• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..--

LSM/11-Mar-2024-1,279996

acpi/11-Mar-2024-403307

aoe/11-Mar-2024-321229

auxdisplay/11-Mar-2024-167119

blockdev/11-Mar-2024-2,6252,228

cgroup-v1/11-Mar-2024-3,9282,957

cifs/11-Mar-2024-1,2221,033

device-mapper/11-Mar-2024-4,7603,607

gpio/11-Mar-2024-186137

hw-vuln/11-Mar-2024-2,1531,553

kdump/11-Mar-2024-1,310939

laptops/11-Mar-2024-3,3172,532

mm/11-Mar-2024-3,0142,360

namespaces/11-Mar-2024-7558

perf/11-Mar-2024-383288

pm/11-Mar-2024-2,5652,057

sysctl/11-Mar-2024-3,2352,280

wimax/11-Mar-2024-394281

README.rstD11-Mar-202418 KiB409309

bcache.rstD11-Mar-202423.7 KiB650452

binderfs.rstD11-Mar-20242.9 KiB6953

binfmt-misc.rstD11-Mar-20247.2 KiB152119

braille-console.rstD11-Mar-20241.7 KiB3928

btmrvl.rstD11-Mar-20242.7 KiB12580

bug-bisect.rstD11-Mar-20242.1 KiB7749

bug-hunting.rstD11-Mar-202415 KiB370286

cgroup-v2.rstD11-Mar-202494 KiB2,5461,918

clearing-warn-once.rstD11-Mar-2024275 106

cpu-load.rstD11-Mar-20243 KiB11588

cputopology.rstD11-Mar-20245.7 KiB178126

devices.rstD11-Mar-202411.9 KiB270211

devices.txtD11-Mar-2024104.6 KiB3,1022,586

dynamic-debug-howto.rstD11-Mar-202413 KiB354257

efi-stub.rstD11-Mar-20243.8 KiB10175

ext4.rstD11-Mar-202426.8 KiB613491

highuid.rstD11-Mar-20242.6 KiB8158

hw_random.rstD11-Mar-20243.8 KiB10679

index.rstD11-Mar-20242.2 KiB121101

init.rstD11-Mar-20242.6 KiB5345

initrd.rstD11-Mar-202414.3 KiB384278

iostats.rstD11-Mar-20248.9 KiB198153

java.rstD11-Mar-202410.9 KiB424343

jfs.rstD11-Mar-20242.6 KiB6755

kernel-parameters.rstD11-Mar-20248 KiB213173

kernel-parameters.txtD11-Mar-2024191.3 KiB5,4654,496

kernel-per-CPU-kthreads.rstD11-Mar-202413.3 KiB355283

lcd-panel-cgram.rstD11-Mar-20241.2 KiB2823

ldm.rstD11-Mar-20244.6 KiB12285

lockup-watchdogs.rstD11-Mar-20244.1 KiB8471

md.rstD11-Mar-202427 KiB762561

module-signing.rstD11-Mar-202411.1 KiB286202

mono.rstD11-Mar-20242.5 KiB7154

numastat.rstD11-Mar-20241 KiB3120

parport.rstD11-Mar-20249.3 KiB287213

perf-security.rstD11-Mar-202410.3 KiB231189

pnp.rstD11-Mar-20247 KiB293196

ramoops.rstD11-Mar-20245.7 KiB157120

rapidio.rstD11-Mar-20242.2 KiB10871

ras.rstD11-Mar-202441.7 KiB1,211870

reporting-bugs.rstD11-Mar-20247.5 KiB183137

rtc.rstD11-Mar-20247 KiB141113

security-bugs.rstD11-Mar-20243.9 KiB9072

serial-console.rstD11-Mar-20244.3 KiB11681

svga.rstD11-Mar-202411.8 KiB250205

sysfs-rules.rstD11-Mar-20249.4 KiB193158

sysrq.rstD11-Mar-202412.1 KiB289209

tainted-kernels.rstD11-Mar-20247.6 KiB165127

thunderbolt.rstD11-Mar-202411.3 KiB264202

ufs.rstD11-Mar-20241.3 KiB6948

unicode.rstD11-Mar-20247.1 KiB190153

vga-softcursor.rstD11-Mar-20241.9 KiB6346

video-output.rstD11-Mar-20241.1 KiB3530

xfs.rstD11-Mar-202417.8 KiB468367

README.rst

1.. _readme:
2
3Linux kernel release 5.x <http://kernel.org/>
4=============================================
5
6These are the release notes for Linux version 5.  Read them carefully,
7as they tell you what this is all about, explain how to install the
8kernel, and what to do if something goes wrong.
9
10What is Linux?
11--------------
12
13  Linux is a clone of the operating system Unix, written from scratch by
14  Linus Torvalds with assistance from a loosely-knit team of hackers across
15  the Net. It aims towards POSIX and Single UNIX Specification compliance.
16
17  It has all the features you would expect in a modern fully-fledged Unix,
18  including true multitasking, virtual memory, shared libraries, demand
19  loading, shared copy-on-write executables, proper memory management,
20  and multistack networking including IPv4 and IPv6.
21
22  It is distributed under the GNU General Public License v2 - see the
23  accompanying COPYING file for more details.
24
25On what hardware does it run?
26-----------------------------
27
28  Although originally developed first for 32-bit x86-based PCs (386 or higher),
29  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
30  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
31  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and
32  ARC architectures.
33
34  Linux is easily portable to most general-purpose 32- or 64-bit architectures
35  as long as they have a paged memory management unit (PMMU) and a port of the
36  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
37  also been ported to a number of architectures without a PMMU, although
38  functionality is then obviously somewhat limited.
39  Linux has also been ported to itself. You can now run the kernel as a
40  userspace application - this is called UserMode Linux (UML).
41
42Documentation
43-------------
44
45 - There is a lot of documentation available both in electronic form on
46   the Internet and in books, both Linux-specific and pertaining to
47   general UNIX questions.  I'd recommend looking into the documentation
48   subdirectories on any Linux FTP site for the LDP (Linux Documentation
49   Project) books.  This README is not meant to be documentation on the
50   system: there are much better sources available.
51
52 - There are various README files in the Documentation/ subdirectory:
53   these typically contain kernel-specific installation notes for some
54   drivers for example. Please read the
55   :ref:`Documentation/process/changes.rst <changes>` file, as it
56   contains information about the problems, which may result by upgrading
57   your kernel.
58
59Installing the kernel source
60----------------------------
61
62 - If you install the full sources, put the kernel tarball in a
63   directory where you have permissions (e.g. your home directory) and
64   unpack it::
65
66     xz -cd linux-5.x.tar.xz | tar xvf -
67
68   Replace "X" with the version number of the latest kernel.
69
70   Do NOT use the /usr/src/linux area! This area has a (usually
71   incomplete) set of kernel headers that are used by the library header
72   files.  They should match the library, and not get messed up by
73   whatever the kernel-du-jour happens to be.
74
75 - You can also upgrade between 5.x releases by patching.  Patches are
76   distributed in the xz format.  To install by patching, get all the
77   newer patch files, enter the top level directory of the kernel source
78   (linux-5.x) and execute::
79
80     xz -cd ../patch-5.x.xz | patch -p1
81
82   Replace "x" for all versions bigger than the version "x" of your current
83   source tree, **in_order**, and you should be ok.  You may want to remove
84   the backup files (some-file-name~ or some-file-name.orig), and make sure
85   that there are no failed patches (some-file-name# or some-file-name.rej).
86   If there are, either you or I have made a mistake.
87
88   Unlike patches for the 5.x kernels, patches for the 5.x.y kernels
89   (also known as the -stable kernels) are not incremental but instead apply
90   directly to the base 5.x kernel.  For example, if your base kernel is 5.0
91   and you want to apply the 5.0.3 patch, you must not first apply the 5.0.1
92   and 5.0.2 patches. Similarly, if you are running kernel version 5.0.2 and
93   want to jump to 5.0.3, you must first reverse the 5.0.2 patch (that is,
94   patch -R) **before** applying the 5.0.3 patch. You can read more on this in
95   :ref:`Documentation/process/applying-patches.rst <applying_patches>`.
96
97   Alternatively, the script patch-kernel can be used to automate this
98   process.  It determines the current kernel version and applies any
99   patches found::
100
101     linux/scripts/patch-kernel linux
102
103   The first argument in the command above is the location of the
104   kernel source.  Patches are applied from the current directory, but
105   an alternative directory can be specified as the second argument.
106
107 - Make sure you have no stale .o files and dependencies lying around::
108
109     cd linux
110     make mrproper
111
112   You should now have the sources correctly installed.
113
114Software requirements
115---------------------
116
117   Compiling and running the 5.x kernels requires up-to-date
118   versions of various software packages.  Consult
119   :ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers
120   required and how to get updates for these packages.  Beware that using
121   excessively old versions of these packages can cause indirect
122   errors that are very difficult to track down, so don't assume that
123   you can just update packages when obvious problems arise during
124   build or operation.
125
126Build directory for the kernel
127------------------------------
128
129   When compiling the kernel, all output files will per default be
130   stored together with the kernel source code.
131   Using the option ``make O=output/dir`` allows you to specify an alternate
132   place for the output files (including .config).
133   Example::
134
135     kernel source code: /usr/src/linux-5.x
136     build directory:    /home/name/build/kernel
137
138   To configure and build the kernel, use::
139
140     cd /usr/src/linux-5.x
141     make O=/home/name/build/kernel menuconfig
142     make O=/home/name/build/kernel
143     sudo make O=/home/name/build/kernel modules_install install
144
145   Please note: If the ``O=output/dir`` option is used, then it must be
146   used for all invocations of make.
147
148Configuring the kernel
149----------------------
150
151   Do not skip this step even if you are only upgrading one minor
152   version.  New configuration options are added in each release, and
153   odd problems will turn up if the configuration files are not set up
154   as expected.  If you want to carry your existing configuration to a
155   new version with minimal work, use ``make oldconfig``, which will
156   only ask you for the answers to new questions.
157
158 - Alternative configuration commands are::
159
160     "make config"      Plain text interface.
161
162     "make menuconfig"  Text based color menus, radiolists & dialogs.
163
164     "make nconfig"     Enhanced text based color menus.
165
166     "make xconfig"     Qt based configuration tool.
167
168     "make gconfig"     GTK+ based configuration tool.
169
170     "make oldconfig"   Default all questions based on the contents of
171                        your existing ./.config file and asking about
172                        new config symbols.
173
174     "make olddefconfig"
175                        Like above, but sets new symbols to their default
176                        values without prompting.
177
178     "make defconfig"   Create a ./.config file by using the default
179                        symbol values from either arch/$ARCH/defconfig
180                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
181                        depending on the architecture.
182
183     "make ${PLATFORM}_defconfig"
184                        Create a ./.config file by using the default
185                        symbol values from
186                        arch/$ARCH/configs/${PLATFORM}_defconfig.
187                        Use "make help" to get a list of all available
188                        platforms of your architecture.
189
190     "make allyesconfig"
191                        Create a ./.config file by setting symbol
192                        values to 'y' as much as possible.
193
194     "make allmodconfig"
195                        Create a ./.config file by setting symbol
196                        values to 'm' as much as possible.
197
198     "make allnoconfig" Create a ./.config file by setting symbol
199                        values to 'n' as much as possible.
200
201     "make randconfig"  Create a ./.config file by setting symbol
202                        values to random values.
203
204     "make localmodconfig" Create a config based on current config and
205                           loaded modules (lsmod). Disables any module
206                           option that is not needed for the loaded modules.
207
208                           To create a localmodconfig for another machine,
209                           store the lsmod of that machine into a file
210                           and pass it in as a LSMOD parameter.
211
212                   target$ lsmod > /tmp/mylsmod
213                   target$ scp /tmp/mylsmod host:/tmp
214
215                   host$ make LSMOD=/tmp/mylsmod localmodconfig
216
217                           The above also works when cross compiling.
218
219     "make localyesconfig" Similar to localmodconfig, except it will convert
220                           all module options to built in (=y) options.
221
222     "make kvmconfig"   Enable additional options for kvm guest kernel support.
223
224     "make xenconfig"   Enable additional options for xen dom0 guest kernel
225                        support.
226
227     "make tinyconfig"  Configure the tiniest possible kernel.
228
229   You can find more information on using the Linux kernel config tools
230   in Documentation/kbuild/kconfig.rst.
231
232 - NOTES on ``make config``:
233
234    - Having unnecessary drivers will make the kernel bigger, and can
235      under some circumstances lead to problems: probing for a
236      nonexistent controller card may confuse your other controllers.
237
238    - A kernel with math-emulation compiled in will still use the
239      coprocessor if one is present: the math emulation will just
240      never get used in that case.  The kernel will be slightly larger,
241      but will work on different machines regardless of whether they
242      have a math coprocessor or not.
243
244    - The "kernel hacking" configuration details usually result in a
245      bigger or slower kernel (or both), and can even make the kernel
246      less stable by configuring some routines to actively try to
247      break bad code to find kernel problems (kmalloc()).  Thus you
248      should probably answer 'n' to the questions for "development",
249      "experimental", or "debugging" features.
250
251Compiling the kernel
252--------------------
253
254 - Make sure you have at least gcc 4.6 available.
255   For more information, refer to :ref:`Documentation/process/changes.rst <changes>`.
256
257   Please note that you can still run a.out user programs with this kernel.
258
259 - Do a ``make`` to create a compressed kernel image. It is also
260   possible to do ``make install`` if you have lilo installed to suit the
261   kernel makefiles, but you may want to check your particular lilo setup first.
262
263   To do the actual install, you have to be root, but none of the normal
264   build should require that. Don't take the name of root in vain.
265
266 - If you configured any of the parts of the kernel as ``modules``, you
267   will also have to do ``make modules_install``.
268
269 - Verbose kernel compile/build output:
270
271   Normally, the kernel build system runs in a fairly quiet mode (but not
272   totally silent).  However, sometimes you or other kernel developers need
273   to see compile, link, or other commands exactly as they are executed.
274   For this, use "verbose" build mode.  This is done by passing
275   ``V=1`` to the ``make`` command, e.g.::
276
277     make V=1 all
278
279   To have the build system also tell the reason for the rebuild of each
280   target, use ``V=2``.  The default is ``V=0``.
281
282 - Keep a backup kernel handy in case something goes wrong.  This is
283   especially true for the development releases, since each new release
284   contains new code which has not been debugged.  Make sure you keep a
285   backup of the modules corresponding to that kernel, as well.  If you
286   are installing a new kernel with the same version number as your
287   working kernel, make a backup of your modules directory before you
288   do a ``make modules_install``.
289
290   Alternatively, before compiling, use the kernel config option
291   "LOCALVERSION" to append a unique suffix to the regular kernel version.
292   LOCALVERSION can be set in the "General Setup" menu.
293
294 - In order to boot your new kernel, you'll need to copy the kernel
295   image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
296   to the place where your regular bootable kernel is found.
297
298 - Booting a kernel directly from a floppy without the assistance of a
299   bootloader such as LILO, is no longer supported.
300
301   If you boot Linux from the hard drive, chances are you use LILO, which
302   uses the kernel image as specified in the file /etc/lilo.conf.  The
303   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
304   /boot/bzImage.  To use the new kernel, save a copy of the old image
305   and copy the new image over the old one.  Then, you MUST RERUN LILO
306   to update the loading map! If you don't, you won't be able to boot
307   the new kernel image.
308
309   Reinstalling LILO is usually a matter of running /sbin/lilo.
310   You may wish to edit /etc/lilo.conf to specify an entry for your
311   old kernel image (say, /vmlinux.old) in case the new one does not
312   work.  See the LILO docs for more information.
313
314   After reinstalling LILO, you should be all set.  Shutdown the system,
315   reboot, and enjoy!
316
317   If you ever need to change the default root device, video mode,
318   ramdisk size, etc.  in the kernel image, use the ``rdev`` program (or
319   alternatively the LILO boot options when appropriate).  No need to
320   recompile the kernel to change these parameters.
321
322 - Reboot with the new kernel and enjoy.
323
324If something goes wrong
325-----------------------
326
327 - If you have problems that seem to be due to kernel bugs, please check
328   the file MAINTAINERS to see if there is a particular person associated
329   with the part of the kernel that you are having trouble with. If there
330   isn't anyone listed there, then the second best thing is to mail
331   them to me (torvalds@linux-foundation.org), and possibly to any other
332   relevant mailing-list or to the newsgroup.
333
334 - In all bug-reports, *please* tell what kernel you are talking about,
335   how to duplicate the problem, and what your setup is (use your common
336   sense).  If the problem is new, tell me so, and if the problem is
337   old, please try to tell me when you first noticed it.
338
339 - If the bug results in a message like::
340
341     unable to handle kernel paging request at address C0000010
342     Oops: 0002
343     EIP:   0010:XXXXXXXX
344     eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
345     esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
346     ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
347     Pid: xx, process nr: xx
348     xx xx xx xx xx xx xx xx xx xx
349
350   or similar kernel debugging information on your screen or in your
351   system log, please duplicate it *exactly*.  The dump may look
352   incomprehensible to you, but it does contain information that may
353   help debugging the problem.  The text above the dump is also
354   important: it tells something about why the kernel dumped code (in
355   the above example, it's due to a bad kernel pointer). More information
356   on making sense of the dump is in Documentation/admin-guide/bug-hunting.rst
357
358 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
359   as is, otherwise you will have to use the ``ksymoops`` program to make
360   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
361   This utility can be downloaded from
362   https://www.kernel.org/pub/linux/utils/kernel/ksymoops/ .
363   Alternatively, you can do the dump lookup by hand:
364
365 - In debugging dumps like the above, it helps enormously if you can
366   look up what the EIP value means.  The hex value as such doesn't help
367   me or anybody else very much: it will depend on your particular
368   kernel setup.  What you should do is take the hex value from the EIP
369   line (ignore the ``0010:``), and look it up in the kernel namelist to
370   see which kernel function contains the offending address.
371
372   To find out the kernel function name, you'll need to find the system
373   binary associated with the kernel that exhibited the symptom.  This is
374   the file 'linux/vmlinux'.  To extract the namelist and match it against
375   the EIP from the kernel crash, do::
376
377     nm vmlinux | sort | less
378
379   This will give you a list of kernel addresses sorted in ascending
380   order, from which it is simple to find the function that contains the
381   offending address.  Note that the address given by the kernel
382   debugging messages will not necessarily match exactly with the
383   function addresses (in fact, that is very unlikely), so you can't
384   just 'grep' the list: the list will, however, give you the starting
385   point of each kernel function, so by looking for the function that
386   has a starting address lower than the one you are searching for but
387   is followed by a function with a higher address you will find the one
388   you want.  In fact, it may be a good idea to include a bit of
389   "context" in your problem report, giving a few lines around the
390   interesting one.
391
392   If you for some reason cannot do the above (you have a pre-compiled
393   kernel image or similar), telling me as much about your setup as
394   possible will help.  Please read the :ref:`admin-guide/reporting-bugs.rst <reportingbugs>`
395   document for details.
396
397 - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
398   cannot change values or set break points.) To do this, first compile the
399   kernel with -g; edit arch/x86/Makefile appropriately, then do a ``make
400   clean``. You'll also need to enable CONFIG_PROC_FS (via ``make config``).
401
402   After you've rebooted with the new kernel, do ``gdb vmlinux /proc/kcore``.
403   You can now use all the usual gdb commands. The command to look up the
404   point where your system crashed is ``l *0xXXXXXXXX``. (Replace the XXXes
405   with the EIP value.)
406
407   gdb'ing a non-running kernel currently fails because ``gdb`` (wrongly)
408   disregards the starting offset for which the kernel is compiled.
409