1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_IA64_PROCESSOR_H
3 #define _ASM_IA64_PROCESSOR_H
4
5 /*
6 * Copyright (C) 1998-2004 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
10 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
11 *
12 * 11/24/98 S.Eranian added ia64_set_iva()
13 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
14 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
15 */
16
17
18 #include <asm/intrinsics.h>
19 #include <asm/kregs.h>
20 #include <asm/ptrace.h>
21 #include <asm/ustack.h>
22
23 #define IA64_NUM_PHYS_STACK_REG 96
24 #define IA64_NUM_DBG_REGS 8
25
26 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
27 #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
28
29 /*
30 * TASK_SIZE really is a mis-named. It really is the maximum user
31 * space address (plus one). On IA-64, there are five regions of 2TB
32 * each (assuming 8KB page size), for a total of 8TB of user virtual
33 * address space.
34 */
35 #define TASK_SIZE DEFAULT_TASK_SIZE
36
37 /*
38 * This decides where the kernel will search for a free chunk of vm
39 * space during mmap's.
40 */
41 #define TASK_UNMAPPED_BASE (current->thread.map_base)
42
43 #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
44 #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
45 #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
46 #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
47 #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
48 #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
49 sync at ctx sw */
50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
51 #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
52
53 #define IA64_THREAD_UAC_SHIFT 3
54 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55 #define IA64_THREAD_FPEMU_SHIFT 6
56 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57
58
59 /*
60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63 */
64 #define IA64_NSEC_PER_CYC_SHIFT 30
65
66 #ifndef __ASSEMBLY__
67
68 #include <linux/cache.h>
69 #include <linux/compiler.h>
70 #include <linux/threads.h>
71 #include <linux/types.h>
72 #include <linux/bitops.h>
73
74 #include <asm/fpu.h>
75 #include <asm/page.h>
76 #include <asm/percpu.h>
77 #include <asm/rse.h>
78 #include <asm/unwind.h>
79 #include <linux/atomic.h>
80 #ifdef CONFIG_NUMA
81 #include <asm/nodedata.h>
82 #endif
83
84 /* like above but expressed as bitfields for more efficient access: */
85 struct ia64_psr {
86 __u64 reserved0 : 1;
87 __u64 be : 1;
88 __u64 up : 1;
89 __u64 ac : 1;
90 __u64 mfl : 1;
91 __u64 mfh : 1;
92 __u64 reserved1 : 7;
93 __u64 ic : 1;
94 __u64 i : 1;
95 __u64 pk : 1;
96 __u64 reserved2 : 1;
97 __u64 dt : 1;
98 __u64 dfl : 1;
99 __u64 dfh : 1;
100 __u64 sp : 1;
101 __u64 pp : 1;
102 __u64 di : 1;
103 __u64 si : 1;
104 __u64 db : 1;
105 __u64 lp : 1;
106 __u64 tb : 1;
107 __u64 rt : 1;
108 __u64 reserved3 : 4;
109 __u64 cpl : 2;
110 __u64 is : 1;
111 __u64 mc : 1;
112 __u64 it : 1;
113 __u64 id : 1;
114 __u64 da : 1;
115 __u64 dd : 1;
116 __u64 ss : 1;
117 __u64 ri : 2;
118 __u64 ed : 1;
119 __u64 bn : 1;
120 __u64 reserved4 : 19;
121 };
122
123 union ia64_isr {
124 __u64 val;
125 struct {
126 __u64 code : 16;
127 __u64 vector : 8;
128 __u64 reserved1 : 8;
129 __u64 x : 1;
130 __u64 w : 1;
131 __u64 r : 1;
132 __u64 na : 1;
133 __u64 sp : 1;
134 __u64 rs : 1;
135 __u64 ir : 1;
136 __u64 ni : 1;
137 __u64 so : 1;
138 __u64 ei : 2;
139 __u64 ed : 1;
140 __u64 reserved2 : 20;
141 };
142 };
143
144 union ia64_lid {
145 __u64 val;
146 struct {
147 __u64 rv : 16;
148 __u64 eid : 8;
149 __u64 id : 8;
150 __u64 ig : 32;
151 };
152 };
153
154 union ia64_tpr {
155 __u64 val;
156 struct {
157 __u64 ig0 : 4;
158 __u64 mic : 4;
159 __u64 rsv : 8;
160 __u64 mmi : 1;
161 __u64 ig1 : 47;
162 };
163 };
164
165 union ia64_itir {
166 __u64 val;
167 struct {
168 __u64 rv3 : 2; /* 0-1 */
169 __u64 ps : 6; /* 2-7 */
170 __u64 key : 24; /* 8-31 */
171 __u64 rv4 : 32; /* 32-63 */
172 };
173 };
174
175 union ia64_rr {
176 __u64 val;
177 struct {
178 __u64 ve : 1; /* enable hw walker */
179 __u64 reserved0: 1; /* reserved */
180 __u64 ps : 6; /* log page size */
181 __u64 rid : 24; /* region id */
182 __u64 reserved1: 32; /* reserved */
183 };
184 };
185
186 /*
187 * CPU type, hardware bug flags, and per-CPU state. Frequently used
188 * state comes earlier:
189 */
190 struct cpuinfo_ia64 {
191 unsigned int softirq_pending;
192 unsigned long itm_delta; /* # of clock cycles between clock ticks */
193 unsigned long itm_next; /* interval timer mask value to use for next clock tick */
194 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
196 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
197 unsigned long itc_freq; /* frequency of ITC counter */
198 unsigned long proc_freq; /* frequency of processor */
199 unsigned long cyc_per_usec; /* itc_freq/1000000 */
200 unsigned long ptce_base;
201 unsigned int ptce_count[2];
202 unsigned int ptce_stride[2];
203 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
204
205 #ifdef CONFIG_SMP
206 unsigned long loops_per_jiffy;
207 int cpu;
208 unsigned int socket_id; /* physical processor socket id */
209 unsigned short core_id; /* core id */
210 unsigned short thread_id; /* thread id */
211 unsigned short num_log; /* Total number of logical processors on
212 * this socket that were successfully booted */
213 unsigned char cores_per_socket; /* Cores per processor socket */
214 unsigned char threads_per_core; /* Threads per core */
215 #endif
216
217 /* CPUID-derived information: */
218 unsigned long ppn;
219 unsigned long features;
220 unsigned char number;
221 unsigned char revision;
222 unsigned char model;
223 unsigned char family;
224 unsigned char archrev;
225 char vendor[16];
226 char *model_name;
227
228 #ifdef CONFIG_NUMA
229 struct ia64_node_data *node_data;
230 #endif
231 };
232
233 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234
235 /*
236 * The "local" data variable. It refers to the per-CPU data of the currently executing
237 * CPU, much like "current" points to the per-task data of the currently executing task.
238 * Do not use the address of local_cpu_data, since it will be different from
239 * cpu_data(smp_processor_id())!
240 */
241 #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
242 #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
243
244 extern void print_cpu_info (struct cpuinfo_ia64 *);
245
246 typedef struct {
247 unsigned long seg;
248 } mm_segment_t;
249
250 #define SET_UNALIGN_CTL(task,value) \
251 ({ \
252 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
253 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
254 0; \
255 })
256 #define GET_UNALIGN_CTL(task,addr) \
257 ({ \
258 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
259 (int __user *) (addr)); \
260 })
261
262 #define SET_FPEMU_CTL(task,value) \
263 ({ \
264 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
265 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
266 0; \
267 })
268 #define GET_FPEMU_CTL(task,addr) \
269 ({ \
270 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
271 (int __user *) (addr)); \
272 })
273
274 struct thread_struct {
275 __u32 flags; /* various thread flags (see IA64_THREAD_*) */
276 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
277 __u8 on_ustack; /* executing on user-stacks? */
278 __u8 pad[3];
279 __u64 ksp; /* kernel stack pointer */
280 __u64 map_base; /* base address for get_unmapped_area() */
281 __u64 rbs_bot; /* the base address for the RBS */
282 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
283 unsigned long dbr[IA64_NUM_DBG_REGS];
284 unsigned long ibr[IA64_NUM_DBG_REGS];
285 struct ia64_fpreg fph[96]; /* saved/loaded on demand */
286 };
287
288 #define INIT_THREAD { \
289 .flags = 0, \
290 .on_ustack = 0, \
291 .ksp = 0, \
292 .map_base = DEFAULT_MAP_BASE, \
293 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
294 .last_fph_cpu = -1, \
295 .dbr = {0, }, \
296 .ibr = {0, }, \
297 .fph = {{{{0}}}, } \
298 }
299
300 #define start_thread(regs,new_ip,new_sp) do { \
301 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
302 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
303 regs->cr_iip = new_ip; \
304 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
305 regs->ar_rnat = 0; \
306 regs->ar_bspstore = current->thread.rbs_bot; \
307 regs->ar_fpsr = FPSR_DEFAULT; \
308 regs->loadrs = 0; \
309 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \
310 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
311 if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) { \
312 /* \
313 * Zap scratch regs to avoid leaking bits between processes with different \
314 * uid/privileges. \
315 */ \
316 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
317 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
318 } \
319 } while (0)
320
321 /* Forward declarations, a strange C thing... */
322 struct mm_struct;
323 struct task_struct;
324
325 /*
326 * Free all resources held by a thread. This is called after the
327 * parent of DEAD_TASK has collected the exit status of the task via
328 * wait().
329 */
330 #define release_thread(dead_task)
331
332 /* Get wait channel for task P. */
333 extern unsigned long get_wchan (struct task_struct *p);
334
335 /* Return instruction pointer of blocked task TSK. */
336 #define KSTK_EIP(tsk) \
337 ({ \
338 struct pt_regs *_regs = task_pt_regs(tsk); \
339 _regs->cr_iip + ia64_psr(_regs)->ri; \
340 })
341
342 /* Return stack pointer of blocked task TSK. */
343 #define KSTK_ESP(tsk) ((tsk)->thread.ksp)
344
345 extern void ia64_getreg_unknown_kr (void);
346 extern void ia64_setreg_unknown_kr (void);
347
348 #define ia64_get_kr(regnum) \
349 ({ \
350 unsigned long r = 0; \
351 \
352 switch (regnum) { \
353 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
354 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
355 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
356 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
357 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
358 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
359 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
360 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
361 default: ia64_getreg_unknown_kr(); break; \
362 } \
363 r; \
364 })
365
366 #define ia64_set_kr(regnum, r) \
367 ({ \
368 switch (regnum) { \
369 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
370 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
371 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
372 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
373 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
374 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
375 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
376 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
377 default: ia64_setreg_unknown_kr(); break; \
378 } \
379 })
380
381 /*
382 * The following three macros can't be inline functions because we don't have struct
383 * task_struct at this point.
384 */
385
386 /*
387 * Return TRUE if task T owns the fph partition of the CPU we're running on.
388 * Must be called from code that has preemption disabled.
389 */
390 #define ia64_is_local_fpu_owner(t) \
391 ({ \
392 struct task_struct *__ia64_islfo_task = (t); \
393 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
394 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
395 })
396
397 /*
398 * Mark task T as owning the fph partition of the CPU we're running on.
399 * Must be called from code that has preemption disabled.
400 */
401 #define ia64_set_local_fpu_owner(t) do { \
402 struct task_struct *__ia64_slfo_task = (t); \
403 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
404 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
405 } while (0)
406
407 /* Mark the fph partition of task T as being invalid on all CPUs. */
408 #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
409
410 extern void __ia64_init_fpu (void);
411 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
412 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
413 extern void ia64_save_debug_regs (unsigned long *save_area);
414 extern void ia64_load_debug_regs (unsigned long *save_area);
415
416 #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
417 #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
418
419 /* load fp 0.0 into fph */
420 static inline void
ia64_init_fpu(void)421 ia64_init_fpu (void) {
422 ia64_fph_enable();
423 __ia64_init_fpu();
424 ia64_fph_disable();
425 }
426
427 /* save f32-f127 at FPH */
428 static inline void
ia64_save_fpu(struct ia64_fpreg * fph)429 ia64_save_fpu (struct ia64_fpreg *fph) {
430 ia64_fph_enable();
431 __ia64_save_fpu(fph);
432 ia64_fph_disable();
433 }
434
435 /* load f32-f127 from FPH */
436 static inline void
ia64_load_fpu(struct ia64_fpreg * fph)437 ia64_load_fpu (struct ia64_fpreg *fph) {
438 ia64_fph_enable();
439 __ia64_load_fpu(fph);
440 ia64_fph_disable();
441 }
442
443 static inline __u64
ia64_clear_ic(void)444 ia64_clear_ic (void)
445 {
446 __u64 psr;
447 psr = ia64_getreg(_IA64_REG_PSR);
448 ia64_stop();
449 ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
450 ia64_srlz_i();
451 return psr;
452 }
453
454 /*
455 * Restore the psr.
456 */
457 static inline void
ia64_set_psr(__u64 psr)458 ia64_set_psr (__u64 psr)
459 {
460 ia64_stop();
461 ia64_setreg(_IA64_REG_PSR_L, psr);
462 ia64_srlz_i();
463 }
464
465 /*
466 * Insert a translation into an instruction and/or data translation
467 * register.
468 */
469 static inline void
ia64_itr(__u64 target_mask,__u64 tr_num,__u64 vmaddr,__u64 pte,__u64 log_page_size)470 ia64_itr (__u64 target_mask, __u64 tr_num,
471 __u64 vmaddr, __u64 pte,
472 __u64 log_page_size)
473 {
474 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
475 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
476 ia64_stop();
477 if (target_mask & 0x1)
478 ia64_itri(tr_num, pte);
479 if (target_mask & 0x2)
480 ia64_itrd(tr_num, pte);
481 }
482
483 /*
484 * Insert a translation into the instruction and/or data translation
485 * cache.
486 */
487 static inline void
ia64_itc(__u64 target_mask,__u64 vmaddr,__u64 pte,__u64 log_page_size)488 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
489 __u64 log_page_size)
490 {
491 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
492 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
493 ia64_stop();
494 /* as per EAS2.6, itc must be the last instruction in an instruction group */
495 if (target_mask & 0x1)
496 ia64_itci(pte);
497 if (target_mask & 0x2)
498 ia64_itcd(pte);
499 }
500
501 /*
502 * Purge a range of addresses from instruction and/or data translation
503 * register(s).
504 */
505 static inline void
ia64_ptr(__u64 target_mask,__u64 vmaddr,__u64 log_size)506 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
507 {
508 if (target_mask & 0x1)
509 ia64_ptri(vmaddr, (log_size << 2));
510 if (target_mask & 0x2)
511 ia64_ptrd(vmaddr, (log_size << 2));
512 }
513
514 /* Set the interrupt vector address. The address must be suitably aligned (32KB). */
515 static inline void
ia64_set_iva(void * ivt_addr)516 ia64_set_iva (void *ivt_addr)
517 {
518 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
519 ia64_srlz_i();
520 }
521
522 /* Set the page table address and control bits. */
523 static inline void
ia64_set_pta(__u64 pta)524 ia64_set_pta (__u64 pta)
525 {
526 /* Note: srlz.i implies srlz.d */
527 ia64_setreg(_IA64_REG_CR_PTA, pta);
528 ia64_srlz_i();
529 }
530
531 static inline void
ia64_eoi(void)532 ia64_eoi (void)
533 {
534 ia64_setreg(_IA64_REG_CR_EOI, 0);
535 ia64_srlz_d();
536 }
537
538 #define cpu_relax() ia64_hint(ia64_hint_pause)
539
540 static inline int
ia64_get_irr(unsigned int vector)541 ia64_get_irr(unsigned int vector)
542 {
543 unsigned int reg = vector / 64;
544 unsigned int bit = vector % 64;
545 u64 irr;
546
547 switch (reg) {
548 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
549 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
550 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
551 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
552 }
553
554 return test_bit(bit, &irr);
555 }
556
557 static inline void
ia64_set_lrr0(unsigned long val)558 ia64_set_lrr0 (unsigned long val)
559 {
560 ia64_setreg(_IA64_REG_CR_LRR0, val);
561 ia64_srlz_d();
562 }
563
564 static inline void
ia64_set_lrr1(unsigned long val)565 ia64_set_lrr1 (unsigned long val)
566 {
567 ia64_setreg(_IA64_REG_CR_LRR1, val);
568 ia64_srlz_d();
569 }
570
571
572 /*
573 * Given the address to which a spill occurred, return the unat bit
574 * number that corresponds to this address.
575 */
576 static inline __u64
ia64_unat_pos(void * spill_addr)577 ia64_unat_pos (void *spill_addr)
578 {
579 return ((__u64) spill_addr >> 3) & 0x3f;
580 }
581
582 /*
583 * Set the NaT bit of an integer register which was spilled at address
584 * SPILL_ADDR. UNAT is the mask to be updated.
585 */
586 static inline void
ia64_set_unat(__u64 * unat,void * spill_addr,unsigned long nat)587 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
588 {
589 __u64 bit = ia64_unat_pos(spill_addr);
590 __u64 mask = 1UL << bit;
591
592 *unat = (*unat & ~mask) | (nat << bit);
593 }
594
595 static inline __u64
ia64_get_ivr(void)596 ia64_get_ivr (void)
597 {
598 __u64 r;
599 ia64_srlz_d();
600 r = ia64_getreg(_IA64_REG_CR_IVR);
601 ia64_srlz_d();
602 return r;
603 }
604
605 static inline void
ia64_set_dbr(__u64 regnum,__u64 value)606 ia64_set_dbr (__u64 regnum, __u64 value)
607 {
608 __ia64_set_dbr(regnum, value);
609 #ifdef CONFIG_ITANIUM
610 ia64_srlz_d();
611 #endif
612 }
613
614 static inline __u64
ia64_get_dbr(__u64 regnum)615 ia64_get_dbr (__u64 regnum)
616 {
617 __u64 retval;
618
619 retval = __ia64_get_dbr(regnum);
620 #ifdef CONFIG_ITANIUM
621 ia64_srlz_d();
622 #endif
623 return retval;
624 }
625
626 static inline __u64
ia64_rotr(__u64 w,__u64 n)627 ia64_rotr (__u64 w, __u64 n)
628 {
629 return (w >> n) | (w << (64 - n));
630 }
631
632 #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
633
634 /*
635 * Take a mapped kernel address and return the equivalent address
636 * in the region 7 identity mapped virtual area.
637 */
638 static inline void *
ia64_imva(void * addr)639 ia64_imva (void *addr)
640 {
641 void *result;
642 result = (void *) ia64_tpa(addr);
643 return __va(result);
644 }
645
646 #define ARCH_HAS_PREFETCH
647 #define ARCH_HAS_PREFETCHW
648 #define ARCH_HAS_SPINLOCK_PREFETCH
649 #define PREFETCH_STRIDE L1_CACHE_BYTES
650
651 static inline void
prefetch(const void * x)652 prefetch (const void *x)
653 {
654 ia64_lfetch(ia64_lfhint_none, x);
655 }
656
657 static inline void
prefetchw(const void * x)658 prefetchw (const void *x)
659 {
660 ia64_lfetch_excl(ia64_lfhint_none, x);
661 }
662
663 #define spin_lock_prefetch(x) prefetchw(x)
664
665 extern unsigned long boot_option_idle_override;
666
667 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
668 IDLE_NOMWAIT, IDLE_POLL};
669
670 void default_idle(void);
671
672 #endif /* !__ASSEMBLY__ */
673
674 #endif /* _ASM_IA64_PROCESSOR_H */
675