1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9 *
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
13 *
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
18 */
19 #include <linux/bitops.h>
20 #include <linux/bpf.h>
21 #include <linux/filter.h>
22 #include <linux/ptr_ring.h>
23 #include <net/xdp.h>
24
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/capability.h>
29 #include <trace/events/xdp.h>
30
31 #include <linux/netdevice.h> /* netif_receive_skb_list */
32 #include <linux/etherdevice.h> /* eth_type_trans */
33
34 /* General idea: XDP packets getting XDP redirected to another CPU,
35 * will maximum be stored/queued for one driver ->poll() call. It is
36 * guaranteed that queueing the frame and the flush operation happen on
37 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
38 * which queue in bpf_cpu_map_entry contains packets.
39 */
40
41 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
42 struct bpf_cpu_map_entry;
43 struct bpf_cpu_map;
44
45 struct xdp_bulk_queue {
46 void *q[CPU_MAP_BULK_SIZE];
47 struct list_head flush_node;
48 struct bpf_cpu_map_entry *obj;
49 unsigned int count;
50 };
51
52 /* Struct for every remote "destination" CPU in map */
53 struct bpf_cpu_map_entry {
54 u32 cpu; /* kthread CPU and map index */
55 int map_id; /* Back reference to map */
56
57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58 struct xdp_bulk_queue __percpu *bulkq;
59
60 struct bpf_cpu_map *cmap;
61
62 /* Queue with potential multi-producers, and single-consumer kthread */
63 struct ptr_ring *queue;
64 struct task_struct *kthread;
65
66 struct bpf_cpumap_val value;
67 struct bpf_prog *prog;
68
69 atomic_t refcnt; /* Control when this struct can be free'ed */
70 struct rcu_head rcu;
71
72 struct work_struct kthread_stop_wq;
73 };
74
75 struct bpf_cpu_map {
76 struct bpf_map map;
77 /* Below members specific for map type */
78 struct bpf_cpu_map_entry __rcu **cpu_map;
79 };
80
81 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
82
cpu_map_alloc(union bpf_attr * attr)83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
84 {
85 u32 value_size = attr->value_size;
86 struct bpf_cpu_map *cmap;
87 int err = -ENOMEM;
88
89 if (!bpf_capable())
90 return ERR_PTR(-EPERM);
91
92 /* check sanity of attributes */
93 if (attr->max_entries == 0 || attr->key_size != 4 ||
94 (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
95 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
96 attr->map_flags & ~BPF_F_NUMA_NODE)
97 return ERR_PTR(-EINVAL);
98
99 cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
100 if (!cmap)
101 return ERR_PTR(-ENOMEM);
102
103 bpf_map_init_from_attr(&cmap->map, attr);
104
105 /* Pre-limit array size based on NR_CPUS, not final CPU check */
106 if (cmap->map.max_entries > NR_CPUS) {
107 err = -E2BIG;
108 goto free_cmap;
109 }
110
111 /* Alloc array for possible remote "destination" CPUs */
112 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
113 sizeof(struct bpf_cpu_map_entry *),
114 cmap->map.numa_node);
115 if (!cmap->cpu_map)
116 goto free_cmap;
117
118 return &cmap->map;
119 free_cmap:
120 kfree(cmap);
121 return ERR_PTR(err);
122 }
123
get_cpu_map_entry(struct bpf_cpu_map_entry * rcpu)124 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
125 {
126 atomic_inc(&rcpu->refcnt);
127 }
128
129 /* called from workqueue, to workaround syscall using preempt_disable */
cpu_map_kthread_stop(struct work_struct * work)130 static void cpu_map_kthread_stop(struct work_struct *work)
131 {
132 struct bpf_cpu_map_entry *rcpu;
133
134 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
135
136 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
137 * as it waits until all in-flight call_rcu() callbacks complete.
138 */
139 rcu_barrier();
140
141 /* kthread_stop will wake_up_process and wait for it to complete */
142 kthread_stop(rcpu->kthread);
143 }
144
__cpu_map_ring_cleanup(struct ptr_ring * ring)145 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
146 {
147 /* The tear-down procedure should have made sure that queue is
148 * empty. See __cpu_map_entry_replace() and work-queue
149 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
150 * gracefully and warn once.
151 */
152 struct xdp_frame *xdpf;
153
154 while ((xdpf = ptr_ring_consume(ring)))
155 if (WARN_ON_ONCE(xdpf))
156 xdp_return_frame(xdpf);
157 }
158
put_cpu_map_entry(struct bpf_cpu_map_entry * rcpu)159 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
160 {
161 if (atomic_dec_and_test(&rcpu->refcnt)) {
162 if (rcpu->prog)
163 bpf_prog_put(rcpu->prog);
164 /* The queue should be empty at this point */
165 __cpu_map_ring_cleanup(rcpu->queue);
166 ptr_ring_cleanup(rcpu->queue, NULL);
167 kfree(rcpu->queue);
168 kfree(rcpu);
169 }
170 }
171
cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry * rcpu,struct list_head * listp,struct xdp_cpumap_stats * stats)172 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
173 struct list_head *listp,
174 struct xdp_cpumap_stats *stats)
175 {
176 struct sk_buff *skb, *tmp;
177 struct xdp_buff xdp;
178 u32 act;
179 int err;
180
181 list_for_each_entry_safe(skb, tmp, listp, list) {
182 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
183 switch (act) {
184 case XDP_PASS:
185 break;
186 case XDP_REDIRECT:
187 skb_list_del_init(skb);
188 err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
189 rcpu->prog);
190 if (unlikely(err)) {
191 kfree_skb(skb);
192 stats->drop++;
193 } else {
194 stats->redirect++;
195 }
196 return;
197 default:
198 bpf_warn_invalid_xdp_action(act);
199 fallthrough;
200 case XDP_ABORTED:
201 trace_xdp_exception(skb->dev, rcpu->prog, act);
202 fallthrough;
203 case XDP_DROP:
204 skb_list_del_init(skb);
205 kfree_skb(skb);
206 stats->drop++;
207 return;
208 }
209 }
210 }
211
cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry * rcpu,void ** frames,int n,struct xdp_cpumap_stats * stats)212 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
213 void **frames, int n,
214 struct xdp_cpumap_stats *stats)
215 {
216 struct xdp_rxq_info rxq;
217 struct xdp_buff xdp;
218 int i, nframes = 0;
219
220 xdp_set_return_frame_no_direct();
221 xdp.rxq = &rxq;
222
223 for (i = 0; i < n; i++) {
224 struct xdp_frame *xdpf = frames[i];
225 u32 act;
226 int err;
227
228 rxq.dev = xdpf->dev_rx;
229 rxq.mem = xdpf->mem;
230 /* TODO: report queue_index to xdp_rxq_info */
231
232 xdp_convert_frame_to_buff(xdpf, &xdp);
233
234 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
235 switch (act) {
236 case XDP_PASS:
237 err = xdp_update_frame_from_buff(&xdp, xdpf);
238 if (err < 0) {
239 xdp_return_frame(xdpf);
240 stats->drop++;
241 } else {
242 frames[nframes++] = xdpf;
243 stats->pass++;
244 }
245 break;
246 case XDP_REDIRECT:
247 err = xdp_do_redirect(xdpf->dev_rx, &xdp,
248 rcpu->prog);
249 if (unlikely(err)) {
250 xdp_return_frame(xdpf);
251 stats->drop++;
252 } else {
253 stats->redirect++;
254 }
255 break;
256 default:
257 bpf_warn_invalid_xdp_action(act);
258 fallthrough;
259 case XDP_DROP:
260 xdp_return_frame(xdpf);
261 stats->drop++;
262 break;
263 }
264 }
265
266 xdp_clear_return_frame_no_direct();
267
268 return nframes;
269 }
270
271 #define CPUMAP_BATCH 8
272
cpu_map_bpf_prog_run(struct bpf_cpu_map_entry * rcpu,void ** frames,int xdp_n,struct xdp_cpumap_stats * stats,struct list_head * list)273 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
274 int xdp_n, struct xdp_cpumap_stats *stats,
275 struct list_head *list)
276 {
277 int nframes;
278
279 if (!rcpu->prog)
280 return xdp_n;
281
282 rcu_read_lock_bh();
283
284 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
285
286 if (stats->redirect)
287 xdp_do_flush();
288
289 if (unlikely(!list_empty(list)))
290 cpu_map_bpf_prog_run_skb(rcpu, list, stats);
291
292 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
293
294 return nframes;
295 }
296
297
cpu_map_kthread_run(void * data)298 static int cpu_map_kthread_run(void *data)
299 {
300 struct bpf_cpu_map_entry *rcpu = data;
301
302 set_current_state(TASK_INTERRUPTIBLE);
303
304 /* When kthread gives stop order, then rcpu have been disconnected
305 * from map, thus no new packets can enter. Remaining in-flight
306 * per CPU stored packets are flushed to this queue. Wait honoring
307 * kthread_stop signal until queue is empty.
308 */
309 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
310 struct xdp_cpumap_stats stats = {}; /* zero stats */
311 unsigned int kmem_alloc_drops = 0, sched = 0;
312 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
313 int i, n, m, nframes, xdp_n;
314 void *frames[CPUMAP_BATCH];
315 void *skbs[CPUMAP_BATCH];
316 LIST_HEAD(list);
317
318 /* Release CPU reschedule checks */
319 if (__ptr_ring_empty(rcpu->queue)) {
320 set_current_state(TASK_INTERRUPTIBLE);
321 /* Recheck to avoid lost wake-up */
322 if (__ptr_ring_empty(rcpu->queue)) {
323 schedule();
324 sched = 1;
325 } else {
326 __set_current_state(TASK_RUNNING);
327 }
328 } else {
329 sched = cond_resched();
330 }
331
332 /*
333 * The bpf_cpu_map_entry is single consumer, with this
334 * kthread CPU pinned. Lockless access to ptr_ring
335 * consume side valid as no-resize allowed of queue.
336 */
337 n = __ptr_ring_consume_batched(rcpu->queue, frames,
338 CPUMAP_BATCH);
339 for (i = 0, xdp_n = 0; i < n; i++) {
340 void *f = frames[i];
341 struct page *page;
342
343 if (unlikely(__ptr_test_bit(0, &f))) {
344 struct sk_buff *skb = f;
345
346 __ptr_clear_bit(0, &skb);
347 list_add_tail(&skb->list, &list);
348 continue;
349 }
350
351 frames[xdp_n++] = f;
352 page = virt_to_page(f);
353
354 /* Bring struct page memory area to curr CPU. Read by
355 * build_skb_around via page_is_pfmemalloc(), and when
356 * freed written by page_frag_free call.
357 */
358 prefetchw(page);
359 }
360
361 /* Support running another XDP prog on this CPU */
362 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
363 if (nframes) {
364 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
365 if (unlikely(m == 0)) {
366 for (i = 0; i < nframes; i++)
367 skbs[i] = NULL; /* effect: xdp_return_frame */
368 kmem_alloc_drops += nframes;
369 }
370 }
371
372 local_bh_disable();
373 for (i = 0; i < nframes; i++) {
374 struct xdp_frame *xdpf = frames[i];
375 struct sk_buff *skb = skbs[i];
376
377 skb = __xdp_build_skb_from_frame(xdpf, skb,
378 xdpf->dev_rx);
379 if (!skb) {
380 xdp_return_frame(xdpf);
381 continue;
382 }
383
384 list_add_tail(&skb->list, &list);
385 }
386 netif_receive_skb_list(&list);
387
388 /* Feedback loop via tracepoint */
389 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
390 sched, &stats);
391
392 local_bh_enable(); /* resched point, may call do_softirq() */
393 }
394 __set_current_state(TASK_RUNNING);
395
396 put_cpu_map_entry(rcpu);
397 return 0;
398 }
399
__cpu_map_load_bpf_program(struct bpf_cpu_map_entry * rcpu,int fd)400 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
401 {
402 struct bpf_prog *prog;
403
404 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
405 if (IS_ERR(prog))
406 return PTR_ERR(prog);
407
408 if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
409 bpf_prog_put(prog);
410 return -EINVAL;
411 }
412
413 rcpu->value.bpf_prog.id = prog->aux->id;
414 rcpu->prog = prog;
415
416 return 0;
417 }
418
419 static struct bpf_cpu_map_entry *
__cpu_map_entry_alloc(struct bpf_map * map,struct bpf_cpumap_val * value,u32 cpu)420 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
421 u32 cpu)
422 {
423 int numa, err, i, fd = value->bpf_prog.fd;
424 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
425 struct bpf_cpu_map_entry *rcpu;
426 struct xdp_bulk_queue *bq;
427
428 /* Have map->numa_node, but choose node of redirect target CPU */
429 numa = cpu_to_node(cpu);
430
431 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
432 if (!rcpu)
433 return NULL;
434
435 /* Alloc percpu bulkq */
436 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
437 sizeof(void *), gfp);
438 if (!rcpu->bulkq)
439 goto free_rcu;
440
441 for_each_possible_cpu(i) {
442 bq = per_cpu_ptr(rcpu->bulkq, i);
443 bq->obj = rcpu;
444 }
445
446 /* Alloc queue */
447 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
448 numa);
449 if (!rcpu->queue)
450 goto free_bulkq;
451
452 err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
453 if (err)
454 goto free_queue;
455
456 rcpu->cpu = cpu;
457 rcpu->map_id = map->id;
458 rcpu->value.qsize = value->qsize;
459
460 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
461 goto free_ptr_ring;
462
463 /* Setup kthread */
464 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
465 "cpumap/%d/map:%d", cpu,
466 map->id);
467 if (IS_ERR(rcpu->kthread))
468 goto free_prog;
469
470 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
471 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
472
473 /* Make sure kthread runs on a single CPU */
474 kthread_bind(rcpu->kthread, cpu);
475 wake_up_process(rcpu->kthread);
476
477 return rcpu;
478
479 free_prog:
480 if (rcpu->prog)
481 bpf_prog_put(rcpu->prog);
482 free_ptr_ring:
483 ptr_ring_cleanup(rcpu->queue, NULL);
484 free_queue:
485 kfree(rcpu->queue);
486 free_bulkq:
487 free_percpu(rcpu->bulkq);
488 free_rcu:
489 kfree(rcpu);
490 return NULL;
491 }
492
__cpu_map_entry_free(struct rcu_head * rcu)493 static void __cpu_map_entry_free(struct rcu_head *rcu)
494 {
495 struct bpf_cpu_map_entry *rcpu;
496
497 /* This cpu_map_entry have been disconnected from map and one
498 * RCU grace-period have elapsed. Thus, XDP cannot queue any
499 * new packets and cannot change/set flush_needed that can
500 * find this entry.
501 */
502 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
503
504 free_percpu(rcpu->bulkq);
505 /* Cannot kthread_stop() here, last put free rcpu resources */
506 put_cpu_map_entry(rcpu);
507 }
508
509 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
510 * ensure any driver rcu critical sections have completed, but this
511 * does not guarantee a flush has happened yet. Because driver side
512 * rcu_read_lock/unlock only protects the running XDP program. The
513 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
514 * pending flush op doesn't fail.
515 *
516 * The bpf_cpu_map_entry is still used by the kthread, and there can
517 * still be pending packets (in queue and percpu bulkq). A refcnt
518 * makes sure to last user (kthread_stop vs. call_rcu) free memory
519 * resources.
520 *
521 * The rcu callback __cpu_map_entry_free flush remaining packets in
522 * percpu bulkq to queue. Due to caller map_delete_elem() disable
523 * preemption, cannot call kthread_stop() to make sure queue is empty.
524 * Instead a work_queue is started for stopping kthread,
525 * cpu_map_kthread_stop, which waits for an RCU grace period before
526 * stopping kthread, emptying the queue.
527 */
__cpu_map_entry_replace(struct bpf_cpu_map * cmap,u32 key_cpu,struct bpf_cpu_map_entry * rcpu)528 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
529 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
530 {
531 struct bpf_cpu_map_entry *old_rcpu;
532
533 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
534 if (old_rcpu) {
535 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
536 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
537 schedule_work(&old_rcpu->kthread_stop_wq);
538 }
539 }
540
cpu_map_delete_elem(struct bpf_map * map,void * key)541 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
542 {
543 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
544 u32 key_cpu = *(u32 *)key;
545
546 if (key_cpu >= map->max_entries)
547 return -EINVAL;
548
549 /* notice caller map_delete_elem() use preempt_disable() */
550 __cpu_map_entry_replace(cmap, key_cpu, NULL);
551 return 0;
552 }
553
cpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)554 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
555 u64 map_flags)
556 {
557 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
558 struct bpf_cpumap_val cpumap_value = {};
559 struct bpf_cpu_map_entry *rcpu;
560 /* Array index key correspond to CPU number */
561 u32 key_cpu = *(u32 *)key;
562
563 memcpy(&cpumap_value, value, map->value_size);
564
565 if (unlikely(map_flags > BPF_EXIST))
566 return -EINVAL;
567 if (unlikely(key_cpu >= cmap->map.max_entries))
568 return -E2BIG;
569 if (unlikely(map_flags == BPF_NOEXIST))
570 return -EEXIST;
571 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
572 return -EOVERFLOW;
573
574 /* Make sure CPU is a valid possible cpu */
575 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
576 return -ENODEV;
577
578 if (cpumap_value.qsize == 0) {
579 rcpu = NULL; /* Same as deleting */
580 } else {
581 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
582 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
583 if (!rcpu)
584 return -ENOMEM;
585 rcpu->cmap = cmap;
586 }
587 rcu_read_lock();
588 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
589 rcu_read_unlock();
590 return 0;
591 }
592
cpu_map_free(struct bpf_map * map)593 static void cpu_map_free(struct bpf_map *map)
594 {
595 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
596 u32 i;
597
598 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
599 * so the bpf programs (can be more than one that used this map) were
600 * disconnected from events. Wait for outstanding critical sections in
601 * these programs to complete. The rcu critical section only guarantees
602 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
603 * It does __not__ ensure pending flush operations (if any) are
604 * complete.
605 */
606
607 synchronize_rcu();
608
609 /* For cpu_map the remote CPUs can still be using the entries
610 * (struct bpf_cpu_map_entry).
611 */
612 for (i = 0; i < cmap->map.max_entries; i++) {
613 struct bpf_cpu_map_entry *rcpu;
614
615 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
616 if (!rcpu)
617 continue;
618
619 /* bq flush and cleanup happens after RCU grace-period */
620 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
621 }
622 bpf_map_area_free(cmap->cpu_map);
623 kfree(cmap);
624 }
625
626 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
627 * by local_bh_disable() (from XDP calls inside NAPI). The
628 * rcu_read_lock_bh_held() below makes lockdep accept both.
629 */
__cpu_map_lookup_elem(struct bpf_map * map,u32 key)630 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
631 {
632 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
633 struct bpf_cpu_map_entry *rcpu;
634
635 if (key >= map->max_entries)
636 return NULL;
637
638 rcpu = rcu_dereference_check(cmap->cpu_map[key],
639 rcu_read_lock_bh_held());
640 return rcpu;
641 }
642
cpu_map_lookup_elem(struct bpf_map * map,void * key)643 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
644 {
645 struct bpf_cpu_map_entry *rcpu =
646 __cpu_map_lookup_elem(map, *(u32 *)key);
647
648 return rcpu ? &rcpu->value : NULL;
649 }
650
cpu_map_get_next_key(struct bpf_map * map,void * key,void * next_key)651 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
652 {
653 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
654 u32 index = key ? *(u32 *)key : U32_MAX;
655 u32 *next = next_key;
656
657 if (index >= cmap->map.max_entries) {
658 *next = 0;
659 return 0;
660 }
661
662 if (index == cmap->map.max_entries - 1)
663 return -ENOENT;
664 *next = index + 1;
665 return 0;
666 }
667
cpu_map_redirect(struct bpf_map * map,u32 ifindex,u64 flags)668 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
669 {
670 return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
671 __cpu_map_lookup_elem);
672 }
673
674 static int cpu_map_btf_id;
675 const struct bpf_map_ops cpu_map_ops = {
676 .map_meta_equal = bpf_map_meta_equal,
677 .map_alloc = cpu_map_alloc,
678 .map_free = cpu_map_free,
679 .map_delete_elem = cpu_map_delete_elem,
680 .map_update_elem = cpu_map_update_elem,
681 .map_lookup_elem = cpu_map_lookup_elem,
682 .map_get_next_key = cpu_map_get_next_key,
683 .map_check_btf = map_check_no_btf,
684 .map_btf_name = "bpf_cpu_map",
685 .map_btf_id = &cpu_map_btf_id,
686 .map_redirect = cpu_map_redirect,
687 };
688
bq_flush_to_queue(struct xdp_bulk_queue * bq)689 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
690 {
691 struct bpf_cpu_map_entry *rcpu = bq->obj;
692 unsigned int processed = 0, drops = 0;
693 const int to_cpu = rcpu->cpu;
694 struct ptr_ring *q;
695 int i;
696
697 if (unlikely(!bq->count))
698 return;
699
700 q = rcpu->queue;
701 spin_lock(&q->producer_lock);
702
703 for (i = 0; i < bq->count; i++) {
704 struct xdp_frame *xdpf = bq->q[i];
705 int err;
706
707 err = __ptr_ring_produce(q, xdpf);
708 if (err) {
709 drops++;
710 xdp_return_frame_rx_napi(xdpf);
711 }
712 processed++;
713 }
714 bq->count = 0;
715 spin_unlock(&q->producer_lock);
716
717 __list_del_clearprev(&bq->flush_node);
718
719 /* Feedback loop via tracepoints */
720 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
721 }
722
723 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
724 * Thus, safe percpu variable access.
725 */
bq_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf)726 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
727 {
728 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
729 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
730
731 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
732 bq_flush_to_queue(bq);
733
734 /* Notice, xdp_buff/page MUST be queued here, long enough for
735 * driver to code invoking us to finished, due to driver
736 * (e.g. ixgbe) recycle tricks based on page-refcnt.
737 *
738 * Thus, incoming xdp_frame is always queued here (else we race
739 * with another CPU on page-refcnt and remaining driver code).
740 * Queue time is very short, as driver will invoke flush
741 * operation, when completing napi->poll call.
742 */
743 bq->q[bq->count++] = xdpf;
744
745 if (!bq->flush_node.prev)
746 list_add(&bq->flush_node, flush_list);
747 }
748
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_buff * xdp,struct net_device * dev_rx)749 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
750 struct net_device *dev_rx)
751 {
752 struct xdp_frame *xdpf;
753
754 xdpf = xdp_convert_buff_to_frame(xdp);
755 if (unlikely(!xdpf))
756 return -EOVERFLOW;
757
758 /* Info needed when constructing SKB on remote CPU */
759 xdpf->dev_rx = dev_rx;
760
761 bq_enqueue(rcpu, xdpf);
762 return 0;
763 }
764
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)765 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
766 struct sk_buff *skb)
767 {
768 int ret;
769
770 __skb_pull(skb, skb->mac_len);
771 skb_set_redirected(skb, false);
772 __ptr_set_bit(0, &skb);
773
774 ret = ptr_ring_produce(rcpu->queue, skb);
775 if (ret < 0)
776 goto trace;
777
778 wake_up_process(rcpu->kthread);
779 trace:
780 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
781 return ret;
782 }
783
__cpu_map_flush(void)784 void __cpu_map_flush(void)
785 {
786 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
787 struct xdp_bulk_queue *bq, *tmp;
788
789 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
790 bq_flush_to_queue(bq);
791
792 /* If already running, costs spin_lock_irqsave + smb_mb */
793 wake_up_process(bq->obj->kthread);
794 }
795 }
796
cpu_map_init(void)797 static int __init cpu_map_init(void)
798 {
799 int cpu;
800
801 for_each_possible_cpu(cpu)
802 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
803 return 0;
804 }
805
806 subsys_initcall(cpu_map_init);
807