1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - PACK_STACK
11 * - 64BIT
12 *
13 * Copyright IBM Corp. 2012,2015
14 *
15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
17 */
18
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <linux/mm.h>
27 #include <linux/kernel.h>
28 #include <asm/cacheflush.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include "bpf_jit.h"
34
35 struct bpf_jit {
36 u32 seen; /* Flags to remember seen eBPF instructions */
37 u32 seen_reg[16]; /* Array to remember which registers are used */
38 u32 *addrs; /* Array with relative instruction addresses */
39 u8 *prg_buf; /* Start of program */
40 int size; /* Size of program and literal pool */
41 int size_prg; /* Size of program */
42 int prg; /* Current position in program */
43 int lit32_start; /* Start of 32-bit literal pool */
44 int lit32; /* Current position in 32-bit literal pool */
45 int lit64_start; /* Start of 64-bit literal pool */
46 int lit64; /* Current position in 64-bit literal pool */
47 int base_ip; /* Base address for literal pool */
48 int exit_ip; /* Address of exit */
49 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
50 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
51 int tail_call_start; /* Tail call start offset */
52 int excnt; /* Number of exception table entries */
53 };
54
55 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
56 #define SEEN_LITERAL BIT(1) /* code uses literals */
57 #define SEEN_FUNC BIT(2) /* calls C functions */
58 #define SEEN_TAIL_CALL BIT(3) /* code uses tail calls */
59 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
60
61 /*
62 * s390 registers
63 */
64 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
65 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
66 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
67 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
68 #define REG_0 REG_W0 /* Register 0 */
69 #define REG_1 REG_W1 /* Register 1 */
70 #define REG_2 BPF_REG_1 /* Register 2 */
71 #define REG_14 BPF_REG_0 /* Register 14 */
72
73 /*
74 * Mapping of BPF registers to s390 registers
75 */
76 static const int reg2hex[] = {
77 /* Return code */
78 [BPF_REG_0] = 14,
79 /* Function parameters */
80 [BPF_REG_1] = 2,
81 [BPF_REG_2] = 3,
82 [BPF_REG_3] = 4,
83 [BPF_REG_4] = 5,
84 [BPF_REG_5] = 6,
85 /* Call saved registers */
86 [BPF_REG_6] = 7,
87 [BPF_REG_7] = 8,
88 [BPF_REG_8] = 9,
89 [BPF_REG_9] = 10,
90 /* BPF stack pointer */
91 [BPF_REG_FP] = 13,
92 /* Register for blinding */
93 [BPF_REG_AX] = 12,
94 /* Work registers for s390x backend */
95 [REG_W0] = 0,
96 [REG_W1] = 1,
97 [REG_L] = 11,
98 [REG_15] = 15,
99 };
100
reg(u32 dst_reg,u32 src_reg)101 static inline u32 reg(u32 dst_reg, u32 src_reg)
102 {
103 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104 }
105
reg_high(u32 reg)106 static inline u32 reg_high(u32 reg)
107 {
108 return reg2hex[reg] << 4;
109 }
110
reg_set_seen(struct bpf_jit * jit,u32 b1)111 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112 {
113 u32 r1 = reg2hex[b1];
114
115 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
116 jit->seen_reg[r1] = 1;
117 }
118
119 #define REG_SET_SEEN(b1) \
120 ({ \
121 reg_set_seen(jit, b1); \
122 })
123
124 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125
126 /*
127 * EMIT macros for code generation
128 */
129
130 #define _EMIT2(op) \
131 ({ \
132 if (jit->prg_buf) \
133 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
134 jit->prg += 2; \
135 })
136
137 #define EMIT2(op, b1, b2) \
138 ({ \
139 _EMIT2((op) | reg(b1, b2)); \
140 REG_SET_SEEN(b1); \
141 REG_SET_SEEN(b2); \
142 })
143
144 #define _EMIT4(op) \
145 ({ \
146 if (jit->prg_buf) \
147 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
148 jit->prg += 4; \
149 })
150
151 #define EMIT4(op, b1, b2) \
152 ({ \
153 _EMIT4((op) | reg(b1, b2)); \
154 REG_SET_SEEN(b1); \
155 REG_SET_SEEN(b2); \
156 })
157
158 #define EMIT4_RRF(op, b1, b2, b3) \
159 ({ \
160 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
161 REG_SET_SEEN(b1); \
162 REG_SET_SEEN(b2); \
163 REG_SET_SEEN(b3); \
164 })
165
166 #define _EMIT4_DISP(op, disp) \
167 ({ \
168 unsigned int __disp = (disp) & 0xfff; \
169 _EMIT4((op) | __disp); \
170 })
171
172 #define EMIT4_DISP(op, b1, b2, disp) \
173 ({ \
174 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
175 reg_high(b2) << 8, (disp)); \
176 REG_SET_SEEN(b1); \
177 REG_SET_SEEN(b2); \
178 })
179
180 #define EMIT4_IMM(op, b1, imm) \
181 ({ \
182 unsigned int __imm = (imm) & 0xffff; \
183 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
184 REG_SET_SEEN(b1); \
185 })
186
187 #define EMIT4_PCREL(op, pcrel) \
188 ({ \
189 long __pcrel = ((pcrel) >> 1) & 0xffff; \
190 _EMIT4((op) | __pcrel); \
191 })
192
193 #define EMIT4_PCREL_RIC(op, mask, target) \
194 ({ \
195 int __rel = ((target) - jit->prg) / 2; \
196 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
197 })
198
199 #define _EMIT6(op1, op2) \
200 ({ \
201 if (jit->prg_buf) { \
202 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
203 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
204 } \
205 jit->prg += 6; \
206 })
207
208 #define _EMIT6_DISP(op1, op2, disp) \
209 ({ \
210 unsigned int __disp = (disp) & 0xfff; \
211 _EMIT6((op1) | __disp, op2); \
212 })
213
214 #define _EMIT6_DISP_LH(op1, op2, disp) \
215 ({ \
216 u32 _disp = (u32) (disp); \
217 unsigned int __disp_h = _disp & 0xff000; \
218 unsigned int __disp_l = _disp & 0x00fff; \
219 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
220 })
221
222 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
223 ({ \
224 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
225 reg_high(b3) << 8, op2, disp); \
226 REG_SET_SEEN(b1); \
227 REG_SET_SEEN(b2); \
228 REG_SET_SEEN(b3); \
229 })
230
231 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
232 ({ \
233 unsigned int rel = (int)((target) - jit->prg) / 2; \
234 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
235 (op2) | (mask) << 12); \
236 REG_SET_SEEN(b1); \
237 REG_SET_SEEN(b2); \
238 })
239
240 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
241 ({ \
242 unsigned int rel = (int)((target) - jit->prg) / 2; \
243 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
244 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
245 REG_SET_SEEN(b1); \
246 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
247 })
248
249 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
250 ({ \
251 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
252 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
253 REG_SET_SEEN(b1); \
254 REG_SET_SEEN(b2); \
255 })
256
257 #define EMIT6_PCREL_RILB(op, b, target) \
258 ({ \
259 unsigned int rel = (int)((target) - jit->prg) / 2; \
260 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
261 REG_SET_SEEN(b); \
262 })
263
264 #define EMIT6_PCREL_RIL(op, target) \
265 ({ \
266 unsigned int rel = (int)((target) - jit->prg) / 2; \
267 _EMIT6((op) | rel >> 16, rel & 0xffff); \
268 })
269
270 #define EMIT6_PCREL_RILC(op, mask, target) \
271 ({ \
272 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
273 })
274
275 #define _EMIT6_IMM(op, imm) \
276 ({ \
277 unsigned int __imm = (imm); \
278 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
279 })
280
281 #define EMIT6_IMM(op, b1, imm) \
282 ({ \
283 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
284 REG_SET_SEEN(b1); \
285 })
286
287 #define _EMIT_CONST_U32(val) \
288 ({ \
289 unsigned int ret; \
290 ret = jit->lit32; \
291 if (jit->prg_buf) \
292 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
293 jit->lit32 += 4; \
294 ret; \
295 })
296
297 #define EMIT_CONST_U32(val) \
298 ({ \
299 jit->seen |= SEEN_LITERAL; \
300 _EMIT_CONST_U32(val) - jit->base_ip; \
301 })
302
303 #define _EMIT_CONST_U64(val) \
304 ({ \
305 unsigned int ret; \
306 ret = jit->lit64; \
307 if (jit->prg_buf) \
308 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
309 jit->lit64 += 8; \
310 ret; \
311 })
312
313 #define EMIT_CONST_U64(val) \
314 ({ \
315 jit->seen |= SEEN_LITERAL; \
316 _EMIT_CONST_U64(val) - jit->base_ip; \
317 })
318
319 #define EMIT_ZERO(b1) \
320 ({ \
321 if (!fp->aux->verifier_zext) { \
322 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
323 EMIT4(0xb9160000, b1, b1); \
324 REG_SET_SEEN(b1); \
325 } \
326 })
327
328 /*
329 * Return whether this is the first pass. The first pass is special, since we
330 * don't know any sizes yet, and thus must be conservative.
331 */
is_first_pass(struct bpf_jit * jit)332 static bool is_first_pass(struct bpf_jit *jit)
333 {
334 return jit->size == 0;
335 }
336
337 /*
338 * Return whether this is the code generation pass. The code generation pass is
339 * special, since we should change as little as possible.
340 */
is_codegen_pass(struct bpf_jit * jit)341 static bool is_codegen_pass(struct bpf_jit *jit)
342 {
343 return jit->prg_buf;
344 }
345
346 /*
347 * Return whether "rel" can be encoded as a short PC-relative offset
348 */
is_valid_rel(int rel)349 static bool is_valid_rel(int rel)
350 {
351 return rel >= -65536 && rel <= 65534;
352 }
353
354 /*
355 * Return whether "off" can be reached using a short PC-relative offset
356 */
can_use_rel(struct bpf_jit * jit,int off)357 static bool can_use_rel(struct bpf_jit *jit, int off)
358 {
359 return is_valid_rel(off - jit->prg);
360 }
361
362 /*
363 * Return whether given displacement can be encoded using
364 * Long-Displacement Facility
365 */
is_valid_ldisp(int disp)366 static bool is_valid_ldisp(int disp)
367 {
368 return disp >= -524288 && disp <= 524287;
369 }
370
371 /*
372 * Return whether the next 32-bit literal pool entry can be referenced using
373 * Long-Displacement Facility
374 */
can_use_ldisp_for_lit32(struct bpf_jit * jit)375 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
376 {
377 return is_valid_ldisp(jit->lit32 - jit->base_ip);
378 }
379
380 /*
381 * Return whether the next 64-bit literal pool entry can be referenced using
382 * Long-Displacement Facility
383 */
can_use_ldisp_for_lit64(struct bpf_jit * jit)384 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
385 {
386 return is_valid_ldisp(jit->lit64 - jit->base_ip);
387 }
388
389 /*
390 * Fill whole space with illegal instructions
391 */
jit_fill_hole(void * area,unsigned int size)392 static void jit_fill_hole(void *area, unsigned int size)
393 {
394 memset(area, 0, size);
395 }
396
397 /*
398 * Save registers from "rs" (register start) to "re" (register end) on stack
399 */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)400 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
401 {
402 u32 off = STK_OFF_R6 + (rs - 6) * 8;
403
404 if (rs == re)
405 /* stg %rs,off(%r15) */
406 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
407 else
408 /* stmg %rs,%re,off(%r15) */
409 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
410 }
411
412 /*
413 * Restore registers from "rs" (register start) to "re" (register end) on stack
414 */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)415 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
416 {
417 u32 off = STK_OFF_R6 + (rs - 6) * 8;
418
419 if (jit->seen & SEEN_STACK)
420 off += STK_OFF + stack_depth;
421
422 if (rs == re)
423 /* lg %rs,off(%r15) */
424 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
425 else
426 /* lmg %rs,%re,off(%r15) */
427 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
428 }
429
430 /*
431 * Return first seen register (from start)
432 */
get_start(struct bpf_jit * jit,int start)433 static int get_start(struct bpf_jit *jit, int start)
434 {
435 int i;
436
437 for (i = start; i <= 15; i++) {
438 if (jit->seen_reg[i])
439 return i;
440 }
441 return 0;
442 }
443
444 /*
445 * Return last seen register (from start) (gap >= 2)
446 */
get_end(struct bpf_jit * jit,int start)447 static int get_end(struct bpf_jit *jit, int start)
448 {
449 int i;
450
451 for (i = start; i < 15; i++) {
452 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
453 return i - 1;
454 }
455 return jit->seen_reg[15] ? 15 : 14;
456 }
457
458 #define REGS_SAVE 1
459 #define REGS_RESTORE 0
460 /*
461 * Save and restore clobbered registers (6-15) on stack.
462 * We save/restore registers in chunks with gap >= 2 registers.
463 */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)464 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
465 {
466 const int last = 15, save_restore_size = 6;
467 int re = 6, rs;
468
469 if (is_first_pass(jit)) {
470 /*
471 * We don't know yet which registers are used. Reserve space
472 * conservatively.
473 */
474 jit->prg += (last - re + 1) * save_restore_size;
475 return;
476 }
477
478 do {
479 rs = get_start(jit, re);
480 if (!rs)
481 break;
482 re = get_end(jit, rs + 1);
483 if (op == REGS_SAVE)
484 save_regs(jit, rs, re);
485 else
486 restore_regs(jit, rs, re, stack_depth);
487 re++;
488 } while (re <= last);
489 }
490
bpf_skip(struct bpf_jit * jit,int size)491 static void bpf_skip(struct bpf_jit *jit, int size)
492 {
493 if (size >= 6 && !is_valid_rel(size)) {
494 /* brcl 0xf,size */
495 EMIT6_PCREL_RIL(0xc0f4000000, size);
496 size -= 6;
497 } else if (size >= 4 && is_valid_rel(size)) {
498 /* brc 0xf,size */
499 EMIT4_PCREL(0xa7f40000, size);
500 size -= 4;
501 }
502 while (size >= 2) {
503 /* bcr 0,%0 */
504 _EMIT2(0x0700);
505 size -= 2;
506 }
507 }
508
509 /*
510 * Emit function prologue
511 *
512 * Save registers and create stack frame if necessary.
513 * See stack frame layout desription in "bpf_jit.h"!
514 */
bpf_jit_prologue(struct bpf_jit * jit,u32 stack_depth)515 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
516 {
517 if (jit->seen & SEEN_TAIL_CALL) {
518 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
519 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
520 } else {
521 /*
522 * There are no tail calls. Insert nops in order to have
523 * tail_call_start at a predictable offset.
524 */
525 bpf_skip(jit, 6);
526 }
527 /* Tail calls have to skip above initialization */
528 jit->tail_call_start = jit->prg;
529 /* Save registers */
530 save_restore_regs(jit, REGS_SAVE, stack_depth);
531 /* Setup literal pool */
532 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
533 if (!is_first_pass(jit) &&
534 is_valid_ldisp(jit->size - (jit->prg + 2))) {
535 /* basr %l,0 */
536 EMIT2(0x0d00, REG_L, REG_0);
537 jit->base_ip = jit->prg;
538 } else {
539 /* larl %l,lit32_start */
540 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
541 jit->base_ip = jit->lit32_start;
542 }
543 }
544 /* Setup stack and backchain */
545 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
546 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
547 /* lgr %w1,%r15 (backchain) */
548 EMIT4(0xb9040000, REG_W1, REG_15);
549 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
550 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
551 /* aghi %r15,-STK_OFF */
552 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
553 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
554 /* stg %w1,152(%r15) (backchain) */
555 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
556 REG_15, 152);
557 }
558 }
559
560 /*
561 * Function epilogue
562 */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)563 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
564 {
565 jit->exit_ip = jit->prg;
566 /* Load exit code: lgr %r2,%b0 */
567 EMIT4(0xb9040000, REG_2, BPF_REG_0);
568 /* Restore registers */
569 save_restore_regs(jit, REGS_RESTORE, stack_depth);
570 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
571 jit->r14_thunk_ip = jit->prg;
572 /* Generate __s390_indirect_jump_r14 thunk */
573 if (test_facility(35)) {
574 /* exrl %r0,.+10 */
575 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
576 } else {
577 /* larl %r1,.+14 */
578 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
579 /* ex 0,0(%r1) */
580 EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
581 }
582 /* j . */
583 EMIT4_PCREL(0xa7f40000, 0);
584 }
585 /* br %r14 */
586 _EMIT2(0x07fe);
587
588 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
589 (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
590 jit->r1_thunk_ip = jit->prg;
591 /* Generate __s390_indirect_jump_r1 thunk */
592 if (test_facility(35)) {
593 /* exrl %r0,.+10 */
594 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
595 /* j . */
596 EMIT4_PCREL(0xa7f40000, 0);
597 /* br %r1 */
598 _EMIT2(0x07f1);
599 } else {
600 /* ex 0,S390_lowcore.br_r1_tampoline */
601 EMIT4_DISP(0x44000000, REG_0, REG_0,
602 offsetof(struct lowcore, br_r1_trampoline));
603 /* j . */
604 EMIT4_PCREL(0xa7f40000, 0);
605 }
606 }
607 }
608
get_probe_mem_regno(const u8 * insn)609 static int get_probe_mem_regno(const u8 *insn)
610 {
611 /*
612 * insn must point to llgc, llgh, llgf or lg, which have destination
613 * register at the same position.
614 */
615 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
616 return -1;
617 if (insn[5] != 0x90 && /* llgc */
618 insn[5] != 0x91 && /* llgh */
619 insn[5] != 0x16 && /* llgf */
620 insn[5] != 0x04) /* lg */
621 return -1;
622 return insn[1] >> 4;
623 }
624
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)625 static bool ex_handler_bpf(const struct exception_table_entry *x,
626 struct pt_regs *regs)
627 {
628 int regno;
629 u8 *insn;
630
631 regs->psw.addr = extable_fixup(x);
632 insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
633 regno = get_probe_mem_regno(insn);
634 if (WARN_ON_ONCE(regno < 0))
635 /* JIT bug - unexpected instruction. */
636 return false;
637 regs->gprs[regno] = 0;
638 return true;
639 }
640
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)641 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
642 int probe_prg, int nop_prg)
643 {
644 struct exception_table_entry *ex;
645 s64 delta;
646 u8 *insn;
647 int prg;
648 int i;
649
650 if (!fp->aux->extable)
651 /* Do nothing during early JIT passes. */
652 return 0;
653 insn = jit->prg_buf + probe_prg;
654 if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
655 /* JIT bug - unexpected probe instruction. */
656 return -1;
657 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
658 /* JIT bug - gap between probe and nop instructions. */
659 return -1;
660 for (i = 0; i < 2; i++) {
661 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
662 /* Verifier bug - not enough entries. */
663 return -1;
664 ex = &fp->aux->extable[jit->excnt];
665 /* Add extable entries for probe and nop instructions. */
666 prg = i == 0 ? probe_prg : nop_prg;
667 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
668 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
669 /* JIT bug - code and extable must be close. */
670 return -1;
671 ex->insn = delta;
672 /*
673 * Always land on the nop. Note that extable infrastructure
674 * ignores fixup field, it is handled by ex_handler_bpf().
675 */
676 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
677 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
678 /* JIT bug - landing pad and extable must be close. */
679 return -1;
680 ex->fixup = delta;
681 ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
682 jit->excnt++;
683 }
684 return 0;
685 }
686
687 /*
688 * Compile one eBPF instruction into s390x code
689 *
690 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
691 * stack space for the large switch statement.
692 */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)693 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
694 int i, bool extra_pass, u32 stack_depth)
695 {
696 struct bpf_insn *insn = &fp->insnsi[i];
697 u32 dst_reg = insn->dst_reg;
698 u32 src_reg = insn->src_reg;
699 int last, insn_count = 1;
700 u32 *addrs = jit->addrs;
701 s32 imm = insn->imm;
702 s16 off = insn->off;
703 int probe_prg = -1;
704 unsigned int mask;
705 int nop_prg;
706 int err;
707
708 if (BPF_CLASS(insn->code) == BPF_LDX &&
709 BPF_MODE(insn->code) == BPF_PROBE_MEM)
710 probe_prg = jit->prg;
711
712 switch (insn->code) {
713 /*
714 * BPF_MOV
715 */
716 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
717 /* llgfr %dst,%src */
718 EMIT4(0xb9160000, dst_reg, src_reg);
719 if (insn_is_zext(&insn[1]))
720 insn_count = 2;
721 break;
722 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
723 /* lgr %dst,%src */
724 EMIT4(0xb9040000, dst_reg, src_reg);
725 break;
726 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
727 /* llilf %dst,imm */
728 EMIT6_IMM(0xc00f0000, dst_reg, imm);
729 if (insn_is_zext(&insn[1]))
730 insn_count = 2;
731 break;
732 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
733 /* lgfi %dst,imm */
734 EMIT6_IMM(0xc0010000, dst_reg, imm);
735 break;
736 /*
737 * BPF_LD 64
738 */
739 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
740 {
741 /* 16 byte instruction that uses two 'struct bpf_insn' */
742 u64 imm64;
743
744 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
745 /* lgrl %dst,imm */
746 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
747 insn_count = 2;
748 break;
749 }
750 /*
751 * BPF_ADD
752 */
753 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
754 /* ar %dst,%src */
755 EMIT2(0x1a00, dst_reg, src_reg);
756 EMIT_ZERO(dst_reg);
757 break;
758 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
759 /* agr %dst,%src */
760 EMIT4(0xb9080000, dst_reg, src_reg);
761 break;
762 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
763 if (imm != 0) {
764 /* alfi %dst,imm */
765 EMIT6_IMM(0xc20b0000, dst_reg, imm);
766 }
767 EMIT_ZERO(dst_reg);
768 break;
769 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
770 if (!imm)
771 break;
772 /* agfi %dst,imm */
773 EMIT6_IMM(0xc2080000, dst_reg, imm);
774 break;
775 /*
776 * BPF_SUB
777 */
778 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
779 /* sr %dst,%src */
780 EMIT2(0x1b00, dst_reg, src_reg);
781 EMIT_ZERO(dst_reg);
782 break;
783 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
784 /* sgr %dst,%src */
785 EMIT4(0xb9090000, dst_reg, src_reg);
786 break;
787 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
788 if (imm != 0) {
789 /* alfi %dst,-imm */
790 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
791 }
792 EMIT_ZERO(dst_reg);
793 break;
794 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
795 if (!imm)
796 break;
797 if (imm == -0x80000000) {
798 /* algfi %dst,0x80000000 */
799 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
800 } else {
801 /* agfi %dst,-imm */
802 EMIT6_IMM(0xc2080000, dst_reg, -imm);
803 }
804 break;
805 /*
806 * BPF_MUL
807 */
808 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
809 /* msr %dst,%src */
810 EMIT4(0xb2520000, dst_reg, src_reg);
811 EMIT_ZERO(dst_reg);
812 break;
813 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
814 /* msgr %dst,%src */
815 EMIT4(0xb90c0000, dst_reg, src_reg);
816 break;
817 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
818 if (imm != 1) {
819 /* msfi %r5,imm */
820 EMIT6_IMM(0xc2010000, dst_reg, imm);
821 }
822 EMIT_ZERO(dst_reg);
823 break;
824 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
825 if (imm == 1)
826 break;
827 /* msgfi %dst,imm */
828 EMIT6_IMM(0xc2000000, dst_reg, imm);
829 break;
830 /*
831 * BPF_DIV / BPF_MOD
832 */
833 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
834 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
835 {
836 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
837
838 /* lhi %w0,0 */
839 EMIT4_IMM(0xa7080000, REG_W0, 0);
840 /* lr %w1,%dst */
841 EMIT2(0x1800, REG_W1, dst_reg);
842 /* dlr %w0,%src */
843 EMIT4(0xb9970000, REG_W0, src_reg);
844 /* llgfr %dst,%rc */
845 EMIT4(0xb9160000, dst_reg, rc_reg);
846 if (insn_is_zext(&insn[1]))
847 insn_count = 2;
848 break;
849 }
850 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
851 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
852 {
853 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
854
855 /* lghi %w0,0 */
856 EMIT4_IMM(0xa7090000, REG_W0, 0);
857 /* lgr %w1,%dst */
858 EMIT4(0xb9040000, REG_W1, dst_reg);
859 /* dlgr %w0,%dst */
860 EMIT4(0xb9870000, REG_W0, src_reg);
861 /* lgr %dst,%rc */
862 EMIT4(0xb9040000, dst_reg, rc_reg);
863 break;
864 }
865 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
866 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
867 {
868 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
869
870 if (imm == 1) {
871 if (BPF_OP(insn->code) == BPF_MOD)
872 /* lhgi %dst,0 */
873 EMIT4_IMM(0xa7090000, dst_reg, 0);
874 else
875 EMIT_ZERO(dst_reg);
876 break;
877 }
878 /* lhi %w0,0 */
879 EMIT4_IMM(0xa7080000, REG_W0, 0);
880 /* lr %w1,%dst */
881 EMIT2(0x1800, REG_W1, dst_reg);
882 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
883 /* dl %w0,<d(imm)>(%l) */
884 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
885 EMIT_CONST_U32(imm));
886 } else {
887 /* lgfrl %dst,imm */
888 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
889 _EMIT_CONST_U32(imm));
890 jit->seen |= SEEN_LITERAL;
891 /* dlr %w0,%dst */
892 EMIT4(0xb9970000, REG_W0, dst_reg);
893 }
894 /* llgfr %dst,%rc */
895 EMIT4(0xb9160000, dst_reg, rc_reg);
896 if (insn_is_zext(&insn[1]))
897 insn_count = 2;
898 break;
899 }
900 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
901 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
902 {
903 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
904
905 if (imm == 1) {
906 if (BPF_OP(insn->code) == BPF_MOD)
907 /* lhgi %dst,0 */
908 EMIT4_IMM(0xa7090000, dst_reg, 0);
909 break;
910 }
911 /* lghi %w0,0 */
912 EMIT4_IMM(0xa7090000, REG_W0, 0);
913 /* lgr %w1,%dst */
914 EMIT4(0xb9040000, REG_W1, dst_reg);
915 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
916 /* dlg %w0,<d(imm)>(%l) */
917 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
918 EMIT_CONST_U64(imm));
919 } else {
920 /* lgrl %dst,imm */
921 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
922 _EMIT_CONST_U64(imm));
923 jit->seen |= SEEN_LITERAL;
924 /* dlgr %w0,%dst */
925 EMIT4(0xb9870000, REG_W0, dst_reg);
926 }
927 /* lgr %dst,%rc */
928 EMIT4(0xb9040000, dst_reg, rc_reg);
929 break;
930 }
931 /*
932 * BPF_AND
933 */
934 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
935 /* nr %dst,%src */
936 EMIT2(0x1400, dst_reg, src_reg);
937 EMIT_ZERO(dst_reg);
938 break;
939 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
940 /* ngr %dst,%src */
941 EMIT4(0xb9800000, dst_reg, src_reg);
942 break;
943 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
944 /* nilf %dst,imm */
945 EMIT6_IMM(0xc00b0000, dst_reg, imm);
946 EMIT_ZERO(dst_reg);
947 break;
948 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
949 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
950 /* ng %dst,<d(imm)>(%l) */
951 EMIT6_DISP_LH(0xe3000000, 0x0080,
952 dst_reg, REG_0, REG_L,
953 EMIT_CONST_U64(imm));
954 } else {
955 /* lgrl %w0,imm */
956 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
957 _EMIT_CONST_U64(imm));
958 jit->seen |= SEEN_LITERAL;
959 /* ngr %dst,%w0 */
960 EMIT4(0xb9800000, dst_reg, REG_W0);
961 }
962 break;
963 /*
964 * BPF_OR
965 */
966 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
967 /* or %dst,%src */
968 EMIT2(0x1600, dst_reg, src_reg);
969 EMIT_ZERO(dst_reg);
970 break;
971 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
972 /* ogr %dst,%src */
973 EMIT4(0xb9810000, dst_reg, src_reg);
974 break;
975 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
976 /* oilf %dst,imm */
977 EMIT6_IMM(0xc00d0000, dst_reg, imm);
978 EMIT_ZERO(dst_reg);
979 break;
980 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
981 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
982 /* og %dst,<d(imm)>(%l) */
983 EMIT6_DISP_LH(0xe3000000, 0x0081,
984 dst_reg, REG_0, REG_L,
985 EMIT_CONST_U64(imm));
986 } else {
987 /* lgrl %w0,imm */
988 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
989 _EMIT_CONST_U64(imm));
990 jit->seen |= SEEN_LITERAL;
991 /* ogr %dst,%w0 */
992 EMIT4(0xb9810000, dst_reg, REG_W0);
993 }
994 break;
995 /*
996 * BPF_XOR
997 */
998 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
999 /* xr %dst,%src */
1000 EMIT2(0x1700, dst_reg, src_reg);
1001 EMIT_ZERO(dst_reg);
1002 break;
1003 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1004 /* xgr %dst,%src */
1005 EMIT4(0xb9820000, dst_reg, src_reg);
1006 break;
1007 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1008 if (imm != 0) {
1009 /* xilf %dst,imm */
1010 EMIT6_IMM(0xc0070000, dst_reg, imm);
1011 }
1012 EMIT_ZERO(dst_reg);
1013 break;
1014 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1015 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1016 /* xg %dst,<d(imm)>(%l) */
1017 EMIT6_DISP_LH(0xe3000000, 0x0082,
1018 dst_reg, REG_0, REG_L,
1019 EMIT_CONST_U64(imm));
1020 } else {
1021 /* lgrl %w0,imm */
1022 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1023 _EMIT_CONST_U64(imm));
1024 jit->seen |= SEEN_LITERAL;
1025 /* xgr %dst,%w0 */
1026 EMIT4(0xb9820000, dst_reg, REG_W0);
1027 }
1028 break;
1029 /*
1030 * BPF_LSH
1031 */
1032 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1033 /* sll %dst,0(%src) */
1034 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1035 EMIT_ZERO(dst_reg);
1036 break;
1037 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1038 /* sllg %dst,%dst,0(%src) */
1039 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1040 break;
1041 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1042 if (imm != 0) {
1043 /* sll %dst,imm(%r0) */
1044 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1045 }
1046 EMIT_ZERO(dst_reg);
1047 break;
1048 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1049 if (imm == 0)
1050 break;
1051 /* sllg %dst,%dst,imm(%r0) */
1052 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1053 break;
1054 /*
1055 * BPF_RSH
1056 */
1057 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1058 /* srl %dst,0(%src) */
1059 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1060 EMIT_ZERO(dst_reg);
1061 break;
1062 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1063 /* srlg %dst,%dst,0(%src) */
1064 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1065 break;
1066 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1067 if (imm != 0) {
1068 /* srl %dst,imm(%r0) */
1069 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1070 }
1071 EMIT_ZERO(dst_reg);
1072 break;
1073 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1074 if (imm == 0)
1075 break;
1076 /* srlg %dst,%dst,imm(%r0) */
1077 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1078 break;
1079 /*
1080 * BPF_ARSH
1081 */
1082 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1083 /* sra %dst,%dst,0(%src) */
1084 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1085 EMIT_ZERO(dst_reg);
1086 break;
1087 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1088 /* srag %dst,%dst,0(%src) */
1089 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1090 break;
1091 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1092 if (imm != 0) {
1093 /* sra %dst,imm(%r0) */
1094 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1095 }
1096 EMIT_ZERO(dst_reg);
1097 break;
1098 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1099 if (imm == 0)
1100 break;
1101 /* srag %dst,%dst,imm(%r0) */
1102 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1103 break;
1104 /*
1105 * BPF_NEG
1106 */
1107 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1108 /* lcr %dst,%dst */
1109 EMIT2(0x1300, dst_reg, dst_reg);
1110 EMIT_ZERO(dst_reg);
1111 break;
1112 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1113 /* lcgr %dst,%dst */
1114 EMIT4(0xb9030000, dst_reg, dst_reg);
1115 break;
1116 /*
1117 * BPF_FROM_BE/LE
1118 */
1119 case BPF_ALU | BPF_END | BPF_FROM_BE:
1120 /* s390 is big endian, therefore only clear high order bytes */
1121 switch (imm) {
1122 case 16: /* dst = (u16) cpu_to_be16(dst) */
1123 /* llghr %dst,%dst */
1124 EMIT4(0xb9850000, dst_reg, dst_reg);
1125 if (insn_is_zext(&insn[1]))
1126 insn_count = 2;
1127 break;
1128 case 32: /* dst = (u32) cpu_to_be32(dst) */
1129 if (!fp->aux->verifier_zext)
1130 /* llgfr %dst,%dst */
1131 EMIT4(0xb9160000, dst_reg, dst_reg);
1132 break;
1133 case 64: /* dst = (u64) cpu_to_be64(dst) */
1134 break;
1135 }
1136 break;
1137 case BPF_ALU | BPF_END | BPF_FROM_LE:
1138 switch (imm) {
1139 case 16: /* dst = (u16) cpu_to_le16(dst) */
1140 /* lrvr %dst,%dst */
1141 EMIT4(0xb91f0000, dst_reg, dst_reg);
1142 /* srl %dst,16(%r0) */
1143 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1144 /* llghr %dst,%dst */
1145 EMIT4(0xb9850000, dst_reg, dst_reg);
1146 if (insn_is_zext(&insn[1]))
1147 insn_count = 2;
1148 break;
1149 case 32: /* dst = (u32) cpu_to_le32(dst) */
1150 /* lrvr %dst,%dst */
1151 EMIT4(0xb91f0000, dst_reg, dst_reg);
1152 if (!fp->aux->verifier_zext)
1153 /* llgfr %dst,%dst */
1154 EMIT4(0xb9160000, dst_reg, dst_reg);
1155 break;
1156 case 64: /* dst = (u64) cpu_to_le64(dst) */
1157 /* lrvgr %dst,%dst */
1158 EMIT4(0xb90f0000, dst_reg, dst_reg);
1159 break;
1160 }
1161 break;
1162 /*
1163 * BPF_NOSPEC (speculation barrier)
1164 */
1165 case BPF_ST | BPF_NOSPEC:
1166 break;
1167 /*
1168 * BPF_ST(X)
1169 */
1170 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1171 /* stcy %src,off(%dst) */
1172 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1173 jit->seen |= SEEN_MEM;
1174 break;
1175 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1176 /* sthy %src,off(%dst) */
1177 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1178 jit->seen |= SEEN_MEM;
1179 break;
1180 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1181 /* sty %src,off(%dst) */
1182 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1183 jit->seen |= SEEN_MEM;
1184 break;
1185 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1186 /* stg %src,off(%dst) */
1187 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1188 jit->seen |= SEEN_MEM;
1189 break;
1190 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1191 /* lhi %w0,imm */
1192 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1193 /* stcy %w0,off(dst) */
1194 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1195 jit->seen |= SEEN_MEM;
1196 break;
1197 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1198 /* lhi %w0,imm */
1199 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1200 /* sthy %w0,off(dst) */
1201 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1202 jit->seen |= SEEN_MEM;
1203 break;
1204 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1205 /* llilf %w0,imm */
1206 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1207 /* sty %w0,off(%dst) */
1208 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1209 jit->seen |= SEEN_MEM;
1210 break;
1211 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1212 /* lgfi %w0,imm */
1213 EMIT6_IMM(0xc0010000, REG_W0, imm);
1214 /* stg %w0,off(%dst) */
1215 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1216 jit->seen |= SEEN_MEM;
1217 break;
1218 /*
1219 * BPF_ATOMIC
1220 */
1221 case BPF_STX | BPF_ATOMIC | BPF_DW:
1222 case BPF_STX | BPF_ATOMIC | BPF_W:
1223 {
1224 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1225
1226 switch (insn->imm) {
1227 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1228 #define EMIT_ATOMIC(op32, op64) do { \
1229 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1230 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1231 src_reg, dst_reg, off); \
1232 if (is32 && (insn->imm & BPF_FETCH)) \
1233 EMIT_ZERO(src_reg); \
1234 } while (0)
1235 case BPF_ADD:
1236 case BPF_ADD | BPF_FETCH:
1237 /* {laal|laalg} */
1238 EMIT_ATOMIC(0x00fa, 0x00ea);
1239 break;
1240 case BPF_AND:
1241 case BPF_AND | BPF_FETCH:
1242 /* {lan|lang} */
1243 EMIT_ATOMIC(0x00f4, 0x00e4);
1244 break;
1245 case BPF_OR:
1246 case BPF_OR | BPF_FETCH:
1247 /* {lao|laog} */
1248 EMIT_ATOMIC(0x00f6, 0x00e6);
1249 break;
1250 case BPF_XOR:
1251 case BPF_XOR | BPF_FETCH:
1252 /* {lax|laxg} */
1253 EMIT_ATOMIC(0x00f7, 0x00e7);
1254 break;
1255 #undef EMIT_ATOMIC
1256 case BPF_XCHG:
1257 /* {ly|lg} %w0,off(%dst) */
1258 EMIT6_DISP_LH(0xe3000000,
1259 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1260 dst_reg, off);
1261 /* 0: {csy|csg} %w0,%src,off(%dst) */
1262 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1263 REG_W0, src_reg, dst_reg, off);
1264 /* brc 4,0b */
1265 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1266 /* {llgfr|lgr} %src,%w0 */
1267 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1268 if (is32 && insn_is_zext(&insn[1]))
1269 insn_count = 2;
1270 break;
1271 case BPF_CMPXCHG:
1272 /* 0: {csy|csg} %b0,%src,off(%dst) */
1273 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1274 BPF_REG_0, src_reg, dst_reg, off);
1275 break;
1276 default:
1277 pr_err("Unknown atomic operation %02x\n", insn->imm);
1278 return -1;
1279 }
1280
1281 jit->seen |= SEEN_MEM;
1282 break;
1283 }
1284 /*
1285 * BPF_LDX
1286 */
1287 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1288 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1289 /* llgc %dst,0(off,%src) */
1290 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1291 jit->seen |= SEEN_MEM;
1292 if (insn_is_zext(&insn[1]))
1293 insn_count = 2;
1294 break;
1295 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1296 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1297 /* llgh %dst,0(off,%src) */
1298 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1299 jit->seen |= SEEN_MEM;
1300 if (insn_is_zext(&insn[1]))
1301 insn_count = 2;
1302 break;
1303 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1304 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1305 /* llgf %dst,off(%src) */
1306 jit->seen |= SEEN_MEM;
1307 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1308 if (insn_is_zext(&insn[1]))
1309 insn_count = 2;
1310 break;
1311 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1312 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1313 /* lg %dst,0(off,%src) */
1314 jit->seen |= SEEN_MEM;
1315 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1316 break;
1317 /*
1318 * BPF_JMP / CALL
1319 */
1320 case BPF_JMP | BPF_CALL:
1321 {
1322 u64 func;
1323 bool func_addr_fixed;
1324 int ret;
1325
1326 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1327 &func, &func_addr_fixed);
1328 if (ret < 0)
1329 return -1;
1330
1331 REG_SET_SEEN(BPF_REG_5);
1332 jit->seen |= SEEN_FUNC;
1333 /* lgrl %w1,func */
1334 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1335 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1336 /* brasl %r14,__s390_indirect_jump_r1 */
1337 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1338 } else {
1339 /* basr %r14,%w1 */
1340 EMIT2(0x0d00, REG_14, REG_W1);
1341 }
1342 /* lgr %b0,%r2: load return value into %b0 */
1343 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1344 break;
1345 }
1346 case BPF_JMP | BPF_TAIL_CALL: {
1347 int patch_1_clrj, patch_2_clij, patch_3_brc;
1348
1349 /*
1350 * Implicit input:
1351 * B1: pointer to ctx
1352 * B2: pointer to bpf_array
1353 * B3: index in bpf_array
1354 */
1355 jit->seen |= SEEN_TAIL_CALL;
1356
1357 /*
1358 * if (index >= array->map.max_entries)
1359 * goto out;
1360 */
1361
1362 /* llgf %w1,map.max_entries(%b2) */
1363 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1364 offsetof(struct bpf_array, map.max_entries));
1365 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1366 /* clrj %b3,%w1,0xa,out */
1367 patch_1_clrj = jit->prg;
1368 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1369 jit->prg);
1370
1371 /*
1372 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1373 * goto out;
1374 */
1375
1376 if (jit->seen & SEEN_STACK)
1377 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1378 else
1379 off = STK_OFF_TCCNT;
1380 /* lhi %w0,1 */
1381 EMIT4_IMM(0xa7080000, REG_W0, 1);
1382 /* laal %w1,%w0,off(%r15) */
1383 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1384 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */
1385 patch_2_clij = jit->prg;
1386 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT,
1387 2, jit->prg);
1388
1389 /*
1390 * prog = array->ptrs[index];
1391 * if (prog == NULL)
1392 * goto out;
1393 */
1394
1395 /* llgfr %r1,%b3: %r1 = (u32) index */
1396 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1397 /* sllg %r1,%r1,3: %r1 *= 8 */
1398 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1399 /* ltg %r1,prog(%b2,%r1) */
1400 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1401 REG_1, offsetof(struct bpf_array, ptrs));
1402 /* brc 0x8,out */
1403 patch_3_brc = jit->prg;
1404 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1405
1406 /*
1407 * Restore registers before calling function
1408 */
1409 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1410
1411 /*
1412 * goto *(prog->bpf_func + tail_call_start);
1413 */
1414
1415 /* lg %r1,bpf_func(%r1) */
1416 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1417 offsetof(struct bpf_prog, bpf_func));
1418 /* bc 0xf,tail_call_start(%r1) */
1419 _EMIT4(0x47f01000 + jit->tail_call_start);
1420 /* out: */
1421 if (jit->prg_buf) {
1422 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1423 (jit->prg - patch_1_clrj) >> 1;
1424 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1425 (jit->prg - patch_2_clij) >> 1;
1426 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1427 (jit->prg - patch_3_brc) >> 1;
1428 }
1429 break;
1430 }
1431 case BPF_JMP | BPF_EXIT: /* return b0 */
1432 last = (i == fp->len - 1) ? 1 : 0;
1433 if (last)
1434 break;
1435 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1436 /* brc 0xf, <exit> */
1437 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1438 else
1439 /* brcl 0xf, <exit> */
1440 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1441 break;
1442 /*
1443 * Branch relative (number of skipped instructions) to offset on
1444 * condition.
1445 *
1446 * Condition code to mask mapping:
1447 *
1448 * CC | Description | Mask
1449 * ------------------------------
1450 * 0 | Operands equal | 8
1451 * 1 | First operand low | 4
1452 * 2 | First operand high | 2
1453 * 3 | Unused | 1
1454 *
1455 * For s390x relative branches: ip = ip + off_bytes
1456 * For BPF relative branches: insn = insn + off_insns + 1
1457 *
1458 * For example for s390x with offset 0 we jump to the branch
1459 * instruction itself (loop) and for BPF with offset 0 we
1460 * branch to the instruction behind the branch.
1461 */
1462 case BPF_JMP | BPF_JA: /* if (true) */
1463 mask = 0xf000; /* j */
1464 goto branch_oc;
1465 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1466 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1467 mask = 0x2000; /* jh */
1468 goto branch_ks;
1469 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1470 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1471 mask = 0x4000; /* jl */
1472 goto branch_ks;
1473 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1474 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1475 mask = 0xa000; /* jhe */
1476 goto branch_ks;
1477 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1478 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1479 mask = 0xc000; /* jle */
1480 goto branch_ks;
1481 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1482 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1483 mask = 0x2000; /* jh */
1484 goto branch_ku;
1485 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1486 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1487 mask = 0x4000; /* jl */
1488 goto branch_ku;
1489 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1490 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1491 mask = 0xa000; /* jhe */
1492 goto branch_ku;
1493 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1494 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1495 mask = 0xc000; /* jle */
1496 goto branch_ku;
1497 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1498 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1499 mask = 0x7000; /* jne */
1500 goto branch_ku;
1501 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1502 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1503 mask = 0x8000; /* je */
1504 goto branch_ku;
1505 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1506 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1507 mask = 0x7000; /* jnz */
1508 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1509 /* llilf %w1,imm (load zero extend imm) */
1510 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1511 /* nr %w1,%dst */
1512 EMIT2(0x1400, REG_W1, dst_reg);
1513 } else {
1514 /* lgfi %w1,imm (load sign extend imm) */
1515 EMIT6_IMM(0xc0010000, REG_W1, imm);
1516 /* ngr %w1,%dst */
1517 EMIT4(0xb9800000, REG_W1, dst_reg);
1518 }
1519 goto branch_oc;
1520
1521 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1522 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1523 mask = 0x2000; /* jh */
1524 goto branch_xs;
1525 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1526 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1527 mask = 0x4000; /* jl */
1528 goto branch_xs;
1529 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1530 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1531 mask = 0xa000; /* jhe */
1532 goto branch_xs;
1533 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1534 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1535 mask = 0xc000; /* jle */
1536 goto branch_xs;
1537 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1538 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1539 mask = 0x2000; /* jh */
1540 goto branch_xu;
1541 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1542 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1543 mask = 0x4000; /* jl */
1544 goto branch_xu;
1545 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1546 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1547 mask = 0xa000; /* jhe */
1548 goto branch_xu;
1549 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1550 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1551 mask = 0xc000; /* jle */
1552 goto branch_xu;
1553 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1554 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1555 mask = 0x7000; /* jne */
1556 goto branch_xu;
1557 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1558 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1559 mask = 0x8000; /* je */
1560 goto branch_xu;
1561 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1562 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1563 {
1564 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1565
1566 mask = 0x7000; /* jnz */
1567 /* nrk or ngrk %w1,%dst,%src */
1568 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1569 REG_W1, dst_reg, src_reg);
1570 goto branch_oc;
1571 branch_ks:
1572 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1573 /* cfi or cgfi %dst,imm */
1574 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1575 dst_reg, imm);
1576 if (!is_first_pass(jit) &&
1577 can_use_rel(jit, addrs[i + off + 1])) {
1578 /* brc mask,off */
1579 EMIT4_PCREL_RIC(0xa7040000,
1580 mask >> 12, addrs[i + off + 1]);
1581 } else {
1582 /* brcl mask,off */
1583 EMIT6_PCREL_RILC(0xc0040000,
1584 mask >> 12, addrs[i + off + 1]);
1585 }
1586 break;
1587 branch_ku:
1588 /* lgfi %w1,imm (load sign extend imm) */
1589 src_reg = REG_1;
1590 EMIT6_IMM(0xc0010000, src_reg, imm);
1591 goto branch_xu;
1592 branch_xs:
1593 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1594 if (!is_first_pass(jit) &&
1595 can_use_rel(jit, addrs[i + off + 1])) {
1596 /* crj or cgrj %dst,%src,mask,off */
1597 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1598 dst_reg, src_reg, i, off, mask);
1599 } else {
1600 /* cr or cgr %dst,%src */
1601 if (is_jmp32)
1602 EMIT2(0x1900, dst_reg, src_reg);
1603 else
1604 EMIT4(0xb9200000, dst_reg, src_reg);
1605 /* brcl mask,off */
1606 EMIT6_PCREL_RILC(0xc0040000,
1607 mask >> 12, addrs[i + off + 1]);
1608 }
1609 break;
1610 branch_xu:
1611 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1612 if (!is_first_pass(jit) &&
1613 can_use_rel(jit, addrs[i + off + 1])) {
1614 /* clrj or clgrj %dst,%src,mask,off */
1615 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1616 dst_reg, src_reg, i, off, mask);
1617 } else {
1618 /* clr or clgr %dst,%src */
1619 if (is_jmp32)
1620 EMIT2(0x1500, dst_reg, src_reg);
1621 else
1622 EMIT4(0xb9210000, dst_reg, src_reg);
1623 /* brcl mask,off */
1624 EMIT6_PCREL_RILC(0xc0040000,
1625 mask >> 12, addrs[i + off + 1]);
1626 }
1627 break;
1628 branch_oc:
1629 if (!is_first_pass(jit) &&
1630 can_use_rel(jit, addrs[i + off + 1])) {
1631 /* brc mask,off */
1632 EMIT4_PCREL_RIC(0xa7040000,
1633 mask >> 12, addrs[i + off + 1]);
1634 } else {
1635 /* brcl mask,off */
1636 EMIT6_PCREL_RILC(0xc0040000,
1637 mask >> 12, addrs[i + off + 1]);
1638 }
1639 break;
1640 }
1641 default: /* too complex, give up */
1642 pr_err("Unknown opcode %02x\n", insn->code);
1643 return -1;
1644 }
1645
1646 if (probe_prg != -1) {
1647 /*
1648 * Handlers of certain exceptions leave psw.addr pointing to
1649 * the instruction directly after the failing one. Therefore,
1650 * create two exception table entries and also add a nop in
1651 * case two probing instructions come directly after each
1652 * other.
1653 */
1654 nop_prg = jit->prg;
1655 /* bcr 0,%0 */
1656 _EMIT2(0x0700);
1657 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1658 if (err < 0)
1659 return err;
1660 }
1661
1662 return insn_count;
1663 }
1664
1665 /*
1666 * Return whether new i-th instruction address does not violate any invariant
1667 */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1668 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1669 {
1670 /* On the first pass anything goes */
1671 if (is_first_pass(jit))
1672 return true;
1673
1674 /* The codegen pass must not change anything */
1675 if (is_codegen_pass(jit))
1676 return jit->addrs[i] == jit->prg;
1677
1678 /* Passes in between must not increase code size */
1679 return jit->addrs[i] >= jit->prg;
1680 }
1681
1682 /*
1683 * Update the address of i-th instruction
1684 */
bpf_set_addr(struct bpf_jit * jit,int i)1685 static int bpf_set_addr(struct bpf_jit *jit, int i)
1686 {
1687 int delta;
1688
1689 if (is_codegen_pass(jit)) {
1690 delta = jit->prg - jit->addrs[i];
1691 if (delta < 0)
1692 bpf_skip(jit, -delta);
1693 }
1694 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1695 return -1;
1696 jit->addrs[i] = jit->prg;
1697 return 0;
1698 }
1699
1700 /*
1701 * Compile eBPF program into s390x code
1702 */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1703 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1704 bool extra_pass, u32 stack_depth)
1705 {
1706 int i, insn_count, lit32_size, lit64_size;
1707
1708 jit->lit32 = jit->lit32_start;
1709 jit->lit64 = jit->lit64_start;
1710 jit->prg = 0;
1711 jit->excnt = 0;
1712
1713 bpf_jit_prologue(jit, stack_depth);
1714 if (bpf_set_addr(jit, 0) < 0)
1715 return -1;
1716 for (i = 0; i < fp->len; i += insn_count) {
1717 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1718 if (insn_count < 0)
1719 return -1;
1720 /* Next instruction address */
1721 if (bpf_set_addr(jit, i + insn_count) < 0)
1722 return -1;
1723 }
1724 bpf_jit_epilogue(jit, stack_depth);
1725
1726 lit32_size = jit->lit32 - jit->lit32_start;
1727 lit64_size = jit->lit64 - jit->lit64_start;
1728 jit->lit32_start = jit->prg;
1729 if (lit32_size)
1730 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1731 jit->lit64_start = jit->lit32_start + lit32_size;
1732 if (lit64_size)
1733 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1734 jit->size = jit->lit64_start + lit64_size;
1735 jit->size_prg = jit->prg;
1736
1737 if (WARN_ON_ONCE(fp->aux->extable &&
1738 jit->excnt != fp->aux->num_exentries))
1739 /* Verifier bug - too many entries. */
1740 return -1;
1741
1742 return 0;
1743 }
1744
bpf_jit_needs_zext(void)1745 bool bpf_jit_needs_zext(void)
1746 {
1747 return true;
1748 }
1749
1750 struct s390_jit_data {
1751 struct bpf_binary_header *header;
1752 struct bpf_jit ctx;
1753 int pass;
1754 };
1755
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1756 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1757 struct bpf_prog *fp)
1758 {
1759 struct bpf_binary_header *header;
1760 u32 extable_size;
1761 u32 code_size;
1762
1763 /* We need two entries per insn. */
1764 fp->aux->num_exentries *= 2;
1765
1766 code_size = roundup(jit->size,
1767 __alignof__(struct exception_table_entry));
1768 extable_size = fp->aux->num_exentries *
1769 sizeof(struct exception_table_entry);
1770 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1771 8, jit_fill_hole);
1772 if (!header)
1773 return NULL;
1774 fp->aux->extable = (struct exception_table_entry *)
1775 (jit->prg_buf + code_size);
1776 return header;
1777 }
1778
1779 /*
1780 * Compile eBPF program "fp"
1781 */
bpf_int_jit_compile(struct bpf_prog * fp)1782 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1783 {
1784 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1785 struct bpf_prog *tmp, *orig_fp = fp;
1786 struct bpf_binary_header *header;
1787 struct s390_jit_data *jit_data;
1788 bool tmp_blinded = false;
1789 bool extra_pass = false;
1790 struct bpf_jit jit;
1791 int pass;
1792
1793 if (!fp->jit_requested)
1794 return orig_fp;
1795
1796 tmp = bpf_jit_blind_constants(fp);
1797 /*
1798 * If blinding was requested and we failed during blinding,
1799 * we must fall back to the interpreter.
1800 */
1801 if (IS_ERR(tmp))
1802 return orig_fp;
1803 if (tmp != fp) {
1804 tmp_blinded = true;
1805 fp = tmp;
1806 }
1807
1808 jit_data = fp->aux->jit_data;
1809 if (!jit_data) {
1810 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1811 if (!jit_data) {
1812 fp = orig_fp;
1813 goto out;
1814 }
1815 fp->aux->jit_data = jit_data;
1816 }
1817 if (jit_data->ctx.addrs) {
1818 jit = jit_data->ctx;
1819 header = jit_data->header;
1820 extra_pass = true;
1821 pass = jit_data->pass + 1;
1822 goto skip_init_ctx;
1823 }
1824
1825 memset(&jit, 0, sizeof(jit));
1826 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1827 if (jit.addrs == NULL) {
1828 fp = orig_fp;
1829 goto free_addrs;
1830 }
1831 /*
1832 * Three initial passes:
1833 * - 1/2: Determine clobbered registers
1834 * - 3: Calculate program size and addrs arrray
1835 */
1836 for (pass = 1; pass <= 3; pass++) {
1837 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1838 fp = orig_fp;
1839 goto free_addrs;
1840 }
1841 }
1842 /*
1843 * Final pass: Allocate and generate program
1844 */
1845 header = bpf_jit_alloc(&jit, fp);
1846 if (!header) {
1847 fp = orig_fp;
1848 goto free_addrs;
1849 }
1850 skip_init_ctx:
1851 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1852 bpf_jit_binary_free(header);
1853 fp = orig_fp;
1854 goto free_addrs;
1855 }
1856 if (bpf_jit_enable > 1) {
1857 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1858 print_fn_code(jit.prg_buf, jit.size_prg);
1859 }
1860 if (!fp->is_func || extra_pass) {
1861 bpf_jit_binary_lock_ro(header);
1862 } else {
1863 jit_data->header = header;
1864 jit_data->ctx = jit;
1865 jit_data->pass = pass;
1866 }
1867 fp->bpf_func = (void *) jit.prg_buf;
1868 fp->jited = 1;
1869 fp->jited_len = jit.size;
1870
1871 if (!fp->is_func || extra_pass) {
1872 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1873 free_addrs:
1874 kvfree(jit.addrs);
1875 kfree(jit_data);
1876 fp->aux->jit_data = NULL;
1877 }
1878 out:
1879 if (tmp_blinded)
1880 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1881 tmp : orig_fp);
1882 return fp;
1883 }
1884