1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/5level-fixup.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11
12 /*
13 * Common bits between hash and Radix page table
14 */
15 #define _PAGE_BIT_SWAP_TYPE 0
16
17 #define _PAGE_EXEC 0x00001 /* execute permission */
18 #define _PAGE_WRITE 0x00002 /* write access allowed */
19 #define _PAGE_READ 0x00004 /* read access allowed */
20 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
23 #define _PAGE_SAO 0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY 0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
28 /*
29 * Software bits
30 */
31 #define _RPAGE_SW0 0x2000000000000000UL
32 #define _RPAGE_SW1 0x00800
33 #define _RPAGE_SW2 0x00400
34 #define _RPAGE_SW3 0x00200
35 #define _RPAGE_RSV1 0x1000000000000000UL
36 #define _RPAGE_RSV2 0x0800000000000000UL
37 #define _RPAGE_RSV3 0x0400000000000000UL
38 #define _RPAGE_RSV4 0x0200000000000000UL
39 #define _RPAGE_RSV5 0x00040UL
40
41 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
43 /*
44 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46 * differentiate between two use a SW field when invalidating.
47 *
48 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49 *
50 * This is used only when _PAGE_PRESENT is cleared.
51 */
52 #define _PAGE_INVALID _RPAGE_SW0
53
54 /*
55 * Top and bottom bits of RPN which can be used by hash
56 * translation mode, because we expect them to be zero
57 * otherwise.
58 */
59 #define _RPAGE_RPN0 0x01000
60 #define _RPAGE_RPN1 0x02000
61 #define _RPAGE_RPN44 0x0100000000000000UL
62 #define _RPAGE_RPN43 0x0080000000000000UL
63 #define _RPAGE_RPN42 0x0040000000000000UL
64 #define _RPAGE_RPN41 0x0020000000000000UL
65
66 /* Max physical address bit as per radix table */
67 #define _RPAGE_PA_MAX 57
68
69 /*
70 * Max physical address bit we will use for now.
71 *
72 * This is mostly a hardware limitation and for now Power9 has
73 * a 51 bit limit.
74 *
75 * This is different from the number of physical bit required to address
76 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
77 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
78 * number of sections we can support (SECTIONS_SHIFT).
79 *
80 * This is different from Radix page table limitation above and
81 * should always be less than that. The limit is done such that
82 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
83 * for hash linux page table specific bits.
84 *
85 * In order to be compatible with future hardware generations we keep
86 * some offsets and limit this for now to 53
87 */
88 #define _PAGE_PA_MAX 53
89
90 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
91 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
92 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
93
94 /*
95 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
96 * Instead of fixing all of them, add an alternate define which
97 * maps CI pte mapping.
98 */
99 #define _PAGE_NO_CACHE _PAGE_TOLERANT
100 /*
101 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
102 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
103 * and every thing below PAGE_SHIFT;
104 */
105 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
106 /*
107 * set of bits not changed in pmd_modify. Even though we have hash specific bits
108 * in here, on radix we expect them to be zero.
109 */
110 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
111 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
112 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
113 /*
114 * user access blocked by key
115 */
116 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
117 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
118 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
119 _PAGE_RW | _PAGE_EXEC)
120 /*
121 * _PAGE_CHG_MASK masks of bits that are to be preserved across
122 * pgprot changes
123 */
124 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
125 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
126 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
127
128 #define H_PTE_PKEY (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
129 H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
130 /*
131 * We define 2 sets of base prot bits, one for basic pages (ie,
132 * cacheable kernel and user pages) and one for non cacheable
133 * pages. We always set _PAGE_COHERENT when SMP is enabled or
134 * the processor might need it for DMA coherency.
135 */
136 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE (_PAGE_BASE_NC)
138
139 /* Permission masks used to generate the __P and __S table,
140 *
141 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142 *
143 * Write permissions imply read permissions for now (we could make write-only
144 * pages on BookE but we don't bother for now). Execute permission control is
145 * possible on platforms that define _PAGE_EXEC
146 */
147 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154
155 /* Permission masks used for kernel mappings */
156 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158 _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 _PAGE_NON_IDEMPOTENT)
161 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164
165 /*
166 * Protection used for kernel text. We want the debuggers to be able to
167 * set breakpoints anywhere, so don't write protect the kernel text
168 * on platforms where such control is possible.
169 */
170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
173 #else
174 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
175 #endif
176
177 /* Make modules code happy. We don't set RO yet */
178 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
179 #define PAGE_AGP (PAGE_KERNEL_NC)
180
181 #ifndef __ASSEMBLY__
182 /*
183 * page table defines
184 */
185 extern unsigned long __pte_index_size;
186 extern unsigned long __pmd_index_size;
187 extern unsigned long __pud_index_size;
188 extern unsigned long __pgd_index_size;
189 extern unsigned long __pud_cache_index;
190 #define PTE_INDEX_SIZE __pte_index_size
191 #define PMD_INDEX_SIZE __pmd_index_size
192 #define PUD_INDEX_SIZE __pud_index_size
193 #define PGD_INDEX_SIZE __pgd_index_size
194 /* pmd table use page table fragments */
195 #define PMD_CACHE_INDEX 0
196 #define PUD_CACHE_INDEX __pud_cache_index
197 /*
198 * Because of use of pte fragments and THP, size of page table
199 * are not always derived out of index size above.
200 */
201 extern unsigned long __pte_table_size;
202 extern unsigned long __pmd_table_size;
203 extern unsigned long __pud_table_size;
204 extern unsigned long __pgd_table_size;
205 #define PTE_TABLE_SIZE __pte_table_size
206 #define PMD_TABLE_SIZE __pmd_table_size
207 #define PUD_TABLE_SIZE __pud_table_size
208 #define PGD_TABLE_SIZE __pgd_table_size
209
210 extern unsigned long __pmd_val_bits;
211 extern unsigned long __pud_val_bits;
212 extern unsigned long __pgd_val_bits;
213 #define PMD_VAL_BITS __pmd_val_bits
214 #define PUD_VAL_BITS __pud_val_bits
215 #define PGD_VAL_BITS __pgd_val_bits
216
217 extern unsigned long __pte_frag_nr;
218 #define PTE_FRAG_NR __pte_frag_nr
219 extern unsigned long __pte_frag_size_shift;
220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222
223 extern unsigned long __pmd_frag_nr;
224 #define PMD_FRAG_NR __pmd_frag_nr
225 extern unsigned long __pmd_frag_size_shift;
226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228
229 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
230 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
231 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
232 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
233
234 /* PMD_SHIFT determines what a second-level page table entry can map */
235 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
236 #define PMD_SIZE (1UL << PMD_SHIFT)
237 #define PMD_MASK (~(PMD_SIZE-1))
238
239 /* PUD_SHIFT determines what a third-level page table entry can map */
240 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
241 #define PUD_SIZE (1UL << PUD_SHIFT)
242 #define PUD_MASK (~(PUD_SIZE-1))
243
244 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
245 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
246 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
247 #define PGDIR_MASK (~(PGDIR_SIZE-1))
248
249 /* Bits to mask out from a PMD to get to the PTE page */
250 #define PMD_MASKED_BITS 0xc0000000000000ffUL
251 /* Bits to mask out from a PUD to get to the PMD page */
252 #define PUD_MASKED_BITS 0xc0000000000000ffUL
253 /* Bits to mask out from a PGD to get to the PUD page */
254 #define PGD_MASKED_BITS 0xc0000000000000ffUL
255
256 /*
257 * Used as an indicator for rcu callback functions
258 */
259 enum pgtable_index {
260 PTE_INDEX = 0,
261 PMD_INDEX,
262 PUD_INDEX,
263 PGD_INDEX,
264 /*
265 * Below are used with 4k page size and hugetlb
266 */
267 HTLB_16M_INDEX,
268 HTLB_16G_INDEX,
269 };
270
271 extern unsigned long __vmalloc_start;
272 extern unsigned long __vmalloc_end;
273 #define VMALLOC_START __vmalloc_start
274 #define VMALLOC_END __vmalloc_end
275
ioremap_max_order(void)276 static inline unsigned int ioremap_max_order(void)
277 {
278 if (radix_enabled())
279 return PUD_SHIFT;
280 return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
281 }
282 #define IOREMAP_MAX_ORDER ioremap_max_order()
283
284 extern unsigned long __kernel_virt_start;
285 extern unsigned long __kernel_io_start;
286 extern unsigned long __kernel_io_end;
287 #define KERN_VIRT_START __kernel_virt_start
288 #define KERN_IO_START __kernel_io_start
289 #define KERN_IO_END __kernel_io_end
290
291 extern struct page *vmemmap;
292 extern unsigned long pci_io_base;
293 #endif /* __ASSEMBLY__ */
294
295 #include <asm/book3s/64/hash.h>
296 #include <asm/book3s/64/radix.h>
297
298 #ifdef CONFIG_PPC_64K_PAGES
299 #include <asm/book3s/64/pgtable-64k.h>
300 #else
301 #include <asm/book3s/64/pgtable-4k.h>
302 #endif
303
304 #include <asm/barrier.h>
305 /*
306 * IO space itself carved into the PIO region (ISA and PHB IO space) and
307 * the ioremap space
308 *
309 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
310 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
311 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
312 */
313 #define FULL_IO_SIZE 0x80000000ul
314 #define ISA_IO_BASE (KERN_IO_START)
315 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
316 #define PHB_IO_BASE (ISA_IO_END)
317 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
318 #define IOREMAP_BASE (PHB_IO_END)
319 #define IOREMAP_START (ioremap_bot)
320 #define IOREMAP_END (KERN_IO_END)
321
322 /* Advertise special mapping type for AGP */
323 #define HAVE_PAGE_AGP
324
325 #ifndef __ASSEMBLY__
326
327 /*
328 * This is the default implementation of various PTE accessors, it's
329 * used in all cases except Book3S with 64K pages where we have a
330 * concept of sub-pages
331 */
332 #ifndef __real_pte
333
334 #define __real_pte(e, p, o) ((real_pte_t){(e)})
335 #define __rpte_to_pte(r) ((r).pte)
336 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
337
338 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
339 do { \
340 index = 0; \
341 shift = mmu_psize_defs[psize].shift; \
342
343 #define pte_iterate_hashed_end() } while(0)
344
345 /*
346 * We expect this to be called only for user addresses or kernel virtual
347 * addresses other than the linear mapping.
348 */
349 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
350
351 #endif /* __real_pte */
352
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)353 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
354 pte_t *ptep, unsigned long clr,
355 unsigned long set, int huge)
356 {
357 if (radix_enabled())
358 return radix__pte_update(mm, addr, ptep, clr, set, huge);
359 return hash__pte_update(mm, addr, ptep, clr, set, huge);
360 }
361 /*
362 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
363 * We currently remove entries from the hashtable regardless of whether
364 * the entry was young or dirty.
365 *
366 * We should be more intelligent about this but for the moment we override
367 * these functions and force a tlb flush unconditionally
368 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
369 * function for both hash and radix.
370 */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)371 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
372 unsigned long addr, pte_t *ptep)
373 {
374 unsigned long old;
375
376 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
377 return 0;
378 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
379 return (old & _PAGE_ACCESSED) != 0;
380 }
381
382 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
383 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
384 ({ \
385 int __r; \
386 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
387 __r; \
388 })
389
__pte_write(pte_t pte)390 static inline int __pte_write(pte_t pte)
391 {
392 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
393 }
394
395 #ifdef CONFIG_NUMA_BALANCING
396 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)397 static inline bool pte_savedwrite(pte_t pte)
398 {
399 /*
400 * Saved write ptes are prot none ptes that doesn't have
401 * privileged bit sit. We mark prot none as one which has
402 * present and pviliged bit set and RWX cleared. To mark
403 * protnone which used to have _PAGE_WRITE set we clear
404 * the privileged bit.
405 */
406 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
407 }
408 #else
409 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)410 static inline bool pte_savedwrite(pte_t pte)
411 {
412 return false;
413 }
414 #endif
415
pte_write(pte_t pte)416 static inline int pte_write(pte_t pte)
417 {
418 return __pte_write(pte) || pte_savedwrite(pte);
419 }
420
pte_read(pte_t pte)421 static inline int pte_read(pte_t pte)
422 {
423 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
424 }
425
426 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)427 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
428 pte_t *ptep)
429 {
430 if (__pte_write(*ptep))
431 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
432 else if (unlikely(pte_savedwrite(*ptep)))
433 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
434 }
435
436 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)437 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
438 unsigned long addr, pte_t *ptep)
439 {
440 /*
441 * We should not find protnone for hugetlb, but this complete the
442 * interface.
443 */
444 if (__pte_write(*ptep))
445 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
446 else if (unlikely(pte_savedwrite(*ptep)))
447 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
448 }
449
450 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
452 unsigned long addr, pte_t *ptep)
453 {
454 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
455 return __pte(old);
456 }
457
458 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)459 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
460 unsigned long addr,
461 pte_t *ptep, int full)
462 {
463 if (full && radix_enabled()) {
464 /*
465 * We know that this is a full mm pte clear and
466 * hence can be sure there is no parallel set_pte.
467 */
468 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
469 }
470 return ptep_get_and_clear(mm, addr, ptep);
471 }
472
473
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)474 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
475 pte_t * ptep)
476 {
477 pte_update(mm, addr, ptep, ~0UL, 0, 0);
478 }
479
pte_dirty(pte_t pte)480 static inline int pte_dirty(pte_t pte)
481 {
482 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
483 }
484
pte_young(pte_t pte)485 static inline int pte_young(pte_t pte)
486 {
487 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
488 }
489
pte_special(pte_t pte)490 static inline int pte_special(pte_t pte)
491 {
492 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
493 }
494
pte_exec(pte_t pte)495 static inline bool pte_exec(pte_t pte)
496 {
497 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
498 }
499
500
501 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)502 static inline bool pte_soft_dirty(pte_t pte)
503 {
504 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
505 }
506
pte_mksoft_dirty(pte_t pte)507 static inline pte_t pte_mksoft_dirty(pte_t pte)
508 {
509 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
510 }
511
pte_clear_soft_dirty(pte_t pte)512 static inline pte_t pte_clear_soft_dirty(pte_t pte)
513 {
514 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
515 }
516 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
517
518 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)519 static inline int pte_protnone(pte_t pte)
520 {
521 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
522 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
523 }
524
525 #define pte_mk_savedwrite pte_mk_savedwrite
pte_mk_savedwrite(pte_t pte)526 static inline pte_t pte_mk_savedwrite(pte_t pte)
527 {
528 /*
529 * Used by Autonuma subsystem to preserve the write bit
530 * while marking the pte PROT_NONE. Only allow this
531 * on PROT_NONE pte
532 */
533 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
534 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
535 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
536 }
537
538 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)539 static inline pte_t pte_clear_savedwrite(pte_t pte)
540 {
541 /*
542 * Used by KSM subsystem to make a protnone pte readonly.
543 */
544 VM_BUG_ON(!pte_protnone(pte));
545 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
546 }
547 #else
548 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)549 static inline pte_t pte_clear_savedwrite(pte_t pte)
550 {
551 VM_WARN_ON(1);
552 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
553 }
554 #endif /* CONFIG_NUMA_BALANCING */
555
pte_present(pte_t pte)556 static inline int pte_present(pte_t pte)
557 {
558 /*
559 * A pte is considerent present if _PAGE_PRESENT is set.
560 * We also need to consider the pte present which is marked
561 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
562 * if we find _PAGE_PRESENT cleared.
563 */
564 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
565 }
566
pte_hw_valid(pte_t pte)567 static inline bool pte_hw_valid(pte_t pte)
568 {
569 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
570 }
571
572 #ifdef CONFIG_PPC_MEM_KEYS
573 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
574 #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)575 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
576 {
577 return true;
578 }
579 #endif /* CONFIG_PPC_MEM_KEYS */
580
pte_user(pte_t pte)581 static inline bool pte_user(pte_t pte)
582 {
583 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
584 }
585
586 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)587 static inline bool pte_access_permitted(pte_t pte, bool write)
588 {
589 /*
590 * _PAGE_READ is needed for any access and will be
591 * cleared for PROT_NONE
592 */
593 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
594 return false;
595
596 if (write && !pte_write(pte))
597 return false;
598
599 return arch_pte_access_permitted(pte_val(pte), write, 0);
600 }
601
602 /*
603 * Conversion functions: convert a page and protection to a page entry,
604 * and a page entry and page directory to the page they refer to.
605 *
606 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
607 * long for now.
608 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)609 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
610 {
611 VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
612 VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
613
614 return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot));
615 }
616
pte_pfn(pte_t pte)617 static inline unsigned long pte_pfn(pte_t pte)
618 {
619 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
620 }
621
622 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)623 static inline pte_t pte_wrprotect(pte_t pte)
624 {
625 if (unlikely(pte_savedwrite(pte)))
626 return pte_clear_savedwrite(pte);
627 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
628 }
629
pte_exprotect(pte_t pte)630 static inline pte_t pte_exprotect(pte_t pte)
631 {
632 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
633 }
634
pte_mkclean(pte_t pte)635 static inline pte_t pte_mkclean(pte_t pte)
636 {
637 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
638 }
639
pte_mkold(pte_t pte)640 static inline pte_t pte_mkold(pte_t pte)
641 {
642 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
643 }
644
pte_mkexec(pte_t pte)645 static inline pte_t pte_mkexec(pte_t pte)
646 {
647 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
648 }
649
pte_mkpte(pte_t pte)650 static inline pte_t pte_mkpte(pte_t pte)
651 {
652 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
653 }
654
pte_mkwrite(pte_t pte)655 static inline pte_t pte_mkwrite(pte_t pte)
656 {
657 /*
658 * write implies read, hence set both
659 */
660 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
661 }
662
pte_mkdirty(pte_t pte)663 static inline pte_t pte_mkdirty(pte_t pte)
664 {
665 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
666 }
667
pte_mkyoung(pte_t pte)668 static inline pte_t pte_mkyoung(pte_t pte)
669 {
670 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
671 }
672
pte_mkspecial(pte_t pte)673 static inline pte_t pte_mkspecial(pte_t pte)
674 {
675 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
676 }
677
pte_mkhuge(pte_t pte)678 static inline pte_t pte_mkhuge(pte_t pte)
679 {
680 return pte;
681 }
682
pte_mkdevmap(pte_t pte)683 static inline pte_t pte_mkdevmap(pte_t pte)
684 {
685 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
686 }
687
pte_mkprivileged(pte_t pte)688 static inline pte_t pte_mkprivileged(pte_t pte)
689 {
690 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
691 }
692
pte_mkuser(pte_t pte)693 static inline pte_t pte_mkuser(pte_t pte)
694 {
695 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
696 }
697
698 /*
699 * This is potentially called with a pmd as the argument, in which case it's not
700 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
701 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
702 * use in page directory entries (ie. non-ptes).
703 */
pte_devmap(pte_t pte)704 static inline int pte_devmap(pte_t pte)
705 {
706 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
707
708 return (pte_raw(pte) & mask) == mask;
709 }
710
pte_modify(pte_t pte,pgprot_t newprot)711 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
712 {
713 /* FIXME!! check whether this need to be a conditional */
714 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
715 cpu_to_be64(pgprot_val(newprot)));
716 }
717
718 /* Encode and de-code a swap entry */
719 #define MAX_SWAPFILES_CHECK() do { \
720 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
721 /* \
722 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
723 * We filter HPTEFLAGS on set_pte. \
724 */ \
725 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
726 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
727 } while (0)
728
729 #define SWP_TYPE_BITS 5
730 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
731 & ((1UL << SWP_TYPE_BITS) - 1))
732 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
733 #define __swp_entry(type, offset) ((swp_entry_t) { \
734 ((type) << _PAGE_BIT_SWAP_TYPE) \
735 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
736 /*
737 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
738 * swap type and offset we get from swap and convert that to pte to find a
739 * matching pte in linux page table.
740 * Clear bits not found in swap entries here.
741 */
742 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
743 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
744 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
745 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
746
747 #ifdef CONFIG_MEM_SOFT_DIRTY
748 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
749 #else
750 #define _PAGE_SWP_SOFT_DIRTY 0UL
751 #endif /* CONFIG_MEM_SOFT_DIRTY */
752
753 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)754 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
755 {
756 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
757 }
758
pte_swp_soft_dirty(pte_t pte)759 static inline bool pte_swp_soft_dirty(pte_t pte)
760 {
761 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
762 }
763
pte_swp_clear_soft_dirty(pte_t pte)764 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
765 {
766 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
767 }
768 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
769
check_pte_access(unsigned long access,unsigned long ptev)770 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
771 {
772 /*
773 * This check for _PAGE_RWX and _PAGE_PRESENT bits
774 */
775 if (access & ~ptev)
776 return false;
777 /*
778 * This check for access to privilege space
779 */
780 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
781 return false;
782
783 return true;
784 }
785 /*
786 * Generic functions with hash/radix callbacks
787 */
788
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)789 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
790 pte_t *ptep, pte_t entry,
791 unsigned long address,
792 int psize)
793 {
794 if (radix_enabled())
795 return radix__ptep_set_access_flags(vma, ptep, entry,
796 address, psize);
797 return hash__ptep_set_access_flags(ptep, entry);
798 }
799
800 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)801 static inline int pte_same(pte_t pte_a, pte_t pte_b)
802 {
803 if (radix_enabled())
804 return radix__pte_same(pte_a, pte_b);
805 return hash__pte_same(pte_a, pte_b);
806 }
807
pte_none(pte_t pte)808 static inline int pte_none(pte_t pte)
809 {
810 if (radix_enabled())
811 return radix__pte_none(pte);
812 return hash__pte_none(pte);
813 }
814
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)815 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
816 pte_t *ptep, pte_t pte, int percpu)
817 {
818 if (radix_enabled())
819 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
820 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
821 }
822
823 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
824
825 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)826 static inline pgprot_t pgprot_noncached(pgprot_t prot)
827 {
828 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
829 _PAGE_NON_IDEMPOTENT);
830 }
831
832 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)833 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
834 {
835 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
836 _PAGE_TOLERANT);
837 }
838
839 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)840 static inline pgprot_t pgprot_cached(pgprot_t prot)
841 {
842 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
843 }
844
845 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)846 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
847 {
848 return pgprot_noncached_wc(prot);
849 }
850 /*
851 * check a pte mapping have cache inhibited property
852 */
pte_ci(pte_t pte)853 static inline bool pte_ci(pte_t pte)
854 {
855 __be64 pte_v = pte_raw(pte);
856
857 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
858 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
859 return true;
860 return false;
861 }
862
pmd_clear(pmd_t * pmdp)863 static inline void pmd_clear(pmd_t *pmdp)
864 {
865 *pmdp = __pmd(0);
866 }
867
pmd_none(pmd_t pmd)868 static inline int pmd_none(pmd_t pmd)
869 {
870 return !pmd_raw(pmd);
871 }
872
pmd_present(pmd_t pmd)873 static inline int pmd_present(pmd_t pmd)
874 {
875 /*
876 * A pmd is considerent present if _PAGE_PRESENT is set.
877 * We also need to consider the pmd present which is marked
878 * invalid during a split. Hence we look for _PAGE_INVALID
879 * if we find _PAGE_PRESENT cleared.
880 */
881 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
882 return true;
883
884 return false;
885 }
886
pmd_is_serializing(pmd_t pmd)887 static inline int pmd_is_serializing(pmd_t pmd)
888 {
889 /*
890 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
891 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
892 *
893 * This condition may also occur when flushing a pmd while flushing
894 * it (see ptep_modify_prot_start), so callers must ensure this
895 * case is fine as well.
896 */
897 if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
898 cpu_to_be64(_PAGE_INVALID))
899 return true;
900
901 return false;
902 }
903
pmd_bad(pmd_t pmd)904 static inline int pmd_bad(pmd_t pmd)
905 {
906 if (radix_enabled())
907 return radix__pmd_bad(pmd);
908 return hash__pmd_bad(pmd);
909 }
910
pud_clear(pud_t * pudp)911 static inline void pud_clear(pud_t *pudp)
912 {
913 *pudp = __pud(0);
914 }
915
pud_none(pud_t pud)916 static inline int pud_none(pud_t pud)
917 {
918 return !pud_raw(pud);
919 }
920
pud_present(pud_t pud)921 static inline int pud_present(pud_t pud)
922 {
923 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
924 }
925
926 extern struct page *pud_page(pud_t pud);
927 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)928 static inline pte_t pud_pte(pud_t pud)
929 {
930 return __pte_raw(pud_raw(pud));
931 }
932
pte_pud(pte_t pte)933 static inline pud_t pte_pud(pte_t pte)
934 {
935 return __pud_raw(pte_raw(pte));
936 }
937 #define pud_write(pud) pte_write(pud_pte(pud))
938
pud_bad(pud_t pud)939 static inline int pud_bad(pud_t pud)
940 {
941 if (radix_enabled())
942 return radix__pud_bad(pud);
943 return hash__pud_bad(pud);
944 }
945
946 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)947 static inline bool pud_access_permitted(pud_t pud, bool write)
948 {
949 return pte_access_permitted(pud_pte(pud), write);
950 }
951
952 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
953
pgd_clear(pgd_t * pgdp)954 static inline void pgd_clear(pgd_t *pgdp)
955 {
956 *pgdp = __pgd(0);
957 }
958
pgd_none(pgd_t pgd)959 static inline int pgd_none(pgd_t pgd)
960 {
961 return !pgd_raw(pgd);
962 }
963
pgd_present(pgd_t pgd)964 static inline int pgd_present(pgd_t pgd)
965 {
966 return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
967 }
968
pgd_pte(pgd_t pgd)969 static inline pte_t pgd_pte(pgd_t pgd)
970 {
971 return __pte_raw(pgd_raw(pgd));
972 }
973
pte_pgd(pte_t pte)974 static inline pgd_t pte_pgd(pte_t pte)
975 {
976 return __pgd_raw(pte_raw(pte));
977 }
978
pgd_bad(pgd_t pgd)979 static inline int pgd_bad(pgd_t pgd)
980 {
981 if (radix_enabled())
982 return radix__pgd_bad(pgd);
983 return hash__pgd_bad(pgd);
984 }
985
986 #define pgd_access_permitted pgd_access_permitted
pgd_access_permitted(pgd_t pgd,bool write)987 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
988 {
989 return pte_access_permitted(pgd_pte(pgd), write);
990 }
991
992 extern struct page *pgd_page(pgd_t pgd);
993
994 /* Pointers in the page table tree are physical addresses */
995 #define __pgtable_ptr_val(ptr) __pa(ptr)
996
997 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
998 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
999 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
1000
1001 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
1002 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
1003 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
1004 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
1005
1006 /*
1007 * Find an entry in a page-table-directory. We combine the address region
1008 * (the high order N bits) and the pgd portion of the address.
1009 */
1010
1011 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1012
1013 #define pud_offset(pgdp, addr) \
1014 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1015 #define pmd_offset(pudp,addr) \
1016 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1017 #define pte_offset_kernel(dir,addr) \
1018 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1019
1020 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
1021
pte_unmap(pte_t * pte)1022 static inline void pte_unmap(pte_t *pte) { }
1023
1024 /* to find an entry in a kernel page-table-directory */
1025 /* This now only contains the vmalloc pages */
1026 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1027
1028 #define pte_ERROR(e) \
1029 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1030 #define pmd_ERROR(e) \
1031 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1032 #define pud_ERROR(e) \
1033 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1034 #define pgd_ERROR(e) \
1035 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1036
map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)1037 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1038 {
1039 if (radix_enabled()) {
1040 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1041 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1042 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1043 #endif
1044 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1045 }
1046 return hash__map_kernel_page(ea, pa, prot);
1047 }
1048
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1049 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1050 unsigned long page_size,
1051 unsigned long phys)
1052 {
1053 if (radix_enabled())
1054 return radix__vmemmap_create_mapping(start, page_size, phys);
1055 return hash__vmemmap_create_mapping(start, page_size, phys);
1056 }
1057
1058 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1059 static inline void vmemmap_remove_mapping(unsigned long start,
1060 unsigned long page_size)
1061 {
1062 if (radix_enabled())
1063 return radix__vmemmap_remove_mapping(start, page_size);
1064 return hash__vmemmap_remove_mapping(start, page_size);
1065 }
1066 #endif
1067
pmd_pte(pmd_t pmd)1068 static inline pte_t pmd_pte(pmd_t pmd)
1069 {
1070 return __pte_raw(pmd_raw(pmd));
1071 }
1072
pte_pmd(pte_t pte)1073 static inline pmd_t pte_pmd(pte_t pte)
1074 {
1075 return __pmd_raw(pte_raw(pte));
1076 }
1077
pmdp_ptep(pmd_t * pmd)1078 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1079 {
1080 return (pte_t *)pmd;
1081 }
1082 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1083 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1084 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
1085 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1086 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1087 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1088 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1089 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1090 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1091 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1092 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1093
1094 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1095 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1096 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1097 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1098
1099 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1100 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1101 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
1102 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1103 #endif
1104 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1105
1106 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1107 static inline int pmd_protnone(pmd_t pmd)
1108 {
1109 return pte_protnone(pmd_pte(pmd));
1110 }
1111 #endif /* CONFIG_NUMA_BALANCING */
1112
1113 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
1114 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
1115 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
1116
1117 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1118 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1119 {
1120 /*
1121 * pmdp_invalidate sets this combination (which is not caught by
1122 * !pte_present() check in pte_access_permitted), to prevent
1123 * lock-free lookups, as part of the serialize_against_pte_lookup()
1124 * synchronisation.
1125 *
1126 * This also catches the case where the PTE's hardware PRESENT bit is
1127 * cleared while TLB is flushed, which is suboptimal but should not
1128 * be frequent.
1129 */
1130 if (pmd_is_serializing(pmd))
1131 return false;
1132
1133 return pte_access_permitted(pmd_pte(pmd), write);
1134 }
1135
1136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1137 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1138 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1139 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1140 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1141 pmd_t *pmdp, pmd_t pmd);
1142 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1143 pmd_t *pmd);
1144 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1145 static inline int has_transparent_hugepage(void)
1146 {
1147 if (radix_enabled())
1148 return radix__has_transparent_hugepage();
1149 return hash__has_transparent_hugepage();
1150 }
1151 #define has_transparent_hugepage has_transparent_hugepage
1152
1153 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1154 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1155 unsigned long clr, unsigned long set)
1156 {
1157 if (radix_enabled())
1158 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1159 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1160 }
1161
1162 /*
1163 * returns true for pmd migration entries, THP, devmap, hugetlb
1164 * But compile time dependent on THP config
1165 */
pmd_large(pmd_t pmd)1166 static inline int pmd_large(pmd_t pmd)
1167 {
1168 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1169 }
1170
pmd_mknotpresent(pmd_t pmd)1171 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1172 {
1173 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1174 }
1175 /*
1176 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1177 * the below will work for radix too
1178 */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1179 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1180 unsigned long addr, pmd_t *pmdp)
1181 {
1182 unsigned long old;
1183
1184 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1185 return 0;
1186 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1187 return ((old & _PAGE_ACCESSED) != 0);
1188 }
1189
1190 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1191 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1192 pmd_t *pmdp)
1193 {
1194 if (__pmd_write((*pmdp)))
1195 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1196 else if (unlikely(pmd_savedwrite(*pmdp)))
1197 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1198 }
1199
1200 /*
1201 * Only returns true for a THP. False for pmd migration entry.
1202 * We also need to return true when we come across a pte that
1203 * in between a thp split. While splitting THP, we mark the pmd
1204 * invalid (pmdp_invalidate()) before we set it with pte page
1205 * address. A pmd_trans_huge() check against a pmd entry during that time
1206 * should return true.
1207 * We should not call this on a hugetlb entry. We should check for HugeTLB
1208 * entry using vma->vm_flags
1209 * The page table walk rule is explained in Documentation/vm/transhuge.rst
1210 */
pmd_trans_huge(pmd_t pmd)1211 static inline int pmd_trans_huge(pmd_t pmd)
1212 {
1213 if (!pmd_present(pmd))
1214 return false;
1215
1216 if (radix_enabled())
1217 return radix__pmd_trans_huge(pmd);
1218 return hash__pmd_trans_huge(pmd);
1219 }
1220
1221 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1222 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1223 {
1224 if (radix_enabled())
1225 return radix__pmd_same(pmd_a, pmd_b);
1226 return hash__pmd_same(pmd_a, pmd_b);
1227 }
1228
pmd_mkhuge(pmd_t pmd)1229 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1230 {
1231 if (radix_enabled())
1232 return radix__pmd_mkhuge(pmd);
1233 return hash__pmd_mkhuge(pmd);
1234 }
1235
1236 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1237 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1238 unsigned long address, pmd_t *pmdp,
1239 pmd_t entry, int dirty);
1240
1241 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1242 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1243 unsigned long address, pmd_t *pmdp);
1244
1245 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1246 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1247 unsigned long addr, pmd_t *pmdp)
1248 {
1249 if (radix_enabled())
1250 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1251 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1252 }
1253
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1254 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1255 unsigned long address, pmd_t *pmdp)
1256 {
1257 if (radix_enabled())
1258 return radix__pmdp_collapse_flush(vma, address, pmdp);
1259 return hash__pmdp_collapse_flush(vma, address, pmdp);
1260 }
1261 #define pmdp_collapse_flush pmdp_collapse_flush
1262
1263 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1264 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1265 pmd_t *pmdp, pgtable_t pgtable)
1266 {
1267 if (radix_enabled())
1268 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1269 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1270 }
1271
1272 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1273 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1274 pmd_t *pmdp)
1275 {
1276 if (radix_enabled())
1277 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1278 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1279 }
1280
1281 #define __HAVE_ARCH_PMDP_INVALIDATE
1282 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1283 pmd_t *pmdp);
1284
1285 #define pmd_move_must_withdraw pmd_move_must_withdraw
1286 struct spinlock;
1287 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1288 struct spinlock *old_pmd_ptl,
1289 struct vm_area_struct *vma);
1290 /*
1291 * Hash translation mode use the deposited table to store hash pte
1292 * slot information.
1293 */
1294 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1295 static inline bool arch_needs_pgtable_deposit(void)
1296 {
1297 if (radix_enabled())
1298 return false;
1299 return true;
1300 }
1301 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1302
1303
pmd_mkdevmap(pmd_t pmd)1304 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1305 {
1306 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1307 }
1308
pmd_devmap(pmd_t pmd)1309 static inline int pmd_devmap(pmd_t pmd)
1310 {
1311 return pte_devmap(pmd_pte(pmd));
1312 }
1313
pud_devmap(pud_t pud)1314 static inline int pud_devmap(pud_t pud)
1315 {
1316 return 0;
1317 }
1318
pgd_devmap(pgd_t pgd)1319 static inline int pgd_devmap(pgd_t pgd)
1320 {
1321 return 0;
1322 }
1323 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1324
pud_pfn(pud_t pud)1325 static inline int pud_pfn(pud_t pud)
1326 {
1327 /*
1328 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1329 * check so this should never be used. If it grows another user we
1330 * want to know about it.
1331 */
1332 BUILD_BUG();
1333 return 0;
1334 }
1335 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1336 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1337 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1338 pte_t *, pte_t, pte_t);
1339
1340 /*
1341 * Returns true for a R -> RW upgrade of pte
1342 */
is_pte_rw_upgrade(unsigned long old_val,unsigned long new_val)1343 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1344 {
1345 if (!(old_val & _PAGE_READ))
1346 return false;
1347
1348 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1349 return true;
1350
1351 return false;
1352 }
1353
1354 /*
1355 * Like pmd_huge() and pmd_large(), but works regardless of config options
1356 */
1357 #define pmd_is_leaf pmd_is_leaf
pmd_is_leaf(pmd_t pmd)1358 static inline bool pmd_is_leaf(pmd_t pmd)
1359 {
1360 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1361 }
1362
1363 #define pud_is_leaf pud_is_leaf
pud_is_leaf(pud_t pud)1364 static inline bool pud_is_leaf(pud_t pud)
1365 {
1366 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1367 }
1368
1369 #define pgd_is_leaf pgd_is_leaf
pgd_is_leaf(pgd_t pgd)1370 static inline bool pgd_is_leaf(pgd_t pgd)
1371 {
1372 return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PTE));
1373 }
1374
1375 #endif /* __ASSEMBLY__ */
1376 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1377