219 .llseek = no_llseek,
1220 };
1221
1222 /*
1223 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1224 * work of acquiring (or not) the SPU context before calling through
1225 * to the actual get routine. The set routine is called directly.
1226 */
1227 #define SPU_ATTR_NOACQUIRE 0
1228 #define SPU_ATTR_ACQUIRE 1
1229 #define SPU_ATTR_ACQUIRE_SAVED 2
1230
1231 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1232 static int __##__get(void *data, u64 *val) \
1233 { \
1234 struct spu_context *ctx = data; \
1235 int ret = 0; \
1236 \
1237 if (__acquire == SPU_ATTR_ACQUIRE) { \
1238 ret = spu_acquire(ctx); \
1239 if (ret) \
1240 return ret; \
1241 *val = __get(ctx); \
1242 spu_release(ctx); \
1243 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1244 ret = spu_acquire_saved(ctx); \
1245 if (ret) \
1246 return ret; \
1247 *val = __get(ctx); \
1248 spu_release_saved(ctx); \
1249 } else \
1250 *val = __get(ctx); \
1251 \
1252 return 0; \
1253 } \
1254 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1255
spufs_signal1_type_set(void * data,u64 val)1256 static int spufs_signal1_type_set(void *data, u64 val)
1257 {
1258 struct spu_context *ctx = data;
1259 int ret;
1260
1261 ret = spu_acquire(ctx);
1262 if (ret)
1263 return ret;
1264 ctx->ops->signal1_type_set(ctx, val);
1265 spu_release(ctx);
1266
1267 return 0;
1268 }
1269
spufs_signal1_type_get(struct spu_context * ctx)1270 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1271 {
1272 return ctx->ops->signal1_type_get(ctx);
1273 }
1274 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1275 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1276
1277
spufs_signal2_type_set(void * data,u64 val)1278 static int spufs_signal2_type_set(void *data, u64 val)
1279 {
1280 struct spu_context *ctx = data;
1281 int ret;
1282
1283 ret = spu_acquire(ctx);
1284 if (ret)
1285 return ret;
1286 ctx->ops->signal2_type_set(ctx, val);
1287 spu_release(ctx);
1288
1289 return 0;
1290 }
1291
spufs_signal2_type_get(struct spu_context * ctx)1292 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1293 {
1294 return ctx->ops->signal2_type_get(ctx);
1295 }
1296 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1297 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1298
1299 #if SPUFS_MMAP_4K
1300 static vm_fault_t
spufs_mss_mmap_fault(struct vm_fault * vmf)1301 spufs_mss_mmap_fault(struct vm_fault *vmf)
1302 {
1303 return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1304 }
1305
1306 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1307 .fault = spufs_mss_mmap_fault,
1308 };
1309
1310 /*
1311 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1312 */
spufs_mss_mmap(struct file * file,struct vm_area_struct * vma)1313 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1314 {
1315 if (!(vma->vm_flags & VM_SHARED))
1316 return -EINVAL;
1317
1318 vma->vm_flags |= VM_IO | VM_PFNMAP;
1319 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1320
1321 vma->vm_ops = &spufs_mss_mmap_vmops;
1322 return 0;
1323 }
1324 #else /* SPUFS_MMAP_4K */
1325 #define spufs_mss_mmap NULL
1326 #endif /* !SPUFS_MMAP_4K */
1327
spufs_mss_open(struct inode * inode,struct file * file)1328 static int spufs_mss_open(struct inode *inode, struct file *file)
1329 {
1330 struct spufs_inode_info *i = SPUFS_I(inode);
1331 struct spu_context *ctx = i->i_ctx;
1332
1333 file->private_data = i->i_ctx;
1334
1335 mutex_lock(&ctx->mapping_lock);
1336 if (!i->i_openers++)
1337 ctx->mss = inode->i_mapping;
1338 mutex_unlock(&ctx->mapping_lock);
1339 return nonseekable_open(inode, file);
1340 }
1341
1342 static int
spufs_mss_release(struct inode * inode,struct file * file)1343 spufs_mss_release(struct inode *inode, struct file *file)
1344 {
1345 struct spufs_inode_info *i = SPUFS_I(inode);
1346 struct spu_context *ctx = i->i_ctx;
1347
1348 mutex_lock(&ctx->mapping_lock);
1349 if (!--i->i_openers)
1350 ctx->mss = NULL;
1351 mutex_unlock(&ctx->mapping_lock);
1352 return 0;
1353 }
1354
1355 static const struct file_operations spufs_mss_fops = {
1356 .open = spufs_mss_open,
1357 .release = spufs_mss_release,
1358 .mmap = spufs_mss_mmap,
1359 .llseek = no_llseek,
1360 };
1361
1362 static vm_fault_t
spufs_psmap_mmap_fault(struct vm_fault * vmf)1363 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1364 {
1365 return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1366 }
1367
1368 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1369 .fault = spufs_psmap_mmap_fault,
1370 };
1371
1372 /*
1373 * mmap support for full problem state area [0x00000 - 0x1ffff].
1374 */
spufs_psmap_mmap(struct file * file,struct vm_area_struct * vma)1375 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1376 {
1377 if (!(vma->vm_flags & VM_SHARED))
1378 return -EINVAL;
1379
1380 vma->vm_flags |= VM_IO | VM_PFNMAP;
1381 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1382
1383 vma->vm_ops = &spufs_psmap_mmap_vmops;
1384 return 0;
1385 }
1386
spufs_psmap_open(struct inode * inode,struct file * file)1387 static int spufs_psmap_open(struct inode *inode, struct file *file)
1388 {
1389 struct spufs_inode_info *i = SPUFS_I(inode);
1390 struct spu_context *ctx = i->i_ctx;
1391
1392 mutex_lock(&ctx->mapping_lock);
1393 file->private_data = i->i_ctx;
1394 if (!i->i_openers++)
1395 ctx->psmap = inode->i_mapping;
1396 mutex_unlock(&ctx->mapping_lock);
1397 return nonseekable_open(inode, file);
1398 }
1399
1400 static int
spufs_psmap_release(struct inode * inode,struct file * file)1401 spufs_psmap_release(struct inode *inode, struct file *file)
1402 {
1403 struct spufs_inode_info *i = SPUFS_I(inode);
1404 struct spu_context *ctx = i->i_ctx;
1405
1406 mutex_lock(&ctx->mapping_lock);
1407 if (!--i->i_openers)
1408 ctx->psmap = NULL;
1409 mutex_unlock(&ctx->mapping_lock);
1410 return 0;
1411 }
1412
1413 static const struct file_operations spufs_psmap_fops = {
1414 .open = spufs_psmap_open,
1415 .release = spufs_psmap_release,
1416 .mmap = spufs_psmap_mmap,
1417 .llseek = no_llseek,
1418 };
1419
1420
1421 #if SPUFS_MMAP_4K
1422 static vm_fault_t
spufs_mfc_mmap_fault(struct vm_fault * vmf)1423 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1424 {
1425 return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1426 }
1427
1428 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1429 .fault = spufs_mfc_mmap_fault,
1430 };
1431
1432 /*
1433 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1434 */
spufs_mfc_mmap(struct file * file,struct vm_area_struct * vma)1435 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1436 {
1437 if (!(vma->vm_flags & VM_SHARED))
1438 return -EINVAL;
1439
1440 vma->vm_flags |= VM_IO | VM_PFNMAP;
1441 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1442
1443 vma->vm_ops = &spufs_mfc_mmap_vmops;
1444 return 0;
1445 }
1446 #else /* SPUFS_MMAP_4K */
1447 #define spufs_mfc_mmap NULL
1448 #endif /* !SPUFS_MMAP_4K */
1449
spufs_mfc_open(struct inode * inode,struct file * file)1450 static int spufs_mfc_open(struct inode *inode, struct file *file)
1451 {
1452 struct spufs_inode_info *i = SPUFS_I(inode);
1453 struct spu_context *ctx = i->i_ctx;
1454
1455 /* we don't want to deal with DMA into other processes */
1456 if (ctx->owner != current->mm)
1457 return -EINVAL;
1458
1459 if (atomic_read(&inode->i_count) != 1)
1460 return -EBUSY;
1461
1462 mutex_lock(&ctx->mapping_lock);
1463 file->private_data = ctx;
1464 if (!i->i_openers++)
1465 ctx->mfc = inode->i_mapping;
1466 mutex_unlock(&ctx->mapping_lock);
1467 return nonseekable_open(inode, file);
1468 }
1469
1470 static int
spufs_mfc_release(struct inode * inode,struct file * file)1471 spufs_mfc_release(struct inode *inode, struct file *file)
1472 {
1473 struct spufs_inode_info *i = SPUFS_I(inode);
1474 struct spu_context *ctx = i->i_ctx;
1475
1476 mutex_lock(&ctx->mapping_lock);
1477 if (!--i->i_openers)
1478 ctx->mfc = NULL;
1479 mutex_unlock(&ctx->mapping_lock);
1480 return 0;
1481 }
1482
1483 /* interrupt-level mfc callback function. */
spufs_mfc_callback(struct spu * spu)1484 void spufs_mfc_callback(struct spu *spu)
1485 {
1486 struct spu_context *ctx = spu->ctx;
1487
1488 if (ctx)
1489 wake_up_all(&ctx->mfc_wq);
1490 }
1491
spufs_read_mfc_tagstatus(struct spu_context * ctx,u32 * status)1492 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1493 {
1494 /* See if there is one tag group is complete */
1495 /* FIXME we need locking around tagwait */
1496 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1497 ctx->tagwait &= ~*status;
1498 if (*status)
1499 return 1;
1500
1501 /* enable interrupt waiting for any tag group,
1502 may silently fail if interrupts are already enabled */
1503 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1504 return 0;
1505 }
1506
spufs_mfc_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)1507 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1508 size_t size, loff_t *pos)
1509 {
1510 struct spu_context *ctx = file->private_data;
1511 int ret = -EINVAL;
1512 u32 status;
1513
1514 if (size != 4)
1515 goto out;
1516
1517 ret = spu_acquire(ctx);
1518 if (ret)
1519 return ret;
1520
1521 ret = -EINVAL;
1522 if (file->f_flags & O_NONBLOCK) {
1523 status = ctx->ops->read_mfc_tagstatus(ctx);
1524 if (!(status & ctx->tagwait))
1525 ret = -EAGAIN;
1526 else
1527 /* XXX(hch): shouldn't we clear ret here? */
1528 ctx->tagwait &= ~status;
1529 } else {
1530 ret = spufs_wait(ctx->mfc_wq,
1531 spufs_read_mfc_tagstatus(ctx, &status));
1532 if (ret)
1533 goto out;
1534 }
1535 spu_release(ctx);
1536
1537 ret = 4;
1538 if (copy_to_user(buffer, &status, 4))
1539 ret = -EFAULT;
1540
1541 out:
1542 return ret;
1543 }
1544
spufs_check_valid_dma(struct mfc_dma_command * cmd)1545 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1546 {
1547 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1548 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1549
1550 switch (cmd->cmd) {
1551 case MFC_PUT_CMD:
1552 case MFC_PUTF_CMD:
1553 case MFC_PUTB_CMD:
1554 case MFC_GET_CMD:
1555 case MFC_GETF_CMD:
1556 case MFC_GETB_CMD:
1557 break;
1558 default:
1559 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1560 return -EIO;
1561 }
1562
1563 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1564 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1565 cmd->ea, cmd->lsa);
1566 return -EIO;
1567 }
1568
1569 switch (cmd->size & 0xf) {
1570 case 1:
1571 break;
1572 case 2:
1573 if (cmd->lsa & 1)
1574 goto error;
1575 break;
1576 case 4:
1577 if (cmd->lsa & 3)
1578 goto error;
1579 break;
1580 case 8:
1581 if (cmd->lsa & 7)
1582 goto error;
1583 break;
1584 case 0:
1585 if (cmd->lsa & 15)
1586 goto error;
1587 break;
1588 error:
1589 default:
1590 pr_debug("invalid DMA alignment %x for size %x\n",
1591 cmd->lsa & 0xf, cmd->size);
1592 return -EIO;
1593 }
1594
1595 if (cmd->size > 16 * 1024) {
1596 pr_debug("invalid DMA size %x\n", cmd->size);
1597 return -EIO;
1598 }
1599
1600 if (cmd->tag & 0xfff0) {
1601 /* we reserve the higher tag numbers for kernel use */
1602 pr_debug("invalid DMA tag\n");
1603 return -EIO;
1604 }
1605
1606 if (cmd->class) {
1607 /* not supported in this version */
1608 pr_debug("invalid DMA class\n");
1609 return -EIO;
1610 }
1611
1612 return 0;
1613 }
1614
spu_send_mfc_command(struct spu_context * ctx,struct mfc_dma_command cmd,int * error)1615 static int spu_send_mfc_command(struct spu_context *ctx,
1616 struct mfc_dma_command cmd,
1617 int *error)
1618 {
1619 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1620 if (*error == -EAGAIN) {
1621 /* wait for any tag group to complete
1622 so we have space for the new command */
1623 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1624 /* try again, because the queue might be
1625 empty again */
1626 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1627 if (*error == -EAGAIN)
1628 return 0;
1629 }
1630 return 1;
1631 }
1632
spufs_mfc_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)1633 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1634 size_t size, loff_t *pos)
1635 {
1636 struct spu_context *ctx = file->private_data;
1637 struct mfc_dma_command cmd;
1638 int ret = -EINVAL;
1639
1640 if (size != sizeof cmd)
1641 goto out;
1642
1643 ret = -EFAULT;
1644 if (copy_from_user(&cmd, buffer, sizeof cmd))
1645 goto out;
1646
1647 ret = spufs_check_valid_dma(&cmd);
1648 if (ret)
1649 goto out;
1650
1651 ret = spu_acquire(ctx);
1652 if (ret)
1653 goto out;
1654
1655 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1656 if (ret)
1657 goto out;
1658
1659 if (file->f_flags & O_NONBLOCK) {
1660 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1661 } else {
1662 int status;
1663 ret = spufs_wait(ctx->mfc_wq,
1664 spu_send_mfc_command(ctx, cmd, &status));
1665 if (ret)
1666 goto out;
1667 if (status)
1668 ret = status;
1669 }
1670
1671 if (ret)
1672 goto out_unlock;
1673
1674 ctx->tagwait |= 1 << cmd.tag;
1675 ret = size;
1676
1677 out_unlock:
1678 spu_release(ctx);
1679 out:
1680 return ret;
1681 }
1682
spufs_mfc_poll(struct file * file,poll_table * wait)1683 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1684 {
1685 struct spu_context *ctx = file->private_data;
1686 u32 free_elements, tagstatus;
1687 __poll_t mask;
1688
1689 poll_wait(file, &ctx->mfc_wq, wait);
1690
1691 /*
1692 * For now keep this uninterruptible and also ignore the rule
1693 * that poll should not sleep. Will be fixed later.
1694 */
1695 mutex_lock(&ctx->state_mutex);
1696 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1697 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1698 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1699 spu_release(ctx);
1700
1701 mask = 0;
1702 if (free_elements & 0xffff)
1703 mask |= EPOLLOUT | EPOLLWRNORM;
1704 if (tagstatus & ctx->tagwait)
1705 mask |= EPOLLIN | EPOLLRDNORM;
1706
1707 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1708 free_elements, tagstatus, ctx->tagwait);
1709
1710 return mask;
1711 }
1712
spufs_mfc_flush(struct file * file,fl_owner_t id)1713 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1714 {
1715 struct spu_context *ctx = file->private_data;
1716 int ret;
1717
1718 ret = spu_acquire(ctx);
1719 if (ret)
1720 goto out;
1721 #if 0
1722 /* this currently hangs */
1723 ret = spufs_wait(ctx->mfc_wq,
1724 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1725 if (ret)
1726 goto out;
1727 ret = spufs_wait(ctx->mfc_wq,
1728 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1729 if (ret)
1730 goto out;
1731 #else
1732 ret = 0;
1733 #endif
1734 spu_release(ctx);
1735 out:
1736 return ret;
1737 }
1738
spufs_mfc_fsync(struct file * file,loff_t start,loff_t end,int datasync)1739 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1740 {
1741 struct inode *inode = file_inode(file);
1742 int err = file_write_and_wait_range(file, start, end);
1743 if (!err) {
1744 inode_lock(inode);
1745 err = spufs_mfc_flush(file, NULL);
1746 inode_unlock(inode);
1747 }
1748 return err;
1749 }
1750
1751 static const struct file_operations spufs_mfc_fops = {
1752 .open = spufs_mfc_open,
1753 .release = spufs_mfc_release,
1754 .read = spufs_mfc_read,
1755 .write = spufs_mfc_write,
1756 .poll = spufs_mfc_poll,
1757 .flush = spufs_mfc_flush,
1758 .fsync = spufs_mfc_fsync,
1759 .mmap = spufs_mfc_mmap,
1760 .llseek = no_llseek,
1761 };
1762
spufs_npc_set(void * data,u64 val)1763 static int spufs_npc_set(void *data, u64 val)
1764 {
1765 struct spu_context *ctx = data;
1766 int ret;
1767
1768 ret = spu_acquire(ctx);
1769 if (ret)
1770 return ret;
1771 ctx->ops->npc_write(ctx, val);
1772 spu_release(ctx);
1773
1774 return 0;
1775 }
1776
spufs_npc_get(struct spu_context * ctx)1777 static u64 spufs_npc_get(struct spu_context *ctx)
1778 {
1779 return ctx->ops->npc_read(ctx);
1780 }
1781 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1782 "0x%llx\n", SPU_ATTR_ACQUIRE);
1783
spufs_decr_set(void * data,u64 val)1784 static int spufs_decr_set(void *data, u64 val)
1785 {
1786 struct spu_context *ctx = data;
1787 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1788 int ret;
1789
1790 ret = spu_acquire_saved(ctx);
1791 if (ret)
1792 return ret;
1793 lscsa->decr.slot[0] = (u32) val;
1794 spu_release_saved(ctx);
1795
1796 return 0;
1797 }
1798
spufs_decr_get(struct spu_context * ctx)1799 static u64 spufs_decr_get(struct spu_context *ctx)
1800 {
1801 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1802 return lscsa->decr.slot[0];
1803 }
1804 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1805 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1806
spufs_decr_status_set(void * data,u64 val)1807 static int spufs_decr_status_set(void *data, u64 val)
1808 {
1809 struct spu_context *ctx = data;
1810 int ret;
1811
1812 ret = spu_acquire_saved(ctx);
1813 if (ret)
1814 return ret;
1815 if (val)
1816 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1817 else
1818 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1819 spu_release_saved(ctx);
1820
1821 return 0;
1822 }
1823
spufs_decr_status_get(struct spu_context * ctx)1824 static u64 spufs_decr_status_get(struct spu_context *ctx)
1825 {
1826 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1827 return SPU_DECR_STATUS_RUNNING;
1828 else
1829 return 0;
1830 }
1831 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1832 spufs_decr_status_set, "0x%llx\n",
1833 SPU_ATTR_ACQUIRE_SAVED);
1834
spufs_event_mask_set(void * data,u64 val)1835 static int spufs_event_mask_set(void *data, u64 val)
1836 {
1837 struct spu_context *ctx = data;
1838 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1839 int ret;
1840
1841 ret = spu_acquire_saved(ctx);
1842 if (ret)
1843 return ret;
1844 lscsa->event_mask.slot[0] = (u32) val;
1845 spu_release_saved(ctx);
1846
1847 return 0;
1848 }
1849
spufs_event_mask_get(struct spu_context * ctx)1850 static u64 spufs_event_mask_get(struct spu_context *ctx)
1851 {
1852 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1853 return lscsa->event_mask.slot[0];
1854 }
1855
1856 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1857 spufs_event_mask_set, "0x%llx\n",
1858 SPU_ATTR_ACQUIRE_SAVED);
1859
spufs_event_status_get(struct spu_context * ctx)1860 static u64 spufs_event_status_get(struct spu_context *ctx)
1861 {
1862 struct spu_state *state = &ctx->csa;
1863 u64 stat;
1864 stat = state->spu_chnlcnt_RW[0];
1865 if (stat)
1866 return state->spu_chnldata_RW[0];
1867 return 0;
1868 }
1869 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1870 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1871
spufs_srr0_set(void * data,u64 val)1872 static int spufs_srr0_set(void *data, u64 val)
1873 {
1874 struct spu_context *ctx = data;
1875 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1876 int ret;
1877
1878 ret = spu_acquire_saved(ctx);
1879 if (ret)
1880 return ret;
1881 lscsa->srr0.slot[0] = (u32) val;
1882 spu_release_saved(ctx);
1883
1884 return 0;
1885 }
1886
spufs_srr0_get(struct spu_context * ctx)1887 static u64 spufs_srr0_get(struct spu_context *ctx)
1888 {
1889 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1890 return lscsa->srr0.slot[0];
1891 }
1892 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1893 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1894
spufs_id_get(struct spu_context * ctx)1895 static u64 spufs_id_get(struct spu_context *ctx)
1896 {
1897 u64 num;
1898
1899 if (ctx->state == SPU_STATE_RUNNABLE)
1900 num = ctx->spu->number;
1901 else
1902 num = (unsigned int)-1;
1903
1904 return num;
1905 }
1906 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1907 SPU_ATTR_ACQUIRE)
1908
spufs_object_id_get(struct spu_context * ctx)1909 static u64 spufs_object_id_get(struct spu_context *ctx)
1910 {
1911 /* FIXME: Should there really be no locking here? */
1912 return ctx->object_id;
1913 }
1914
spufs_object_id_set(void * data,u64 id)1915 static int spufs_object_id_set(void *data, u64 id)
1916 {
1917 struct spu_context *ctx = data;
1918 ctx->object_id = id;
1919
1920 return 0;
1921 }
1922
1923 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1924 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1925
spufs_lslr_get(struct spu_context * ctx)1926 static u64 spufs_lslr_get(struct spu_context *ctx)
1927 {
1928 return ctx->csa.priv2.spu_lslr_RW;
1929 }
1930 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1931 SPU_ATTR_ACQUIRE_SAVED);
1932
spufs_info_open(struct inode * inode,struct file * file)1933 static int spufs_info_open(struct inode *inode, struct file *file)
1934 {
1935 struct spufs_inode_info *i = SPUFS_I(inode);
1936 struct spu_context *ctx = i->i_ctx;
1937 file->private_data = ctx;
1938 return 0;
1939 }
1940
spufs_caps_show(struct seq_file * s,void * private)1941 static int spufs_caps_show(struct seq_file *s, void *private)
1942 {
1943 struct spu_context *ctx = s->private;
1944
1945 if (!(ctx->flags & SPU_CREATE_NOSCHED))
1946 seq_puts(s, "sched\n");
1947 if (!(ctx->flags & SPU_CREATE_ISOLATE))
1948 seq_puts(s, "step\n");
1949 return 0;
1950 }
1951
spufs_caps_open(struct inode * inode,struct file * file)1952 static int spufs_caps_open(struct inode *inode, struct file *file)
1953 {
1954 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1955 }
1956
1957 static const struct file_operations spufs_caps_fops = {
1958 .open = spufs_caps_open,
1959 .read = seq_read,
1960 .llseek = seq_lseek,
1961 .release = single_release,
1962 };
1963
__spufs_mbox_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)1964 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1965 char __user *buf, size_t len, loff_t *pos)
1966 {
1967 u32 data;
1968
1969 /* EOF if there's no entry in the mbox */
1970 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1971 return 0;
1972
1973 data = ctx->csa.prob.pu_mb_R;
1974
1975 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1976 }
1977
spufs_mbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1978 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1979 size_t len, loff_t *pos)
1980 {
1981 int ret;
1982 struct spu_context *ctx = file->private_data;
1983
1984 if (!access_ok(buf, len))
1985 return -EFAULT;
1986
1987 ret = spu_acquire_saved(ctx);
1988 if (ret)
1989 return ret;
1990 spin_lock(&ctx->csa.register_lock);
1991 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1992 spin_unlock(&ctx->csa.register_lock);
1993 spu_release_saved(ctx);
1994
1995 return ret;
1996 }
1997
1998 static const struct file_operations spufs_mbox_info_fops = {
1999 .open = spufs_info_open,
2000 .read = spufs_mbox_info_read,
2001 .llseek = generic_file_llseek,
2002 };
2003
__spufs_ibox_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2004 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2005 char __user *buf, size_t len, loff_t *pos)
2006 {
2007 u32 data;
2008
2009 /* EOF if there's no entry in the ibox */
2010 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2011 return 0;
2012
2013 data = ctx->csa.priv2.puint_mb_R;
2014
2015 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2016 }
2017
spufs_ibox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2018 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2019 size_t len, loff_t *pos)
2020 {
2021 struct spu_context *ctx = file->private_data;
2022 int ret;
2023
2024 if (!access_ok(buf, len))
2025 return -EFAULT;
2026
2027 ret = spu_acquire_saved(ctx);
2028 if (ret)
2029 return ret;
2030 spin_lock(&ctx->csa.register_lock);
2031 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2032 spin_unlock(&ctx->csa.register_lock);
2033 spu_release_saved(ctx);
2034
2035 return ret;
2036 }
2037
2038 static const struct file_operations spufs_ibox_info_fops = {
2039 .open = spufs_info_open,
2040 .read = spufs_ibox_info_read,
2041 .llseek = generic_file_llseek,
2042 };
2043
__spufs_wbox_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2044 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2045 char __user *buf, size_t len, loff_t *pos)
2046 {
2047 int i, cnt;
2048 u32 data[4];
2049 u32 wbox_stat;
2050
2051 wbox_stat = ctx->csa.prob.mb_stat_R;
2052 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2053 for (i = 0; i < cnt; i++) {
2054 data[i] = ctx->csa.spu_mailbox_data[i];
2055 }
2056
2057 return simple_read_from_buffer(buf, len, pos, &data,
2058 cnt * sizeof(u32));
2059 }
2060
spufs_wbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2061 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2062 size_t len, loff_t *pos)
2063 {
2064 struct spu_context *ctx = file->private_data;
2065 int ret;
2066
2067 if (!access_ok(buf, len))
2068 return -EFAULT;
2069
2070 ret = spu_acquire_saved(ctx);
2071 if (ret)
2072 return ret;
2073 spin_lock(&ctx->csa.register_lock);
2074 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2075 spin_unlock(&ctx->csa.register_lock);
2076 spu_release_saved(ctx);
2077
2078 return ret;
2079 }
2080
2081 static const struct file_operations spufs_wbox_info_fops = {
2082 .open = spufs_info_open,
2083 .read = spufs_wbox_info_read,
2084 .llseek = generic_file_llseek,
2085 };
2086
__spufs_dma_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2087 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2088 char __user *buf, size_t len, loff_t *pos)
2089 {
2090 struct spu_dma_info info;
2091 struct mfc_cq_sr *qp, *spuqp;
2092 int i;
2093
2094 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2095 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2096 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2097 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2098 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2099 for (i = 0; i < 16; i++) {
2100 qp = &info.dma_info_command_data[i];
2101 spuqp = &ctx->csa.priv2.spuq[i];
2102
2103 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2104 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2105 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2106 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2107 }
2108
2109 return simple_read_from_buffer(buf, len, pos, &info,
2110 sizeof info);
2111 }
2112
spufs_dma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2113 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2114 size_t len, loff_t *pos)
2115 {
2116 struct spu_context *ctx = file->private_data;
2117 int ret;
2118
2119 if (!access_ok(buf, len))
2120 return -EFAULT;
2121
2122 ret = spu_acquire_saved(ctx);
2123 if (ret)
2124 return ret;
2125 spin_lock(&ctx->csa.register_lock);
2126 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2127 spin_unlock(&ctx->csa.register_lock);
2128 spu_release_saved(ctx);
2129
2130 return ret;
2131 }
2132
2133 static const struct file_operations spufs_dma_info_fops = {
2134 .open = spufs_info_open,
2135 .read = spufs_dma_info_read,
2136 .llseek = no_llseek,
2137 };
2138
__spufs_proxydma_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2139 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2140 char __user *buf, size_t len, loff_t *pos)
2141 {
2142 struct spu_proxydma_info info;
2143 struct mfc_cq_sr *qp, *puqp;
2144 int ret = sizeof info;
2145 int i;
2146
2147 if (len < ret)
2148 return -EINVAL;
2149
2150 if (!access_ok(buf, len))
2151 return -EFAULT;
2152
2153 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2154 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2155 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2156 for (i = 0; i < 8; i++) {
2157 qp = &info.proxydma_info_command_data[i];
2158 puqp = &ctx->csa.priv2.puq[i];
2159
2160 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2161 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2162 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2163 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2164 }
2165
2166 return simple_read_from_buffer(buf, len, pos, &info,
2167 sizeof info);
2168 }
2169
spufs_proxydma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2170 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2171 size_t len, loff_t *pos)
2172 {
2173 struct spu_context *ctx = file->private_data;
2174 int ret;
2175
2176 ret = spu_acquire_saved(ctx);
2177 if (ret)
2178 return ret;
2179 spin_lock(&ctx->csa.register_lock);
2180 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2181 spin_unlock(&ctx->csa.register_lock);
2182 spu_release_saved(ctx);
2183
2184 return ret;
2185 }
2186
2187 static const struct file_operations spufs_proxydma_info_fops = {
2188 .open = spufs_info_open,
2189 .read = spufs_proxydma_info_read,
2190 .llseek = no_llseek,
2191 };
2192
spufs_show_tid(struct seq_file * s,void * private)2193 static int spufs_show_tid(struct seq_file *s, void *private)
2194 {
2195 struct spu_context *ctx = s->private;
2196
2197 seq_printf(s, "%d\n", ctx->tid);
2198 return 0;
2199 }
2200
spufs_tid_open(struct inode * inode,struct file * file)2201 static int spufs_tid_open(struct inode *inode, struct file *file)
2202 {
2203 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2204 }
2205
2206 static const struct file_operations spufs_tid_fops = {
2207 .open = spufs_tid_open,
2208 .read = seq_read,
2209 .llseek = seq_lseek,
2210 .release = single_release,
2211 };
2212
2213 static const char *ctx_state_names[] = {
2214 "user", "system", "iowait", "loaded"
2215 };
2216
spufs_acct_time(struct spu_context * ctx,enum spu_utilization_state state)2217 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2218 enum spu_utilization_state state)
2219 {
2220 unsigned long long time = ctx->stats.times[state];
2221
2222 /*
2223 * In general, utilization statistics are updated by the controlling
2224 * thread as the spu context moves through various well defined
2225 * state transitions, but if the context is lazily loaded its
2226 * utilization statistics are not updated as the controlling thread
2227 * is not tightly coupled with the execution of the spu context. We
2228 * calculate and apply the time delta from the last recorded state
2229 * of the spu context.
2230 */
2231 if (ctx->spu && ctx->stats.util_state == state) {
2232 time += ktime_get_ns() - ctx->stats.tstamp;
2233 }
2234
2235 return time / NSEC_PER_MSEC;
2236 }
2237
spufs_slb_flts(struct spu_context * ctx)2238 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2239 {
2240 unsigned long long slb_flts = ctx->stats.slb_flt;
2241
2242 if (ctx->state == SPU_STATE_RUNNABLE) {
2243 slb_flts += (ctx->spu->stats.slb_flt -
2244 ctx->stats.slb_flt_base);
2245 }
2246
2247 return slb_flts;
2248 }
2249
spufs_class2_intrs(struct spu_context * ctx)2250 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2251 {
2252 unsigned long long class2_intrs = ctx->stats.class2_intr;
2253
2254 if (ctx->state == SPU_STATE_RUNNABLE) {
2255 class2_intrs += (ctx->spu->stats.class2_intr -
2256 ctx->stats.class2_intr_base);
2257 }
2258
2259 return class2_intrs;
2260 }
2261
2262
spufs_show_stat(struct seq_file * s,void * private)2263 static int spufs_show_stat(struct seq_file *s, void *private)
2264 {
2265 struct spu_context *ctx = s->private;
2266 int ret;
2267
2268 ret = spu_acquire(ctx);
2269 if (ret)
2270 return ret;
2271
2272 seq_printf(s, "%s %llu %llu %llu %llu "
2273 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2274 ctx_state_names[ctx->stats.util_state],
2275 spufs_acct_time(ctx, SPU_UTIL_USER),
2276 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2277 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2278 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2279 ctx->stats.vol_ctx_switch,
2280 ctx->stats.invol_ctx_switch,
2281 spufs_slb_flts(ctx),
2282 ctx->stats.hash_flt,
2283 ctx->stats.min_flt,
2284 ctx->stats.maj_flt,
2285 spufs_class2_intrs(ctx),
2286 ctx->stats.libassist);
2287 spu_release(ctx);
2288 return 0;
2289 }
2290
spufs_stat_open(struct inode * inode,struct file * file)2291 static int spufs_stat_open(struct inode *inode, struct file *file)
2292 {
2293 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2294 }
2295
2296 static const struct file_operations spufs_stat_fops = {
2297 .open = spufs_stat_open,
2298 .read = seq_read,
2299 .llseek = seq_lseek,
2300 .release = single_release,
2301 };
2302
spufs_switch_log_used(struct spu_context * ctx)2303 static inline int spufs_switch_log_used(struct spu_context *ctx)
2304 {
2305 return (ctx->switch_log->head - ctx->switch_log->tail) %
2306 SWITCH_LOG_BUFSIZE;
2307 }
2308
spufs_switch_log_avail(struct spu_context * ctx)2309 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2310 {
2311 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2312 }
2313
spufs_switch_log_open(struct inode * inode,struct file * file)2314 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2315 {
2316 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2317 int rc;
2318
2319 rc = spu_acquire(ctx);
2320 if (rc)
2321 return rc;
2322
2323 if (ctx->switch_log) {
2324 rc = -EBUSY;
2325 goto out;
2326 }
2327
2328 ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2329 SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2330
2331 if (!ctx->switch_log) {
2332 rc = -ENOMEM;
2333 goto out;
2334 }
2335
2336 ctx->switch_log->head = ctx->switch_log->tail = 0;
2337 init_waitqueue_head(&ctx->switch_log->wait);
2338 rc = 0;
2339
2340 out:
2341 spu_release(ctx);
2342 return rc;
2343 }
2344
spufs_switch_log_release(struct inode * inode,struct file * file)2345 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2346 {
2347 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2348 int rc;
2349
2350 rc = spu_acquire(ctx);
2351 if (rc)
2352 return rc;
2353
2354 kfree(ctx->switch_log);
2355 ctx->switch_log = NULL;
2356 spu_release(ctx);
2357
2358 return 0;
2359 }
2360
switch_log_sprint(struct spu_context * ctx,char * tbuf,int n)2361 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2362 {
2363 struct switch_log_entry *p;
2364
2365 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2366
2367 return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2368 (unsigned long long) p->tstamp.tv_sec,
2369 (unsigned int) p->tstamp.tv_nsec,
2370 p->spu_id,
2371 (unsigned int) p->type,
2372 (unsigned int) p->val,
2373 (unsigned long long) p->timebase);
2374 }
2375
spufs_switch_log_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2376 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2377 size_t len, loff_t *ppos)
2378 {
2379 struct inode *inode = file_inode(file);
2380 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2381 int error = 0, cnt = 0;
2382
2383 if (!buf)
2384 return -EINVAL;
2385
2386 error = spu_acquire(ctx);
2387 if (error)
2388 return error;
2389
2390 while (cnt < len) {
2391 char tbuf[128];
2392 int width;
2393
2394 if (spufs_switch_log_used(ctx) == 0) {
2395 if (cnt > 0) {
2396 /* If there's data ready to go, we can
2397 * just return straight away */
2398 break;
2399
2400 } else if (file->f_flags & O_NONBLOCK) {
2401 error = -EAGAIN;
2402 break;
2403
2404 } else {
2405 /* spufs_wait will drop the mutex and
2406 * re-acquire, but since we're in read(), the
2407 * file cannot be _released (and so
2408 * ctx->switch_log is stable).
2409 */
2410 error = spufs_wait(ctx->switch_log->wait,
2411 spufs_switch_log_used(ctx) > 0);
2412
2413 /* On error, spufs_wait returns without the
2414 * state mutex held */
2415 if (error)
2416 return error;
2417
2418 /* We may have had entries read from underneath
2419 * us while we dropped the mutex in spufs_wait,
2420 * so re-check */
2421 if (spufs_switch_log_used(ctx) == 0)
2422 continue;
2423 }
2424 }
2425
2426 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2427 if (width < len)
2428 ctx->switch_log->tail =
2429 (ctx->switch_log->tail + 1) %
2430 SWITCH_LOG_BUFSIZE;
2431 else
2432 /* If the record is greater than space available return
2433 * partial buffer (so far) */
2434 break;
2435
2436 error = copy_to_user(buf + cnt, tbuf, width);
2437 if (error)
2438 break;
2439 cnt += width;
2440 }
2441
2442 spu_release(ctx);
2443
2444 return cnt == 0 ? error : cnt;
2445 }
2446
spufs_switch_log_poll(struct file * file,poll_table * wait)2447 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2448 {
2449 struct inode *inode = file_inode(file);
2450 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2451 __poll_t mask = 0;
2452 int rc;
2453
2454 poll_wait(file, &ctx->switch_log->wait, wait);
2455
2456 rc = spu_acquire(ctx);
2457 if (rc)
2458 return rc;
2459
2460 if (spufs_switch_log_used(ctx) > 0)
2461 mask |= EPOLLIN;
2462
2463 spu_release(ctx);
2464
2465 return mask;
2466 }
2467
2468 static const struct file_operations spufs_switch_log_fops = {
2469 .open = spufs_switch_log_open,
2470 .read = spufs_switch_log_read,
2471 .poll = spufs_switch_log_poll,
2472 .release = spufs_switch_log_release,
2473 .llseek = no_llseek,
2474 };
2475
2476 /**
2477 * Log a context switch event to a switch log reader.
2478 *
2479 * Must be called with ctx->state_mutex held.
2480 */
spu_switch_log_notify(struct spu * spu,struct spu_context * ctx,u32 type,u32 val)2481 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2482 u32 type, u32 val)
2483 {
2484 if (!ctx->switch_log)
2485 return;
2486
2487 if (spufs_switch_log_avail(ctx) > 1) {
2488 struct switch_log_entry *p;
2489
2490 p = ctx->switch_log->log + ctx->switch_log->head;
2491 ktime_get_ts64(&p->tstamp);
2492 p->timebase = get_tb();
2493 p->spu_id = spu ? spu->number : -1;
2494 p->type = type;
2495 p->val = val;
2496
2497 ctx->switch_log->head =
2498 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2499 }
2500
2501 wake_up(&ctx->switch_log->wait);
2502 }
2503
spufs_show_ctx(struct seq_file * s,void * private)2504 static int spufs_show_ctx(struct seq_file *s, void *private)
2505 {
2506 struct spu_context *ctx = s->private;
2507 u64 mfc_control_RW;
2508
2509 mutex_lock(&ctx->state_mutex);
2510 if (ctx->spu) {
2511 struct spu *spu = ctx->spu;
2512 struct spu_priv2 __iomem *priv2 = spu->priv2;
2513
2514 spin_lock_irq(&spu->register_lock);
2515 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2516 spin_unlock_irq(&spu->register_lock);
2517 } else {
2518 struct spu_state *csa = &ctx->csa;
2519
2520 mfc_control_RW = csa->priv2.mfc_control_RW;
2521 }
2522
2523 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2524 " %c %llx %llx %llx %llx %x %x\n",
2525 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2526 ctx->flags,
2527 ctx->sched_flags,
2528 ctx->prio,
2529 ctx->time_slice,
2530 ctx->spu ? ctx->spu->number : -1,
2531 !list_empty(&ctx->rq) ? 'q' : ' ',
2532 ctx->csa.class_0_pending,
2533 ctx->csa.class_0_dar,
2534 ctx->csa.class_1_dsisr,
2535 mfc_control_RW,
2536 ctx->ops->runcntl_read(ctx),
2537 ctx->ops->status_read(ctx));
2538
2539 mutex_unlock(&ctx->state_mutex);
2540
2541 return 0;
2542 }
2543
spufs_ctx_open(struct inode * inode,struct file * file)2544 static int spufs_ctx_open(struct inode *inode, struct file *file)
2545 {
2546 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2547 }
2548
2549 static const struct file_operations spufs_ctx_fops = {
2550 .open = spufs_ctx_open,
2551 .read = seq_read,
2552 .llseek = seq_lseek,
2553 .release = single_release,
2554 };
2555
2556 const struct spufs_tree_descr spufs_dir_contents[] = {
2557 { "capabilities", &spufs_caps_fops, 0444, },
2558 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2559 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2560 { "mbox", &spufs_mbox_fops, 0444, },
2561 { "ibox", &spufs_ibox_fops, 0444, },
2562 { "wbox", &spufs_wbox_fops, 0222, },
2563 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2564 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2565 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2566 { "signal1", &spufs_signal1_fops, 0666, },
2567 { "signal2", &spufs_signal2_fops, 0666, },
2568 { "signal1_type", &spufs_signal1_type, 0666, },
2569 { "signal2_type", &spufs_signal2_type, 0666, },
2570 { "cntl", &spufs_cntl_fops, 0666, },
2571 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2572 { "lslr", &spufs_lslr_ops, 0444, },
2573 { "mfc", &spufs_mfc_fops, 0666, },
2574 { "mss", &spufs_mss_fops, 0666, },
2575 { "npc", &spufs_npc_ops, 0666, },
2576 { "srr0", &spufs_srr0_ops, 0666, },
2577 { "decr", &spufs_decr_ops, 0666, },
2578 { "decr_status", &spufs_decr_status_ops, 0666, },
2579 { "event_mask", &spufs_event_mask_ops, 0666, },
2580 { "event_status", &spufs_event_status_ops, 0444, },
2581 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2582 { "phys-id", &spufs_id_ops, 0666, },
2583 { "object-id", &spufs_object_id_ops, 0666, },
2584 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2585 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2586 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2587 { "dma_info", &spufs_dma_info_fops, 0444,
2588 sizeof(struct spu_dma_info), },
2589 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2590 sizeof(struct spu_proxydma_info)},
2591 { "tid", &spufs_tid_fops, 0444, },
2592 { "stat", &spufs_stat_fops, 0444, },
2593 { "switch_log", &spufs_switch_log_fops, 0444 },
2594 {},
2595 };
2596
2597 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2598 { "capabilities", &spufs_caps_fops, 0444, },
2599 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2600 { "mbox", &spufs_mbox_fops, 0444, },
2601 { "ibox", &spufs_ibox_fops, 0444, },
2602 { "wbox", &spufs_wbox_fops, 0222, },
2603 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2604 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2605 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2606 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2607 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2608 { "signal1_type", &spufs_signal1_type, 0666, },
2609 { "signal2_type", &spufs_signal2_type, 0666, },
2610 { "mss", &spufs_mss_fops, 0666, },
2611 { "mfc", &spufs_mfc_fops, 0666, },
2612 { "cntl", &spufs_cntl_fops, 0666, },
2613 { "npc", &spufs_npc_ops, 0666, },
2614 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2615 { "phys-id", &spufs_id_ops, 0666, },
2616 { "object-id", &spufs_object_id_ops, 0666, },
2617 { "tid", &spufs_tid_fops, 0444, },
2618 { "stat", &spufs_stat_fops, 0444, },
2619 {},
2620 };
2621
2622 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2623 { ".ctx", &spufs_ctx_fops, 0444, },
2624 {},
2625 };
2626
2627 const struct spufs_coredump_reader spufs_coredump_read[] = {
2628 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2629 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2630 { "lslr", NULL, spufs_lslr_get, 19 },
2631 { "decr", NULL, spufs_decr_get, 19 },
2632 { "decr_status", NULL, spufs_decr_status_get, 19 },
2633 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2634 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2635 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2636 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2637 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2638 { "event_mask", NULL, spufs_event_mask_get, 19 },
2639 { "event_status", NULL, spufs_event_status_get, 19 },
2640 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2641 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2642 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2643 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2644 { "proxydma_info", __spufs_proxydma_info_read,
2645 NULL, sizeof(struct spu_proxydma_info)},
2646 { "object-id", NULL, spufs_object_id_get, 19 },
2647 { "npc", NULL, spufs_npc_get, 19 },
2648 { NULL },
2649 };
2650