1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/proc_fs.h>
27 #include <linux/memblock.h>
28 #include <linux/of_fdt.h>
29 #include <linux/efi.h>
30 #include <linux/psci.h>
31 #include <linux/sched/task.h>
32 #include <linux/mm.h>
33
34 #include <asm/acpi.h>
35 #include <asm/fixmap.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/daifflags.h>
39 #include <asm/elf.h>
40 #include <asm/cpufeature.h>
41 #include <asm/cpu_ops.h>
42 #include <asm/kasan.h>
43 #include <asm/numa.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <asm/smp_plat.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlbflush.h>
49 #include <asm/traps.h>
50 #include <asm/efi.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/mmu_context.h>
53
54 static int num_standard_resources;
55 static struct resource *standard_resources;
56
57 phys_addr_t __fdt_pointer __initdata;
58
59 /*
60 * Standard memory resources
61 */
62 static struct resource mem_res[] = {
63 {
64 .name = "Kernel code",
65 .start = 0,
66 .end = 0,
67 .flags = IORESOURCE_SYSTEM_RAM
68 },
69 {
70 .name = "Kernel data",
71 .start = 0,
72 .end = 0,
73 .flags = IORESOURCE_SYSTEM_RAM
74 }
75 };
76
77 #define kernel_code mem_res[0]
78 #define kernel_data mem_res[1]
79
80 /*
81 * The recorded values of x0 .. x3 upon kernel entry.
82 */
83 u64 __cacheline_aligned boot_args[4];
84
smp_setup_processor_id(void)85 void __init smp_setup_processor_id(void)
86 {
87 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
88 cpu_logical_map(0) = mpidr;
89
90 /*
91 * clear __my_cpu_offset on boot CPU to avoid hang caused by
92 * using percpu variable early, for example, lockdep will
93 * access percpu variable inside lock_release
94 */
95 set_my_cpu_offset(0);
96 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
97 (unsigned long)mpidr, read_cpuid_id());
98 }
99
arch_match_cpu_phys_id(int cpu,u64 phys_id)100 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
101 {
102 return phys_id == cpu_logical_map(cpu);
103 }
104
105 struct mpidr_hash mpidr_hash;
106 /**
107 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
108 * level in order to build a linear index from an
109 * MPIDR value. Resulting algorithm is a collision
110 * free hash carried out through shifting and ORing
111 */
smp_build_mpidr_hash(void)112 static void __init smp_build_mpidr_hash(void)
113 {
114 u32 i, affinity, fs[4], bits[4], ls;
115 u64 mask = 0;
116 /*
117 * Pre-scan the list of MPIDRS and filter out bits that do
118 * not contribute to affinity levels, ie they never toggle.
119 */
120 for_each_possible_cpu(i)
121 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
122 pr_debug("mask of set bits %#llx\n", mask);
123 /*
124 * Find and stash the last and first bit set at all affinity levels to
125 * check how many bits are required to represent them.
126 */
127 for (i = 0; i < 4; i++) {
128 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
129 /*
130 * Find the MSB bit and LSB bits position
131 * to determine how many bits are required
132 * to express the affinity level.
133 */
134 ls = fls(affinity);
135 fs[i] = affinity ? ffs(affinity) - 1 : 0;
136 bits[i] = ls - fs[i];
137 }
138 /*
139 * An index can be created from the MPIDR_EL1 by isolating the
140 * significant bits at each affinity level and by shifting
141 * them in order to compress the 32 bits values space to a
142 * compressed set of values. This is equivalent to hashing
143 * the MPIDR_EL1 through shifting and ORing. It is a collision free
144 * hash though not minimal since some levels might contain a number
145 * of CPUs that is not an exact power of 2 and their bit
146 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
147 */
148 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
149 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
150 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
151 (bits[1] + bits[0]);
152 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
153 fs[3] - (bits[2] + bits[1] + bits[0]);
154 mpidr_hash.mask = mask;
155 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
156 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
157 mpidr_hash.shift_aff[0],
158 mpidr_hash.shift_aff[1],
159 mpidr_hash.shift_aff[2],
160 mpidr_hash.shift_aff[3],
161 mpidr_hash.mask,
162 mpidr_hash.bits);
163 /*
164 * 4x is an arbitrary value used to warn on a hash table much bigger
165 * than expected on most systems.
166 */
167 if (mpidr_hash_size() > 4 * num_possible_cpus())
168 pr_warn("Large number of MPIDR hash buckets detected\n");
169 }
170
setup_machine_fdt(phys_addr_t dt_phys)171 static void __init setup_machine_fdt(phys_addr_t dt_phys)
172 {
173 int size;
174 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
175 const char *name;
176
177 if (dt_virt)
178 memblock_reserve(dt_phys, size);
179
180 if (!dt_virt || !early_init_dt_scan(dt_virt)) {
181 pr_crit("\n"
182 "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
183 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
184 "\nPlease check your bootloader.",
185 &dt_phys, dt_virt);
186
187 while (true)
188 cpu_relax();
189 }
190
191 /* Early fixups are done, map the FDT as read-only now */
192 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
193
194 name = of_flat_dt_get_machine_name();
195 if (!name)
196 return;
197
198 pr_info("Machine model: %s\n", name);
199 dump_stack_set_arch_desc("%s (DT)", name);
200 }
201
request_standard_resources(void)202 static void __init request_standard_resources(void)
203 {
204 struct memblock_region *region;
205 struct resource *res;
206 unsigned long i = 0;
207 size_t res_size;
208
209 kernel_code.start = __pa_symbol(_text);
210 kernel_code.end = __pa_symbol(__init_begin - 1);
211 kernel_data.start = __pa_symbol(_sdata);
212 kernel_data.end = __pa_symbol(_end - 1);
213
214 num_standard_resources = memblock.memory.cnt;
215 res_size = num_standard_resources * sizeof(*standard_resources);
216 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
217 if (!standard_resources)
218 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
219
220 for_each_memblock(memory, region) {
221 res = &standard_resources[i++];
222 if (memblock_is_nomap(region)) {
223 res->name = "reserved";
224 res->flags = IORESOURCE_MEM;
225 } else {
226 res->name = "System RAM";
227 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
228 }
229 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
230 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
231
232 request_resource(&iomem_resource, res);
233
234 if (kernel_code.start >= res->start &&
235 kernel_code.end <= res->end)
236 request_resource(res, &kernel_code);
237 if (kernel_data.start >= res->start &&
238 kernel_data.end <= res->end)
239 request_resource(res, &kernel_data);
240 #ifdef CONFIG_KEXEC_CORE
241 /* Userspace will find "Crash kernel" region in /proc/iomem. */
242 if (crashk_res.end && crashk_res.start >= res->start &&
243 crashk_res.end <= res->end)
244 request_resource(res, &crashk_res);
245 #endif
246 }
247 }
248
reserve_memblock_reserved_regions(void)249 static int __init reserve_memblock_reserved_regions(void)
250 {
251 u64 i, j;
252
253 for (i = 0; i < num_standard_resources; ++i) {
254 struct resource *mem = &standard_resources[i];
255 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
256
257 if (!memblock_is_region_reserved(mem->start, mem_size))
258 continue;
259
260 for_each_reserved_mem_region(j, &r_start, &r_end) {
261 resource_size_t start, end;
262
263 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
264 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
265
266 if (start > mem->end || end < mem->start)
267 continue;
268
269 reserve_region_with_split(mem, start, end, "reserved");
270 }
271 }
272
273 return 0;
274 }
275 arch_initcall(reserve_memblock_reserved_regions);
276
277 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
278
setup_arch(char ** cmdline_p)279 void __init setup_arch(char **cmdline_p)
280 {
281 init_mm.start_code = (unsigned long) _text;
282 init_mm.end_code = (unsigned long) _etext;
283 init_mm.end_data = (unsigned long) _edata;
284 init_mm.brk = (unsigned long) _end;
285
286 *cmdline_p = boot_command_line;
287
288 early_fixmap_init();
289 early_ioremap_init();
290
291 setup_machine_fdt(__fdt_pointer);
292
293 /*
294 * Initialise the static keys early as they may be enabled by the
295 * cpufeature code and early parameters.
296 */
297 jump_label_init();
298 parse_early_param();
299
300 /*
301 * Unmask asynchronous aborts and fiq after bringing up possible
302 * earlycon. (Report possible System Errors once we can report this
303 * occurred).
304 */
305 local_daif_restore(DAIF_PROCCTX_NOIRQ);
306
307 /*
308 * TTBR0 is only used for the identity mapping at this stage. Make it
309 * point to zero page to avoid speculatively fetching new entries.
310 */
311 cpu_uninstall_idmap();
312
313 xen_early_init();
314 efi_init();
315 arm64_memblock_init();
316
317 paging_init();
318
319 acpi_table_upgrade();
320
321 /* Parse the ACPI tables for possible boot-time configuration */
322 acpi_boot_table_init();
323
324 if (acpi_disabled)
325 unflatten_device_tree();
326
327 bootmem_init();
328
329 kasan_init();
330
331 request_standard_resources();
332
333 early_ioremap_reset();
334
335 if (acpi_disabled)
336 psci_dt_init();
337 else
338 psci_acpi_init();
339
340 cpu_read_bootcpu_ops();
341 smp_init_cpus();
342 smp_build_mpidr_hash();
343
344 /* Init percpu seeds for random tags after cpus are set up. */
345 kasan_init_tags();
346
347 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
348 /*
349 * Make sure init_thread_info.ttbr0 always generates translation
350 * faults in case uaccess_enable() is inadvertently called by the init
351 * thread.
352 */
353 init_task.thread_info.ttbr0 = __pa_symbol(empty_zero_page);
354 #endif
355
356 #ifdef CONFIG_VT
357 conswitchp = &dummy_con;
358 #endif
359 if (boot_args[1] || boot_args[2] || boot_args[3]) {
360 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
361 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
362 "This indicates a broken bootloader or old kernel\n",
363 boot_args[1], boot_args[2], boot_args[3]);
364 }
365 }
366
cpu_can_disable(unsigned int cpu)367 static inline bool cpu_can_disable(unsigned int cpu)
368 {
369 #ifdef CONFIG_HOTPLUG_CPU
370 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_can_disable)
371 return cpu_ops[cpu]->cpu_can_disable(cpu);
372 #endif
373 return false;
374 }
375
topology_init(void)376 static int __init topology_init(void)
377 {
378 int i;
379
380 for_each_online_node(i)
381 register_one_node(i);
382
383 for_each_possible_cpu(i) {
384 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
385 cpu->hotpluggable = cpu_can_disable(i);
386 register_cpu(cpu, i);
387 }
388
389 return 0;
390 }
391 subsys_initcall(topology_init);
392
393 /*
394 * Dump out kernel offset information on panic.
395 */
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)396 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
397 void *p)
398 {
399 const unsigned long offset = kaslr_offset();
400
401 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
402 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
403 offset, KIMAGE_VADDR);
404 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
405 } else {
406 pr_emerg("Kernel Offset: disabled\n");
407 }
408 return 0;
409 }
410
411 static struct notifier_block kernel_offset_notifier = {
412 .notifier_call = dump_kernel_offset
413 };
414
register_kernel_offset_dumper(void)415 static int __init register_kernel_offset_dumper(void)
416 {
417 atomic_notifier_chain_register(&panic_notifier_list,
418 &kernel_offset_notifier);
419 return 0;
420 }
421 __initcall(register_kernel_offset_dumper);
422