1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS 48
57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58
59 /*
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
62 */
63 #define MAX_TCP_WINDOW 32767U
64
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS 88U
67
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS 1024
70
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL 600
73
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD 8
76
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS 16U
82
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE 14U
85
86 /* urg_data states */
87 #define TCP_URG_VALID 0x0100
88 #define TCP_URG_NOTYET 0x0200
89 #define TCP_URG_READ 0x0400
90
91 #define TCP_RETR1 3 /*
92 * This is how many retries it does before it
93 * tries to figure out if the gateway is
94 * down. Minimal RFC value is 3; it corresponds
95 * to ~3sec-8min depending on RTO.
96 */
97
98 #define TCP_RETR2 15 /*
99 * This should take at least
100 * 90 minutes to time out.
101 * RFC1122 says that the limit is 100 sec.
102 * 15 is ~13-30min depending on RTO.
103 */
104
105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
106 * when active opening a connection.
107 * RFC1122 says the minimum retry MUST
108 * be at least 180secs. Nevertheless
109 * this value is corresponding to
110 * 63secs of retransmission with the
111 * current initial RTO.
112 */
113
114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
115 * when passive opening a connection.
116 * This is corresponding to 31secs of
117 * retransmission with the current
118 * initial RTO.
119 */
120
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 * state, about 60 seconds */
123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124 /* BSD style FIN_WAIT2 deadlock breaker.
125 * It used to be 3min, new value is 60sec,
126 * to combine FIN-WAIT-2 timeout with
127 * TIME-WAIT timer.
128 */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130
131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN ((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN 4U
137 #define TCP_ATO_MIN 4U
138 #endif
139 #define TCP_RTO_MAX ((unsigned)(120*HZ))
140 #define TCP_RTO_MIN ((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
144 * used as a fallback RTO for the
145 * initial data transmission if no
146 * valid RTT sample has been acquired,
147 * most likely due to retrans in 3WHS.
148 */
149
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 * for local resources.
152 */
153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
155 #define TCP_KEEPALIVE_INTVL (75*HZ)
156
157 #define MAX_TCP_KEEPIDLE 32767
158 #define MAX_TCP_KEEPINTVL 32767
159 #define MAX_TCP_KEEPCNT 127
160 #define MAX_TCP_SYNCNT 127
161
162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
163
164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
166 * after this time. It should be equal
167 * (or greater than) TCP_TIMEWAIT_LEN
168 * to provide reliability equal to one
169 * provided by timewait state.
170 */
171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
172 * timestamps. It must be less than
173 * minimal timewait lifetime.
174 */
175 /*
176 * TCP option
177 */
178
179 #define TCPOPT_NOP 1 /* Padding */
180 #define TCPOPT_EOL 0 /* End of options */
181 #define TCPOPT_MSS 2 /* Segment size negotiating */
182 #define TCPOPT_WINDOW 3 /* Window scaling */
183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
184 #define TCPOPT_SACK 5 /* SACK Block */
185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
189 #define TCPOPT_EXP 254 /* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192 */
193 #define TCPOPT_FASTOPEN_MAGIC 0xF989
194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
195
196 /*
197 * TCP option lengths
198 */
199
200 #define TCPOLEN_MSS 4
201 #define TCPOLEN_WINDOW 3
202 #define TCPOLEN_SACK_PERM 2
203 #define TCPOLEN_TIMESTAMP 10
204 #define TCPOLEN_MD5SIG 18
205 #define TCPOLEN_FASTOPEN_BASE 2
206 #define TCPOLEN_EXP_FASTOPEN_BASE 4
207 #define TCPOLEN_EXP_SMC_BASE 6
208
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED 12
211 #define TCPOLEN_WSCALE_ALIGNED 4
212 #define TCPOLEN_SACKPERM_ALIGNED 4
213 #define TCPOLEN_SACK_BASE 2
214 #define TCPOLEN_SACK_BASE_ALIGNED 4
215 #define TCPOLEN_SACK_PERBLOCK 8
216 #define TCPOLEN_MD5SIG_ALIGNED 20
217 #define TCPOLEN_MSS_ALIGNED 4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
219
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK 2 /* Socket is corked */
223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
224
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
227
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND 10
230
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define TFO_CLIENT_ENABLE 1
233 #define TFO_SERVER_ENABLE 2
234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
235
236 /* Accept SYN data w/o any cookie option */
237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
238
239 /* Force enable TFO on all listeners, i.e., not requiring the
240 * TCP_FASTOPEN socket option.
241 */
242 #define TFO_SERVER_WO_SOCKOPT1 0x400
243
244
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248
249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
252
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 return true;
263
264 return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267 * The next routines deal with comparing 32 bit unsigned ints
268 * and worry about wraparound (automatic with unsigned arithmetic).
269 */
270
before(__u32 seq1,__u32 seq2)271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273 return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) before(seq1, seq2)
276
277 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 return seq3 - seq2 >= seq1 - seq2;
281 }
282
tcp_out_of_memory(struct sock * sk)283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 return true;
288 return false;
289 }
290
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292
tcp_too_many_orphans(struct sock * sk,int shift)293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 int orphans = percpu_counter_read_positive(ocp);
297
298 if (orphans << shift > sysctl_tcp_max_orphans) {
299 orphans = percpu_counter_sum_positive(ocp);
300 if (orphans << shift > sysctl_tcp_max_orphans)
301 return true;
302 }
303 return false;
304 }
305
306 bool tcp_check_oom(struct sock *sk, int shift);
307
308
309 extern struct proto tcp_prot;
310
311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315
316 void tcp_tasklet_init(void);
317
318 int tcp_v4_err(struct sk_buff *skb, u32);
319
320 void tcp_shutdown(struct sock *sk, int how);
321
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 struct pipe_inode_info *pipe, size_t len,
352 unsigned int flags);
353
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 const unsigned int pkts)
357 {
358 struct inet_connection_sock *icsk = inet_csk(sk);
359
360 if (icsk->icsk_ack.quick) {
361 if (pkts >= icsk->icsk_ack.quick) {
362 icsk->icsk_ack.quick = 0;
363 /* Leaving quickack mode we deflate ATO. */
364 icsk->icsk_ack.ato = TCP_ATO_MIN;
365 } else
366 icsk->icsk_ack.quick -= pkts;
367 }
368 }
369
370 #define TCP_ECN_OK 1
371 #define TCP_ECN_QUEUE_CWR 2
372 #define TCP_ECN_DEMAND_CWR 4
373 #define TCP_ECN_SEEN 8
374
375 enum tcp_tw_status {
376 TCP_TW_SUCCESS = 0,
377 TCP_TW_RST = 1,
378 TCP_TW_ACK = 2,
379 TCP_TW_SYN = 3
380 };
381
382
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 struct sk_buff *skb,
385 const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 struct request_sock *req, bool fastopen,
388 bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 unsigned int optlen);
409 void tcp_set_keepalive(struct sock *sk, int val);
410 void tcp_syn_ack_timeout(const struct request_sock *req);
411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 int flags, int *addr_len);
413 int tcp_set_rcvlowat(struct sock *sk, int val);
414 int tcp_set_window_clamp(struct sock *sk, int val);
415 void tcp_update_recv_tstamps(struct sk_buff *skb,
416 struct scm_timestamping_internal *tss);
417 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
418 struct scm_timestamping_internal *tss);
419 void tcp_data_ready(struct sock *sk);
420 #ifdef CONFIG_MMU
421 int tcp_mmap(struct file *file, struct socket *sock,
422 struct vm_area_struct *vma);
423 #endif
424 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
425 struct tcp_options_received *opt_rx,
426 int estab, struct tcp_fastopen_cookie *foc);
427 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
428
429 /*
430 * BPF SKB-less helpers
431 */
432 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
433 struct tcphdr *th, u32 *cookie);
434 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
435 struct tcphdr *th, u32 *cookie);
436 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
437 const struct tcp_request_sock_ops *af_ops,
438 struct sock *sk, struct tcphdr *th);
439 /*
440 * TCP v4 functions exported for the inet6 API
441 */
442
443 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
444 void tcp_v4_mtu_reduced(struct sock *sk);
445 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
446 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
447 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
448 struct sock *tcp_create_openreq_child(const struct sock *sk,
449 struct request_sock *req,
450 struct sk_buff *skb);
451 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
452 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
453 struct request_sock *req,
454 struct dst_entry *dst,
455 struct request_sock *req_unhash,
456 bool *own_req);
457 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
458 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
459 int tcp_connect(struct sock *sk);
460 enum tcp_synack_type {
461 TCP_SYNACK_NORMAL,
462 TCP_SYNACK_FASTOPEN,
463 TCP_SYNACK_COOKIE,
464 };
465 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
466 struct request_sock *req,
467 struct tcp_fastopen_cookie *foc,
468 enum tcp_synack_type synack_type,
469 struct sk_buff *syn_skb);
470 int tcp_disconnect(struct sock *sk, int flags);
471
472 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
473 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
474 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
475
476 /* From syncookies.c */
477 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
478 struct request_sock *req,
479 struct dst_entry *dst, u32 tsoff);
480 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
481 u32 cookie);
482 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
483 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
484 struct sock *sk, struct sk_buff *skb);
485 #ifdef CONFIG_SYN_COOKIES
486
487 /* Syncookies use a monotonic timer which increments every 60 seconds.
488 * This counter is used both as a hash input and partially encoded into
489 * the cookie value. A cookie is only validated further if the delta
490 * between the current counter value and the encoded one is less than this,
491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
492 * the counter advances immediately after a cookie is generated).
493 */
494 #define MAX_SYNCOOKIE_AGE 2
495 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
496 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
497
498 /* syncookies: remember time of last synqueue overflow
499 * But do not dirty this field too often (once per second is enough)
500 * It is racy as we do not hold a lock, but race is very minor.
501 */
tcp_synq_overflow(const struct sock * sk)502 static inline void tcp_synq_overflow(const struct sock *sk)
503 {
504 unsigned int last_overflow;
505 unsigned int now = jiffies;
506
507 if (sk->sk_reuseport) {
508 struct sock_reuseport *reuse;
509
510 reuse = rcu_dereference(sk->sk_reuseport_cb);
511 if (likely(reuse)) {
512 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
513 if (!time_between32(now, last_overflow,
514 last_overflow + HZ))
515 WRITE_ONCE(reuse->synq_overflow_ts, now);
516 return;
517 }
518 }
519
520 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
521 if (!time_between32(now, last_overflow, last_overflow + HZ))
522 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
523 }
524
525 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)526 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
527 {
528 unsigned int last_overflow;
529 unsigned int now = jiffies;
530
531 if (sk->sk_reuseport) {
532 struct sock_reuseport *reuse;
533
534 reuse = rcu_dereference(sk->sk_reuseport_cb);
535 if (likely(reuse)) {
536 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
537 return !time_between32(now, last_overflow - HZ,
538 last_overflow +
539 TCP_SYNCOOKIE_VALID);
540 }
541 }
542
543 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
544
545 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
546 * then we're under synflood. However, we have to use
547 * 'last_overflow - HZ' as lower bound. That's because a concurrent
548 * tcp_synq_overflow() could update .ts_recent_stamp after we read
549 * jiffies but before we store .ts_recent_stamp into last_overflow,
550 * which could lead to rejecting a valid syncookie.
551 */
552 return !time_between32(now, last_overflow - HZ,
553 last_overflow + TCP_SYNCOOKIE_VALID);
554 }
555
tcp_cookie_time(void)556 static inline u32 tcp_cookie_time(void)
557 {
558 u64 val = get_jiffies_64();
559
560 do_div(val, TCP_SYNCOOKIE_PERIOD);
561 return val;
562 }
563
564 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
565 u16 *mssp);
566 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
567 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
568 bool cookie_timestamp_decode(const struct net *net,
569 struct tcp_options_received *opt);
570 bool cookie_ecn_ok(const struct tcp_options_received *opt,
571 const struct net *net, const struct dst_entry *dst);
572
573 /* From net/ipv6/syncookies.c */
574 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
575 u32 cookie);
576 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
577
578 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
579 const struct tcphdr *th, u16 *mssp);
580 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
581 #endif
582 /* tcp_output.c */
583
584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
585 int nonagle);
586 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
587 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
588 void tcp_retransmit_timer(struct sock *sk);
589 void tcp_xmit_retransmit_queue(struct sock *);
590 void tcp_simple_retransmit(struct sock *);
591 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
592 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
593 enum tcp_queue {
594 TCP_FRAG_IN_WRITE_QUEUE,
595 TCP_FRAG_IN_RTX_QUEUE,
596 };
597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
598 struct sk_buff *skb, u32 len,
599 unsigned int mss_now, gfp_t gfp);
600
601 void tcp_send_probe0(struct sock *);
602 void tcp_send_partial(struct sock *);
603 int tcp_write_wakeup(struct sock *, int mib);
604 void tcp_send_fin(struct sock *sk);
605 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
606 int tcp_send_synack(struct sock *);
607 void tcp_push_one(struct sock *, unsigned int mss_now);
608 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
609 void tcp_send_ack(struct sock *sk);
610 void tcp_send_delayed_ack(struct sock *sk);
611 void tcp_send_loss_probe(struct sock *sk);
612 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
613 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
614 const struct sk_buff *next_skb);
615
616 /* tcp_input.c */
617 void tcp_rearm_rto(struct sock *sk);
618 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
619 void tcp_reset(struct sock *sk, struct sk_buff *skb);
620 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
621 void tcp_fin(struct sock *sk);
622
623 /* tcp_timer.c */
624 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)625 static inline void tcp_clear_xmit_timers(struct sock *sk)
626 {
627 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
628 __sock_put(sk);
629
630 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
631 __sock_put(sk);
632
633 inet_csk_clear_xmit_timers(sk);
634 }
635
636 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
637 unsigned int tcp_current_mss(struct sock *sk);
638 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
639
640 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)641 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
642 {
643 int cutoff;
644
645 /* When peer uses tiny windows, there is no use in packetizing
646 * to sub-MSS pieces for the sake of SWS or making sure there
647 * are enough packets in the pipe for fast recovery.
648 *
649 * On the other hand, for extremely large MSS devices, handling
650 * smaller than MSS windows in this way does make sense.
651 */
652 if (tp->max_window > TCP_MSS_DEFAULT)
653 cutoff = (tp->max_window >> 1);
654 else
655 cutoff = tp->max_window;
656
657 if (cutoff && pktsize > cutoff)
658 return max_t(int, cutoff, 68U - tp->tcp_header_len);
659 else
660 return pktsize;
661 }
662
663 /* tcp.c */
664 void tcp_get_info(struct sock *, struct tcp_info *);
665
666 /* Read 'sendfile()'-style from a TCP socket */
667 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
668 sk_read_actor_t recv_actor);
669
670 void tcp_initialize_rcv_mss(struct sock *sk);
671
672 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
673 int tcp_mss_to_mtu(struct sock *sk, int mss);
674 void tcp_mtup_init(struct sock *sk);
675
tcp_bound_rto(const struct sock * sk)676 static inline void tcp_bound_rto(const struct sock *sk)
677 {
678 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
679 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
680 }
681
__tcp_set_rto(const struct tcp_sock * tp)682 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
683 {
684 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
685 }
686
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)687 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
688 {
689 /* mptcp hooks are only on the slow path */
690 if (sk_is_mptcp((struct sock *)tp))
691 return;
692
693 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
694 ntohl(TCP_FLAG_ACK) |
695 snd_wnd);
696 }
697
tcp_fast_path_on(struct tcp_sock * tp)698 static inline void tcp_fast_path_on(struct tcp_sock *tp)
699 {
700 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
701 }
702
tcp_fast_path_check(struct sock * sk)703 static inline void tcp_fast_path_check(struct sock *sk)
704 {
705 struct tcp_sock *tp = tcp_sk(sk);
706
707 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
708 tp->rcv_wnd &&
709 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
710 !tp->urg_data)
711 tcp_fast_path_on(tp);
712 }
713
714 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)715 static inline u32 tcp_rto_min(struct sock *sk)
716 {
717 const struct dst_entry *dst = __sk_dst_get(sk);
718 u32 rto_min = inet_csk(sk)->icsk_rto_min;
719
720 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
721 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
722 return rto_min;
723 }
724
tcp_rto_min_us(struct sock * sk)725 static inline u32 tcp_rto_min_us(struct sock *sk)
726 {
727 return jiffies_to_usecs(tcp_rto_min(sk));
728 }
729
tcp_ca_dst_locked(const struct dst_entry * dst)730 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
731 {
732 return dst_metric_locked(dst, RTAX_CC_ALGO);
733 }
734
735 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)736 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
737 {
738 return minmax_get(&tp->rtt_min);
739 }
740
741 /* Compute the actual receive window we are currently advertising.
742 * Rcv_nxt can be after the window if our peer push more data
743 * than the offered window.
744 */
tcp_receive_window(const struct tcp_sock * tp)745 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
746 {
747 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
748
749 if (win < 0)
750 win = 0;
751 return (u32) win;
752 }
753
754 /* Choose a new window, without checks for shrinking, and without
755 * scaling applied to the result. The caller does these things
756 * if necessary. This is a "raw" window selection.
757 */
758 u32 __tcp_select_window(struct sock *sk);
759
760 void tcp_send_window_probe(struct sock *sk);
761
762 /* TCP uses 32bit jiffies to save some space.
763 * Note that this is different from tcp_time_stamp, which
764 * historically has been the same until linux-4.13.
765 */
766 #define tcp_jiffies32 ((u32)jiffies)
767
768 /*
769 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
770 * It is no longer tied to jiffies, but to 1 ms clock.
771 * Note: double check if you want to use tcp_jiffies32 instead of this.
772 */
773 #define TCP_TS_HZ 1000
774
tcp_clock_ns(void)775 static inline u64 tcp_clock_ns(void)
776 {
777 return ktime_get_ns();
778 }
779
tcp_clock_us(void)780 static inline u64 tcp_clock_us(void)
781 {
782 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
783 }
784
785 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)786 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
787 {
788 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
789 }
790
791 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)792 static inline u32 tcp_ns_to_ts(u64 ns)
793 {
794 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
795 }
796
797 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)798 static inline u32 tcp_time_stamp_raw(void)
799 {
800 return tcp_ns_to_ts(tcp_clock_ns());
801 }
802
803 void tcp_mstamp_refresh(struct tcp_sock *tp);
804
tcp_stamp_us_delta(u64 t1,u64 t0)805 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
806 {
807 return max_t(s64, t1 - t0, 0);
808 }
809
tcp_skb_timestamp(const struct sk_buff * skb)810 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
811 {
812 return tcp_ns_to_ts(skb->skb_mstamp_ns);
813 }
814
815 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)816 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
817 {
818 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
819 }
820
821
822 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
823
824 #define TCPHDR_FIN 0x01
825 #define TCPHDR_SYN 0x02
826 #define TCPHDR_RST 0x04
827 #define TCPHDR_PSH 0x08
828 #define TCPHDR_ACK 0x10
829 #define TCPHDR_URG 0x20
830 #define TCPHDR_ECE 0x40
831 #define TCPHDR_CWR 0x80
832
833 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
834
835 /* This is what the send packet queuing engine uses to pass
836 * TCP per-packet control information to the transmission code.
837 * We also store the host-order sequence numbers in here too.
838 * This is 44 bytes if IPV6 is enabled.
839 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
840 */
841 struct tcp_skb_cb {
842 __u32 seq; /* Starting sequence number */
843 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
844 union {
845 /* Note : tcp_tw_isn is used in input path only
846 * (isn chosen by tcp_timewait_state_process())
847 *
848 * tcp_gso_segs/size are used in write queue only,
849 * cf tcp_skb_pcount()/tcp_skb_mss()
850 */
851 __u32 tcp_tw_isn;
852 struct {
853 u16 tcp_gso_segs;
854 u16 tcp_gso_size;
855 };
856 };
857 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
858
859 __u8 sacked; /* State flags for SACK. */
860 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
861 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
862 #define TCPCB_LOST 0x04 /* SKB is lost */
863 #define TCPCB_TAGBITS 0x07 /* All tag bits */
864 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
865 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
866 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
867 TCPCB_REPAIRED)
868
869 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
870 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
871 eor:1, /* Is skb MSG_EOR marked? */
872 has_rxtstamp:1, /* SKB has a RX timestamp */
873 unused:5;
874 __u32 ack_seq; /* Sequence number ACK'd */
875 union {
876 struct {
877 /* There is space for up to 24 bytes */
878 __u32 in_flight:30,/* Bytes in flight at transmit */
879 is_app_limited:1, /* cwnd not fully used? */
880 unused:1;
881 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
882 __u32 delivered;
883 /* start of send pipeline phase */
884 u64 first_tx_mstamp;
885 /* when we reached the "delivered" count */
886 u64 delivered_mstamp;
887 } tx; /* only used for outgoing skbs */
888 union {
889 struct inet_skb_parm h4;
890 #if IS_ENABLED(CONFIG_IPV6)
891 struct inet6_skb_parm h6;
892 #endif
893 } header; /* For incoming skbs */
894 };
895 };
896
897 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
898
899 extern const struct inet_connection_sock_af_ops ipv4_specific;
900
901 #if IS_ENABLED(CONFIG_IPV6)
902 /* This is the variant of inet6_iif() that must be used by TCP,
903 * as TCP moves IP6CB into a different location in skb->cb[]
904 */
tcp_v6_iif(const struct sk_buff * skb)905 static inline int tcp_v6_iif(const struct sk_buff *skb)
906 {
907 return TCP_SKB_CB(skb)->header.h6.iif;
908 }
909
tcp_v6_iif_l3_slave(const struct sk_buff * skb)910 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
911 {
912 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
913
914 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
915 }
916
917 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)918 static inline int tcp_v6_sdif(const struct sk_buff *skb)
919 {
920 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
921 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
922 return TCP_SKB_CB(skb)->header.h6.iif;
923 #endif
924 return 0;
925 }
926
927 extern const struct inet_connection_sock_af_ops ipv6_specific;
928
929 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
930 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
931 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
932
933 #endif
934
935 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)936 static inline int tcp_v4_sdif(struct sk_buff *skb)
937 {
938 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
940 return TCP_SKB_CB(skb)->header.h4.iif;
941 #endif
942 return 0;
943 }
944
945 /* Due to TSO, an SKB can be composed of multiple actual
946 * packets. To keep these tracked properly, we use this.
947 */
tcp_skb_pcount(const struct sk_buff * skb)948 static inline int tcp_skb_pcount(const struct sk_buff *skb)
949 {
950 return TCP_SKB_CB(skb)->tcp_gso_segs;
951 }
952
tcp_skb_pcount_set(struct sk_buff * skb,int segs)953 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
954 {
955 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
956 }
957
tcp_skb_pcount_add(struct sk_buff * skb,int segs)958 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
959 {
960 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
961 }
962
963 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)964 static inline int tcp_skb_mss(const struct sk_buff *skb)
965 {
966 return TCP_SKB_CB(skb)->tcp_gso_size;
967 }
968
tcp_skb_can_collapse_to(const struct sk_buff * skb)969 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
970 {
971 return likely(!TCP_SKB_CB(skb)->eor);
972 }
973
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)974 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
975 const struct sk_buff *from)
976 {
977 return likely(tcp_skb_can_collapse_to(to) &&
978 mptcp_skb_can_collapse(to, from));
979 }
980
981 /* Events passed to congestion control interface */
982 enum tcp_ca_event {
983 CA_EVENT_TX_START, /* first transmit when no packets in flight */
984 CA_EVENT_CWND_RESTART, /* congestion window restart */
985 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
986 CA_EVENT_LOSS, /* loss timeout */
987 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
988 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
989 };
990
991 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
992 enum tcp_ca_ack_event_flags {
993 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
994 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
995 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
996 };
997
998 /*
999 * Interface for adding new TCP congestion control handlers
1000 */
1001 #define TCP_CA_NAME_MAX 16
1002 #define TCP_CA_MAX 128
1003 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1004
1005 #define TCP_CA_UNSPEC 0
1006
1007 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1008 #define TCP_CONG_NON_RESTRICTED 0x1
1009 /* Requires ECN/ECT set on all packets */
1010 #define TCP_CONG_NEEDS_ECN 0x2
1011 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1012
1013 union tcp_cc_info;
1014
1015 struct ack_sample {
1016 u32 pkts_acked;
1017 s32 rtt_us;
1018 u32 in_flight;
1019 };
1020
1021 /* A rate sample measures the number of (original/retransmitted) data
1022 * packets delivered "delivered" over an interval of time "interval_us".
1023 * The tcp_rate.c code fills in the rate sample, and congestion
1024 * control modules that define a cong_control function to run at the end
1025 * of ACK processing can optionally chose to consult this sample when
1026 * setting cwnd and pacing rate.
1027 * A sample is invalid if "delivered" or "interval_us" is negative.
1028 */
1029 struct rate_sample {
1030 u64 prior_mstamp; /* starting timestamp for interval */
1031 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1032 s32 delivered; /* number of packets delivered over interval */
1033 long interval_us; /* time for tp->delivered to incr "delivered" */
1034 u32 snd_interval_us; /* snd interval for delivered packets */
1035 u32 rcv_interval_us; /* rcv interval for delivered packets */
1036 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1037 int losses; /* number of packets marked lost upon ACK */
1038 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1039 u32 prior_in_flight; /* in flight before this ACK */
1040 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1041 bool is_retrans; /* is sample from retransmission? */
1042 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1043 };
1044
1045 struct tcp_congestion_ops {
1046 /* fast path fields are put first to fill one cache line */
1047
1048 /* return slow start threshold (required) */
1049 u32 (*ssthresh)(struct sock *sk);
1050
1051 /* do new cwnd calculation (required) */
1052 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1053
1054 /* call before changing ca_state (optional) */
1055 void (*set_state)(struct sock *sk, u8 new_state);
1056
1057 /* call when cwnd event occurs (optional) */
1058 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1059
1060 /* call when ack arrives (optional) */
1061 void (*in_ack_event)(struct sock *sk, u32 flags);
1062
1063 /* hook for packet ack accounting (optional) */
1064 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1065
1066 /* override sysctl_tcp_min_tso_segs */
1067 u32 (*min_tso_segs)(struct sock *sk);
1068
1069 /* call when packets are delivered to update cwnd and pacing rate,
1070 * after all the ca_state processing. (optional)
1071 */
1072 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1073
1074
1075 /* new value of cwnd after loss (required) */
1076 u32 (*undo_cwnd)(struct sock *sk);
1077 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1078 u32 (*sndbuf_expand)(struct sock *sk);
1079
1080 /* control/slow paths put last */
1081 /* get info for inet_diag (optional) */
1082 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1083 union tcp_cc_info *info);
1084
1085 char name[TCP_CA_NAME_MAX];
1086 struct module *owner;
1087 struct list_head list;
1088 u32 key;
1089 u32 flags;
1090
1091 /* initialize private data (optional) */
1092 void (*init)(struct sock *sk);
1093 /* cleanup private data (optional) */
1094 void (*release)(struct sock *sk);
1095 } ____cacheline_aligned_in_smp;
1096
1097 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1099
1100 void tcp_assign_congestion_control(struct sock *sk);
1101 void tcp_init_congestion_control(struct sock *sk);
1102 void tcp_cleanup_congestion_control(struct sock *sk);
1103 int tcp_set_default_congestion_control(struct net *net, const char *name);
1104 void tcp_get_default_congestion_control(struct net *net, char *name);
1105 void tcp_get_available_congestion_control(char *buf, size_t len);
1106 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107 int tcp_set_allowed_congestion_control(char *allowed);
1108 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109 bool cap_net_admin);
1110 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1112
1113 u32 tcp_reno_ssthresh(struct sock *sk);
1114 u32 tcp_reno_undo_cwnd(struct sock *sk);
1115 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116 extern struct tcp_congestion_ops tcp_reno;
1117
1118 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1121 #ifdef CONFIG_INET
1122 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1123 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1124 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1125 {
1126 return NULL;
1127 }
1128 #endif
1129
tcp_ca_needs_ecn(const struct sock * sk)1130 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1131 {
1132 const struct inet_connection_sock *icsk = inet_csk(sk);
1133
1134 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1135 }
1136
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1137 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1138 {
1139 struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141 if (icsk->icsk_ca_ops->set_state)
1142 icsk->icsk_ca_ops->set_state(sk, ca_state);
1143 icsk->icsk_ca_state = ca_state;
1144 }
1145
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1146 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1147 {
1148 const struct inet_connection_sock *icsk = inet_csk(sk);
1149
1150 if (icsk->icsk_ca_ops->cwnd_event)
1151 icsk->icsk_ca_ops->cwnd_event(sk, event);
1152 }
1153
1154 /* From tcp_rate.c */
1155 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157 struct rate_sample *rs);
1158 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159 bool is_sack_reneg, struct rate_sample *rs);
1160 void tcp_rate_check_app_limited(struct sock *sk);
1161
1162 /* These functions determine how the current flow behaves in respect of SACK
1163 * handling. SACK is negotiated with the peer, and therefore it can vary
1164 * between different flows.
1165 *
1166 * tcp_is_sack - SACK enabled
1167 * tcp_is_reno - No SACK
1168 */
tcp_is_sack(const struct tcp_sock * tp)1169 static inline int tcp_is_sack(const struct tcp_sock *tp)
1170 {
1171 return likely(tp->rx_opt.sack_ok);
1172 }
1173
tcp_is_reno(const struct tcp_sock * tp)1174 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1175 {
1176 return !tcp_is_sack(tp);
1177 }
1178
tcp_left_out(const struct tcp_sock * tp)1179 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1180 {
1181 return tp->sacked_out + tp->lost_out;
1182 }
1183
1184 /* This determines how many packets are "in the network" to the best
1185 * of our knowledge. In many cases it is conservative, but where
1186 * detailed information is available from the receiver (via SACK
1187 * blocks etc.) we can make more aggressive calculations.
1188 *
1189 * Use this for decisions involving congestion control, use just
1190 * tp->packets_out to determine if the send queue is empty or not.
1191 *
1192 * Read this equation as:
1193 *
1194 * "Packets sent once on transmission queue" MINUS
1195 * "Packets left network, but not honestly ACKed yet" PLUS
1196 * "Packets fast retransmitted"
1197 */
tcp_packets_in_flight(const struct tcp_sock * tp)1198 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1199 {
1200 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1201 }
1202
1203 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1204
tcp_in_slow_start(const struct tcp_sock * tp)1205 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1206 {
1207 return tp->snd_cwnd < tp->snd_ssthresh;
1208 }
1209
tcp_in_initial_slowstart(const struct tcp_sock * tp)1210 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1211 {
1212 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1213 }
1214
tcp_in_cwnd_reduction(const struct sock * sk)1215 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1216 {
1217 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1218 (1 << inet_csk(sk)->icsk_ca_state);
1219 }
1220
1221 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1222 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1223 * ssthresh.
1224 */
tcp_current_ssthresh(const struct sock * sk)1225 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1226 {
1227 const struct tcp_sock *tp = tcp_sk(sk);
1228
1229 if (tcp_in_cwnd_reduction(sk))
1230 return tp->snd_ssthresh;
1231 else
1232 return max(tp->snd_ssthresh,
1233 ((tp->snd_cwnd >> 1) +
1234 (tp->snd_cwnd >> 2)));
1235 }
1236
1237 /* Use define here intentionally to get WARN_ON location shown at the caller */
1238 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1239
1240 void tcp_enter_cwr(struct sock *sk);
1241 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1242
1243 /* The maximum number of MSS of available cwnd for which TSO defers
1244 * sending if not using sysctl_tcp_tso_win_divisor.
1245 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1246 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1247 {
1248 return 3;
1249 }
1250
1251 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1252 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1253 {
1254 return tp->snd_una + tp->snd_wnd;
1255 }
1256
1257 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1258 * flexible approach. The RFC suggests cwnd should not be raised unless
1259 * it was fully used previously. And that's exactly what we do in
1260 * congestion avoidance mode. But in slow start we allow cwnd to grow
1261 * as long as the application has used half the cwnd.
1262 * Example :
1263 * cwnd is 10 (IW10), but application sends 9 frames.
1264 * We allow cwnd to reach 18 when all frames are ACKed.
1265 * This check is safe because it's as aggressive as slow start which already
1266 * risks 100% overshoot. The advantage is that we discourage application to
1267 * either send more filler packets or data to artificially blow up the cwnd
1268 * usage, and allow application-limited process to probe bw more aggressively.
1269 */
tcp_is_cwnd_limited(const struct sock * sk)1270 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1271 {
1272 const struct tcp_sock *tp = tcp_sk(sk);
1273
1274 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1275 if (tcp_in_slow_start(tp))
1276 return tp->snd_cwnd < 2 * tp->max_packets_out;
1277
1278 return tp->is_cwnd_limited;
1279 }
1280
1281 /* BBR congestion control needs pacing.
1282 * Same remark for SO_MAX_PACING_RATE.
1283 * sch_fq packet scheduler is efficiently handling pacing,
1284 * but is not always installed/used.
1285 * Return true if TCP stack should pace packets itself.
1286 */
tcp_needs_internal_pacing(const struct sock * sk)1287 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1288 {
1289 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1290 }
1291
1292 /* Estimates in how many jiffies next packet for this flow can be sent.
1293 * Scheduling a retransmit timer too early would be silly.
1294 */
tcp_pacing_delay(const struct sock * sk)1295 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1296 {
1297 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1298
1299 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1300 }
1301
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1302 static inline void tcp_reset_xmit_timer(struct sock *sk,
1303 const int what,
1304 unsigned long when,
1305 const unsigned long max_when)
1306 {
1307 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1308 max_when);
1309 }
1310
1311 /* Something is really bad, we could not queue an additional packet,
1312 * because qdisc is full or receiver sent a 0 window, or we are paced.
1313 * We do not want to add fuel to the fire, or abort too early,
1314 * so make sure the timer we arm now is at least 200ms in the future,
1315 * regardless of current icsk_rto value (as it could be ~2ms)
1316 */
tcp_probe0_base(const struct sock * sk)1317 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1318 {
1319 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1320 }
1321
1322 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1323 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1324 unsigned long max_when)
1325 {
1326 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1327 inet_csk(sk)->icsk_backoff);
1328 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1329
1330 return (unsigned long)min_t(u64, when, max_when);
1331 }
1332
tcp_check_probe_timer(struct sock * sk)1333 static inline void tcp_check_probe_timer(struct sock *sk)
1334 {
1335 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337 tcp_probe0_base(sk), TCP_RTO_MAX);
1338 }
1339
tcp_init_wl(struct tcp_sock * tp,u32 seq)1340 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1341 {
1342 tp->snd_wl1 = seq;
1343 }
1344
tcp_update_wl(struct tcp_sock * tp,u32 seq)1345 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1346 {
1347 tp->snd_wl1 = seq;
1348 }
1349
1350 /*
1351 * Calculate(/check) TCP checksum
1352 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1353 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1354 __be32 daddr, __wsum base)
1355 {
1356 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1357 }
1358
tcp_checksum_complete(struct sk_buff * skb)1359 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1360 {
1361 return !skb_csum_unnecessary(skb) &&
1362 __skb_checksum_complete(skb);
1363 }
1364
1365 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1366 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1367 void tcp_set_state(struct sock *sk, int state);
1368 void tcp_done(struct sock *sk);
1369 int tcp_abort(struct sock *sk, int err);
1370
tcp_sack_reset(struct tcp_options_received * rx_opt)1371 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1372 {
1373 rx_opt->dsack = 0;
1374 rx_opt->num_sacks = 0;
1375 }
1376
1377 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1378
tcp_slow_start_after_idle_check(struct sock * sk)1379 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1380 {
1381 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 s32 delta;
1384
1385 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1386 ca_ops->cong_control)
1387 return;
1388 delta = tcp_jiffies32 - tp->lsndtime;
1389 if (delta > inet_csk(sk)->icsk_rto)
1390 tcp_cwnd_restart(sk, delta);
1391 }
1392
1393 /* Determine a window scaling and initial window to offer. */
1394 void tcp_select_initial_window(const struct sock *sk, int __space,
1395 __u32 mss, __u32 *rcv_wnd,
1396 __u32 *window_clamp, int wscale_ok,
1397 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1398
tcp_win_from_space(const struct sock * sk,int space)1399 static inline int tcp_win_from_space(const struct sock *sk, int space)
1400 {
1401 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1402
1403 return tcp_adv_win_scale <= 0 ?
1404 (space>>(-tcp_adv_win_scale)) :
1405 space - (space>>tcp_adv_win_scale);
1406 }
1407
1408 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1409 static inline int tcp_space(const struct sock *sk)
1410 {
1411 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1412 READ_ONCE(sk->sk_backlog.len) -
1413 atomic_read(&sk->sk_rmem_alloc));
1414 }
1415
tcp_full_space(const struct sock * sk)1416 static inline int tcp_full_space(const struct sock *sk)
1417 {
1418 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1419 }
1420
1421 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1422
1423 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
tcp_rmem_pressure(const struct sock * sk)1428 static inline bool tcp_rmem_pressure(const struct sock *sk)
1429 {
1430 int rcvbuf, threshold;
1431
1432 if (tcp_under_memory_pressure(sk))
1433 return true;
1434
1435 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436 threshold = rcvbuf - (rcvbuf >> 3);
1437
1438 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439 }
1440
tcp_epollin_ready(const struct sock * sk,int target)1441 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1442 {
1443 const struct tcp_sock *tp = tcp_sk(sk);
1444 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1445
1446 if (avail <= 0)
1447 return false;
1448
1449 return (avail >= target) || tcp_rmem_pressure(sk) ||
1450 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1451 }
1452
1453 extern void tcp_openreq_init_rwin(struct request_sock *req,
1454 const struct sock *sk_listener,
1455 const struct dst_entry *dst);
1456
1457 void tcp_enter_memory_pressure(struct sock *sk);
1458 void tcp_leave_memory_pressure(struct sock *sk);
1459
keepalive_intvl_when(const struct tcp_sock * tp)1460 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1461 {
1462 struct net *net = sock_net((struct sock *)tp);
1463
1464 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1465 }
1466
keepalive_time_when(const struct tcp_sock * tp)1467 static inline int keepalive_time_when(const struct tcp_sock *tp)
1468 {
1469 struct net *net = sock_net((struct sock *)tp);
1470
1471 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1472 }
1473
keepalive_probes(const struct tcp_sock * tp)1474 static inline int keepalive_probes(const struct tcp_sock *tp)
1475 {
1476 struct net *net = sock_net((struct sock *)tp);
1477
1478 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1479 }
1480
keepalive_time_elapsed(const struct tcp_sock * tp)1481 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1482 {
1483 const struct inet_connection_sock *icsk = &tp->inet_conn;
1484
1485 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1486 tcp_jiffies32 - tp->rcv_tstamp);
1487 }
1488
tcp_fin_time(const struct sock * sk)1489 static inline int tcp_fin_time(const struct sock *sk)
1490 {
1491 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1492 const int rto = inet_csk(sk)->icsk_rto;
1493
1494 if (fin_timeout < (rto << 2) - (rto >> 1))
1495 fin_timeout = (rto << 2) - (rto >> 1);
1496
1497 return fin_timeout;
1498 }
1499
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1500 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1501 int paws_win)
1502 {
1503 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1504 return true;
1505 if (unlikely(!time_before32(ktime_get_seconds(),
1506 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1507 return true;
1508 /*
1509 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1510 * then following tcp messages have valid values. Ignore 0 value,
1511 * or else 'negative' tsval might forbid us to accept their packets.
1512 */
1513 if (!rx_opt->ts_recent)
1514 return true;
1515 return false;
1516 }
1517
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1518 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1519 int rst)
1520 {
1521 if (tcp_paws_check(rx_opt, 0))
1522 return false;
1523
1524 /* RST segments are not recommended to carry timestamp,
1525 and, if they do, it is recommended to ignore PAWS because
1526 "their cleanup function should take precedence over timestamps."
1527 Certainly, it is mistake. It is necessary to understand the reasons
1528 of this constraint to relax it: if peer reboots, clock may go
1529 out-of-sync and half-open connections will not be reset.
1530 Actually, the problem would be not existing if all
1531 the implementations followed draft about maintaining clock
1532 via reboots. Linux-2.2 DOES NOT!
1533
1534 However, we can relax time bounds for RST segments to MSL.
1535 */
1536 if (rst && !time_before32(ktime_get_seconds(),
1537 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1538 return false;
1539 return true;
1540 }
1541
1542 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1543 int mib_idx, u32 *last_oow_ack_time);
1544
tcp_mib_init(struct net * net)1545 static inline void tcp_mib_init(struct net *net)
1546 {
1547 /* See RFC 2012 */
1548 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1549 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1550 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1551 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1552 }
1553
1554 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1555 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1556 {
1557 tp->lost_skb_hint = NULL;
1558 }
1559
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1560 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1561 {
1562 tcp_clear_retrans_hints_partial(tp);
1563 tp->retransmit_skb_hint = NULL;
1564 }
1565
1566 union tcp_md5_addr {
1567 struct in_addr a4;
1568 #if IS_ENABLED(CONFIG_IPV6)
1569 struct in6_addr a6;
1570 #endif
1571 };
1572
1573 /* - key database */
1574 struct tcp_md5sig_key {
1575 struct hlist_node node;
1576 u8 keylen;
1577 u8 family; /* AF_INET or AF_INET6 */
1578 u8 prefixlen;
1579 u8 flags;
1580 union tcp_md5_addr addr;
1581 int l3index; /* set if key added with L3 scope */
1582 u8 key[TCP_MD5SIG_MAXKEYLEN];
1583 struct rcu_head rcu;
1584 };
1585
1586 /* - sock block */
1587 struct tcp_md5sig_info {
1588 struct hlist_head head;
1589 struct rcu_head rcu;
1590 };
1591
1592 /* - pseudo header */
1593 struct tcp4_pseudohdr {
1594 __be32 saddr;
1595 __be32 daddr;
1596 __u8 pad;
1597 __u8 protocol;
1598 __be16 len;
1599 };
1600
1601 struct tcp6_pseudohdr {
1602 struct in6_addr saddr;
1603 struct in6_addr daddr;
1604 __be32 len;
1605 __be32 protocol; /* including padding */
1606 };
1607
1608 union tcp_md5sum_block {
1609 struct tcp4_pseudohdr ip4;
1610 #if IS_ENABLED(CONFIG_IPV6)
1611 struct tcp6_pseudohdr ip6;
1612 #endif
1613 };
1614
1615 /* - pool: digest algorithm, hash description and scratch buffer */
1616 struct tcp_md5sig_pool {
1617 struct ahash_request *md5_req;
1618 void *scratch;
1619 };
1620
1621 /* - functions */
1622 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1623 const struct sock *sk, const struct sk_buff *skb);
1624 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1625 int family, u8 prefixlen, int l3index, u8 flags,
1626 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1627 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1628 int family, u8 prefixlen, int l3index, u8 flags);
1629 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1630 const struct sock *addr_sk);
1631
1632 #ifdef CONFIG_TCP_MD5SIG
1633 #include <linux/jump_label.h>
1634 extern struct static_key_false tcp_md5_needed;
1635 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1636 const union tcp_md5_addr *addr,
1637 int family);
1638 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1639 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1640 const union tcp_md5_addr *addr, int family)
1641 {
1642 if (!static_branch_unlikely(&tcp_md5_needed))
1643 return NULL;
1644 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1645 }
1646
1647 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1648 #else
1649 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1650 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1651 const union tcp_md5_addr *addr, int family)
1652 {
1653 return NULL;
1654 }
1655 #define tcp_twsk_md5_key(twsk) NULL
1656 #endif
1657
1658 bool tcp_alloc_md5sig_pool(void);
1659
1660 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1661 static inline void tcp_put_md5sig_pool(void)
1662 {
1663 local_bh_enable();
1664 }
1665
1666 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1667 unsigned int header_len);
1668 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1669 const struct tcp_md5sig_key *key);
1670
1671 /* From tcp_fastopen.c */
1672 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1673 struct tcp_fastopen_cookie *cookie);
1674 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1675 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1676 u16 try_exp);
1677 struct tcp_fastopen_request {
1678 /* Fast Open cookie. Size 0 means a cookie request */
1679 struct tcp_fastopen_cookie cookie;
1680 struct msghdr *data; /* data in MSG_FASTOPEN */
1681 size_t size;
1682 int copied; /* queued in tcp_connect() */
1683 struct ubuf_info *uarg;
1684 };
1685 void tcp_free_fastopen_req(struct tcp_sock *tp);
1686 void tcp_fastopen_destroy_cipher(struct sock *sk);
1687 void tcp_fastopen_ctx_destroy(struct net *net);
1688 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1689 void *primary_key, void *backup_key);
1690 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1691 u64 *key);
1692 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1693 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1694 struct request_sock *req,
1695 struct tcp_fastopen_cookie *foc,
1696 const struct dst_entry *dst);
1697 void tcp_fastopen_init_key_once(struct net *net);
1698 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1699 struct tcp_fastopen_cookie *cookie);
1700 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1701 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1702 #define TCP_FASTOPEN_KEY_MAX 2
1703 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1704 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1705
1706 /* Fastopen key context */
1707 struct tcp_fastopen_context {
1708 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1709 int num;
1710 struct rcu_head rcu;
1711 };
1712
1713 void tcp_fastopen_active_disable(struct sock *sk);
1714 bool tcp_fastopen_active_should_disable(struct sock *sk);
1715 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1716 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1717
1718 /* Caller needs to wrap with rcu_read_(un)lock() */
1719 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1720 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1721 {
1722 struct tcp_fastopen_context *ctx;
1723
1724 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1725 if (!ctx)
1726 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1727 return ctx;
1728 }
1729
1730 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1731 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1732 const struct tcp_fastopen_cookie *orig)
1733 {
1734 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1735 orig->len == foc->len &&
1736 !memcmp(orig->val, foc->val, foc->len))
1737 return true;
1738 return false;
1739 }
1740
1741 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1742 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1743 {
1744 return ctx->num;
1745 }
1746
1747 /* Latencies incurred by various limits for a sender. They are
1748 * chronograph-like stats that are mutually exclusive.
1749 */
1750 enum tcp_chrono {
1751 TCP_CHRONO_UNSPEC,
1752 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1753 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1754 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1755 __TCP_CHRONO_MAX,
1756 };
1757
1758 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1759 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1760
1761 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1762 * the same memory storage than skb->destructor/_skb_refdst
1763 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1764 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1765 {
1766 skb->destructor = NULL;
1767 skb->_skb_refdst = 0UL;
1768 }
1769
1770 #define tcp_skb_tsorted_save(skb) { \
1771 unsigned long _save = skb->_skb_refdst; \
1772 skb->_skb_refdst = 0UL;
1773
1774 #define tcp_skb_tsorted_restore(skb) \
1775 skb->_skb_refdst = _save; \
1776 }
1777
1778 void tcp_write_queue_purge(struct sock *sk);
1779
tcp_rtx_queue_head(const struct sock * sk)1780 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1781 {
1782 return skb_rb_first(&sk->tcp_rtx_queue);
1783 }
1784
tcp_rtx_queue_tail(const struct sock * sk)1785 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1786 {
1787 return skb_rb_last(&sk->tcp_rtx_queue);
1788 }
1789
tcp_write_queue_head(const struct sock * sk)1790 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1791 {
1792 return skb_peek(&sk->sk_write_queue);
1793 }
1794
tcp_write_queue_tail(const struct sock * sk)1795 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1796 {
1797 return skb_peek_tail(&sk->sk_write_queue);
1798 }
1799
1800 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1801 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1802
tcp_send_head(const struct sock * sk)1803 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1804 {
1805 return skb_peek(&sk->sk_write_queue);
1806 }
1807
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1808 static inline bool tcp_skb_is_last(const struct sock *sk,
1809 const struct sk_buff *skb)
1810 {
1811 return skb_queue_is_last(&sk->sk_write_queue, skb);
1812 }
1813
1814 /**
1815 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1816 * @sk: socket
1817 *
1818 * Since the write queue can have a temporary empty skb in it,
1819 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1820 */
tcp_write_queue_empty(const struct sock * sk)1821 static inline bool tcp_write_queue_empty(const struct sock *sk)
1822 {
1823 const struct tcp_sock *tp = tcp_sk(sk);
1824
1825 return tp->write_seq == tp->snd_nxt;
1826 }
1827
tcp_rtx_queue_empty(const struct sock * sk)1828 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1829 {
1830 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1831 }
1832
tcp_rtx_and_write_queues_empty(const struct sock * sk)1833 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1834 {
1835 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1836 }
1837
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1838 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1839 {
1840 __skb_queue_tail(&sk->sk_write_queue, skb);
1841
1842 /* Queue it, remembering where we must start sending. */
1843 if (sk->sk_write_queue.next == skb)
1844 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1845 }
1846
1847 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1848 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1849 struct sk_buff *skb,
1850 struct sock *sk)
1851 {
1852 __skb_queue_before(&sk->sk_write_queue, skb, new);
1853 }
1854
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1855 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1856 {
1857 tcp_skb_tsorted_anchor_cleanup(skb);
1858 __skb_unlink(skb, &sk->sk_write_queue);
1859 }
1860
1861 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1862
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1863 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1864 {
1865 tcp_skb_tsorted_anchor_cleanup(skb);
1866 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1867 }
1868
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1869 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1870 {
1871 list_del(&skb->tcp_tsorted_anchor);
1872 tcp_rtx_queue_unlink(skb, sk);
1873 sk_wmem_free_skb(sk, skb);
1874 }
1875
tcp_push_pending_frames(struct sock * sk)1876 static inline void tcp_push_pending_frames(struct sock *sk)
1877 {
1878 if (tcp_send_head(sk)) {
1879 struct tcp_sock *tp = tcp_sk(sk);
1880
1881 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1882 }
1883 }
1884
1885 /* Start sequence of the skb just after the highest skb with SACKed
1886 * bit, valid only if sacked_out > 0 or when the caller has ensured
1887 * validity by itself.
1888 */
tcp_highest_sack_seq(struct tcp_sock * tp)1889 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1890 {
1891 if (!tp->sacked_out)
1892 return tp->snd_una;
1893
1894 if (tp->highest_sack == NULL)
1895 return tp->snd_nxt;
1896
1897 return TCP_SKB_CB(tp->highest_sack)->seq;
1898 }
1899
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1900 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1901 {
1902 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1903 }
1904
tcp_highest_sack(struct sock * sk)1905 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1906 {
1907 return tcp_sk(sk)->highest_sack;
1908 }
1909
tcp_highest_sack_reset(struct sock * sk)1910 static inline void tcp_highest_sack_reset(struct sock *sk)
1911 {
1912 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1913 }
1914
1915 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1916 static inline void tcp_highest_sack_replace(struct sock *sk,
1917 struct sk_buff *old,
1918 struct sk_buff *new)
1919 {
1920 if (old == tcp_highest_sack(sk))
1921 tcp_sk(sk)->highest_sack = new;
1922 }
1923
1924 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1925 static inline bool inet_sk_transparent(const struct sock *sk)
1926 {
1927 switch (sk->sk_state) {
1928 case TCP_TIME_WAIT:
1929 return inet_twsk(sk)->tw_transparent;
1930 case TCP_NEW_SYN_RECV:
1931 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1932 }
1933 return inet_sk(sk)->transparent;
1934 }
1935
1936 /* Determines whether this is a thin stream (which may suffer from
1937 * increased latency). Used to trigger latency-reducing mechanisms.
1938 */
tcp_stream_is_thin(struct tcp_sock * tp)1939 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1940 {
1941 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1942 }
1943
1944 /* /proc */
1945 enum tcp_seq_states {
1946 TCP_SEQ_STATE_LISTENING,
1947 TCP_SEQ_STATE_ESTABLISHED,
1948 };
1949
1950 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1951 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1952 void tcp_seq_stop(struct seq_file *seq, void *v);
1953
1954 struct tcp_seq_afinfo {
1955 sa_family_t family;
1956 };
1957
1958 struct tcp_iter_state {
1959 struct seq_net_private p;
1960 enum tcp_seq_states state;
1961 struct sock *syn_wait_sk;
1962 int bucket, offset, sbucket, num;
1963 loff_t last_pos;
1964 };
1965
1966 extern struct request_sock_ops tcp_request_sock_ops;
1967 extern struct request_sock_ops tcp6_request_sock_ops;
1968
1969 void tcp_v4_destroy_sock(struct sock *sk);
1970
1971 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1972 netdev_features_t features);
1973 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1974 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1975 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1976 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1977 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1978 int tcp_gro_complete(struct sk_buff *skb);
1979
1980 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1981
tcp_notsent_lowat(const struct tcp_sock * tp)1982 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1983 {
1984 struct net *net = sock_net((struct sock *)tp);
1985 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1986 }
1987
1988 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1989
1990 #ifdef CONFIG_PROC_FS
1991 int tcp4_proc_init(void);
1992 void tcp4_proc_exit(void);
1993 #endif
1994
1995 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1996 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1997 const struct tcp_request_sock_ops *af_ops,
1998 struct sock *sk, struct sk_buff *skb);
1999
2000 /* TCP af-specific functions */
2001 struct tcp_sock_af_ops {
2002 #ifdef CONFIG_TCP_MD5SIG
2003 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2004 const struct sock *addr_sk);
2005 int (*calc_md5_hash)(char *location,
2006 const struct tcp_md5sig_key *md5,
2007 const struct sock *sk,
2008 const struct sk_buff *skb);
2009 int (*md5_parse)(struct sock *sk,
2010 int optname,
2011 sockptr_t optval,
2012 int optlen);
2013 #endif
2014 };
2015
2016 struct tcp_request_sock_ops {
2017 u16 mss_clamp;
2018 #ifdef CONFIG_TCP_MD5SIG
2019 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2020 const struct sock *addr_sk);
2021 int (*calc_md5_hash) (char *location,
2022 const struct tcp_md5sig_key *md5,
2023 const struct sock *sk,
2024 const struct sk_buff *skb);
2025 #endif
2026 #ifdef CONFIG_SYN_COOKIES
2027 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2028 __u16 *mss);
2029 #endif
2030 struct dst_entry *(*route_req)(const struct sock *sk,
2031 struct sk_buff *skb,
2032 struct flowi *fl,
2033 struct request_sock *req);
2034 u32 (*init_seq)(const struct sk_buff *skb);
2035 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2036 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2037 struct flowi *fl, struct request_sock *req,
2038 struct tcp_fastopen_cookie *foc,
2039 enum tcp_synack_type synack_type,
2040 struct sk_buff *syn_skb);
2041 };
2042
2043 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2044 #if IS_ENABLED(CONFIG_IPV6)
2045 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2046 #endif
2047
2048 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2049 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2050 const struct sock *sk, struct sk_buff *skb,
2051 __u16 *mss)
2052 {
2053 tcp_synq_overflow(sk);
2054 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2055 return ops->cookie_init_seq(skb, mss);
2056 }
2057 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2058 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2059 const struct sock *sk, struct sk_buff *skb,
2060 __u16 *mss)
2061 {
2062 return 0;
2063 }
2064 #endif
2065
2066 int tcpv4_offload_init(void);
2067
2068 void tcp_v4_init(void);
2069 void tcp_init(void);
2070
2071 /* tcp_recovery.c */
2072 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2073 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2074 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2075 u32 reo_wnd);
2076 extern bool tcp_rack_mark_lost(struct sock *sk);
2077 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2078 u64 xmit_time);
2079 extern void tcp_rack_reo_timeout(struct sock *sk);
2080 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2081
2082 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2083 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2084 {
2085 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2086 u32 rto = inet_csk(sk)->icsk_rto;
2087 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2088
2089 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2090 }
2091
2092 /*
2093 * Save and compile IPv4 options, return a pointer to it
2094 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2095 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2096 struct sk_buff *skb)
2097 {
2098 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2099 struct ip_options_rcu *dopt = NULL;
2100
2101 if (opt->optlen) {
2102 int opt_size = sizeof(*dopt) + opt->optlen;
2103
2104 dopt = kmalloc(opt_size, GFP_ATOMIC);
2105 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2106 kfree(dopt);
2107 dopt = NULL;
2108 }
2109 }
2110 return dopt;
2111 }
2112
2113 /* locally generated TCP pure ACKs have skb->truesize == 2
2114 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2115 * This is much faster than dissecting the packet to find out.
2116 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2117 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2118 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2119 {
2120 return skb->truesize == 2;
2121 }
2122
skb_set_tcp_pure_ack(struct sk_buff * skb)2123 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2124 {
2125 skb->truesize = 2;
2126 }
2127
tcp_inq(struct sock * sk)2128 static inline int tcp_inq(struct sock *sk)
2129 {
2130 struct tcp_sock *tp = tcp_sk(sk);
2131 int answ;
2132
2133 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2134 answ = 0;
2135 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2136 !tp->urg_data ||
2137 before(tp->urg_seq, tp->copied_seq) ||
2138 !before(tp->urg_seq, tp->rcv_nxt)) {
2139
2140 answ = tp->rcv_nxt - tp->copied_seq;
2141
2142 /* Subtract 1, if FIN was received */
2143 if (answ && sock_flag(sk, SOCK_DONE))
2144 answ--;
2145 } else {
2146 answ = tp->urg_seq - tp->copied_seq;
2147 }
2148
2149 return answ;
2150 }
2151
2152 int tcp_peek_len(struct socket *sock);
2153
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2154 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2155 {
2156 u16 segs_in;
2157
2158 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2159 tp->segs_in += segs_in;
2160 if (skb->len > tcp_hdrlen(skb))
2161 tp->data_segs_in += segs_in;
2162 }
2163
2164 /*
2165 * TCP listen path runs lockless.
2166 * We forced "struct sock" to be const qualified to make sure
2167 * we don't modify one of its field by mistake.
2168 * Here, we increment sk_drops which is an atomic_t, so we can safely
2169 * make sock writable again.
2170 */
tcp_listendrop(const struct sock * sk)2171 static inline void tcp_listendrop(const struct sock *sk)
2172 {
2173 atomic_inc(&((struct sock *)sk)->sk_drops);
2174 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2175 }
2176
2177 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2178
2179 /*
2180 * Interface for adding Upper Level Protocols over TCP
2181 */
2182
2183 #define TCP_ULP_NAME_MAX 16
2184 #define TCP_ULP_MAX 128
2185 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2186
2187 struct tcp_ulp_ops {
2188 struct list_head list;
2189
2190 /* initialize ulp */
2191 int (*init)(struct sock *sk);
2192 /* update ulp */
2193 void (*update)(struct sock *sk, struct proto *p,
2194 void (*write_space)(struct sock *sk));
2195 /* cleanup ulp */
2196 void (*release)(struct sock *sk);
2197 /* diagnostic */
2198 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2199 size_t (*get_info_size)(const struct sock *sk);
2200 /* clone ulp */
2201 void (*clone)(const struct request_sock *req, struct sock *newsk,
2202 const gfp_t priority);
2203
2204 char name[TCP_ULP_NAME_MAX];
2205 struct module *owner;
2206 };
2207 int tcp_register_ulp(struct tcp_ulp_ops *type);
2208 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2209 int tcp_set_ulp(struct sock *sk, const char *name);
2210 void tcp_get_available_ulp(char *buf, size_t len);
2211 void tcp_cleanup_ulp(struct sock *sk);
2212 void tcp_update_ulp(struct sock *sk, struct proto *p,
2213 void (*write_space)(struct sock *sk));
2214
2215 #define MODULE_ALIAS_TCP_ULP(name) \
2216 __MODULE_INFO(alias, alias_userspace, name); \
2217 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2218
2219 #ifdef CONFIG_NET_SOCK_MSG
2220 struct sk_msg;
2221 struct sk_psock;
2222
2223 #ifdef CONFIG_BPF_SYSCALL
2224 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2225 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2226 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2227 #endif /* CONFIG_BPF_SYSCALL */
2228
2229 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2230 int flags);
2231 #endif /* CONFIG_NET_SOCK_MSG */
2232
2233 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2234 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2235 {
2236 }
2237 #endif
2238
2239 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2240 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2241 struct sk_buff *skb,
2242 unsigned int end_offset)
2243 {
2244 skops->skb = skb;
2245 skops->skb_data_end = skb->data + end_offset;
2246 }
2247 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2248 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2249 struct sk_buff *skb,
2250 unsigned int end_offset)
2251 {
2252 }
2253 #endif
2254
2255 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2256 * is < 0, then the BPF op failed (for example if the loaded BPF
2257 * program does not support the chosen operation or there is no BPF
2258 * program loaded).
2259 */
2260 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2261 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2262 {
2263 struct bpf_sock_ops_kern sock_ops;
2264 int ret;
2265
2266 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2267 if (sk_fullsock(sk)) {
2268 sock_ops.is_fullsock = 1;
2269 sock_owned_by_me(sk);
2270 }
2271
2272 sock_ops.sk = sk;
2273 sock_ops.op = op;
2274 if (nargs > 0)
2275 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2276
2277 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2278 if (ret == 0)
2279 ret = sock_ops.reply;
2280 else
2281 ret = -1;
2282 return ret;
2283 }
2284
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2285 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2286 {
2287 u32 args[2] = {arg1, arg2};
2288
2289 return tcp_call_bpf(sk, op, 2, args);
2290 }
2291
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2292 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293 u32 arg3)
2294 {
2295 u32 args[3] = {arg1, arg2, arg3};
2296
2297 return tcp_call_bpf(sk, op, 3, args);
2298 }
2299
2300 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2301 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2302 {
2303 return -EPERM;
2304 }
2305
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2306 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2307 {
2308 return -EPERM;
2309 }
2310
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2311 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2312 u32 arg3)
2313 {
2314 return -EPERM;
2315 }
2316
2317 #endif
2318
tcp_timeout_init(struct sock * sk)2319 static inline u32 tcp_timeout_init(struct sock *sk)
2320 {
2321 int timeout;
2322
2323 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2324
2325 if (timeout <= 0)
2326 timeout = TCP_TIMEOUT_INIT;
2327 return timeout;
2328 }
2329
tcp_rwnd_init_bpf(struct sock * sk)2330 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2331 {
2332 int rwnd;
2333
2334 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2335
2336 if (rwnd < 0)
2337 rwnd = 0;
2338 return rwnd;
2339 }
2340
tcp_bpf_ca_needs_ecn(struct sock * sk)2341 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2342 {
2343 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2344 }
2345
tcp_bpf_rtt(struct sock * sk)2346 static inline void tcp_bpf_rtt(struct sock *sk)
2347 {
2348 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2349 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2350 }
2351
2352 #if IS_ENABLED(CONFIG_SMC)
2353 extern struct static_key_false tcp_have_smc;
2354 #endif
2355
2356 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2357 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2358 void (*cad)(struct sock *sk, u32 ack_seq));
2359 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2360 void clean_acked_data_flush(void);
2361 #endif
2362
2363 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2364 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2365 const struct tcp_sock *tp)
2366 {
2367 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2368 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2369 }
2370
2371 /* Compute Earliest Departure Time for some control packets
2372 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2373 */
tcp_transmit_time(const struct sock * sk)2374 static inline u64 tcp_transmit_time(const struct sock *sk)
2375 {
2376 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2377 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2378 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2379
2380 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2381 }
2382 return 0;
2383 }
2384
2385 #endif /* _TCP_H */
2386