1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 struct xhci_segment *seg = ring->first_seg;
43
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
51
52 return false;
53 }
54
55 /*
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
61 *
62 * Returns negative errno, or zero on success
63 *
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
67 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70 u32 result;
71 int ret;
72
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
75 result == U32_MAX,
76 1, usec);
77 if (result == U32_MAX) /* card removed */
78 return -ENODEV;
79
80 return ret;
81 }
82
83 /*
84 * Disable interrupts and begin the xHCI halting process.
85 */
xhci_quiesce(struct xhci_hcd * xhci)86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 u32 halted;
89 u32 cmd;
90 u32 mask;
91
92 mask = ~(XHCI_IRQS);
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
94 if (!halted)
95 mask &= ~CMD_RUN;
96
97 cmd = readl(&xhci->op_regs->command);
98 cmd &= mask;
99 writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103 * Force HC into halt state.
104 *
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
109 */
xhci_halt(struct xhci_hcd * xhci)110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 int ret;
113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 xhci_quiesce(xhci);
115
116 ret = xhci_handshake(&xhci->op_regs->status,
117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 if (ret) {
119 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 return ret;
121 }
122 xhci->xhc_state |= XHCI_STATE_HALTED;
123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 return ret;
125 }
126
127 /*
128 * Set the run bit and wait for the host to be running.
129 */
xhci_start(struct xhci_hcd * xhci)130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 u32 temp;
133 int ret;
134
135 temp = readl(&xhci->op_regs->command);
136 temp |= (CMD_RUN);
137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 temp);
139 writel(temp, &xhci->op_regs->command);
140
141 /*
142 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 * running.
144 */
145 ret = xhci_handshake(&xhci->op_regs->status,
146 STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 if (ret == -ETIMEDOUT)
148 xhci_err(xhci, "Host took too long to start, "
149 "waited %u microseconds.\n",
150 XHCI_MAX_HALT_USEC);
151 if (!ret)
152 /* clear state flags. Including dying, halted or removing */
153 xhci->xhc_state = 0;
154
155 return ret;
156 }
157
158 /*
159 * Reset a halted HC.
160 *
161 * This resets pipelines, timers, counters, state machines, etc.
162 * Transactions will be terminated immediately, and operational registers
163 * will be set to their defaults.
164 */
xhci_reset(struct xhci_hcd * xhci)165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167 u32 command;
168 u32 state;
169 int ret;
170
171 state = readl(&xhci->op_regs->status);
172
173 if (state == ~(u32)0) {
174 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 return -ENODEV;
176 }
177
178 if ((state & STS_HALT) == 0) {
179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 return 0;
181 }
182
183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 command = readl(&xhci->op_regs->command);
185 command |= CMD_RESET;
186 writel(command, &xhci->op_regs->command);
187
188 /* Existing Intel xHCI controllers require a delay of 1 mS,
189 * after setting the CMD_RESET bit, and before accessing any
190 * HC registers. This allows the HC to complete the
191 * reset operation and be ready for HC register access.
192 * Without this delay, the subsequent HC register access,
193 * may result in a system hang very rarely.
194 */
195 if (xhci->quirks & XHCI_INTEL_HOST)
196 udelay(1000);
197
198 ret = xhci_handshake(&xhci->op_regs->command,
199 CMD_RESET, 0, 10 * 1000 * 1000);
200 if (ret)
201 return ret;
202
203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 "Wait for controller to be ready for doorbell rings");
208 /*
209 * xHCI cannot write to any doorbells or operational registers other
210 * than status until the "Controller Not Ready" flag is cleared.
211 */
212 ret = xhci_handshake(&xhci->op_regs->status,
213 STS_CNR, 0, 10 * 1000 * 1000);
214
215 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222 return ret;
223 }
224
xhci_zero_64b_regs(struct xhci_hcd * xhci)225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228 int err, i;
229 u64 val;
230 u32 intrs;
231
232 /*
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
241 *
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
244 * unsafe...
245 */
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 return;
248
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
253 val &= ~CMD_HSEIE;
254 writel(val, &xhci->op_regs->command);
255
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
258 val |= STS_FATAL;
259 writel(val, &xhci->op_regs->status);
260
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 ARRAY_SIZE(xhci->run_regs->ir_set));
271
272 for (i = 0; i < intrs; i++) {
273 struct xhci_intr_reg __iomem *ir;
274
275 ir = &xhci->run_regs->ir_set[i];
276 val = xhci_read_64(xhci, &ir->erst_base);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_base);
279 val= xhci_read_64(xhci, &ir->erst_dequeue);
280 if (upper_32_bits(val))
281 xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 }
283
284 /* Wait for the fault to appear. It will be cleared on reset */
285 err = xhci_handshake(&xhci->op_regs->status,
286 STS_FATAL, STS_FATAL,
287 XHCI_MAX_HALT_USEC);
288 if (!err)
289 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294 * Set up MSI
295 */
xhci_setup_msi(struct xhci_hcd * xhci)296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298 int ret;
299 /*
300 * TODO:Check with MSI Soc for sysdev
301 */
302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305 if (ret < 0) {
306 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 "failed to allocate MSI entry");
308 return ret;
309 }
310
311 ret = request_irq(pdev->irq, xhci_msi_irq,
312 0, "xhci_hcd", xhci_to_hcd(xhci));
313 if (ret) {
314 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 "disable MSI interrupt");
316 pci_free_irq_vectors(pdev);
317 }
318
319 return ret;
320 }
321
322 /*
323 * Set up MSI-X
324 */
xhci_setup_msix(struct xhci_hcd * xhci)325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327 int i, ret = 0;
328 struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331 /*
332 * calculate number of msi-x vectors supported.
333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 * with max number of interrupters based on the xhci HCSPARAMS1.
335 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 * Add additional 1 vector to ensure always available interrupt.
337 */
338 xhci->msix_count = min(num_online_cpus() + 1,
339 HCS_MAX_INTRS(xhci->hcs_params1));
340
341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342 PCI_IRQ_MSIX);
343 if (ret < 0) {
344 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 "Failed to enable MSI-X");
346 return ret;
347 }
348
349 for (i = 0; i < xhci->msix_count; i++) {
350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 "xhci_hcd", xhci_to_hcd(xhci));
352 if (ret)
353 goto disable_msix;
354 }
355
356 hcd->msix_enabled = 1;
357 return ret;
358
359 disable_msix:
360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361 while (--i >= 0)
362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 pci_free_irq_vectors(pdev);
364 return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370 struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373 if (xhci->quirks & XHCI_PLAT)
374 return;
375
376 /* return if using legacy interrupt */
377 if (hcd->irq > 0)
378 return;
379
380 if (hcd->msix_enabled) {
381 int i;
382
383 for (i = 0; i < xhci->msix_count; i++)
384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385 } else {
386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 }
388
389 pci_free_irq_vectors(pdev);
390 hcd->msix_enabled = 0;
391 }
392
xhci_msix_sync_irqs(struct xhci_hcd * xhci)393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397 if (hcd->msix_enabled) {
398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399 int i;
400
401 for (i = 0; i < xhci->msix_count; i++)
402 synchronize_irq(pci_irq_vector(pdev, i));
403 }
404 }
405
xhci_try_enable_msi(struct usb_hcd * hcd)406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 struct pci_dev *pdev;
410 int ret;
411
412 /* The xhci platform device has set up IRQs through usb_add_hcd. */
413 if (xhci->quirks & XHCI_PLAT)
414 return 0;
415
416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 /*
418 * Some Fresco Logic host controllers advertise MSI, but fail to
419 * generate interrupts. Don't even try to enable MSI.
420 */
421 if (xhci->quirks & XHCI_BROKEN_MSI)
422 goto legacy_irq;
423
424 /* unregister the legacy interrupt */
425 if (hcd->irq)
426 free_irq(hcd->irq, hcd);
427 hcd->irq = 0;
428
429 ret = xhci_setup_msix(xhci);
430 if (ret)
431 /* fall back to msi*/
432 ret = xhci_setup_msi(xhci);
433
434 if (!ret) {
435 hcd->msi_enabled = 1;
436 return 0;
437 }
438
439 if (!pdev->irq) {
440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441 return -EINVAL;
442 }
443
444 legacy_irq:
445 if (!strlen(hcd->irq_descr))
446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 hcd->driver->description, hcd->self.busnum);
448
449 /* fall back to legacy interrupt*/
450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 hcd->irq_descr, hcd);
452 if (ret) {
453 xhci_err(xhci, "request interrupt %d failed\n",
454 pdev->irq);
455 return ret;
456 }
457 hcd->irq = pdev->irq;
458 return 0;
459 }
460
461 #else
462
xhci_try_enable_msi(struct usb_hcd * hcd)463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465 return 0;
466 }
467
xhci_cleanup_msix(struct xhci_hcd * xhci)468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
xhci_msix_sync_irqs(struct xhci_hcd * xhci)472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
compliance_mode_recovery(struct timer_list * t)478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480 struct xhci_hcd *xhci;
481 struct usb_hcd *hcd;
482 struct xhci_hub *rhub;
483 u32 temp;
484 int i;
485
486 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 rhub = &xhci->usb3_rhub;
488
489 for (i = 0; i < rhub->num_ports; i++) {
490 temp = readl(rhub->ports[i]->addr);
491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 /*
493 * Compliance Mode Detected. Letting USB Core
494 * handle the Warm Reset
495 */
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Compliance mode detected->port %d",
498 i + 1);
499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 "Attempting compliance mode recovery");
501 hcd = xhci->shared_hcd;
502
503 if (hcd->state == HC_STATE_SUSPENDED)
504 usb_hcd_resume_root_hub(hcd);
505
506 usb_hcd_poll_rh_status(hcd);
507 }
508 }
509
510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 mod_timer(&xhci->comp_mode_recovery_timer,
512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517 * that causes ports behind that hardware to enter compliance mode sometimes.
518 * The quirk creates a timer that polls every 2 seconds the link state of
519 * each host controller's port and recovers it by issuing a Warm reset
520 * if Compliance mode is detected, otherwise the port will become "dead" (no
521 * device connections or disconnections will be detected anymore). Becasue no
522 * status event is generated when entering compliance mode (per xhci spec),
523 * this quirk is needed on systems that have the failing hardware installed.
524 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527 xhci->port_status_u0 = 0;
528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 0);
530 xhci->comp_mode_recovery_timer.expires = jiffies +
531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533 add_timer(&xhci->comp_mode_recovery_timer);
534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 "Compliance mode recovery timer initialized");
536 }
537
538 /*
539 * This function identifies the systems that have installed the SN65LVPE502CP
540 * USB3.0 re-driver and that need the Compliance Mode Quirk.
541 * Systems:
542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543 */
xhci_compliance_mode_recovery_timer_quirk_check(void)544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546 const char *dmi_product_name, *dmi_sys_vendor;
547
548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 if (!dmi_product_name || !dmi_sys_vendor)
551 return false;
552
553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554 return false;
555
556 if (strstr(dmi_product_name, "Z420") ||
557 strstr(dmi_product_name, "Z620") ||
558 strstr(dmi_product_name, "Z820") ||
559 strstr(dmi_product_name, "Z1 Workstation"))
560 return true;
561
562 return false;
563 }
564
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572 * Initialize memory for HCD and xHC (one-time init).
573 *
574 * Program the PAGESIZE register, initialize the device context array, create
575 * device contexts (?), set up a command ring segment (or two?), create event
576 * ring (one for now).
577 */
xhci_init(struct usb_hcd * hcd)578 static int xhci_init(struct usb_hcd *hcd)
579 {
580 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581 int retval = 0;
582
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 spin_lock_init(&xhci->lock);
585 if (xhci->hci_version == 0x95 && link_quirk) {
586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 "QUIRK: Not clearing Link TRB chain bits.");
588 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589 } else {
590 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 "xHCI doesn't need link TRB QUIRK");
592 }
593 retval = xhci_mem_init(xhci, GFP_KERNEL);
594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596 /* Initializing Compliance Mode Recovery Data If Needed */
597 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 compliance_mode_recovery_timer_init(xhci);
600 }
601
602 return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
xhci_run_finished(struct xhci_hcd * xhci)608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610 if (xhci_start(xhci)) {
611 xhci_halt(xhci);
612 return -ENODEV;
613 }
614 xhci->shared_hcd->state = HC_STATE_RUNNING;
615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617 if (xhci->quirks & XHCI_NEC_HOST)
618 xhci_ring_cmd_db(xhci);
619
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 "Finished xhci_run for USB3 roothub");
622 return 0;
623 }
624
625 /*
626 * Start the HC after it was halted.
627 *
628 * This function is called by the USB core when the HC driver is added.
629 * Its opposite is xhci_stop().
630 *
631 * xhci_init() must be called once before this function can be called.
632 * Reset the HC, enable device slot contexts, program DCBAAP, and
633 * set command ring pointer and event ring pointer.
634 *
635 * Setup MSI-X vectors and enable interrupts.
636 */
xhci_run(struct usb_hcd * hcd)637 int xhci_run(struct usb_hcd *hcd)
638 {
639 u32 temp;
640 u64 temp_64;
641 int ret;
642 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644 /* Start the xHCI host controller running only after the USB 2.0 roothub
645 * is setup.
646 */
647
648 hcd->uses_new_polling = 1;
649 if (!usb_hcd_is_primary_hcd(hcd))
650 return xhci_run_finished(xhci);
651
652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654 ret = xhci_try_enable_msi(hcd);
655 if (ret)
656 return ret;
657
658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 temp_64 &= ~ERST_PTR_MASK;
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 "// Set the interrupt modulation register");
665 temp = readl(&xhci->ir_set->irq_control);
666 temp &= ~ER_IRQ_INTERVAL_MASK;
667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 writel(temp, &xhci->ir_set->irq_control);
669
670 /* Set the HCD state before we enable the irqs */
671 temp = readl(&xhci->op_regs->command);
672 temp |= (CMD_EIE);
673 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 "// Enable interrupts, cmd = 0x%x.", temp);
675 writel(temp, &xhci->op_regs->command);
676
677 temp = readl(&xhci->ir_set->irq_pending);
678 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683 if (xhci->quirks & XHCI_NEC_HOST) {
684 struct xhci_command *command;
685
686 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687 if (!command)
688 return -ENOMEM;
689
690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 TRB_TYPE(TRB_NEC_GET_FW));
692 if (ret)
693 xhci_free_command(xhci, command);
694 }
695 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
696 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 "Finished xhci_run for USB2 roothub");
698
699 xhci_dbc_init(xhci);
700
701 xhci_debugfs_init(xhci);
702
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706
707 /*
708 * Stop xHCI driver.
709 *
710 * This function is called by the USB core when the HC driver is removed.
711 * Its opposite is xhci_run().
712 *
713 * Disable device contexts, disable IRQs, and quiesce the HC.
714 * Reset the HC, finish any completed transactions, and cleanup memory.
715 */
xhci_stop(struct usb_hcd * hcd)716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718 u32 temp;
719 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721 mutex_lock(&xhci->mutex);
722
723 /* Only halt host and free memory after both hcds are removed */
724 if (!usb_hcd_is_primary_hcd(hcd)) {
725 mutex_unlock(&xhci->mutex);
726 return;
727 }
728
729 xhci_dbc_exit(xhci);
730
731 spin_lock_irq(&xhci->lock);
732 xhci->xhc_state |= XHCI_STATE_HALTED;
733 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734 xhci_halt(xhci);
735 xhci_reset(xhci);
736 spin_unlock_irq(&xhci->lock);
737
738 xhci_cleanup_msix(xhci);
739
740 /* Deleting Compliance Mode Recovery Timer */
741 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742 (!(xhci_all_ports_seen_u0(xhci)))) {
743 del_timer_sync(&xhci->comp_mode_recovery_timer);
744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745 "%s: compliance mode recovery timer deleted",
746 __func__);
747 }
748
749 if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 usb_amd_dev_put();
751
752 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 "// Disabling event ring interrupts");
754 temp = readl(&xhci->op_regs->status);
755 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756 temp = readl(&xhci->ir_set->irq_pending);
757 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758
759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760 xhci_mem_cleanup(xhci);
761 xhci_debugfs_exit(xhci);
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "xhci_stop completed - status = %x",
764 readl(&xhci->op_regs->status));
765 mutex_unlock(&xhci->mutex);
766 }
767
768 /*
769 * Shutdown HC (not bus-specific)
770 *
771 * This is called when the machine is rebooting or halting. We assume that the
772 * machine will be powered off, and the HC's internal state will be reset.
773 * Don't bother to free memory.
774 *
775 * This will only ever be called with the main usb_hcd (the USB3 roothub).
776 */
xhci_shutdown(struct usb_hcd * hcd)777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780
781 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783
784 spin_lock_irq(&xhci->lock);
785 xhci_halt(xhci);
786 /* Workaround for spurious wakeups at shutdown with HSW */
787 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
788 xhci_reset(xhci);
789 spin_unlock_irq(&xhci->lock);
790
791 xhci_cleanup_msix(xhci);
792
793 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
794 "xhci_shutdown completed - status = %x",
795 readl(&xhci->op_regs->status));
796 }
797 EXPORT_SYMBOL_GPL(xhci_shutdown);
798
799 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)800 static void xhci_save_registers(struct xhci_hcd *xhci)
801 {
802 xhci->s3.command = readl(&xhci->op_regs->command);
803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811 }
812
xhci_restore_registers(struct xhci_hcd * xhci)813 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 {
815 writel(xhci->s3.command, &xhci->op_regs->command);
816 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824 }
825
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827 {
828 u64 val_64;
829
830 /* step 2: initialize command ring buffer */
831 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834 xhci->cmd_ring->dequeue) &
835 (u64) ~CMD_RING_RSVD_BITS) |
836 xhci->cmd_ring->cycle_state;
837 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838 "// Setting command ring address to 0x%llx",
839 (long unsigned long) val_64);
840 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841 }
842
843 /*
844 * The whole command ring must be cleared to zero when we suspend the host.
845 *
846 * The host doesn't save the command ring pointer in the suspend well, so we
847 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
848 * aligned, because of the reserved bits in the command ring dequeue pointer
849 * register. Therefore, we can't just set the dequeue pointer back in the
850 * middle of the ring (TRBs are 16-byte aligned).
851 */
xhci_clear_command_ring(struct xhci_hcd * xhci)852 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 {
854 struct xhci_ring *ring;
855 struct xhci_segment *seg;
856
857 ring = xhci->cmd_ring;
858 seg = ring->deq_seg;
859 do {
860 memset(seg->trbs, 0,
861 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863 cpu_to_le32(~TRB_CYCLE);
864 seg = seg->next;
865 } while (seg != ring->deq_seg);
866
867 /* Reset the software enqueue and dequeue pointers */
868 ring->deq_seg = ring->first_seg;
869 ring->dequeue = ring->first_seg->trbs;
870 ring->enq_seg = ring->deq_seg;
871 ring->enqueue = ring->dequeue;
872
873 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874 /*
875 * Ring is now zeroed, so the HW should look for change of ownership
876 * when the cycle bit is set to 1.
877 */
878 ring->cycle_state = 1;
879
880 /*
881 * Reset the hardware dequeue pointer.
882 * Yes, this will need to be re-written after resume, but we're paranoid
883 * and want to make sure the hardware doesn't access bogus memory
884 * because, say, the BIOS or an SMI started the host without changing
885 * the command ring pointers.
886 */
887 xhci_set_cmd_ring_deq(xhci);
888 }
889
890 /*
891 * Disable port wake bits if do_wakeup is not set.
892 *
893 * Also clear a possible internal port wake state left hanging for ports that
894 * detected termination but never successfully enumerated (trained to 0U).
895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
896 * at enumeration clears this wake, force one here as well for unconnected ports
897 */
898
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)899 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
900 struct xhci_hub *rhub,
901 bool do_wakeup)
902 {
903 unsigned long flags;
904 u32 t1, t2, portsc;
905 int i;
906
907 spin_lock_irqsave(&xhci->lock, flags);
908
909 for (i = 0; i < rhub->num_ports; i++) {
910 portsc = readl(rhub->ports[i]->addr);
911 t1 = xhci_port_state_to_neutral(portsc);
912 t2 = t1;
913
914 /* clear wake bits if do_wake is not set */
915 if (!do_wakeup)
916 t2 &= ~PORT_WAKE_BITS;
917
918 /* Don't touch csc bit if connected or connect change is set */
919 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
920 t2 |= PORT_CSC;
921
922 if (t1 != t2) {
923 writel(t2, rhub->ports[i]->addr);
924 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
925 rhub->hcd->self.busnum, i + 1, portsc, t2);
926 }
927 }
928 spin_unlock_irqrestore(&xhci->lock, flags);
929 }
930
xhci_pending_portevent(struct xhci_hcd * xhci)931 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
932 {
933 struct xhci_port **ports;
934 int port_index;
935 u32 status;
936 u32 portsc;
937
938 status = readl(&xhci->op_regs->status);
939 if (status & STS_EINT)
940 return true;
941 /*
942 * Checking STS_EINT is not enough as there is a lag between a change
943 * bit being set and the Port Status Change Event that it generated
944 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
945 */
946
947 port_index = xhci->usb2_rhub.num_ports;
948 ports = xhci->usb2_rhub.ports;
949 while (port_index--) {
950 portsc = readl(ports[port_index]->addr);
951 if (portsc & PORT_CHANGE_MASK ||
952 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
953 return true;
954 }
955 port_index = xhci->usb3_rhub.num_ports;
956 ports = xhci->usb3_rhub.ports;
957 while (port_index--) {
958 portsc = readl(ports[port_index]->addr);
959 if (portsc & PORT_CHANGE_MASK ||
960 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
961 return true;
962 }
963 return false;
964 }
965
966 /*
967 * Stop HC (not bus-specific)
968 *
969 * This is called when the machine transition into S3/S4 mode.
970 *
971 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)972 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
973 {
974 int rc = 0;
975 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
976 struct usb_hcd *hcd = xhci_to_hcd(xhci);
977 u32 command;
978 u32 res;
979
980 if (!hcd->state)
981 return 0;
982
983 if (hcd->state != HC_STATE_SUSPENDED ||
984 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
985 return -EINVAL;
986
987 /* Clear root port wake on bits if wakeup not allowed. */
988 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
989 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
990
991 if (!HCD_HW_ACCESSIBLE(hcd))
992 return 0;
993
994 xhci_dbc_suspend(xhci);
995
996 /* Don't poll the roothubs on bus suspend. */
997 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
998 __func__, hcd->self.busnum);
999 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1000 del_timer_sync(&hcd->rh_timer);
1001 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1002 del_timer_sync(&xhci->shared_hcd->rh_timer);
1003
1004 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1005 usleep_range(1000, 1500);
1006
1007 spin_lock_irq(&xhci->lock);
1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1009 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1010 /* step 1: stop endpoint */
1011 /* skipped assuming that port suspend has done */
1012
1013 /* step 2: clear Run/Stop bit */
1014 command = readl(&xhci->op_regs->command);
1015 command &= ~CMD_RUN;
1016 writel(command, &xhci->op_regs->command);
1017
1018 /* Some chips from Fresco Logic need an extraordinary delay */
1019 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1020
1021 if (xhci_handshake(&xhci->op_regs->status,
1022 STS_HALT, STS_HALT, delay)) {
1023 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1024 spin_unlock_irq(&xhci->lock);
1025 return -ETIMEDOUT;
1026 }
1027 xhci_clear_command_ring(xhci);
1028
1029 /* step 3: save registers */
1030 xhci_save_registers(xhci);
1031
1032 /* step 4: set CSS flag */
1033 command = readl(&xhci->op_regs->command);
1034 command |= CMD_CSS;
1035 writel(command, &xhci->op_regs->command);
1036 xhci->broken_suspend = 0;
1037 if (xhci_handshake(&xhci->op_regs->status,
1038 STS_SAVE, 0, 20 * 1000)) {
1039 /*
1040 * AMD SNPS xHC 3.0 occasionally does not clear the
1041 * SSS bit of USBSTS and when driver tries to poll
1042 * to see if the xHC clears BIT(8) which never happens
1043 * and driver assumes that controller is not responding
1044 * and times out. To workaround this, its good to check
1045 * if SRE and HCE bits are not set (as per xhci
1046 * Section 5.4.2) and bypass the timeout.
1047 */
1048 res = readl(&xhci->op_regs->status);
1049 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1050 (((res & STS_SRE) == 0) &&
1051 ((res & STS_HCE) == 0))) {
1052 xhci->broken_suspend = 1;
1053 } else {
1054 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1055 spin_unlock_irq(&xhci->lock);
1056 return -ETIMEDOUT;
1057 }
1058 }
1059 spin_unlock_irq(&xhci->lock);
1060
1061 /*
1062 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1063 * is about to be suspended.
1064 */
1065 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1066 (!(xhci_all_ports_seen_u0(xhci)))) {
1067 del_timer_sync(&xhci->comp_mode_recovery_timer);
1068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1069 "%s: compliance mode recovery timer deleted",
1070 __func__);
1071 }
1072
1073 /* step 5: remove core well power */
1074 /* synchronize irq when using MSI-X */
1075 xhci_msix_sync_irqs(xhci);
1076
1077 return rc;
1078 }
1079 EXPORT_SYMBOL_GPL(xhci_suspend);
1080
1081 /*
1082 * start xHC (not bus-specific)
1083 *
1084 * This is called when the machine transition from S3/S4 mode.
1085 *
1086 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1087 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1088 {
1089 u32 command, temp = 0;
1090 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1091 struct usb_hcd *secondary_hcd;
1092 int retval = 0;
1093 bool comp_timer_running = false;
1094 bool pending_portevent = false;
1095
1096 if (!hcd->state)
1097 return 0;
1098
1099 /* Wait a bit if either of the roothubs need to settle from the
1100 * transition into bus suspend.
1101 */
1102
1103 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1104 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1105 msleep(100);
1106
1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1108 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1109
1110 spin_lock_irq(&xhci->lock);
1111 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1112 hibernated = true;
1113
1114 if (!hibernated) {
1115 /*
1116 * Some controllers might lose power during suspend, so wait
1117 * for controller not ready bit to clear, just as in xHC init.
1118 */
1119 retval = xhci_handshake(&xhci->op_regs->status,
1120 STS_CNR, 0, 10 * 1000 * 1000);
1121 if (retval) {
1122 xhci_warn(xhci, "Controller not ready at resume %d\n",
1123 retval);
1124 spin_unlock_irq(&xhci->lock);
1125 return retval;
1126 }
1127 /* step 1: restore register */
1128 xhci_restore_registers(xhci);
1129 /* step 2: initialize command ring buffer */
1130 xhci_set_cmd_ring_deq(xhci);
1131 /* step 3: restore state and start state*/
1132 /* step 3: set CRS flag */
1133 command = readl(&xhci->op_regs->command);
1134 command |= CMD_CRS;
1135 writel(command, &xhci->op_regs->command);
1136 /*
1137 * Some controllers take up to 55+ ms to complete the controller
1138 * restore so setting the timeout to 100ms. Xhci specification
1139 * doesn't mention any timeout value.
1140 */
1141 if (xhci_handshake(&xhci->op_regs->status,
1142 STS_RESTORE, 0, 100 * 1000)) {
1143 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1144 spin_unlock_irq(&xhci->lock);
1145 return -ETIMEDOUT;
1146 }
1147 temp = readl(&xhci->op_regs->status);
1148 }
1149
1150 /* If restore operation fails, re-initialize the HC during resume */
1151 if ((temp & STS_SRE) || hibernated) {
1152
1153 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1154 !(xhci_all_ports_seen_u0(xhci))) {
1155 del_timer_sync(&xhci->comp_mode_recovery_timer);
1156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1157 "Compliance Mode Recovery Timer deleted!");
1158 }
1159
1160 /* Let the USB core know _both_ roothubs lost power. */
1161 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1162 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1163
1164 xhci_dbg(xhci, "Stop HCD\n");
1165 xhci_halt(xhci);
1166 xhci_zero_64b_regs(xhci);
1167 retval = xhci_reset(xhci);
1168 spin_unlock_irq(&xhci->lock);
1169 if (retval)
1170 return retval;
1171 xhci_cleanup_msix(xhci);
1172
1173 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1174 temp = readl(&xhci->op_regs->status);
1175 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1176 temp = readl(&xhci->ir_set->irq_pending);
1177 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1178
1179 xhci_dbg(xhci, "cleaning up memory\n");
1180 xhci_mem_cleanup(xhci);
1181 xhci_debugfs_exit(xhci);
1182 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1183 readl(&xhci->op_regs->status));
1184
1185 /* USB core calls the PCI reinit and start functions twice:
1186 * first with the primary HCD, and then with the secondary HCD.
1187 * If we don't do the same, the host will never be started.
1188 */
1189 if (!usb_hcd_is_primary_hcd(hcd))
1190 secondary_hcd = hcd;
1191 else
1192 secondary_hcd = xhci->shared_hcd;
1193
1194 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1195 retval = xhci_init(hcd->primary_hcd);
1196 if (retval)
1197 return retval;
1198 comp_timer_running = true;
1199
1200 xhci_dbg(xhci, "Start the primary HCD\n");
1201 retval = xhci_run(hcd->primary_hcd);
1202 if (!retval) {
1203 xhci_dbg(xhci, "Start the secondary HCD\n");
1204 retval = xhci_run(secondary_hcd);
1205 }
1206 hcd->state = HC_STATE_SUSPENDED;
1207 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1208 goto done;
1209 }
1210
1211 /* step 4: set Run/Stop bit */
1212 command = readl(&xhci->op_regs->command);
1213 command |= CMD_RUN;
1214 writel(command, &xhci->op_regs->command);
1215 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1216 0, 250 * 1000);
1217
1218 /* step 5: walk topology and initialize portsc,
1219 * portpmsc and portli
1220 */
1221 /* this is done in bus_resume */
1222
1223 /* step 6: restart each of the previously
1224 * Running endpoints by ringing their doorbells
1225 */
1226
1227 spin_unlock_irq(&xhci->lock);
1228
1229 xhci_dbc_resume(xhci);
1230
1231 done:
1232 if (retval == 0) {
1233 /*
1234 * Resume roothubs only if there are pending events.
1235 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1236 * the first wake signalling failed, give it that chance.
1237 */
1238 pending_portevent = xhci_pending_portevent(xhci);
1239 if (!pending_portevent) {
1240 msleep(120);
1241 pending_portevent = xhci_pending_portevent(xhci);
1242 }
1243
1244 if (pending_portevent) {
1245 usb_hcd_resume_root_hub(xhci->shared_hcd);
1246 usb_hcd_resume_root_hub(hcd);
1247 }
1248 }
1249 /*
1250 * If system is subject to the Quirk, Compliance Mode Timer needs to
1251 * be re-initialized Always after a system resume. Ports are subject
1252 * to suffer the Compliance Mode issue again. It doesn't matter if
1253 * ports have entered previously to U0 before system's suspension.
1254 */
1255 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1256 compliance_mode_recovery_timer_init(xhci);
1257
1258 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1259 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1260
1261 /* Re-enable port polling. */
1262 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1263 __func__, hcd->self.busnum);
1264 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1265 usb_hcd_poll_rh_status(xhci->shared_hcd);
1266 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1267 usb_hcd_poll_rh_status(hcd);
1268
1269 return retval;
1270 }
1271 EXPORT_SYMBOL_GPL(xhci_resume);
1272 #endif /* CONFIG_PM */
1273
1274 /*-------------------------------------------------------------------------*/
1275
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1276 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1277 {
1278 void *temp;
1279 int ret = 0;
1280 unsigned int buf_len;
1281 enum dma_data_direction dir;
1282
1283 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1284 buf_len = urb->transfer_buffer_length;
1285
1286 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1287 dev_to_node(hcd->self.sysdev));
1288
1289 if (usb_urb_dir_out(urb))
1290 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1291 temp, buf_len, 0);
1292
1293 urb->transfer_buffer = temp;
1294 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1295 urb->transfer_buffer,
1296 urb->transfer_buffer_length,
1297 dir);
1298
1299 if (dma_mapping_error(hcd->self.sysdev,
1300 urb->transfer_dma)) {
1301 ret = -EAGAIN;
1302 kfree(temp);
1303 } else {
1304 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1305 }
1306
1307 return ret;
1308 }
1309
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1310 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1311 struct urb *urb)
1312 {
1313 bool ret = false;
1314 unsigned int i;
1315 unsigned int len = 0;
1316 unsigned int trb_size;
1317 unsigned int max_pkt;
1318 struct scatterlist *sg;
1319 struct scatterlist *tail_sg;
1320
1321 tail_sg = urb->sg;
1322 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1323
1324 if (!urb->num_sgs)
1325 return ret;
1326
1327 if (urb->dev->speed >= USB_SPEED_SUPER)
1328 trb_size = TRB_CACHE_SIZE_SS;
1329 else
1330 trb_size = TRB_CACHE_SIZE_HS;
1331
1332 if (urb->transfer_buffer_length != 0 &&
1333 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1334 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1335 len = len + sg->length;
1336 if (i > trb_size - 2) {
1337 len = len - tail_sg->length;
1338 if (len < max_pkt) {
1339 ret = true;
1340 break;
1341 }
1342
1343 tail_sg = sg_next(tail_sg);
1344 }
1345 }
1346 }
1347 return ret;
1348 }
1349
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1350 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352 unsigned int len;
1353 unsigned int buf_len;
1354 enum dma_data_direction dir;
1355
1356 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357
1358 buf_len = urb->transfer_buffer_length;
1359
1360 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1361 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1362 dma_unmap_single(hcd->self.sysdev,
1363 urb->transfer_dma,
1364 urb->transfer_buffer_length,
1365 dir);
1366
1367 if (usb_urb_dir_in(urb)) {
1368 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1369 urb->transfer_buffer,
1370 buf_len,
1371 0);
1372 if (len != buf_len) {
1373 xhci_dbg(hcd_to_xhci(hcd),
1374 "Copy from tmp buf to urb sg list failed\n");
1375 urb->actual_length = len;
1376 }
1377 }
1378 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1379 kfree(urb->transfer_buffer);
1380 urb->transfer_buffer = NULL;
1381 }
1382
1383 /*
1384 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1385 * we'll copy the actual data into the TRB address register. This is limited to
1386 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1387 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1388 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1389 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1390 gfp_t mem_flags)
1391 {
1392 struct xhci_hcd *xhci;
1393
1394 xhci = hcd_to_xhci(hcd);
1395
1396 if (xhci_urb_suitable_for_idt(urb))
1397 return 0;
1398
1399 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1400 if (xhci_urb_temp_buffer_required(hcd, urb))
1401 return xhci_map_temp_buffer(hcd, urb);
1402 }
1403 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1404 }
1405
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1406 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1407 {
1408 struct xhci_hcd *xhci;
1409 bool unmap_temp_buf = false;
1410
1411 xhci = hcd_to_xhci(hcd);
1412
1413 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1414 unmap_temp_buf = true;
1415
1416 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1417 xhci_unmap_temp_buf(hcd, urb);
1418 else
1419 usb_hcd_unmap_urb_for_dma(hcd, urb);
1420 }
1421
1422 /**
1423 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1424 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1425 * value to right shift 1 for the bitmask.
1426 *
1427 * Index = (epnum * 2) + direction - 1,
1428 * where direction = 0 for OUT, 1 for IN.
1429 * For control endpoints, the IN index is used (OUT index is unused), so
1430 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1431 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1432 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1433 {
1434 unsigned int index;
1435 if (usb_endpoint_xfer_control(desc))
1436 index = (unsigned int) (usb_endpoint_num(desc)*2);
1437 else
1438 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1439 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1440 return index;
1441 }
1442 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1443
1444 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1445 * address from the XHCI endpoint index.
1446 */
xhci_get_endpoint_address(unsigned int ep_index)1447 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1448 {
1449 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1450 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1451 return direction | number;
1452 }
1453
1454 /* Find the flag for this endpoint (for use in the control context). Use the
1455 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1456 * bit 1, etc.
1457 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1458 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1459 {
1460 return 1 << (xhci_get_endpoint_index(desc) + 1);
1461 }
1462
1463 /* Compute the last valid endpoint context index. Basically, this is the
1464 * endpoint index plus one. For slot contexts with more than valid endpoint,
1465 * we find the most significant bit set in the added contexts flags.
1466 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1467 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1468 */
xhci_last_valid_endpoint(u32 added_ctxs)1469 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1470 {
1471 return fls(added_ctxs) - 1;
1472 }
1473
1474 /* Returns 1 if the arguments are OK;
1475 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1476 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1477 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1478 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1479 const char *func) {
1480 struct xhci_hcd *xhci;
1481 struct xhci_virt_device *virt_dev;
1482
1483 if (!hcd || (check_ep && !ep) || !udev) {
1484 pr_debug("xHCI %s called with invalid args\n", func);
1485 return -EINVAL;
1486 }
1487 if (!udev->parent) {
1488 pr_debug("xHCI %s called for root hub\n", func);
1489 return 0;
1490 }
1491
1492 xhci = hcd_to_xhci(hcd);
1493 if (check_virt_dev) {
1494 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1495 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1496 func);
1497 return -EINVAL;
1498 }
1499
1500 virt_dev = xhci->devs[udev->slot_id];
1501 if (virt_dev->udev != udev) {
1502 xhci_dbg(xhci, "xHCI %s called with udev and "
1503 "virt_dev does not match\n", func);
1504 return -EINVAL;
1505 }
1506 }
1507
1508 if (xhci->xhc_state & XHCI_STATE_HALTED)
1509 return -ENODEV;
1510
1511 return 1;
1512 }
1513
1514 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1515 struct usb_device *udev, struct xhci_command *command,
1516 bool ctx_change, bool must_succeed);
1517
1518 /*
1519 * Full speed devices may have a max packet size greater than 8 bytes, but the
1520 * USB core doesn't know that until it reads the first 8 bytes of the
1521 * descriptor. If the usb_device's max packet size changes after that point,
1522 * we need to issue an evaluate context command and wait on it.
1523 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1524 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1525 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1526 {
1527 struct xhci_container_ctx *out_ctx;
1528 struct xhci_input_control_ctx *ctrl_ctx;
1529 struct xhci_ep_ctx *ep_ctx;
1530 struct xhci_command *command;
1531 int max_packet_size;
1532 int hw_max_packet_size;
1533 int ret = 0;
1534
1535 out_ctx = xhci->devs[slot_id]->out_ctx;
1536 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1537 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1538 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1539 if (hw_max_packet_size != max_packet_size) {
1540 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1541 "Max Packet Size for ep 0 changed.");
1542 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1543 "Max packet size in usb_device = %d",
1544 max_packet_size);
1545 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1546 "Max packet size in xHCI HW = %d",
1547 hw_max_packet_size);
1548 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1549 "Issuing evaluate context command.");
1550
1551 /* Set up the input context flags for the command */
1552 /* FIXME: This won't work if a non-default control endpoint
1553 * changes max packet sizes.
1554 */
1555
1556 command = xhci_alloc_command(xhci, true, mem_flags);
1557 if (!command)
1558 return -ENOMEM;
1559
1560 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1561 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1562 if (!ctrl_ctx) {
1563 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1564 __func__);
1565 ret = -ENOMEM;
1566 goto command_cleanup;
1567 }
1568 /* Set up the modified control endpoint 0 */
1569 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1570 xhci->devs[slot_id]->out_ctx, ep_index);
1571
1572 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1573 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1574 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1575 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1576
1577 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1578 ctrl_ctx->drop_flags = 0;
1579
1580 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1581 true, false);
1582
1583 /* Clean up the input context for later use by bandwidth
1584 * functions.
1585 */
1586 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1587 command_cleanup:
1588 kfree(command->completion);
1589 kfree(command);
1590 }
1591 return ret;
1592 }
1593
1594 /*
1595 * non-error returns are a promise to giveback() the urb later
1596 * we drop ownership so next owner (or urb unlink) can get it
1597 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1598 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1599 {
1600 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1601 unsigned long flags;
1602 int ret = 0;
1603 unsigned int slot_id, ep_index;
1604 unsigned int *ep_state;
1605 struct urb_priv *urb_priv;
1606 int num_tds;
1607
1608 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1609 true, true, __func__) <= 0)
1610 return -EINVAL;
1611
1612 slot_id = urb->dev->slot_id;
1613 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1614 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1615
1616 if (!HCD_HW_ACCESSIBLE(hcd))
1617 return -ESHUTDOWN;
1618
1619 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1620 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1621 return -ENODEV;
1622 }
1623
1624 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1625 num_tds = urb->number_of_packets;
1626 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1627 urb->transfer_buffer_length > 0 &&
1628 urb->transfer_flags & URB_ZERO_PACKET &&
1629 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1630 num_tds = 2;
1631 else
1632 num_tds = 1;
1633
1634 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1635 if (!urb_priv)
1636 return -ENOMEM;
1637
1638 urb_priv->num_tds = num_tds;
1639 urb_priv->num_tds_done = 0;
1640 urb->hcpriv = urb_priv;
1641
1642 trace_xhci_urb_enqueue(urb);
1643
1644 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1645 /* Check to see if the max packet size for the default control
1646 * endpoint changed during FS device enumeration
1647 */
1648 if (urb->dev->speed == USB_SPEED_FULL) {
1649 ret = xhci_check_maxpacket(xhci, slot_id,
1650 ep_index, urb, mem_flags);
1651 if (ret < 0) {
1652 xhci_urb_free_priv(urb_priv);
1653 urb->hcpriv = NULL;
1654 return ret;
1655 }
1656 }
1657 }
1658
1659 spin_lock_irqsave(&xhci->lock, flags);
1660
1661 if (xhci->xhc_state & XHCI_STATE_DYING) {
1662 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1663 urb->ep->desc.bEndpointAddress, urb);
1664 ret = -ESHUTDOWN;
1665 goto free_priv;
1666 }
1667 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1668 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1669 *ep_state);
1670 ret = -EINVAL;
1671 goto free_priv;
1672 }
1673 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1674 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1675 ret = -EINVAL;
1676 goto free_priv;
1677 }
1678
1679 switch (usb_endpoint_type(&urb->ep->desc)) {
1680
1681 case USB_ENDPOINT_XFER_CONTROL:
1682 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1683 slot_id, ep_index);
1684 break;
1685 case USB_ENDPOINT_XFER_BULK:
1686 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1687 slot_id, ep_index);
1688 break;
1689 case USB_ENDPOINT_XFER_INT:
1690 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1691 slot_id, ep_index);
1692 break;
1693 case USB_ENDPOINT_XFER_ISOC:
1694 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1695 slot_id, ep_index);
1696 }
1697
1698 if (ret) {
1699 free_priv:
1700 xhci_urb_free_priv(urb_priv);
1701 urb->hcpriv = NULL;
1702 }
1703 spin_unlock_irqrestore(&xhci->lock, flags);
1704 return ret;
1705 }
1706
1707 /*
1708 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1709 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1710 * should pick up where it left off in the TD, unless a Set Transfer Ring
1711 * Dequeue Pointer is issued.
1712 *
1713 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1714 * the ring. Since the ring is a contiguous structure, they can't be physically
1715 * removed. Instead, there are two options:
1716 *
1717 * 1) If the HC is in the middle of processing the URB to be canceled, we
1718 * simply move the ring's dequeue pointer past those TRBs using the Set
1719 * Transfer Ring Dequeue Pointer command. This will be the common case,
1720 * when drivers timeout on the last submitted URB and attempt to cancel.
1721 *
1722 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1723 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1724 * HC will need to invalidate the any TRBs it has cached after the stop
1725 * endpoint command, as noted in the xHCI 0.95 errata.
1726 *
1727 * 3) The TD may have completed by the time the Stop Endpoint Command
1728 * completes, so software needs to handle that case too.
1729 *
1730 * This function should protect against the TD enqueueing code ringing the
1731 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1732 * It also needs to account for multiple cancellations on happening at the same
1733 * time for the same endpoint.
1734 *
1735 * Note that this function can be called in any context, or so says
1736 * usb_hcd_unlink_urb()
1737 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1738 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1739 {
1740 unsigned long flags;
1741 int ret, i;
1742 u32 temp;
1743 struct xhci_hcd *xhci;
1744 struct urb_priv *urb_priv;
1745 struct xhci_td *td;
1746 unsigned int ep_index;
1747 struct xhci_ring *ep_ring;
1748 struct xhci_virt_ep *ep;
1749 struct xhci_command *command;
1750 struct xhci_virt_device *vdev;
1751
1752 xhci = hcd_to_xhci(hcd);
1753 spin_lock_irqsave(&xhci->lock, flags);
1754
1755 trace_xhci_urb_dequeue(urb);
1756
1757 /* Make sure the URB hasn't completed or been unlinked already */
1758 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1759 if (ret)
1760 goto done;
1761
1762 /* give back URB now if we can't queue it for cancel */
1763 vdev = xhci->devs[urb->dev->slot_id];
1764 urb_priv = urb->hcpriv;
1765 if (!vdev || !urb_priv)
1766 goto err_giveback;
1767
1768 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1769 ep = &vdev->eps[ep_index];
1770 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1771 if (!ep || !ep_ring)
1772 goto err_giveback;
1773
1774 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1775 temp = readl(&xhci->op_regs->status);
1776 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1777 xhci_hc_died(xhci);
1778 goto done;
1779 }
1780
1781 /*
1782 * check ring is not re-allocated since URB was enqueued. If it is, then
1783 * make sure none of the ring related pointers in this URB private data
1784 * are touched, such as td_list, otherwise we overwrite freed data
1785 */
1786 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1787 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1788 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1789 td = &urb_priv->td[i];
1790 if (!list_empty(&td->cancelled_td_list))
1791 list_del_init(&td->cancelled_td_list);
1792 }
1793 goto err_giveback;
1794 }
1795
1796 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1797 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1798 "HC halted, freeing TD manually.");
1799 for (i = urb_priv->num_tds_done;
1800 i < urb_priv->num_tds;
1801 i++) {
1802 td = &urb_priv->td[i];
1803 if (!list_empty(&td->td_list))
1804 list_del_init(&td->td_list);
1805 if (!list_empty(&td->cancelled_td_list))
1806 list_del_init(&td->cancelled_td_list);
1807 }
1808 goto err_giveback;
1809 }
1810
1811 i = urb_priv->num_tds_done;
1812 if (i < urb_priv->num_tds)
1813 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1814 "Cancel URB %p, dev %s, ep 0x%x, "
1815 "starting at offset 0x%llx",
1816 urb, urb->dev->devpath,
1817 urb->ep->desc.bEndpointAddress,
1818 (unsigned long long) xhci_trb_virt_to_dma(
1819 urb_priv->td[i].start_seg,
1820 urb_priv->td[i].first_trb));
1821
1822 for (; i < urb_priv->num_tds; i++) {
1823 td = &urb_priv->td[i];
1824 /* TD can already be on cancelled list if ep halted on it */
1825 if (list_empty(&td->cancelled_td_list)) {
1826 td->cancel_status = TD_DIRTY;
1827 list_add_tail(&td->cancelled_td_list,
1828 &ep->cancelled_td_list);
1829 }
1830 }
1831
1832 /* Queue a stop endpoint command, but only if this is
1833 * the first cancellation to be handled.
1834 */
1835 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1836 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1837 if (!command) {
1838 ret = -ENOMEM;
1839 goto done;
1840 }
1841 ep->ep_state |= EP_STOP_CMD_PENDING;
1842 ep->stop_cmd_timer.expires = jiffies +
1843 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1844 add_timer(&ep->stop_cmd_timer);
1845 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1846 ep_index, 0);
1847 xhci_ring_cmd_db(xhci);
1848 }
1849 done:
1850 spin_unlock_irqrestore(&xhci->lock, flags);
1851 return ret;
1852
1853 err_giveback:
1854 if (urb_priv)
1855 xhci_urb_free_priv(urb_priv);
1856 usb_hcd_unlink_urb_from_ep(hcd, urb);
1857 spin_unlock_irqrestore(&xhci->lock, flags);
1858 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1859 return ret;
1860 }
1861
1862 /* Drop an endpoint from a new bandwidth configuration for this device.
1863 * Only one call to this function is allowed per endpoint before
1864 * check_bandwidth() or reset_bandwidth() must be called.
1865 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1866 * add the endpoint to the schedule with possibly new parameters denoted by a
1867 * different endpoint descriptor in usb_host_endpoint.
1868 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1869 * not allowed.
1870 *
1871 * The USB core will not allow URBs to be queued to an endpoint that is being
1872 * disabled, so there's no need for mutual exclusion to protect
1873 * the xhci->devs[slot_id] structure.
1874 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1875 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1876 struct usb_host_endpoint *ep)
1877 {
1878 struct xhci_hcd *xhci;
1879 struct xhci_container_ctx *in_ctx, *out_ctx;
1880 struct xhci_input_control_ctx *ctrl_ctx;
1881 unsigned int ep_index;
1882 struct xhci_ep_ctx *ep_ctx;
1883 u32 drop_flag;
1884 u32 new_add_flags, new_drop_flags;
1885 int ret;
1886
1887 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1888 if (ret <= 0)
1889 return ret;
1890 xhci = hcd_to_xhci(hcd);
1891 if (xhci->xhc_state & XHCI_STATE_DYING)
1892 return -ENODEV;
1893
1894 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1895 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1896 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1897 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1898 __func__, drop_flag);
1899 return 0;
1900 }
1901
1902 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1903 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1904 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1905 if (!ctrl_ctx) {
1906 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1907 __func__);
1908 return 0;
1909 }
1910
1911 ep_index = xhci_get_endpoint_index(&ep->desc);
1912 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1913 /* If the HC already knows the endpoint is disabled,
1914 * or the HCD has noted it is disabled, ignore this request
1915 */
1916 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1917 le32_to_cpu(ctrl_ctx->drop_flags) &
1918 xhci_get_endpoint_flag(&ep->desc)) {
1919 /* Do not warn when called after a usb_device_reset */
1920 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1921 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1922 __func__, ep);
1923 return 0;
1924 }
1925
1926 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1927 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928
1929 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1930 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1931
1932 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1933
1934 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1935
1936 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1937 (unsigned int) ep->desc.bEndpointAddress,
1938 udev->slot_id,
1939 (unsigned int) new_drop_flags,
1940 (unsigned int) new_add_flags);
1941 return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1944
1945 /* Add an endpoint to a new possible bandwidth configuration for this device.
1946 * Only one call to this function is allowed per endpoint before
1947 * check_bandwidth() or reset_bandwidth() must be called.
1948 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1949 * add the endpoint to the schedule with possibly new parameters denoted by a
1950 * different endpoint descriptor in usb_host_endpoint.
1951 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1952 * not allowed.
1953 *
1954 * The USB core will not allow URBs to be queued to an endpoint until the
1955 * configuration or alt setting is installed in the device, so there's no need
1956 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1957 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1958 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1959 struct usb_host_endpoint *ep)
1960 {
1961 struct xhci_hcd *xhci;
1962 struct xhci_container_ctx *in_ctx;
1963 unsigned int ep_index;
1964 struct xhci_input_control_ctx *ctrl_ctx;
1965 struct xhci_ep_ctx *ep_ctx;
1966 u32 added_ctxs;
1967 u32 new_add_flags, new_drop_flags;
1968 struct xhci_virt_device *virt_dev;
1969 int ret = 0;
1970
1971 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1972 if (ret <= 0) {
1973 /* So we won't queue a reset ep command for a root hub */
1974 ep->hcpriv = NULL;
1975 return ret;
1976 }
1977 xhci = hcd_to_xhci(hcd);
1978 if (xhci->xhc_state & XHCI_STATE_DYING)
1979 return -ENODEV;
1980
1981 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1982 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1983 /* FIXME when we have to issue an evaluate endpoint command to
1984 * deal with ep0 max packet size changing once we get the
1985 * descriptors
1986 */
1987 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1988 __func__, added_ctxs);
1989 return 0;
1990 }
1991
1992 virt_dev = xhci->devs[udev->slot_id];
1993 in_ctx = virt_dev->in_ctx;
1994 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1995 if (!ctrl_ctx) {
1996 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1997 __func__);
1998 return 0;
1999 }
2000
2001 ep_index = xhci_get_endpoint_index(&ep->desc);
2002 /* If this endpoint is already in use, and the upper layers are trying
2003 * to add it again without dropping it, reject the addition.
2004 */
2005 if (virt_dev->eps[ep_index].ring &&
2006 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2007 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2008 "without dropping it.\n",
2009 (unsigned int) ep->desc.bEndpointAddress);
2010 return -EINVAL;
2011 }
2012
2013 /* If the HCD has already noted the endpoint is enabled,
2014 * ignore this request.
2015 */
2016 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2017 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2018 __func__, ep);
2019 return 0;
2020 }
2021
2022 /*
2023 * Configuration and alternate setting changes must be done in
2024 * process context, not interrupt context (or so documenation
2025 * for usb_set_interface() and usb_set_configuration() claim).
2026 */
2027 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2028 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2029 __func__, ep->desc.bEndpointAddress);
2030 return -ENOMEM;
2031 }
2032
2033 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2034 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2035
2036 /* If xhci_endpoint_disable() was called for this endpoint, but the
2037 * xHC hasn't been notified yet through the check_bandwidth() call,
2038 * this re-adds a new state for the endpoint from the new endpoint
2039 * descriptors. We must drop and re-add this endpoint, so we leave the
2040 * drop flags alone.
2041 */
2042 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2043
2044 /* Store the usb_device pointer for later use */
2045 ep->hcpriv = udev;
2046
2047 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2048 trace_xhci_add_endpoint(ep_ctx);
2049
2050 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2051 (unsigned int) ep->desc.bEndpointAddress,
2052 udev->slot_id,
2053 (unsigned int) new_drop_flags,
2054 (unsigned int) new_add_flags);
2055 return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2058
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2059 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2060 {
2061 struct xhci_input_control_ctx *ctrl_ctx;
2062 struct xhci_ep_ctx *ep_ctx;
2063 struct xhci_slot_ctx *slot_ctx;
2064 int i;
2065
2066 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2067 if (!ctrl_ctx) {
2068 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2069 __func__);
2070 return;
2071 }
2072
2073 /* When a device's add flag and drop flag are zero, any subsequent
2074 * configure endpoint command will leave that endpoint's state
2075 * untouched. Make sure we don't leave any old state in the input
2076 * endpoint contexts.
2077 */
2078 ctrl_ctx->drop_flags = 0;
2079 ctrl_ctx->add_flags = 0;
2080 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2081 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2082 /* Endpoint 0 is always valid */
2083 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2084 for (i = 1; i < 31; i++) {
2085 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2086 ep_ctx->ep_info = 0;
2087 ep_ctx->ep_info2 = 0;
2088 ep_ctx->deq = 0;
2089 ep_ctx->tx_info = 0;
2090 }
2091 }
2092
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2093 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2094 struct usb_device *udev, u32 *cmd_status)
2095 {
2096 int ret;
2097
2098 switch (*cmd_status) {
2099 case COMP_COMMAND_ABORTED:
2100 case COMP_COMMAND_RING_STOPPED:
2101 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2102 ret = -ETIME;
2103 break;
2104 case COMP_RESOURCE_ERROR:
2105 dev_warn(&udev->dev,
2106 "Not enough host controller resources for new device state.\n");
2107 ret = -ENOMEM;
2108 /* FIXME: can we allocate more resources for the HC? */
2109 break;
2110 case COMP_BANDWIDTH_ERROR:
2111 case COMP_SECONDARY_BANDWIDTH_ERROR:
2112 dev_warn(&udev->dev,
2113 "Not enough bandwidth for new device state.\n");
2114 ret = -ENOSPC;
2115 /* FIXME: can we go back to the old state? */
2116 break;
2117 case COMP_TRB_ERROR:
2118 /* the HCD set up something wrong */
2119 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2120 "add flag = 1, "
2121 "and endpoint is not disabled.\n");
2122 ret = -EINVAL;
2123 break;
2124 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2125 dev_warn(&udev->dev,
2126 "ERROR: Incompatible device for endpoint configure command.\n");
2127 ret = -ENODEV;
2128 break;
2129 case COMP_SUCCESS:
2130 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2131 "Successful Endpoint Configure command");
2132 ret = 0;
2133 break;
2134 default:
2135 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2136 *cmd_status);
2137 ret = -EINVAL;
2138 break;
2139 }
2140 return ret;
2141 }
2142
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2143 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2144 struct usb_device *udev, u32 *cmd_status)
2145 {
2146 int ret;
2147
2148 switch (*cmd_status) {
2149 case COMP_COMMAND_ABORTED:
2150 case COMP_COMMAND_RING_STOPPED:
2151 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2152 ret = -ETIME;
2153 break;
2154 case COMP_PARAMETER_ERROR:
2155 dev_warn(&udev->dev,
2156 "WARN: xHCI driver setup invalid evaluate context command.\n");
2157 ret = -EINVAL;
2158 break;
2159 case COMP_SLOT_NOT_ENABLED_ERROR:
2160 dev_warn(&udev->dev,
2161 "WARN: slot not enabled for evaluate context command.\n");
2162 ret = -EINVAL;
2163 break;
2164 case COMP_CONTEXT_STATE_ERROR:
2165 dev_warn(&udev->dev,
2166 "WARN: invalid context state for evaluate context command.\n");
2167 ret = -EINVAL;
2168 break;
2169 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170 dev_warn(&udev->dev,
2171 "ERROR: Incompatible device for evaluate context command.\n");
2172 ret = -ENODEV;
2173 break;
2174 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2175 /* Max Exit Latency too large error */
2176 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2177 ret = -EINVAL;
2178 break;
2179 case COMP_SUCCESS:
2180 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2181 "Successful evaluate context command");
2182 ret = 0;
2183 break;
2184 default:
2185 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2186 *cmd_status);
2187 ret = -EINVAL;
2188 break;
2189 }
2190 return ret;
2191 }
2192
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2193 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2194 struct xhci_input_control_ctx *ctrl_ctx)
2195 {
2196 u32 valid_add_flags;
2197 u32 valid_drop_flags;
2198
2199 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2200 * (bit 1). The default control endpoint is added during the Address
2201 * Device command and is never removed until the slot is disabled.
2202 */
2203 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2204 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2205
2206 /* Use hweight32 to count the number of ones in the add flags, or
2207 * number of endpoints added. Don't count endpoints that are changed
2208 * (both added and dropped).
2209 */
2210 return hweight32(valid_add_flags) -
2211 hweight32(valid_add_flags & valid_drop_flags);
2212 }
2213
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2214 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2215 struct xhci_input_control_ctx *ctrl_ctx)
2216 {
2217 u32 valid_add_flags;
2218 u32 valid_drop_flags;
2219
2220 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2221 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2222
2223 return hweight32(valid_drop_flags) -
2224 hweight32(valid_add_flags & valid_drop_flags);
2225 }
2226
2227 /*
2228 * We need to reserve the new number of endpoints before the configure endpoint
2229 * command completes. We can't subtract the dropped endpoints from the number
2230 * of active endpoints until the command completes because we can oversubscribe
2231 * the host in this case:
2232 *
2233 * - the first configure endpoint command drops more endpoints than it adds
2234 * - a second configure endpoint command that adds more endpoints is queued
2235 * - the first configure endpoint command fails, so the config is unchanged
2236 * - the second command may succeed, even though there isn't enough resources
2237 *
2238 * Must be called with xhci->lock held.
2239 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2240 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2241 struct xhci_input_control_ctx *ctrl_ctx)
2242 {
2243 u32 added_eps;
2244
2245 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2246 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248 "Not enough ep ctxs: "
2249 "%u active, need to add %u, limit is %u.",
2250 xhci->num_active_eps, added_eps,
2251 xhci->limit_active_eps);
2252 return -ENOMEM;
2253 }
2254 xhci->num_active_eps += added_eps;
2255 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2256 "Adding %u ep ctxs, %u now active.", added_eps,
2257 xhci->num_active_eps);
2258 return 0;
2259 }
2260
2261 /*
2262 * The configure endpoint was failed by the xHC for some other reason, so we
2263 * need to revert the resources that failed configuration would have used.
2264 *
2265 * Must be called with xhci->lock held.
2266 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2267 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2268 struct xhci_input_control_ctx *ctrl_ctx)
2269 {
2270 u32 num_failed_eps;
2271
2272 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2273 xhci->num_active_eps -= num_failed_eps;
2274 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275 "Removing %u failed ep ctxs, %u now active.",
2276 num_failed_eps,
2277 xhci->num_active_eps);
2278 }
2279
2280 /*
2281 * Now that the command has completed, clean up the active endpoint count by
2282 * subtracting out the endpoints that were dropped (but not changed).
2283 *
2284 * Must be called with xhci->lock held.
2285 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2286 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2287 struct xhci_input_control_ctx *ctrl_ctx)
2288 {
2289 u32 num_dropped_eps;
2290
2291 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2292 xhci->num_active_eps -= num_dropped_eps;
2293 if (num_dropped_eps)
2294 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295 "Removing %u dropped ep ctxs, %u now active.",
2296 num_dropped_eps,
2297 xhci->num_active_eps);
2298 }
2299
xhci_get_block_size(struct usb_device * udev)2300 static unsigned int xhci_get_block_size(struct usb_device *udev)
2301 {
2302 switch (udev->speed) {
2303 case USB_SPEED_LOW:
2304 case USB_SPEED_FULL:
2305 return FS_BLOCK;
2306 case USB_SPEED_HIGH:
2307 return HS_BLOCK;
2308 case USB_SPEED_SUPER:
2309 case USB_SPEED_SUPER_PLUS:
2310 return SS_BLOCK;
2311 case USB_SPEED_UNKNOWN:
2312 case USB_SPEED_WIRELESS:
2313 default:
2314 /* Should never happen */
2315 return 1;
2316 }
2317 }
2318
2319 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2320 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2321 {
2322 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2323 return LS_OVERHEAD;
2324 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2325 return FS_OVERHEAD;
2326 return HS_OVERHEAD;
2327 }
2328
2329 /* If we are changing a LS/FS device under a HS hub,
2330 * make sure (if we are activating a new TT) that the HS bus has enough
2331 * bandwidth for this new TT.
2332 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2333 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2334 struct xhci_virt_device *virt_dev,
2335 int old_active_eps)
2336 {
2337 struct xhci_interval_bw_table *bw_table;
2338 struct xhci_tt_bw_info *tt_info;
2339
2340 /* Find the bandwidth table for the root port this TT is attached to. */
2341 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2342 tt_info = virt_dev->tt_info;
2343 /* If this TT already had active endpoints, the bandwidth for this TT
2344 * has already been added. Removing all periodic endpoints (and thus
2345 * making the TT enactive) will only decrease the bandwidth used.
2346 */
2347 if (old_active_eps)
2348 return 0;
2349 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2350 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2351 return -ENOMEM;
2352 return 0;
2353 }
2354 /* Not sure why we would have no new active endpoints...
2355 *
2356 * Maybe because of an Evaluate Context change for a hub update or a
2357 * control endpoint 0 max packet size change?
2358 * FIXME: skip the bandwidth calculation in that case.
2359 */
2360 return 0;
2361 }
2362
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2363 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2364 struct xhci_virt_device *virt_dev)
2365 {
2366 unsigned int bw_reserved;
2367
2368 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2369 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2370 return -ENOMEM;
2371
2372 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2373 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2374 return -ENOMEM;
2375
2376 return 0;
2377 }
2378
2379 /*
2380 * This algorithm is a very conservative estimate of the worst-case scheduling
2381 * scenario for any one interval. The hardware dynamically schedules the
2382 * packets, so we can't tell which microframe could be the limiting factor in
2383 * the bandwidth scheduling. This only takes into account periodic endpoints.
2384 *
2385 * Obviously, we can't solve an NP complete problem to find the minimum worst
2386 * case scenario. Instead, we come up with an estimate that is no less than
2387 * the worst case bandwidth used for any one microframe, but may be an
2388 * over-estimate.
2389 *
2390 * We walk the requirements for each endpoint by interval, starting with the
2391 * smallest interval, and place packets in the schedule where there is only one
2392 * possible way to schedule packets for that interval. In order to simplify
2393 * this algorithm, we record the largest max packet size for each interval, and
2394 * assume all packets will be that size.
2395 *
2396 * For interval 0, we obviously must schedule all packets for each interval.
2397 * The bandwidth for interval 0 is just the amount of data to be transmitted
2398 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2399 * the number of packets).
2400 *
2401 * For interval 1, we have two possible microframes to schedule those packets
2402 * in. For this algorithm, if we can schedule the same number of packets for
2403 * each possible scheduling opportunity (each microframe), we will do so. The
2404 * remaining number of packets will be saved to be transmitted in the gaps in
2405 * the next interval's scheduling sequence.
2406 *
2407 * As we move those remaining packets to be scheduled with interval 2 packets,
2408 * we have to double the number of remaining packets to transmit. This is
2409 * because the intervals are actually powers of 2, and we would be transmitting
2410 * the previous interval's packets twice in this interval. We also have to be
2411 * sure that when we look at the largest max packet size for this interval, we
2412 * also look at the largest max packet size for the remaining packets and take
2413 * the greater of the two.
2414 *
2415 * The algorithm continues to evenly distribute packets in each scheduling
2416 * opportunity, and push the remaining packets out, until we get to the last
2417 * interval. Then those packets and their associated overhead are just added
2418 * to the bandwidth used.
2419 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2420 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2421 struct xhci_virt_device *virt_dev,
2422 int old_active_eps)
2423 {
2424 unsigned int bw_reserved;
2425 unsigned int max_bandwidth;
2426 unsigned int bw_used;
2427 unsigned int block_size;
2428 struct xhci_interval_bw_table *bw_table;
2429 unsigned int packet_size = 0;
2430 unsigned int overhead = 0;
2431 unsigned int packets_transmitted = 0;
2432 unsigned int packets_remaining = 0;
2433 unsigned int i;
2434
2435 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2436 return xhci_check_ss_bw(xhci, virt_dev);
2437
2438 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2439 max_bandwidth = HS_BW_LIMIT;
2440 /* Convert percent of bus BW reserved to blocks reserved */
2441 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2442 } else {
2443 max_bandwidth = FS_BW_LIMIT;
2444 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2445 }
2446
2447 bw_table = virt_dev->bw_table;
2448 /* We need to translate the max packet size and max ESIT payloads into
2449 * the units the hardware uses.
2450 */
2451 block_size = xhci_get_block_size(virt_dev->udev);
2452
2453 /* If we are manipulating a LS/FS device under a HS hub, double check
2454 * that the HS bus has enough bandwidth if we are activing a new TT.
2455 */
2456 if (virt_dev->tt_info) {
2457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2458 "Recalculating BW for rootport %u",
2459 virt_dev->real_port);
2460 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2461 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2462 "newly activated TT.\n");
2463 return -ENOMEM;
2464 }
2465 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2466 "Recalculating BW for TT slot %u port %u",
2467 virt_dev->tt_info->slot_id,
2468 virt_dev->tt_info->ttport);
2469 } else {
2470 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2471 "Recalculating BW for rootport %u",
2472 virt_dev->real_port);
2473 }
2474
2475 /* Add in how much bandwidth will be used for interval zero, or the
2476 * rounded max ESIT payload + number of packets * largest overhead.
2477 */
2478 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2479 bw_table->interval_bw[0].num_packets *
2480 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2481
2482 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2483 unsigned int bw_added;
2484 unsigned int largest_mps;
2485 unsigned int interval_overhead;
2486
2487 /*
2488 * How many packets could we transmit in this interval?
2489 * If packets didn't fit in the previous interval, we will need
2490 * to transmit that many packets twice within this interval.
2491 */
2492 packets_remaining = 2 * packets_remaining +
2493 bw_table->interval_bw[i].num_packets;
2494
2495 /* Find the largest max packet size of this or the previous
2496 * interval.
2497 */
2498 if (list_empty(&bw_table->interval_bw[i].endpoints))
2499 largest_mps = 0;
2500 else {
2501 struct xhci_virt_ep *virt_ep;
2502 struct list_head *ep_entry;
2503
2504 ep_entry = bw_table->interval_bw[i].endpoints.next;
2505 virt_ep = list_entry(ep_entry,
2506 struct xhci_virt_ep, bw_endpoint_list);
2507 /* Convert to blocks, rounding up */
2508 largest_mps = DIV_ROUND_UP(
2509 virt_ep->bw_info.max_packet_size,
2510 block_size);
2511 }
2512 if (largest_mps > packet_size)
2513 packet_size = largest_mps;
2514
2515 /* Use the larger overhead of this or the previous interval. */
2516 interval_overhead = xhci_get_largest_overhead(
2517 &bw_table->interval_bw[i]);
2518 if (interval_overhead > overhead)
2519 overhead = interval_overhead;
2520
2521 /* How many packets can we evenly distribute across
2522 * (1 << (i + 1)) possible scheduling opportunities?
2523 */
2524 packets_transmitted = packets_remaining >> (i + 1);
2525
2526 /* Add in the bandwidth used for those scheduled packets */
2527 bw_added = packets_transmitted * (overhead + packet_size);
2528
2529 /* How many packets do we have remaining to transmit? */
2530 packets_remaining = packets_remaining % (1 << (i + 1));
2531
2532 /* What largest max packet size should those packets have? */
2533 /* If we've transmitted all packets, don't carry over the
2534 * largest packet size.
2535 */
2536 if (packets_remaining == 0) {
2537 packet_size = 0;
2538 overhead = 0;
2539 } else if (packets_transmitted > 0) {
2540 /* Otherwise if we do have remaining packets, and we've
2541 * scheduled some packets in this interval, take the
2542 * largest max packet size from endpoints with this
2543 * interval.
2544 */
2545 packet_size = largest_mps;
2546 overhead = interval_overhead;
2547 }
2548 /* Otherwise carry over packet_size and overhead from the last
2549 * time we had a remainder.
2550 */
2551 bw_used += bw_added;
2552 if (bw_used > max_bandwidth) {
2553 xhci_warn(xhci, "Not enough bandwidth. "
2554 "Proposed: %u, Max: %u\n",
2555 bw_used, max_bandwidth);
2556 return -ENOMEM;
2557 }
2558 }
2559 /*
2560 * Ok, we know we have some packets left over after even-handedly
2561 * scheduling interval 15. We don't know which microframes they will
2562 * fit into, so we over-schedule and say they will be scheduled every
2563 * microframe.
2564 */
2565 if (packets_remaining > 0)
2566 bw_used += overhead + packet_size;
2567
2568 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2569 unsigned int port_index = virt_dev->real_port - 1;
2570
2571 /* OK, we're manipulating a HS device attached to a
2572 * root port bandwidth domain. Include the number of active TTs
2573 * in the bandwidth used.
2574 */
2575 bw_used += TT_HS_OVERHEAD *
2576 xhci->rh_bw[port_index].num_active_tts;
2577 }
2578
2579 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2580 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2581 "Available: %u " "percent",
2582 bw_used, max_bandwidth, bw_reserved,
2583 (max_bandwidth - bw_used - bw_reserved) * 100 /
2584 max_bandwidth);
2585
2586 bw_used += bw_reserved;
2587 if (bw_used > max_bandwidth) {
2588 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2589 bw_used, max_bandwidth);
2590 return -ENOMEM;
2591 }
2592
2593 bw_table->bw_used = bw_used;
2594 return 0;
2595 }
2596
xhci_is_async_ep(unsigned int ep_type)2597 static bool xhci_is_async_ep(unsigned int ep_type)
2598 {
2599 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2600 ep_type != ISOC_IN_EP &&
2601 ep_type != INT_IN_EP);
2602 }
2603
xhci_is_sync_in_ep(unsigned int ep_type)2604 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2605 {
2606 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2607 }
2608
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2609 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2610 {
2611 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2612
2613 if (ep_bw->ep_interval == 0)
2614 return SS_OVERHEAD_BURST +
2615 (ep_bw->mult * ep_bw->num_packets *
2616 (SS_OVERHEAD + mps));
2617 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2618 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2619 1 << ep_bw->ep_interval);
2620
2621 }
2622
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2623 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2624 struct xhci_bw_info *ep_bw,
2625 struct xhci_interval_bw_table *bw_table,
2626 struct usb_device *udev,
2627 struct xhci_virt_ep *virt_ep,
2628 struct xhci_tt_bw_info *tt_info)
2629 {
2630 struct xhci_interval_bw *interval_bw;
2631 int normalized_interval;
2632
2633 if (xhci_is_async_ep(ep_bw->type))
2634 return;
2635
2636 if (udev->speed >= USB_SPEED_SUPER) {
2637 if (xhci_is_sync_in_ep(ep_bw->type))
2638 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2639 xhci_get_ss_bw_consumed(ep_bw);
2640 else
2641 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2642 xhci_get_ss_bw_consumed(ep_bw);
2643 return;
2644 }
2645
2646 /* SuperSpeed endpoints never get added to intervals in the table, so
2647 * this check is only valid for HS/FS/LS devices.
2648 */
2649 if (list_empty(&virt_ep->bw_endpoint_list))
2650 return;
2651 /* For LS/FS devices, we need to translate the interval expressed in
2652 * microframes to frames.
2653 */
2654 if (udev->speed == USB_SPEED_HIGH)
2655 normalized_interval = ep_bw->ep_interval;
2656 else
2657 normalized_interval = ep_bw->ep_interval - 3;
2658
2659 if (normalized_interval == 0)
2660 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2661 interval_bw = &bw_table->interval_bw[normalized_interval];
2662 interval_bw->num_packets -= ep_bw->num_packets;
2663 switch (udev->speed) {
2664 case USB_SPEED_LOW:
2665 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2666 break;
2667 case USB_SPEED_FULL:
2668 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2669 break;
2670 case USB_SPEED_HIGH:
2671 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2672 break;
2673 case USB_SPEED_SUPER:
2674 case USB_SPEED_SUPER_PLUS:
2675 case USB_SPEED_UNKNOWN:
2676 case USB_SPEED_WIRELESS:
2677 /* Should never happen because only LS/FS/HS endpoints will get
2678 * added to the endpoint list.
2679 */
2680 return;
2681 }
2682 if (tt_info)
2683 tt_info->active_eps -= 1;
2684 list_del_init(&virt_ep->bw_endpoint_list);
2685 }
2686
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2687 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2688 struct xhci_bw_info *ep_bw,
2689 struct xhci_interval_bw_table *bw_table,
2690 struct usb_device *udev,
2691 struct xhci_virt_ep *virt_ep,
2692 struct xhci_tt_bw_info *tt_info)
2693 {
2694 struct xhci_interval_bw *interval_bw;
2695 struct xhci_virt_ep *smaller_ep;
2696 int normalized_interval;
2697
2698 if (xhci_is_async_ep(ep_bw->type))
2699 return;
2700
2701 if (udev->speed == USB_SPEED_SUPER) {
2702 if (xhci_is_sync_in_ep(ep_bw->type))
2703 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2704 xhci_get_ss_bw_consumed(ep_bw);
2705 else
2706 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2707 xhci_get_ss_bw_consumed(ep_bw);
2708 return;
2709 }
2710
2711 /* For LS/FS devices, we need to translate the interval expressed in
2712 * microframes to frames.
2713 */
2714 if (udev->speed == USB_SPEED_HIGH)
2715 normalized_interval = ep_bw->ep_interval;
2716 else
2717 normalized_interval = ep_bw->ep_interval - 3;
2718
2719 if (normalized_interval == 0)
2720 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2721 interval_bw = &bw_table->interval_bw[normalized_interval];
2722 interval_bw->num_packets += ep_bw->num_packets;
2723 switch (udev->speed) {
2724 case USB_SPEED_LOW:
2725 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2726 break;
2727 case USB_SPEED_FULL:
2728 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2729 break;
2730 case USB_SPEED_HIGH:
2731 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2732 break;
2733 case USB_SPEED_SUPER:
2734 case USB_SPEED_SUPER_PLUS:
2735 case USB_SPEED_UNKNOWN:
2736 case USB_SPEED_WIRELESS:
2737 /* Should never happen because only LS/FS/HS endpoints will get
2738 * added to the endpoint list.
2739 */
2740 return;
2741 }
2742
2743 if (tt_info)
2744 tt_info->active_eps += 1;
2745 /* Insert the endpoint into the list, largest max packet size first. */
2746 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2747 bw_endpoint_list) {
2748 if (ep_bw->max_packet_size >=
2749 smaller_ep->bw_info.max_packet_size) {
2750 /* Add the new ep before the smaller endpoint */
2751 list_add_tail(&virt_ep->bw_endpoint_list,
2752 &smaller_ep->bw_endpoint_list);
2753 return;
2754 }
2755 }
2756 /* Add the new endpoint at the end of the list. */
2757 list_add_tail(&virt_ep->bw_endpoint_list,
2758 &interval_bw->endpoints);
2759 }
2760
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2761 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2762 struct xhci_virt_device *virt_dev,
2763 int old_active_eps)
2764 {
2765 struct xhci_root_port_bw_info *rh_bw_info;
2766 if (!virt_dev->tt_info)
2767 return;
2768
2769 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2770 if (old_active_eps == 0 &&
2771 virt_dev->tt_info->active_eps != 0) {
2772 rh_bw_info->num_active_tts += 1;
2773 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2774 } else if (old_active_eps != 0 &&
2775 virt_dev->tt_info->active_eps == 0) {
2776 rh_bw_info->num_active_tts -= 1;
2777 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2778 }
2779 }
2780
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2781 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2782 struct xhci_virt_device *virt_dev,
2783 struct xhci_container_ctx *in_ctx)
2784 {
2785 struct xhci_bw_info ep_bw_info[31];
2786 int i;
2787 struct xhci_input_control_ctx *ctrl_ctx;
2788 int old_active_eps = 0;
2789
2790 if (virt_dev->tt_info)
2791 old_active_eps = virt_dev->tt_info->active_eps;
2792
2793 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2794 if (!ctrl_ctx) {
2795 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2796 __func__);
2797 return -ENOMEM;
2798 }
2799
2800 for (i = 0; i < 31; i++) {
2801 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2802 continue;
2803
2804 /* Make a copy of the BW info in case we need to revert this */
2805 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2806 sizeof(ep_bw_info[i]));
2807 /* Drop the endpoint from the interval table if the endpoint is
2808 * being dropped or changed.
2809 */
2810 if (EP_IS_DROPPED(ctrl_ctx, i))
2811 xhci_drop_ep_from_interval_table(xhci,
2812 &virt_dev->eps[i].bw_info,
2813 virt_dev->bw_table,
2814 virt_dev->udev,
2815 &virt_dev->eps[i],
2816 virt_dev->tt_info);
2817 }
2818 /* Overwrite the information stored in the endpoints' bw_info */
2819 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2820 for (i = 0; i < 31; i++) {
2821 /* Add any changed or added endpoints to the interval table */
2822 if (EP_IS_ADDED(ctrl_ctx, i))
2823 xhci_add_ep_to_interval_table(xhci,
2824 &virt_dev->eps[i].bw_info,
2825 virt_dev->bw_table,
2826 virt_dev->udev,
2827 &virt_dev->eps[i],
2828 virt_dev->tt_info);
2829 }
2830
2831 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2832 /* Ok, this fits in the bandwidth we have.
2833 * Update the number of active TTs.
2834 */
2835 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2836 return 0;
2837 }
2838
2839 /* We don't have enough bandwidth for this, revert the stored info. */
2840 for (i = 0; i < 31; i++) {
2841 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2842 continue;
2843
2844 /* Drop the new copies of any added or changed endpoints from
2845 * the interval table.
2846 */
2847 if (EP_IS_ADDED(ctrl_ctx, i)) {
2848 xhci_drop_ep_from_interval_table(xhci,
2849 &virt_dev->eps[i].bw_info,
2850 virt_dev->bw_table,
2851 virt_dev->udev,
2852 &virt_dev->eps[i],
2853 virt_dev->tt_info);
2854 }
2855 /* Revert the endpoint back to its old information */
2856 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2857 sizeof(ep_bw_info[i]));
2858 /* Add any changed or dropped endpoints back into the table */
2859 if (EP_IS_DROPPED(ctrl_ctx, i))
2860 xhci_add_ep_to_interval_table(xhci,
2861 &virt_dev->eps[i].bw_info,
2862 virt_dev->bw_table,
2863 virt_dev->udev,
2864 &virt_dev->eps[i],
2865 virt_dev->tt_info);
2866 }
2867 return -ENOMEM;
2868 }
2869
2870
2871 /* Issue a configure endpoint command or evaluate context command
2872 * and wait for it to finish.
2873 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2874 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2875 struct usb_device *udev,
2876 struct xhci_command *command,
2877 bool ctx_change, bool must_succeed)
2878 {
2879 int ret;
2880 unsigned long flags;
2881 struct xhci_input_control_ctx *ctrl_ctx;
2882 struct xhci_virt_device *virt_dev;
2883 struct xhci_slot_ctx *slot_ctx;
2884
2885 if (!command)
2886 return -EINVAL;
2887
2888 spin_lock_irqsave(&xhci->lock, flags);
2889
2890 if (xhci->xhc_state & XHCI_STATE_DYING) {
2891 spin_unlock_irqrestore(&xhci->lock, flags);
2892 return -ESHUTDOWN;
2893 }
2894
2895 virt_dev = xhci->devs[udev->slot_id];
2896
2897 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2898 if (!ctrl_ctx) {
2899 spin_unlock_irqrestore(&xhci->lock, flags);
2900 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2901 __func__);
2902 return -ENOMEM;
2903 }
2904
2905 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2906 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2907 spin_unlock_irqrestore(&xhci->lock, flags);
2908 xhci_warn(xhci, "Not enough host resources, "
2909 "active endpoint contexts = %u\n",
2910 xhci->num_active_eps);
2911 return -ENOMEM;
2912 }
2913 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2914 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2915 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2916 xhci_free_host_resources(xhci, ctrl_ctx);
2917 spin_unlock_irqrestore(&xhci->lock, flags);
2918 xhci_warn(xhci, "Not enough bandwidth\n");
2919 return -ENOMEM;
2920 }
2921
2922 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2923
2924 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2925 trace_xhci_configure_endpoint(slot_ctx);
2926
2927 if (!ctx_change)
2928 ret = xhci_queue_configure_endpoint(xhci, command,
2929 command->in_ctx->dma,
2930 udev->slot_id, must_succeed);
2931 else
2932 ret = xhci_queue_evaluate_context(xhci, command,
2933 command->in_ctx->dma,
2934 udev->slot_id, must_succeed);
2935 if (ret < 0) {
2936 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2937 xhci_free_host_resources(xhci, ctrl_ctx);
2938 spin_unlock_irqrestore(&xhci->lock, flags);
2939 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2940 "FIXME allocate a new ring segment");
2941 return -ENOMEM;
2942 }
2943 xhci_ring_cmd_db(xhci);
2944 spin_unlock_irqrestore(&xhci->lock, flags);
2945
2946 /* Wait for the configure endpoint command to complete */
2947 wait_for_completion(command->completion);
2948
2949 if (!ctx_change)
2950 ret = xhci_configure_endpoint_result(xhci, udev,
2951 &command->status);
2952 else
2953 ret = xhci_evaluate_context_result(xhci, udev,
2954 &command->status);
2955
2956 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2957 spin_lock_irqsave(&xhci->lock, flags);
2958 /* If the command failed, remove the reserved resources.
2959 * Otherwise, clean up the estimate to include dropped eps.
2960 */
2961 if (ret)
2962 xhci_free_host_resources(xhci, ctrl_ctx);
2963 else
2964 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2965 spin_unlock_irqrestore(&xhci->lock, flags);
2966 }
2967 return ret;
2968 }
2969
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2970 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2971 struct xhci_virt_device *vdev, int i)
2972 {
2973 struct xhci_virt_ep *ep = &vdev->eps[i];
2974
2975 if (ep->ep_state & EP_HAS_STREAMS) {
2976 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2977 xhci_get_endpoint_address(i));
2978 xhci_free_stream_info(xhci, ep->stream_info);
2979 ep->stream_info = NULL;
2980 ep->ep_state &= ~EP_HAS_STREAMS;
2981 }
2982 }
2983
2984 /* Called after one or more calls to xhci_add_endpoint() or
2985 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2986 * to call xhci_reset_bandwidth().
2987 *
2988 * Since we are in the middle of changing either configuration or
2989 * installing a new alt setting, the USB core won't allow URBs to be
2990 * enqueued for any endpoint on the old config or interface. Nothing
2991 * else should be touching the xhci->devs[slot_id] structure, so we
2992 * don't need to take the xhci->lock for manipulating that.
2993 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2994 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2995 {
2996 int i;
2997 int ret = 0;
2998 struct xhci_hcd *xhci;
2999 struct xhci_virt_device *virt_dev;
3000 struct xhci_input_control_ctx *ctrl_ctx;
3001 struct xhci_slot_ctx *slot_ctx;
3002 struct xhci_command *command;
3003
3004 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3005 if (ret <= 0)
3006 return ret;
3007 xhci = hcd_to_xhci(hcd);
3008 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3009 (xhci->xhc_state & XHCI_STATE_REMOVING))
3010 return -ENODEV;
3011
3012 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3013 virt_dev = xhci->devs[udev->slot_id];
3014
3015 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3016 if (!command)
3017 return -ENOMEM;
3018
3019 command->in_ctx = virt_dev->in_ctx;
3020
3021 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3022 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3023 if (!ctrl_ctx) {
3024 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3025 __func__);
3026 ret = -ENOMEM;
3027 goto command_cleanup;
3028 }
3029 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3030 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3031 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3032
3033 /* Don't issue the command if there's no endpoints to update. */
3034 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3035 ctrl_ctx->drop_flags == 0) {
3036 ret = 0;
3037 goto command_cleanup;
3038 }
3039 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3040 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3041 for (i = 31; i >= 1; i--) {
3042 __le32 le32 = cpu_to_le32(BIT(i));
3043
3044 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3045 || (ctrl_ctx->add_flags & le32) || i == 1) {
3046 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3047 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3048 break;
3049 }
3050 }
3051
3052 ret = xhci_configure_endpoint(xhci, udev, command,
3053 false, false);
3054 if (ret)
3055 /* Callee should call reset_bandwidth() */
3056 goto command_cleanup;
3057
3058 /* Free any rings that were dropped, but not changed. */
3059 for (i = 1; i < 31; i++) {
3060 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3061 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3062 xhci_free_endpoint_ring(xhci, virt_dev, i);
3063 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3064 }
3065 }
3066 xhci_zero_in_ctx(xhci, virt_dev);
3067 /*
3068 * Install any rings for completely new endpoints or changed endpoints,
3069 * and free any old rings from changed endpoints.
3070 */
3071 for (i = 1; i < 31; i++) {
3072 if (!virt_dev->eps[i].new_ring)
3073 continue;
3074 /* Only free the old ring if it exists.
3075 * It may not if this is the first add of an endpoint.
3076 */
3077 if (virt_dev->eps[i].ring) {
3078 xhci_free_endpoint_ring(xhci, virt_dev, i);
3079 }
3080 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3081 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3082 virt_dev->eps[i].new_ring = NULL;
3083 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3084 }
3085 command_cleanup:
3086 kfree(command->completion);
3087 kfree(command);
3088
3089 return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3092
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3093 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3094 {
3095 struct xhci_hcd *xhci;
3096 struct xhci_virt_device *virt_dev;
3097 int i, ret;
3098
3099 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3100 if (ret <= 0)
3101 return;
3102 xhci = hcd_to_xhci(hcd);
3103
3104 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3105 virt_dev = xhci->devs[udev->slot_id];
3106 /* Free any rings allocated for added endpoints */
3107 for (i = 0; i < 31; i++) {
3108 if (virt_dev->eps[i].new_ring) {
3109 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3110 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3111 virt_dev->eps[i].new_ring = NULL;
3112 }
3113 }
3114 xhci_zero_in_ctx(xhci, virt_dev);
3115 }
3116 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3117
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3118 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3119 struct xhci_container_ctx *in_ctx,
3120 struct xhci_container_ctx *out_ctx,
3121 struct xhci_input_control_ctx *ctrl_ctx,
3122 u32 add_flags, u32 drop_flags)
3123 {
3124 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3125 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3126 xhci_slot_copy(xhci, in_ctx, out_ctx);
3127 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3128 }
3129
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3130 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3131 struct usb_host_endpoint *host_ep)
3132 {
3133 struct xhci_hcd *xhci;
3134 struct xhci_virt_device *vdev;
3135 struct xhci_virt_ep *ep;
3136 struct usb_device *udev;
3137 unsigned long flags;
3138 unsigned int ep_index;
3139
3140 xhci = hcd_to_xhci(hcd);
3141 rescan:
3142 spin_lock_irqsave(&xhci->lock, flags);
3143
3144 udev = (struct usb_device *)host_ep->hcpriv;
3145 if (!udev || !udev->slot_id)
3146 goto done;
3147
3148 vdev = xhci->devs[udev->slot_id];
3149 if (!vdev)
3150 goto done;
3151
3152 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3153 ep = &vdev->eps[ep_index];
3154 if (!ep)
3155 goto done;
3156
3157 /* wait for hub_tt_work to finish clearing hub TT */
3158 if (ep->ep_state & EP_CLEARING_TT) {
3159 spin_unlock_irqrestore(&xhci->lock, flags);
3160 schedule_timeout_uninterruptible(1);
3161 goto rescan;
3162 }
3163
3164 if (ep->ep_state)
3165 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3166 ep->ep_state);
3167 done:
3168 host_ep->hcpriv = NULL;
3169 spin_unlock_irqrestore(&xhci->lock, flags);
3170 }
3171
3172 /*
3173 * Called after usb core issues a clear halt control message.
3174 * The host side of the halt should already be cleared by a reset endpoint
3175 * command issued when the STALL event was received.
3176 *
3177 * The reset endpoint command may only be issued to endpoints in the halted
3178 * state. For software that wishes to reset the data toggle or sequence number
3179 * of an endpoint that isn't in the halted state this function will issue a
3180 * configure endpoint command with the Drop and Add bits set for the target
3181 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3182 */
3183
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3184 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3185 struct usb_host_endpoint *host_ep)
3186 {
3187 struct xhci_hcd *xhci;
3188 struct usb_device *udev;
3189 struct xhci_virt_device *vdev;
3190 struct xhci_virt_ep *ep;
3191 struct xhci_input_control_ctx *ctrl_ctx;
3192 struct xhci_command *stop_cmd, *cfg_cmd;
3193 unsigned int ep_index;
3194 unsigned long flags;
3195 u32 ep_flag;
3196 int err;
3197
3198 xhci = hcd_to_xhci(hcd);
3199 if (!host_ep->hcpriv)
3200 return;
3201 udev = (struct usb_device *) host_ep->hcpriv;
3202 vdev = xhci->devs[udev->slot_id];
3203
3204 /*
3205 * vdev may be lost due to xHC restore error and re-initialization
3206 * during S3/S4 resume. A new vdev will be allocated later by
3207 * xhci_discover_or_reset_device()
3208 */
3209 if (!udev->slot_id || !vdev)
3210 return;
3211 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3212 ep = &vdev->eps[ep_index];
3213 if (!ep)
3214 return;
3215
3216 /* Bail out if toggle is already being cleared by a endpoint reset */
3217 spin_lock_irqsave(&xhci->lock, flags);
3218 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3219 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3220 spin_unlock_irqrestore(&xhci->lock, flags);
3221 return;
3222 }
3223 spin_unlock_irqrestore(&xhci->lock, flags);
3224 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3225 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3226 usb_endpoint_xfer_isoc(&host_ep->desc))
3227 return;
3228
3229 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3230
3231 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3232 return;
3233
3234 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3235 if (!stop_cmd)
3236 return;
3237
3238 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3239 if (!cfg_cmd)
3240 goto cleanup;
3241
3242 spin_lock_irqsave(&xhci->lock, flags);
3243
3244 /* block queuing new trbs and ringing ep doorbell */
3245 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3246
3247 /*
3248 * Make sure endpoint ring is empty before resetting the toggle/seq.
3249 * Driver is required to synchronously cancel all transfer request.
3250 * Stop the endpoint to force xHC to update the output context
3251 */
3252
3253 if (!list_empty(&ep->ring->td_list)) {
3254 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3255 spin_unlock_irqrestore(&xhci->lock, flags);
3256 xhci_free_command(xhci, cfg_cmd);
3257 goto cleanup;
3258 }
3259
3260 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3261 ep_index, 0);
3262 if (err < 0) {
3263 spin_unlock_irqrestore(&xhci->lock, flags);
3264 xhci_free_command(xhci, cfg_cmd);
3265 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3266 __func__, err);
3267 goto cleanup;
3268 }
3269
3270 xhci_ring_cmd_db(xhci);
3271 spin_unlock_irqrestore(&xhci->lock, flags);
3272
3273 wait_for_completion(stop_cmd->completion);
3274
3275 spin_lock_irqsave(&xhci->lock, flags);
3276
3277 /* config ep command clears toggle if add and drop ep flags are set */
3278 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3279 if (!ctrl_ctx) {
3280 spin_unlock_irqrestore(&xhci->lock, flags);
3281 xhci_free_command(xhci, cfg_cmd);
3282 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3283 __func__);
3284 goto cleanup;
3285 }
3286
3287 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3288 ctrl_ctx, ep_flag, ep_flag);
3289 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3290
3291 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3292 udev->slot_id, false);
3293 if (err < 0) {
3294 spin_unlock_irqrestore(&xhci->lock, flags);
3295 xhci_free_command(xhci, cfg_cmd);
3296 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3297 __func__, err);
3298 goto cleanup;
3299 }
3300
3301 xhci_ring_cmd_db(xhci);
3302 spin_unlock_irqrestore(&xhci->lock, flags);
3303
3304 wait_for_completion(cfg_cmd->completion);
3305
3306 xhci_free_command(xhci, cfg_cmd);
3307 cleanup:
3308 xhci_free_command(xhci, stop_cmd);
3309 spin_lock_irqsave(&xhci->lock, flags);
3310 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3311 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3312 spin_unlock_irqrestore(&xhci->lock, flags);
3313 }
3314
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3315 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3316 struct usb_device *udev, struct usb_host_endpoint *ep,
3317 unsigned int slot_id)
3318 {
3319 int ret;
3320 unsigned int ep_index;
3321 unsigned int ep_state;
3322
3323 if (!ep)
3324 return -EINVAL;
3325 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3326 if (ret <= 0)
3327 return -EINVAL;
3328 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3329 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3330 " descriptor for ep 0x%x does not support streams\n",
3331 ep->desc.bEndpointAddress);
3332 return -EINVAL;
3333 }
3334
3335 ep_index = xhci_get_endpoint_index(&ep->desc);
3336 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3337 if (ep_state & EP_HAS_STREAMS ||
3338 ep_state & EP_GETTING_STREAMS) {
3339 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3340 "already has streams set up.\n",
3341 ep->desc.bEndpointAddress);
3342 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3343 "dynamic stream context array reallocation.\n");
3344 return -EINVAL;
3345 }
3346 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3347 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3348 "endpoint 0x%x; URBs are pending.\n",
3349 ep->desc.bEndpointAddress);
3350 return -EINVAL;
3351 }
3352 return 0;
3353 }
3354
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3355 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3356 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3357 {
3358 unsigned int max_streams;
3359
3360 /* The stream context array size must be a power of two */
3361 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3362 /*
3363 * Find out how many primary stream array entries the host controller
3364 * supports. Later we may use secondary stream arrays (similar to 2nd
3365 * level page entries), but that's an optional feature for xHCI host
3366 * controllers. xHCs must support at least 4 stream IDs.
3367 */
3368 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3369 if (*num_stream_ctxs > max_streams) {
3370 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3371 max_streams);
3372 *num_stream_ctxs = max_streams;
3373 *num_streams = max_streams;
3374 }
3375 }
3376
3377 /* Returns an error code if one of the endpoint already has streams.
3378 * This does not change any data structures, it only checks and gathers
3379 * information.
3380 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3381 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3382 struct usb_device *udev,
3383 struct usb_host_endpoint **eps, unsigned int num_eps,
3384 unsigned int *num_streams, u32 *changed_ep_bitmask)
3385 {
3386 unsigned int max_streams;
3387 unsigned int endpoint_flag;
3388 int i;
3389 int ret;
3390
3391 for (i = 0; i < num_eps; i++) {
3392 ret = xhci_check_streams_endpoint(xhci, udev,
3393 eps[i], udev->slot_id);
3394 if (ret < 0)
3395 return ret;
3396
3397 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3398 if (max_streams < (*num_streams - 1)) {
3399 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3400 eps[i]->desc.bEndpointAddress,
3401 max_streams);
3402 *num_streams = max_streams+1;
3403 }
3404
3405 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3406 if (*changed_ep_bitmask & endpoint_flag)
3407 return -EINVAL;
3408 *changed_ep_bitmask |= endpoint_flag;
3409 }
3410 return 0;
3411 }
3412
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3413 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3414 struct usb_device *udev,
3415 struct usb_host_endpoint **eps, unsigned int num_eps)
3416 {
3417 u32 changed_ep_bitmask = 0;
3418 unsigned int slot_id;
3419 unsigned int ep_index;
3420 unsigned int ep_state;
3421 int i;
3422
3423 slot_id = udev->slot_id;
3424 if (!xhci->devs[slot_id])
3425 return 0;
3426
3427 for (i = 0; i < num_eps; i++) {
3428 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3429 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3430 /* Are streams already being freed for the endpoint? */
3431 if (ep_state & EP_GETTING_NO_STREAMS) {
3432 xhci_warn(xhci, "WARN Can't disable streams for "
3433 "endpoint 0x%x, "
3434 "streams are being disabled already\n",
3435 eps[i]->desc.bEndpointAddress);
3436 return 0;
3437 }
3438 /* Are there actually any streams to free? */
3439 if (!(ep_state & EP_HAS_STREAMS) &&
3440 !(ep_state & EP_GETTING_STREAMS)) {
3441 xhci_warn(xhci, "WARN Can't disable streams for "
3442 "endpoint 0x%x, "
3443 "streams are already disabled!\n",
3444 eps[i]->desc.bEndpointAddress);
3445 xhci_warn(xhci, "WARN xhci_free_streams() called "
3446 "with non-streams endpoint\n");
3447 return 0;
3448 }
3449 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3450 }
3451 return changed_ep_bitmask;
3452 }
3453
3454 /*
3455 * The USB device drivers use this function (through the HCD interface in USB
3456 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3457 * coordinate mass storage command queueing across multiple endpoints (basically
3458 * a stream ID == a task ID).
3459 *
3460 * Setting up streams involves allocating the same size stream context array
3461 * for each endpoint and issuing a configure endpoint command for all endpoints.
3462 *
3463 * Don't allow the call to succeed if one endpoint only supports one stream
3464 * (which means it doesn't support streams at all).
3465 *
3466 * Drivers may get less stream IDs than they asked for, if the host controller
3467 * hardware or endpoints claim they can't support the number of requested
3468 * stream IDs.
3469 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3470 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3471 struct usb_host_endpoint **eps, unsigned int num_eps,
3472 unsigned int num_streams, gfp_t mem_flags)
3473 {
3474 int i, ret;
3475 struct xhci_hcd *xhci;
3476 struct xhci_virt_device *vdev;
3477 struct xhci_command *config_cmd;
3478 struct xhci_input_control_ctx *ctrl_ctx;
3479 unsigned int ep_index;
3480 unsigned int num_stream_ctxs;
3481 unsigned int max_packet;
3482 unsigned long flags;
3483 u32 changed_ep_bitmask = 0;
3484
3485 if (!eps)
3486 return -EINVAL;
3487
3488 /* Add one to the number of streams requested to account for
3489 * stream 0 that is reserved for xHCI usage.
3490 */
3491 num_streams += 1;
3492 xhci = hcd_to_xhci(hcd);
3493 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3494 num_streams);
3495
3496 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3497 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3498 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3499 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3500 return -ENOSYS;
3501 }
3502
3503 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3504 if (!config_cmd)
3505 return -ENOMEM;
3506
3507 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3508 if (!ctrl_ctx) {
3509 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3510 __func__);
3511 xhci_free_command(xhci, config_cmd);
3512 return -ENOMEM;
3513 }
3514
3515 /* Check to make sure all endpoints are not already configured for
3516 * streams. While we're at it, find the maximum number of streams that
3517 * all the endpoints will support and check for duplicate endpoints.
3518 */
3519 spin_lock_irqsave(&xhci->lock, flags);
3520 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3521 num_eps, &num_streams, &changed_ep_bitmask);
3522 if (ret < 0) {
3523 xhci_free_command(xhci, config_cmd);
3524 spin_unlock_irqrestore(&xhci->lock, flags);
3525 return ret;
3526 }
3527 if (num_streams <= 1) {
3528 xhci_warn(xhci, "WARN: endpoints can't handle "
3529 "more than one stream.\n");
3530 xhci_free_command(xhci, config_cmd);
3531 spin_unlock_irqrestore(&xhci->lock, flags);
3532 return -EINVAL;
3533 }
3534 vdev = xhci->devs[udev->slot_id];
3535 /* Mark each endpoint as being in transition, so
3536 * xhci_urb_enqueue() will reject all URBs.
3537 */
3538 for (i = 0; i < num_eps; i++) {
3539 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3540 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3541 }
3542 spin_unlock_irqrestore(&xhci->lock, flags);
3543
3544 /* Setup internal data structures and allocate HW data structures for
3545 * streams (but don't install the HW structures in the input context
3546 * until we're sure all memory allocation succeeded).
3547 */
3548 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3549 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3550 num_stream_ctxs, num_streams);
3551
3552 for (i = 0; i < num_eps; i++) {
3553 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3554 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3555 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3556 num_stream_ctxs,
3557 num_streams,
3558 max_packet, mem_flags);
3559 if (!vdev->eps[ep_index].stream_info)
3560 goto cleanup;
3561 /* Set maxPstreams in endpoint context and update deq ptr to
3562 * point to stream context array. FIXME
3563 */
3564 }
3565
3566 /* Set up the input context for a configure endpoint command. */
3567 for (i = 0; i < num_eps; i++) {
3568 struct xhci_ep_ctx *ep_ctx;
3569
3570 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3571 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3572
3573 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3574 vdev->out_ctx, ep_index);
3575 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3576 vdev->eps[ep_index].stream_info);
3577 }
3578 /* Tell the HW to drop its old copy of the endpoint context info
3579 * and add the updated copy from the input context.
3580 */
3581 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3582 vdev->out_ctx, ctrl_ctx,
3583 changed_ep_bitmask, changed_ep_bitmask);
3584
3585 /* Issue and wait for the configure endpoint command */
3586 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3587 false, false);
3588
3589 /* xHC rejected the configure endpoint command for some reason, so we
3590 * leave the old ring intact and free our internal streams data
3591 * structure.
3592 */
3593 if (ret < 0)
3594 goto cleanup;
3595
3596 spin_lock_irqsave(&xhci->lock, flags);
3597 for (i = 0; i < num_eps; i++) {
3598 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3599 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3600 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3601 udev->slot_id, ep_index);
3602 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3603 }
3604 xhci_free_command(xhci, config_cmd);
3605 spin_unlock_irqrestore(&xhci->lock, flags);
3606
3607 for (i = 0; i < num_eps; i++) {
3608 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3609 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3610 }
3611 /* Subtract 1 for stream 0, which drivers can't use */
3612 return num_streams - 1;
3613
3614 cleanup:
3615 /* If it didn't work, free the streams! */
3616 for (i = 0; i < num_eps; i++) {
3617 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3618 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3619 vdev->eps[ep_index].stream_info = NULL;
3620 /* FIXME Unset maxPstreams in endpoint context and
3621 * update deq ptr to point to normal string ring.
3622 */
3623 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3624 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3625 xhci_endpoint_zero(xhci, vdev, eps[i]);
3626 }
3627 xhci_free_command(xhci, config_cmd);
3628 return -ENOMEM;
3629 }
3630
3631 /* Transition the endpoint from using streams to being a "normal" endpoint
3632 * without streams.
3633 *
3634 * Modify the endpoint context state, submit a configure endpoint command,
3635 * and free all endpoint rings for streams if that completes successfully.
3636 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3637 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3638 struct usb_host_endpoint **eps, unsigned int num_eps,
3639 gfp_t mem_flags)
3640 {
3641 int i, ret;
3642 struct xhci_hcd *xhci;
3643 struct xhci_virt_device *vdev;
3644 struct xhci_command *command;
3645 struct xhci_input_control_ctx *ctrl_ctx;
3646 unsigned int ep_index;
3647 unsigned long flags;
3648 u32 changed_ep_bitmask;
3649
3650 xhci = hcd_to_xhci(hcd);
3651 vdev = xhci->devs[udev->slot_id];
3652
3653 /* Set up a configure endpoint command to remove the streams rings */
3654 spin_lock_irqsave(&xhci->lock, flags);
3655 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3656 udev, eps, num_eps);
3657 if (changed_ep_bitmask == 0) {
3658 spin_unlock_irqrestore(&xhci->lock, flags);
3659 return -EINVAL;
3660 }
3661
3662 /* Use the xhci_command structure from the first endpoint. We may have
3663 * allocated too many, but the driver may call xhci_free_streams() for
3664 * each endpoint it grouped into one call to xhci_alloc_streams().
3665 */
3666 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3667 command = vdev->eps[ep_index].stream_info->free_streams_command;
3668 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3669 if (!ctrl_ctx) {
3670 spin_unlock_irqrestore(&xhci->lock, flags);
3671 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3672 __func__);
3673 return -EINVAL;
3674 }
3675
3676 for (i = 0; i < num_eps; i++) {
3677 struct xhci_ep_ctx *ep_ctx;
3678
3679 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3680 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3681 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3682 EP_GETTING_NO_STREAMS;
3683
3684 xhci_endpoint_copy(xhci, command->in_ctx,
3685 vdev->out_ctx, ep_index);
3686 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3687 &vdev->eps[ep_index]);
3688 }
3689 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3690 vdev->out_ctx, ctrl_ctx,
3691 changed_ep_bitmask, changed_ep_bitmask);
3692 spin_unlock_irqrestore(&xhci->lock, flags);
3693
3694 /* Issue and wait for the configure endpoint command,
3695 * which must succeed.
3696 */
3697 ret = xhci_configure_endpoint(xhci, udev, command,
3698 false, true);
3699
3700 /* xHC rejected the configure endpoint command for some reason, so we
3701 * leave the streams rings intact.
3702 */
3703 if (ret < 0)
3704 return ret;
3705
3706 spin_lock_irqsave(&xhci->lock, flags);
3707 for (i = 0; i < num_eps; i++) {
3708 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3709 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3710 vdev->eps[ep_index].stream_info = NULL;
3711 /* FIXME Unset maxPstreams in endpoint context and
3712 * update deq ptr to point to normal string ring.
3713 */
3714 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3715 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3716 }
3717 spin_unlock_irqrestore(&xhci->lock, flags);
3718
3719 return 0;
3720 }
3721
3722 /*
3723 * Deletes endpoint resources for endpoints that were active before a Reset
3724 * Device command, or a Disable Slot command. The Reset Device command leaves
3725 * the control endpoint intact, whereas the Disable Slot command deletes it.
3726 *
3727 * Must be called with xhci->lock held.
3728 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3729 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3730 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3731 {
3732 int i;
3733 unsigned int num_dropped_eps = 0;
3734 unsigned int drop_flags = 0;
3735
3736 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3737 if (virt_dev->eps[i].ring) {
3738 drop_flags |= 1 << i;
3739 num_dropped_eps++;
3740 }
3741 }
3742 xhci->num_active_eps -= num_dropped_eps;
3743 if (num_dropped_eps)
3744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3745 "Dropped %u ep ctxs, flags = 0x%x, "
3746 "%u now active.",
3747 num_dropped_eps, drop_flags,
3748 xhci->num_active_eps);
3749 }
3750
3751 /*
3752 * This submits a Reset Device Command, which will set the device state to 0,
3753 * set the device address to 0, and disable all the endpoints except the default
3754 * control endpoint. The USB core should come back and call
3755 * xhci_address_device(), and then re-set up the configuration. If this is
3756 * called because of a usb_reset_and_verify_device(), then the old alternate
3757 * settings will be re-installed through the normal bandwidth allocation
3758 * functions.
3759 *
3760 * Wait for the Reset Device command to finish. Remove all structures
3761 * associated with the endpoints that were disabled. Clear the input device
3762 * structure? Reset the control endpoint 0 max packet size?
3763 *
3764 * If the virt_dev to be reset does not exist or does not match the udev,
3765 * it means the device is lost, possibly due to the xHC restore error and
3766 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3767 * re-allocate the device.
3768 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3769 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3770 struct usb_device *udev)
3771 {
3772 int ret, i;
3773 unsigned long flags;
3774 struct xhci_hcd *xhci;
3775 unsigned int slot_id;
3776 struct xhci_virt_device *virt_dev;
3777 struct xhci_command *reset_device_cmd;
3778 struct xhci_slot_ctx *slot_ctx;
3779 int old_active_eps = 0;
3780
3781 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3782 if (ret <= 0)
3783 return ret;
3784 xhci = hcd_to_xhci(hcd);
3785 slot_id = udev->slot_id;
3786 virt_dev = xhci->devs[slot_id];
3787 if (!virt_dev) {
3788 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3789 "not exist. Re-allocate the device\n", slot_id);
3790 ret = xhci_alloc_dev(hcd, udev);
3791 if (ret == 1)
3792 return 0;
3793 else
3794 return -EINVAL;
3795 }
3796
3797 if (virt_dev->tt_info)
3798 old_active_eps = virt_dev->tt_info->active_eps;
3799
3800 if (virt_dev->udev != udev) {
3801 /* If the virt_dev and the udev does not match, this virt_dev
3802 * may belong to another udev.
3803 * Re-allocate the device.
3804 */
3805 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3806 "not match the udev. Re-allocate the device\n",
3807 slot_id);
3808 ret = xhci_alloc_dev(hcd, udev);
3809 if (ret == 1)
3810 return 0;
3811 else
3812 return -EINVAL;
3813 }
3814
3815 /* If device is not setup, there is no point in resetting it */
3816 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3817 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3818 SLOT_STATE_DISABLED)
3819 return 0;
3820
3821 trace_xhci_discover_or_reset_device(slot_ctx);
3822
3823 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3824 /* Allocate the command structure that holds the struct completion.
3825 * Assume we're in process context, since the normal device reset
3826 * process has to wait for the device anyway. Storage devices are
3827 * reset as part of error handling, so use GFP_NOIO instead of
3828 * GFP_KERNEL.
3829 */
3830 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3831 if (!reset_device_cmd) {
3832 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3833 return -ENOMEM;
3834 }
3835
3836 /* Attempt to submit the Reset Device command to the command ring */
3837 spin_lock_irqsave(&xhci->lock, flags);
3838
3839 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3840 if (ret) {
3841 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3842 spin_unlock_irqrestore(&xhci->lock, flags);
3843 goto command_cleanup;
3844 }
3845 xhci_ring_cmd_db(xhci);
3846 spin_unlock_irqrestore(&xhci->lock, flags);
3847
3848 /* Wait for the Reset Device command to finish */
3849 wait_for_completion(reset_device_cmd->completion);
3850
3851 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3852 * unless we tried to reset a slot ID that wasn't enabled,
3853 * or the device wasn't in the addressed or configured state.
3854 */
3855 ret = reset_device_cmd->status;
3856 switch (ret) {
3857 case COMP_COMMAND_ABORTED:
3858 case COMP_COMMAND_RING_STOPPED:
3859 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3860 ret = -ETIME;
3861 goto command_cleanup;
3862 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3863 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3864 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3865 slot_id,
3866 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3867 xhci_dbg(xhci, "Not freeing device rings.\n");
3868 /* Don't treat this as an error. May change my mind later. */
3869 ret = 0;
3870 goto command_cleanup;
3871 case COMP_SUCCESS:
3872 xhci_dbg(xhci, "Successful reset device command.\n");
3873 break;
3874 default:
3875 if (xhci_is_vendor_info_code(xhci, ret))
3876 break;
3877 xhci_warn(xhci, "Unknown completion code %u for "
3878 "reset device command.\n", ret);
3879 ret = -EINVAL;
3880 goto command_cleanup;
3881 }
3882
3883 /* Free up host controller endpoint resources */
3884 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3885 spin_lock_irqsave(&xhci->lock, flags);
3886 /* Don't delete the default control endpoint resources */
3887 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3888 spin_unlock_irqrestore(&xhci->lock, flags);
3889 }
3890
3891 /* Everything but endpoint 0 is disabled, so free the rings. */
3892 for (i = 1; i < 31; i++) {
3893 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3894
3895 if (ep->ep_state & EP_HAS_STREAMS) {
3896 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3897 xhci_get_endpoint_address(i));
3898 xhci_free_stream_info(xhci, ep->stream_info);
3899 ep->stream_info = NULL;
3900 ep->ep_state &= ~EP_HAS_STREAMS;
3901 }
3902
3903 if (ep->ring) {
3904 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3905 xhci_free_endpoint_ring(xhci, virt_dev, i);
3906 }
3907 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3908 xhci_drop_ep_from_interval_table(xhci,
3909 &virt_dev->eps[i].bw_info,
3910 virt_dev->bw_table,
3911 udev,
3912 &virt_dev->eps[i],
3913 virt_dev->tt_info);
3914 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3915 }
3916 /* If necessary, update the number of active TTs on this root port */
3917 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3918 virt_dev->flags = 0;
3919 ret = 0;
3920
3921 command_cleanup:
3922 xhci_free_command(xhci, reset_device_cmd);
3923 return ret;
3924 }
3925
3926 /*
3927 * At this point, the struct usb_device is about to go away, the device has
3928 * disconnected, and all traffic has been stopped and the endpoints have been
3929 * disabled. Free any HC data structures associated with that device.
3930 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3931 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3932 {
3933 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3934 struct xhci_virt_device *virt_dev;
3935 struct xhci_slot_ctx *slot_ctx;
3936 int i, ret;
3937
3938 #ifndef CONFIG_USB_DEFAULT_PERSIST
3939 /*
3940 * We called pm_runtime_get_noresume when the device was attached.
3941 * Decrement the counter here to allow controller to runtime suspend
3942 * if no devices remain.
3943 */
3944 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3945 pm_runtime_put_noidle(hcd->self.controller);
3946 #endif
3947
3948 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3949 /* If the host is halted due to driver unload, we still need to free the
3950 * device.
3951 */
3952 if (ret <= 0 && ret != -ENODEV)
3953 return;
3954
3955 virt_dev = xhci->devs[udev->slot_id];
3956 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3957 trace_xhci_free_dev(slot_ctx);
3958
3959 /* Stop any wayward timer functions (which may grab the lock) */
3960 for (i = 0; i < 31; i++) {
3961 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3962 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3963 }
3964 virt_dev->udev = NULL;
3965 ret = xhci_disable_slot(xhci, udev->slot_id);
3966 if (ret)
3967 xhci_free_virt_device(xhci, udev->slot_id);
3968 }
3969
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3970 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3971 {
3972 struct xhci_command *command;
3973 unsigned long flags;
3974 u32 state;
3975 int ret = 0;
3976
3977 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3978 if (!command)
3979 return -ENOMEM;
3980
3981 xhci_debugfs_remove_slot(xhci, slot_id);
3982
3983 spin_lock_irqsave(&xhci->lock, flags);
3984 /* Don't disable the slot if the host controller is dead. */
3985 state = readl(&xhci->op_regs->status);
3986 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3987 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3988 spin_unlock_irqrestore(&xhci->lock, flags);
3989 kfree(command);
3990 return -ENODEV;
3991 }
3992
3993 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3994 slot_id);
3995 if (ret) {
3996 spin_unlock_irqrestore(&xhci->lock, flags);
3997 kfree(command);
3998 return ret;
3999 }
4000 xhci_ring_cmd_db(xhci);
4001 spin_unlock_irqrestore(&xhci->lock, flags);
4002 return ret;
4003 }
4004
4005 /*
4006 * Checks if we have enough host controller resources for the default control
4007 * endpoint.
4008 *
4009 * Must be called with xhci->lock held.
4010 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4011 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4012 {
4013 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4014 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4015 "Not enough ep ctxs: "
4016 "%u active, need to add 1, limit is %u.",
4017 xhci->num_active_eps, xhci->limit_active_eps);
4018 return -ENOMEM;
4019 }
4020 xhci->num_active_eps += 1;
4021 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4022 "Adding 1 ep ctx, %u now active.",
4023 xhci->num_active_eps);
4024 return 0;
4025 }
4026
4027
4028 /*
4029 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4030 * timed out, or allocating memory failed. Returns 1 on success.
4031 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4032 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4033 {
4034 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4035 struct xhci_virt_device *vdev;
4036 struct xhci_slot_ctx *slot_ctx;
4037 unsigned long flags;
4038 int ret, slot_id;
4039 struct xhci_command *command;
4040
4041 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4042 if (!command)
4043 return 0;
4044
4045 spin_lock_irqsave(&xhci->lock, flags);
4046 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4047 if (ret) {
4048 spin_unlock_irqrestore(&xhci->lock, flags);
4049 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4050 xhci_free_command(xhci, command);
4051 return 0;
4052 }
4053 xhci_ring_cmd_db(xhci);
4054 spin_unlock_irqrestore(&xhci->lock, flags);
4055
4056 wait_for_completion(command->completion);
4057 slot_id = command->slot_id;
4058
4059 if (!slot_id || command->status != COMP_SUCCESS) {
4060 xhci_err(xhci, "Error while assigning device slot ID\n");
4061 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4062 HCS_MAX_SLOTS(
4063 readl(&xhci->cap_regs->hcs_params1)));
4064 xhci_free_command(xhci, command);
4065 return 0;
4066 }
4067
4068 xhci_free_command(xhci, command);
4069
4070 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4071 spin_lock_irqsave(&xhci->lock, flags);
4072 ret = xhci_reserve_host_control_ep_resources(xhci);
4073 if (ret) {
4074 spin_unlock_irqrestore(&xhci->lock, flags);
4075 xhci_warn(xhci, "Not enough host resources, "
4076 "active endpoint contexts = %u\n",
4077 xhci->num_active_eps);
4078 goto disable_slot;
4079 }
4080 spin_unlock_irqrestore(&xhci->lock, flags);
4081 }
4082 /* Use GFP_NOIO, since this function can be called from
4083 * xhci_discover_or_reset_device(), which may be called as part of
4084 * mass storage driver error handling.
4085 */
4086 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4087 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4088 goto disable_slot;
4089 }
4090 vdev = xhci->devs[slot_id];
4091 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4092 trace_xhci_alloc_dev(slot_ctx);
4093
4094 udev->slot_id = slot_id;
4095
4096 xhci_debugfs_create_slot(xhci, slot_id);
4097
4098 #ifndef CONFIG_USB_DEFAULT_PERSIST
4099 /*
4100 * If resetting upon resume, we can't put the controller into runtime
4101 * suspend if there is a device attached.
4102 */
4103 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4104 pm_runtime_get_noresume(hcd->self.controller);
4105 #endif
4106
4107 /* Is this a LS or FS device under a HS hub? */
4108 /* Hub or peripherial? */
4109 return 1;
4110
4111 disable_slot:
4112 ret = xhci_disable_slot(xhci, udev->slot_id);
4113 if (ret)
4114 xhci_free_virt_device(xhci, udev->slot_id);
4115
4116 return 0;
4117 }
4118
4119 /*
4120 * Issue an Address Device command and optionally send a corresponding
4121 * SetAddress request to the device.
4122 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4123 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4124 enum xhci_setup_dev setup)
4125 {
4126 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4127 unsigned long flags;
4128 struct xhci_virt_device *virt_dev;
4129 int ret = 0;
4130 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4131 struct xhci_slot_ctx *slot_ctx;
4132 struct xhci_input_control_ctx *ctrl_ctx;
4133 u64 temp_64;
4134 struct xhci_command *command = NULL;
4135
4136 mutex_lock(&xhci->mutex);
4137
4138 if (xhci->xhc_state) { /* dying, removing or halted */
4139 ret = -ESHUTDOWN;
4140 goto out;
4141 }
4142
4143 if (!udev->slot_id) {
4144 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4145 "Bad Slot ID %d", udev->slot_id);
4146 ret = -EINVAL;
4147 goto out;
4148 }
4149
4150 virt_dev = xhci->devs[udev->slot_id];
4151
4152 if (WARN_ON(!virt_dev)) {
4153 /*
4154 * In plug/unplug torture test with an NEC controller,
4155 * a zero-dereference was observed once due to virt_dev = 0.
4156 * Print useful debug rather than crash if it is observed again!
4157 */
4158 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4159 udev->slot_id);
4160 ret = -EINVAL;
4161 goto out;
4162 }
4163 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4164 trace_xhci_setup_device_slot(slot_ctx);
4165
4166 if (setup == SETUP_CONTEXT_ONLY) {
4167 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4168 SLOT_STATE_DEFAULT) {
4169 xhci_dbg(xhci, "Slot already in default state\n");
4170 goto out;
4171 }
4172 }
4173
4174 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4175 if (!command) {
4176 ret = -ENOMEM;
4177 goto out;
4178 }
4179
4180 command->in_ctx = virt_dev->in_ctx;
4181
4182 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4183 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4184 if (!ctrl_ctx) {
4185 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4186 __func__);
4187 ret = -EINVAL;
4188 goto out;
4189 }
4190 /*
4191 * If this is the first Set Address since device plug-in or
4192 * virt_device realloaction after a resume with an xHCI power loss,
4193 * then set up the slot context.
4194 */
4195 if (!slot_ctx->dev_info)
4196 xhci_setup_addressable_virt_dev(xhci, udev);
4197 /* Otherwise, update the control endpoint ring enqueue pointer. */
4198 else
4199 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4200 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4201 ctrl_ctx->drop_flags = 0;
4202
4203 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204 le32_to_cpu(slot_ctx->dev_info) >> 27);
4205
4206 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4207 spin_lock_irqsave(&xhci->lock, flags);
4208 trace_xhci_setup_device(virt_dev);
4209 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4210 udev->slot_id, setup);
4211 if (ret) {
4212 spin_unlock_irqrestore(&xhci->lock, flags);
4213 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4214 "FIXME: allocate a command ring segment");
4215 goto out;
4216 }
4217 xhci_ring_cmd_db(xhci);
4218 spin_unlock_irqrestore(&xhci->lock, flags);
4219
4220 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4221 wait_for_completion(command->completion);
4222
4223 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4224 * the SetAddress() "recovery interval" required by USB and aborting the
4225 * command on a timeout.
4226 */
4227 switch (command->status) {
4228 case COMP_COMMAND_ABORTED:
4229 case COMP_COMMAND_RING_STOPPED:
4230 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4231 ret = -ETIME;
4232 break;
4233 case COMP_CONTEXT_STATE_ERROR:
4234 case COMP_SLOT_NOT_ENABLED_ERROR:
4235 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4236 act, udev->slot_id);
4237 ret = -EINVAL;
4238 break;
4239 case COMP_USB_TRANSACTION_ERROR:
4240 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4241
4242 mutex_unlock(&xhci->mutex);
4243 ret = xhci_disable_slot(xhci, udev->slot_id);
4244 if (!ret)
4245 xhci_alloc_dev(hcd, udev);
4246 kfree(command->completion);
4247 kfree(command);
4248 return -EPROTO;
4249 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4250 dev_warn(&udev->dev,
4251 "ERROR: Incompatible device for setup %s command\n", act);
4252 ret = -ENODEV;
4253 break;
4254 case COMP_SUCCESS:
4255 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4256 "Successful setup %s command", act);
4257 break;
4258 default:
4259 xhci_err(xhci,
4260 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4261 act, command->status);
4262 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4263 ret = -EINVAL;
4264 break;
4265 }
4266 if (ret)
4267 goto out;
4268 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4269 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270 "Op regs DCBAA ptr = %#016llx", temp_64);
4271 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4272 "Slot ID %d dcbaa entry @%p = %#016llx",
4273 udev->slot_id,
4274 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4275 (unsigned long long)
4276 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4277 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4278 "Output Context DMA address = %#08llx",
4279 (unsigned long long)virt_dev->out_ctx->dma);
4280 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4281 le32_to_cpu(slot_ctx->dev_info) >> 27);
4282 /*
4283 * USB core uses address 1 for the roothubs, so we add one to the
4284 * address given back to us by the HC.
4285 */
4286 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4287 le32_to_cpu(slot_ctx->dev_info) >> 27);
4288 /* Zero the input context control for later use */
4289 ctrl_ctx->add_flags = 0;
4290 ctrl_ctx->drop_flags = 0;
4291 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4292 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4293
4294 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4295 "Internal device address = %d",
4296 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4297 out:
4298 mutex_unlock(&xhci->mutex);
4299 if (command) {
4300 kfree(command->completion);
4301 kfree(command);
4302 }
4303 return ret;
4304 }
4305
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4306 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4307 {
4308 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4309 }
4310
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4311 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4312 {
4313 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4314 }
4315
4316 /*
4317 * Transfer the port index into real index in the HW port status
4318 * registers. Caculate offset between the port's PORTSC register
4319 * and port status base. Divide the number of per port register
4320 * to get the real index. The raw port number bases 1.
4321 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4322 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4323 {
4324 struct xhci_hub *rhub;
4325
4326 rhub = xhci_get_rhub(hcd);
4327 return rhub->ports[port1 - 1]->hw_portnum + 1;
4328 }
4329
4330 /*
4331 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4332 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4333 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4334 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4335 struct usb_device *udev, u16 max_exit_latency)
4336 {
4337 struct xhci_virt_device *virt_dev;
4338 struct xhci_command *command;
4339 struct xhci_input_control_ctx *ctrl_ctx;
4340 struct xhci_slot_ctx *slot_ctx;
4341 unsigned long flags;
4342 int ret;
4343
4344 spin_lock_irqsave(&xhci->lock, flags);
4345
4346 virt_dev = xhci->devs[udev->slot_id];
4347
4348 /*
4349 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4350 * xHC was re-initialized. Exit latency will be set later after
4351 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4352 */
4353
4354 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4355 spin_unlock_irqrestore(&xhci->lock, flags);
4356 return 0;
4357 }
4358
4359 /* Attempt to issue an Evaluate Context command to change the MEL. */
4360 command = xhci->lpm_command;
4361 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4362 if (!ctrl_ctx) {
4363 spin_unlock_irqrestore(&xhci->lock, flags);
4364 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4365 __func__);
4366 return -ENOMEM;
4367 }
4368
4369 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4370 spin_unlock_irqrestore(&xhci->lock, flags);
4371
4372 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4373 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4374 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4375 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4376 slot_ctx->dev_state = 0;
4377
4378 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4379 "Set up evaluate context for LPM MEL change.");
4380
4381 /* Issue and wait for the evaluate context command. */
4382 ret = xhci_configure_endpoint(xhci, udev, command,
4383 true, true);
4384
4385 if (!ret) {
4386 spin_lock_irqsave(&xhci->lock, flags);
4387 virt_dev->current_mel = max_exit_latency;
4388 spin_unlock_irqrestore(&xhci->lock, flags);
4389 }
4390 return ret;
4391 }
4392
4393 #ifdef CONFIG_PM
4394
4395 /* BESL to HIRD Encoding array for USB2 LPM */
4396 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4397 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4398
4399 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4400 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4401 struct usb_device *udev)
4402 {
4403 int u2del, besl, besl_host;
4404 int besl_device = 0;
4405 u32 field;
4406
4407 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4408 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4409
4410 if (field & USB_BESL_SUPPORT) {
4411 for (besl_host = 0; besl_host < 16; besl_host++) {
4412 if (xhci_besl_encoding[besl_host] >= u2del)
4413 break;
4414 }
4415 /* Use baseline BESL value as default */
4416 if (field & USB_BESL_BASELINE_VALID)
4417 besl_device = USB_GET_BESL_BASELINE(field);
4418 else if (field & USB_BESL_DEEP_VALID)
4419 besl_device = USB_GET_BESL_DEEP(field);
4420 } else {
4421 if (u2del <= 50)
4422 besl_host = 0;
4423 else
4424 besl_host = (u2del - 51) / 75 + 1;
4425 }
4426
4427 besl = besl_host + besl_device;
4428 if (besl > 15)
4429 besl = 15;
4430
4431 return besl;
4432 }
4433
4434 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4435 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4436 {
4437 u32 field;
4438 int l1;
4439 int besld = 0;
4440 int hirdm = 0;
4441
4442 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4443
4444 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4445 l1 = udev->l1_params.timeout / 256;
4446
4447 /* device has preferred BESLD */
4448 if (field & USB_BESL_DEEP_VALID) {
4449 besld = USB_GET_BESL_DEEP(field);
4450 hirdm = 1;
4451 }
4452
4453 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4454 }
4455
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4456 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4457 struct usb_device *udev, int enable)
4458 {
4459 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4460 struct xhci_port **ports;
4461 __le32 __iomem *pm_addr, *hlpm_addr;
4462 u32 pm_val, hlpm_val, field;
4463 unsigned int port_num;
4464 unsigned long flags;
4465 int hird, exit_latency;
4466 int ret;
4467
4468 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4469 return -EPERM;
4470
4471 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4472 !udev->lpm_capable)
4473 return -EPERM;
4474
4475 if (!udev->parent || udev->parent->parent ||
4476 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4477 return -EPERM;
4478
4479 if (udev->usb2_hw_lpm_capable != 1)
4480 return -EPERM;
4481
4482 spin_lock_irqsave(&xhci->lock, flags);
4483
4484 ports = xhci->usb2_rhub.ports;
4485 port_num = udev->portnum - 1;
4486 pm_addr = ports[port_num]->addr + PORTPMSC;
4487 pm_val = readl(pm_addr);
4488 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4489
4490 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4491 enable ? "enable" : "disable", port_num + 1);
4492
4493 if (enable) {
4494 /* Host supports BESL timeout instead of HIRD */
4495 if (udev->usb2_hw_lpm_besl_capable) {
4496 /* if device doesn't have a preferred BESL value use a
4497 * default one which works with mixed HIRD and BESL
4498 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4499 */
4500 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4501 if ((field & USB_BESL_SUPPORT) &&
4502 (field & USB_BESL_BASELINE_VALID))
4503 hird = USB_GET_BESL_BASELINE(field);
4504 else
4505 hird = udev->l1_params.besl;
4506
4507 exit_latency = xhci_besl_encoding[hird];
4508 spin_unlock_irqrestore(&xhci->lock, flags);
4509
4510 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4511 * input context for link powermanagement evaluate
4512 * context commands. It is protected by hcd->bandwidth
4513 * mutex and is shared by all devices. We need to set
4514 * the max ext latency in USB 2 BESL LPM as well, so
4515 * use the same mutex and xhci_change_max_exit_latency()
4516 */
4517 mutex_lock(hcd->bandwidth_mutex);
4518 ret = xhci_change_max_exit_latency(xhci, udev,
4519 exit_latency);
4520 mutex_unlock(hcd->bandwidth_mutex);
4521
4522 if (ret < 0)
4523 return ret;
4524 spin_lock_irqsave(&xhci->lock, flags);
4525
4526 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4527 writel(hlpm_val, hlpm_addr);
4528 /* flush write */
4529 readl(hlpm_addr);
4530 } else {
4531 hird = xhci_calculate_hird_besl(xhci, udev);
4532 }
4533
4534 pm_val &= ~PORT_HIRD_MASK;
4535 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4536 writel(pm_val, pm_addr);
4537 pm_val = readl(pm_addr);
4538 pm_val |= PORT_HLE;
4539 writel(pm_val, pm_addr);
4540 /* flush write */
4541 readl(pm_addr);
4542 } else {
4543 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4544 writel(pm_val, pm_addr);
4545 /* flush write */
4546 readl(pm_addr);
4547 if (udev->usb2_hw_lpm_besl_capable) {
4548 spin_unlock_irqrestore(&xhci->lock, flags);
4549 mutex_lock(hcd->bandwidth_mutex);
4550 xhci_change_max_exit_latency(xhci, udev, 0);
4551 mutex_unlock(hcd->bandwidth_mutex);
4552 readl_poll_timeout(ports[port_num]->addr, pm_val,
4553 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4554 100, 10000);
4555 return 0;
4556 }
4557 }
4558
4559 spin_unlock_irqrestore(&xhci->lock, flags);
4560 return 0;
4561 }
4562
4563 /* check if a usb2 port supports a given extened capability protocol
4564 * only USB2 ports extended protocol capability values are cached.
4565 * Return 1 if capability is supported
4566 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4567 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4568 unsigned capability)
4569 {
4570 u32 port_offset, port_count;
4571 int i;
4572
4573 for (i = 0; i < xhci->num_ext_caps; i++) {
4574 if (xhci->ext_caps[i] & capability) {
4575 /* port offsets starts at 1 */
4576 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4577 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4578 if (port >= port_offset &&
4579 port < port_offset + port_count)
4580 return 1;
4581 }
4582 }
4583 return 0;
4584 }
4585
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4586 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4587 {
4588 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4589 int portnum = udev->portnum - 1;
4590
4591 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4592 return 0;
4593
4594 /* we only support lpm for non-hub device connected to root hub yet */
4595 if (!udev->parent || udev->parent->parent ||
4596 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4597 return 0;
4598
4599 if (xhci->hw_lpm_support == 1 &&
4600 xhci_check_usb2_port_capability(
4601 xhci, portnum, XHCI_HLC)) {
4602 udev->usb2_hw_lpm_capable = 1;
4603 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4604 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4605 if (xhci_check_usb2_port_capability(xhci, portnum,
4606 XHCI_BLC))
4607 udev->usb2_hw_lpm_besl_capable = 1;
4608 }
4609
4610 return 0;
4611 }
4612
4613 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4614
4615 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4616 static unsigned long long xhci_service_interval_to_ns(
4617 struct usb_endpoint_descriptor *desc)
4618 {
4619 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4620 }
4621
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4622 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4623 enum usb3_link_state state)
4624 {
4625 unsigned long long sel;
4626 unsigned long long pel;
4627 unsigned int max_sel_pel;
4628 char *state_name;
4629
4630 switch (state) {
4631 case USB3_LPM_U1:
4632 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4633 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4634 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4635 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4636 state_name = "U1";
4637 break;
4638 case USB3_LPM_U2:
4639 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4640 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4641 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4642 state_name = "U2";
4643 break;
4644 default:
4645 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4646 __func__);
4647 return USB3_LPM_DISABLED;
4648 }
4649
4650 if (sel <= max_sel_pel && pel <= max_sel_pel)
4651 return USB3_LPM_DEVICE_INITIATED;
4652
4653 if (sel > max_sel_pel)
4654 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4655 "due to long SEL %llu ms\n",
4656 state_name, sel);
4657 else
4658 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4659 "due to long PEL %llu ms\n",
4660 state_name, pel);
4661 return USB3_LPM_DISABLED;
4662 }
4663
4664 /* The U1 timeout should be the maximum of the following values:
4665 * - For control endpoints, U1 system exit latency (SEL) * 3
4666 * - For bulk endpoints, U1 SEL * 5
4667 * - For interrupt endpoints:
4668 * - Notification EPs, U1 SEL * 3
4669 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4670 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4671 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4672 static unsigned long long xhci_calculate_intel_u1_timeout(
4673 struct usb_device *udev,
4674 struct usb_endpoint_descriptor *desc)
4675 {
4676 unsigned long long timeout_ns;
4677 int ep_type;
4678 int intr_type;
4679
4680 ep_type = usb_endpoint_type(desc);
4681 switch (ep_type) {
4682 case USB_ENDPOINT_XFER_CONTROL:
4683 timeout_ns = udev->u1_params.sel * 3;
4684 break;
4685 case USB_ENDPOINT_XFER_BULK:
4686 timeout_ns = udev->u1_params.sel * 5;
4687 break;
4688 case USB_ENDPOINT_XFER_INT:
4689 intr_type = usb_endpoint_interrupt_type(desc);
4690 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4691 timeout_ns = udev->u1_params.sel * 3;
4692 break;
4693 }
4694 /* Otherwise the calculation is the same as isoc eps */
4695 fallthrough;
4696 case USB_ENDPOINT_XFER_ISOC:
4697 timeout_ns = xhci_service_interval_to_ns(desc);
4698 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4699 if (timeout_ns < udev->u1_params.sel * 2)
4700 timeout_ns = udev->u1_params.sel * 2;
4701 break;
4702 default:
4703 return 0;
4704 }
4705
4706 return timeout_ns;
4707 }
4708
4709 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4710 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4711 struct usb_device *udev,
4712 struct usb_endpoint_descriptor *desc)
4713 {
4714 unsigned long long timeout_ns;
4715
4716 /* Prevent U1 if service interval is shorter than U1 exit latency */
4717 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4718 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4719 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4720 return USB3_LPM_DISABLED;
4721 }
4722 }
4723
4724 if (xhci->quirks & XHCI_INTEL_HOST)
4725 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4726 else
4727 timeout_ns = udev->u1_params.sel;
4728
4729 /* The U1 timeout is encoded in 1us intervals.
4730 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4731 */
4732 if (timeout_ns == USB3_LPM_DISABLED)
4733 timeout_ns = 1;
4734 else
4735 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4736
4737 /* If the necessary timeout value is bigger than what we can set in the
4738 * USB 3.0 hub, we have to disable hub-initiated U1.
4739 */
4740 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4741 return timeout_ns;
4742 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4743 "due to long timeout %llu ms\n", timeout_ns);
4744 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4745 }
4746
4747 /* The U2 timeout should be the maximum of:
4748 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4749 * - largest bInterval of any active periodic endpoint (to avoid going
4750 * into lower power link states between intervals).
4751 * - the U2 Exit Latency of the device
4752 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4753 static unsigned long long xhci_calculate_intel_u2_timeout(
4754 struct usb_device *udev,
4755 struct usb_endpoint_descriptor *desc)
4756 {
4757 unsigned long long timeout_ns;
4758 unsigned long long u2_del_ns;
4759
4760 timeout_ns = 10 * 1000 * 1000;
4761
4762 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4763 (xhci_service_interval_to_ns(desc) > timeout_ns))
4764 timeout_ns = xhci_service_interval_to_ns(desc);
4765
4766 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4767 if (u2_del_ns > timeout_ns)
4768 timeout_ns = u2_del_ns;
4769
4770 return timeout_ns;
4771 }
4772
4773 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4774 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4775 struct usb_device *udev,
4776 struct usb_endpoint_descriptor *desc)
4777 {
4778 unsigned long long timeout_ns;
4779
4780 /* Prevent U2 if service interval is shorter than U2 exit latency */
4781 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4782 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4783 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4784 return USB3_LPM_DISABLED;
4785 }
4786 }
4787
4788 if (xhci->quirks & XHCI_INTEL_HOST)
4789 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4790 else
4791 timeout_ns = udev->u2_params.sel;
4792
4793 /* The U2 timeout is encoded in 256us intervals */
4794 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4795 /* If the necessary timeout value is bigger than what we can set in the
4796 * USB 3.0 hub, we have to disable hub-initiated U2.
4797 */
4798 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4799 return timeout_ns;
4800 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4801 "due to long timeout %llu ms\n", timeout_ns);
4802 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4803 }
4804
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4805 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4806 struct usb_device *udev,
4807 struct usb_endpoint_descriptor *desc,
4808 enum usb3_link_state state,
4809 u16 *timeout)
4810 {
4811 if (state == USB3_LPM_U1)
4812 return xhci_calculate_u1_timeout(xhci, udev, desc);
4813 else if (state == USB3_LPM_U2)
4814 return xhci_calculate_u2_timeout(xhci, udev, desc);
4815
4816 return USB3_LPM_DISABLED;
4817 }
4818
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4819 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4820 struct usb_device *udev,
4821 struct usb_endpoint_descriptor *desc,
4822 enum usb3_link_state state,
4823 u16 *timeout)
4824 {
4825 u16 alt_timeout;
4826
4827 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4828 desc, state, timeout);
4829
4830 /* If we found we can't enable hub-initiated LPM, and
4831 * the U1 or U2 exit latency was too high to allow
4832 * device-initiated LPM as well, then we will disable LPM
4833 * for this device, so stop searching any further.
4834 */
4835 if (alt_timeout == USB3_LPM_DISABLED) {
4836 *timeout = alt_timeout;
4837 return -E2BIG;
4838 }
4839 if (alt_timeout > *timeout)
4840 *timeout = alt_timeout;
4841 return 0;
4842 }
4843
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4844 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4845 struct usb_device *udev,
4846 struct usb_host_interface *alt,
4847 enum usb3_link_state state,
4848 u16 *timeout)
4849 {
4850 int j;
4851
4852 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4853 if (xhci_update_timeout_for_endpoint(xhci, udev,
4854 &alt->endpoint[j].desc, state, timeout))
4855 return -E2BIG;
4856 }
4857 return 0;
4858 }
4859
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4860 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4861 enum usb3_link_state state)
4862 {
4863 struct usb_device *parent;
4864 unsigned int num_hubs;
4865
4866 if (state == USB3_LPM_U2)
4867 return 0;
4868
4869 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4870 for (parent = udev->parent, num_hubs = 0; parent->parent;
4871 parent = parent->parent)
4872 num_hubs++;
4873
4874 if (num_hubs < 2)
4875 return 0;
4876
4877 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4878 " below second-tier hub.\n");
4879 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4880 "to decrease power consumption.\n");
4881 return -E2BIG;
4882 }
4883
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4884 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4885 struct usb_device *udev,
4886 enum usb3_link_state state)
4887 {
4888 if (xhci->quirks & XHCI_INTEL_HOST)
4889 return xhci_check_intel_tier_policy(udev, state);
4890 else
4891 return 0;
4892 }
4893
4894 /* Returns the U1 or U2 timeout that should be enabled.
4895 * If the tier check or timeout setting functions return with a non-zero exit
4896 * code, that means the timeout value has been finalized and we shouldn't look
4897 * at any more endpoints.
4898 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4899 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4900 struct usb_device *udev, enum usb3_link_state state)
4901 {
4902 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4903 struct usb_host_config *config;
4904 char *state_name;
4905 int i;
4906 u16 timeout = USB3_LPM_DISABLED;
4907
4908 if (state == USB3_LPM_U1)
4909 state_name = "U1";
4910 else if (state == USB3_LPM_U2)
4911 state_name = "U2";
4912 else {
4913 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4914 state);
4915 return timeout;
4916 }
4917
4918 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4919 return timeout;
4920
4921 /* Gather some information about the currently installed configuration
4922 * and alternate interface settings.
4923 */
4924 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4925 state, &timeout))
4926 return timeout;
4927
4928 config = udev->actconfig;
4929 if (!config)
4930 return timeout;
4931
4932 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4933 struct usb_driver *driver;
4934 struct usb_interface *intf = config->interface[i];
4935
4936 if (!intf)
4937 continue;
4938
4939 /* Check if any currently bound drivers want hub-initiated LPM
4940 * disabled.
4941 */
4942 if (intf->dev.driver) {
4943 driver = to_usb_driver(intf->dev.driver);
4944 if (driver && driver->disable_hub_initiated_lpm) {
4945 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4946 state_name, driver->name);
4947 timeout = xhci_get_timeout_no_hub_lpm(udev,
4948 state);
4949 if (timeout == USB3_LPM_DISABLED)
4950 return timeout;
4951 }
4952 }
4953
4954 /* Not sure how this could happen... */
4955 if (!intf->cur_altsetting)
4956 continue;
4957
4958 if (xhci_update_timeout_for_interface(xhci, udev,
4959 intf->cur_altsetting,
4960 state, &timeout))
4961 return timeout;
4962 }
4963 return timeout;
4964 }
4965
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4966 static int calculate_max_exit_latency(struct usb_device *udev,
4967 enum usb3_link_state state_changed,
4968 u16 hub_encoded_timeout)
4969 {
4970 unsigned long long u1_mel_us = 0;
4971 unsigned long long u2_mel_us = 0;
4972 unsigned long long mel_us = 0;
4973 bool disabling_u1;
4974 bool disabling_u2;
4975 bool enabling_u1;
4976 bool enabling_u2;
4977
4978 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4979 hub_encoded_timeout == USB3_LPM_DISABLED);
4980 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4981 hub_encoded_timeout == USB3_LPM_DISABLED);
4982
4983 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4984 hub_encoded_timeout != USB3_LPM_DISABLED);
4985 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4986 hub_encoded_timeout != USB3_LPM_DISABLED);
4987
4988 /* If U1 was already enabled and we're not disabling it,
4989 * or we're going to enable U1, account for the U1 max exit latency.
4990 */
4991 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4992 enabling_u1)
4993 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4994 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4995 enabling_u2)
4996 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4997
4998 if (u1_mel_us > u2_mel_us)
4999 mel_us = u1_mel_us;
5000 else
5001 mel_us = u2_mel_us;
5002 /* xHCI host controller max exit latency field is only 16 bits wide. */
5003 if (mel_us > MAX_EXIT) {
5004 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5005 "is too big.\n", mel_us);
5006 return -E2BIG;
5007 }
5008 return mel_us;
5009 }
5010
5011 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5012 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5013 struct usb_device *udev, enum usb3_link_state state)
5014 {
5015 struct xhci_hcd *xhci;
5016 u16 hub_encoded_timeout;
5017 int mel;
5018 int ret;
5019
5020 xhci = hcd_to_xhci(hcd);
5021 /* The LPM timeout values are pretty host-controller specific, so don't
5022 * enable hub-initiated timeouts unless the vendor has provided
5023 * information about their timeout algorithm.
5024 */
5025 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5026 !xhci->devs[udev->slot_id])
5027 return USB3_LPM_DISABLED;
5028
5029 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5030 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5031 if (mel < 0) {
5032 /* Max Exit Latency is too big, disable LPM. */
5033 hub_encoded_timeout = USB3_LPM_DISABLED;
5034 mel = 0;
5035 }
5036
5037 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5038 if (ret)
5039 return ret;
5040 return hub_encoded_timeout;
5041 }
5042
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5043 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5044 struct usb_device *udev, enum usb3_link_state state)
5045 {
5046 struct xhci_hcd *xhci;
5047 u16 mel;
5048
5049 xhci = hcd_to_xhci(hcd);
5050 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5051 !xhci->devs[udev->slot_id])
5052 return 0;
5053
5054 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5055 return xhci_change_max_exit_latency(xhci, udev, mel);
5056 }
5057 #else /* CONFIG_PM */
5058
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5059 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5060 struct usb_device *udev, int enable)
5061 {
5062 return 0;
5063 }
5064
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5065 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5066 {
5067 return 0;
5068 }
5069
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5070 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5071 struct usb_device *udev, enum usb3_link_state state)
5072 {
5073 return USB3_LPM_DISABLED;
5074 }
5075
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5076 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5077 struct usb_device *udev, enum usb3_link_state state)
5078 {
5079 return 0;
5080 }
5081 #endif /* CONFIG_PM */
5082
5083 /*-------------------------------------------------------------------------*/
5084
5085 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5086 * internal data structures for the device.
5087 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5088 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5089 struct usb_tt *tt, gfp_t mem_flags)
5090 {
5091 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5092 struct xhci_virt_device *vdev;
5093 struct xhci_command *config_cmd;
5094 struct xhci_input_control_ctx *ctrl_ctx;
5095 struct xhci_slot_ctx *slot_ctx;
5096 unsigned long flags;
5097 unsigned think_time;
5098 int ret;
5099
5100 /* Ignore root hubs */
5101 if (!hdev->parent)
5102 return 0;
5103
5104 vdev = xhci->devs[hdev->slot_id];
5105 if (!vdev) {
5106 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5107 return -EINVAL;
5108 }
5109
5110 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5111 if (!config_cmd)
5112 return -ENOMEM;
5113
5114 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5115 if (!ctrl_ctx) {
5116 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5117 __func__);
5118 xhci_free_command(xhci, config_cmd);
5119 return -ENOMEM;
5120 }
5121
5122 spin_lock_irqsave(&xhci->lock, flags);
5123 if (hdev->speed == USB_SPEED_HIGH &&
5124 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5125 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5126 xhci_free_command(xhci, config_cmd);
5127 spin_unlock_irqrestore(&xhci->lock, flags);
5128 return -ENOMEM;
5129 }
5130
5131 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5132 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5133 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5134 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5135 /*
5136 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5137 * but it may be already set to 1 when setup an xHCI virtual
5138 * device, so clear it anyway.
5139 */
5140 if (tt->multi)
5141 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5142 else if (hdev->speed == USB_SPEED_FULL)
5143 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5144
5145 if (xhci->hci_version > 0x95) {
5146 xhci_dbg(xhci, "xHCI version %x needs hub "
5147 "TT think time and number of ports\n",
5148 (unsigned int) xhci->hci_version);
5149 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5150 /* Set TT think time - convert from ns to FS bit times.
5151 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5152 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5153 *
5154 * xHCI 1.0: this field shall be 0 if the device is not a
5155 * High-spped hub.
5156 */
5157 think_time = tt->think_time;
5158 if (think_time != 0)
5159 think_time = (think_time / 666) - 1;
5160 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5161 slot_ctx->tt_info |=
5162 cpu_to_le32(TT_THINK_TIME(think_time));
5163 } else {
5164 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5165 "TT think time or number of ports\n",
5166 (unsigned int) xhci->hci_version);
5167 }
5168 slot_ctx->dev_state = 0;
5169 spin_unlock_irqrestore(&xhci->lock, flags);
5170
5171 xhci_dbg(xhci, "Set up %s for hub device.\n",
5172 (xhci->hci_version > 0x95) ?
5173 "configure endpoint" : "evaluate context");
5174
5175 /* Issue and wait for the configure endpoint or
5176 * evaluate context command.
5177 */
5178 if (xhci->hci_version > 0x95)
5179 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5180 false, false);
5181 else
5182 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5183 true, false);
5184
5185 xhci_free_command(xhci, config_cmd);
5186 return ret;
5187 }
5188
xhci_get_frame(struct usb_hcd * hcd)5189 static int xhci_get_frame(struct usb_hcd *hcd)
5190 {
5191 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5192 /* EHCI mods by the periodic size. Why? */
5193 return readl(&xhci->run_regs->microframe_index) >> 3;
5194 }
5195
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5196 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5197 {
5198 struct xhci_hcd *xhci;
5199 /*
5200 * TODO: Check with DWC3 clients for sysdev according to
5201 * quirks
5202 */
5203 struct device *dev = hcd->self.sysdev;
5204 unsigned int minor_rev;
5205 int retval;
5206
5207 /* Accept arbitrarily long scatter-gather lists */
5208 hcd->self.sg_tablesize = ~0;
5209
5210 /* support to build packet from discontinuous buffers */
5211 hcd->self.no_sg_constraint = 1;
5212
5213 /* XHCI controllers don't stop the ep queue on short packets :| */
5214 hcd->self.no_stop_on_short = 1;
5215
5216 xhci = hcd_to_xhci(hcd);
5217
5218 if (usb_hcd_is_primary_hcd(hcd)) {
5219 xhci->main_hcd = hcd;
5220 xhci->usb2_rhub.hcd = hcd;
5221 /* Mark the first roothub as being USB 2.0.
5222 * The xHCI driver will register the USB 3.0 roothub.
5223 */
5224 hcd->speed = HCD_USB2;
5225 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5226 /*
5227 * USB 2.0 roothub under xHCI has an integrated TT,
5228 * (rate matching hub) as opposed to having an OHCI/UHCI
5229 * companion controller.
5230 */
5231 hcd->has_tt = 1;
5232 } else {
5233 /*
5234 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5235 * should return 0x31 for sbrn, or that the minor revision
5236 * is a two digit BCD containig minor and sub-minor numbers.
5237 * This was later clarified in xHCI 1.2.
5238 *
5239 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5240 * minor revision set to 0x1 instead of 0x10.
5241 */
5242 if (xhci->usb3_rhub.min_rev == 0x1)
5243 minor_rev = 1;
5244 else
5245 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5246
5247 switch (minor_rev) {
5248 case 2:
5249 hcd->speed = HCD_USB32;
5250 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5251 hcd->self.root_hub->rx_lanes = 2;
5252 hcd->self.root_hub->tx_lanes = 2;
5253 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5254 break;
5255 case 1:
5256 hcd->speed = HCD_USB31;
5257 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5258 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5259 break;
5260 }
5261 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5262 minor_rev,
5263 minor_rev ? "Enhanced " : "");
5264
5265 xhci->usb3_rhub.hcd = hcd;
5266 /* xHCI private pointer was set in xhci_pci_probe for the second
5267 * registered roothub.
5268 */
5269 return 0;
5270 }
5271
5272 mutex_init(&xhci->mutex);
5273 xhci->cap_regs = hcd->regs;
5274 xhci->op_regs = hcd->regs +
5275 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5276 xhci->run_regs = hcd->regs +
5277 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5278 /* Cache read-only capability registers */
5279 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5280 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5281 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5282 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5283 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5284 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5285 if (xhci->hci_version > 0x100)
5286 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5287
5288 xhci->quirks |= quirks;
5289
5290 get_quirks(dev, xhci);
5291
5292 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5293 * success event after a short transfer. This quirk will ignore such
5294 * spurious event.
5295 */
5296 if (xhci->hci_version > 0x96)
5297 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5298
5299 /* Make sure the HC is halted. */
5300 retval = xhci_halt(xhci);
5301 if (retval)
5302 return retval;
5303
5304 xhci_zero_64b_regs(xhci);
5305
5306 xhci_dbg(xhci, "Resetting HCD\n");
5307 /* Reset the internal HC memory state and registers. */
5308 retval = xhci_reset(xhci);
5309 if (retval)
5310 return retval;
5311 xhci_dbg(xhci, "Reset complete\n");
5312
5313 /*
5314 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5315 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5316 * address memory pointers actually. So, this driver clears the AC64
5317 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5318 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5319 */
5320 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5321 xhci->hcc_params &= ~BIT(0);
5322
5323 /* Set dma_mask and coherent_dma_mask to 64-bits,
5324 * if xHC supports 64-bit addressing */
5325 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5326 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5327 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5328 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5329 } else {
5330 /*
5331 * This is to avoid error in cases where a 32-bit USB
5332 * controller is used on a 64-bit capable system.
5333 */
5334 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5335 if (retval)
5336 return retval;
5337 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5338 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5339 }
5340
5341 xhci_dbg(xhci, "Calling HCD init\n");
5342 /* Initialize HCD and host controller data structures. */
5343 retval = xhci_init(hcd);
5344 if (retval)
5345 return retval;
5346 xhci_dbg(xhci, "Called HCD init\n");
5347
5348 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5349 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5350
5351 return 0;
5352 }
5353 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5354
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5355 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5356 struct usb_host_endpoint *ep)
5357 {
5358 struct xhci_hcd *xhci;
5359 struct usb_device *udev;
5360 unsigned int slot_id;
5361 unsigned int ep_index;
5362 unsigned long flags;
5363
5364 xhci = hcd_to_xhci(hcd);
5365
5366 spin_lock_irqsave(&xhci->lock, flags);
5367 udev = (struct usb_device *)ep->hcpriv;
5368 slot_id = udev->slot_id;
5369 ep_index = xhci_get_endpoint_index(&ep->desc);
5370
5371 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5372 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5373 spin_unlock_irqrestore(&xhci->lock, flags);
5374 }
5375
5376 static const struct hc_driver xhci_hc_driver = {
5377 .description = "xhci-hcd",
5378 .product_desc = "xHCI Host Controller",
5379 .hcd_priv_size = sizeof(struct xhci_hcd),
5380
5381 /*
5382 * generic hardware linkage
5383 */
5384 .irq = xhci_irq,
5385 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5386 HCD_BH,
5387
5388 /*
5389 * basic lifecycle operations
5390 */
5391 .reset = NULL, /* set in xhci_init_driver() */
5392 .start = xhci_run,
5393 .stop = xhci_stop,
5394 .shutdown = xhci_shutdown,
5395
5396 /*
5397 * managing i/o requests and associated device resources
5398 */
5399 .map_urb_for_dma = xhci_map_urb_for_dma,
5400 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5401 .urb_enqueue = xhci_urb_enqueue,
5402 .urb_dequeue = xhci_urb_dequeue,
5403 .alloc_dev = xhci_alloc_dev,
5404 .free_dev = xhci_free_dev,
5405 .alloc_streams = xhci_alloc_streams,
5406 .free_streams = xhci_free_streams,
5407 .add_endpoint = xhci_add_endpoint,
5408 .drop_endpoint = xhci_drop_endpoint,
5409 .endpoint_disable = xhci_endpoint_disable,
5410 .endpoint_reset = xhci_endpoint_reset,
5411 .check_bandwidth = xhci_check_bandwidth,
5412 .reset_bandwidth = xhci_reset_bandwidth,
5413 .address_device = xhci_address_device,
5414 .enable_device = xhci_enable_device,
5415 .update_hub_device = xhci_update_hub_device,
5416 .reset_device = xhci_discover_or_reset_device,
5417
5418 /*
5419 * scheduling support
5420 */
5421 .get_frame_number = xhci_get_frame,
5422
5423 /*
5424 * root hub support
5425 */
5426 .hub_control = xhci_hub_control,
5427 .hub_status_data = xhci_hub_status_data,
5428 .bus_suspend = xhci_bus_suspend,
5429 .bus_resume = xhci_bus_resume,
5430 .get_resuming_ports = xhci_get_resuming_ports,
5431
5432 /*
5433 * call back when device connected and addressed
5434 */
5435 .update_device = xhci_update_device,
5436 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5437 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5438 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5439 .find_raw_port_number = xhci_find_raw_port_number,
5440 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5441 };
5442
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5443 void xhci_init_driver(struct hc_driver *drv,
5444 const struct xhci_driver_overrides *over)
5445 {
5446 BUG_ON(!over);
5447
5448 /* Copy the generic table to drv then apply the overrides */
5449 *drv = xhci_hc_driver;
5450
5451 if (over) {
5452 drv->hcd_priv_size += over->extra_priv_size;
5453 if (over->reset)
5454 drv->reset = over->reset;
5455 if (over->start)
5456 drv->start = over->start;
5457 if (over->add_endpoint)
5458 drv->add_endpoint = over->add_endpoint;
5459 if (over->drop_endpoint)
5460 drv->drop_endpoint = over->drop_endpoint;
5461 if (over->check_bandwidth)
5462 drv->check_bandwidth = over->check_bandwidth;
5463 if (over->reset_bandwidth)
5464 drv->reset_bandwidth = over->reset_bandwidth;
5465 }
5466 }
5467 EXPORT_SYMBOL_GPL(xhci_init_driver);
5468
5469 MODULE_DESCRIPTION(DRIVER_DESC);
5470 MODULE_AUTHOR(DRIVER_AUTHOR);
5471 MODULE_LICENSE("GPL");
5472
xhci_hcd_init(void)5473 static int __init xhci_hcd_init(void)
5474 {
5475 /*
5476 * Check the compiler generated sizes of structures that must be laid
5477 * out in specific ways for hardware access.
5478 */
5479 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5480 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5481 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5482 /* xhci_device_control has eight fields, and also
5483 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5484 */
5485 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5486 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5487 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5488 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5489 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5490 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5491 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5492
5493 if (usb_disabled())
5494 return -ENODEV;
5495
5496 xhci_debugfs_create_root();
5497
5498 return 0;
5499 }
5500
5501 /*
5502 * If an init function is provided, an exit function must also be provided
5503 * to allow module unload.
5504 */
xhci_hcd_fini(void)5505 static void __exit xhci_hcd_fini(void)
5506 {
5507 xhci_debugfs_remove_root();
5508 }
5509
5510 module_init(xhci_hcd_init);
5511 module_exit(xhci_hcd_fini);
5512