1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37 * All of this file is extremely similar to the ARM coproc.c, but the
38 * types are different. My gut feeling is that it should be pretty
39 * easy to merge, but that would be an ABI breakage -- again. VFP
40 * would also need to be abstracted.
41 *
42 * For AArch32, we only take care of what is being trapped. Anything
43 * that has to do with init and userspace access has to go via the
44 * 64bit interface.
45 */
46
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48 struct sys_reg_params *params,
49 const struct sys_reg_desc *r)
50 {
51 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52 print_sys_reg_instr(params);
53 kvm_inject_undefined(vcpu);
54 return false;
55 }
56
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58 struct sys_reg_params *params,
59 const struct sys_reg_desc *r)
60 {
61 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62 print_sys_reg_instr(params);
63 kvm_inject_undefined(vcpu);
64 return false;
65 }
66
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)67 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
68 {
69 u64 val = 0x8badf00d8badf00d;
70
71 if (vcpu->arch.sysregs_loaded_on_cpu &&
72 __vcpu_read_sys_reg_from_cpu(reg, &val))
73 return val;
74
75 return __vcpu_sys_reg(vcpu, reg);
76 }
77
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)78 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
79 {
80 if (vcpu->arch.sysregs_loaded_on_cpu &&
81 __vcpu_write_sys_reg_to_cpu(val, reg))
82 return;
83
84 __vcpu_sys_reg(vcpu, reg) = val;
85 }
86
87 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
88 static u32 cache_levels;
89
90 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
91 #define CSSELR_MAX 14
92
93 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)94 static u32 get_ccsidr(u32 csselr)
95 {
96 u32 ccsidr;
97
98 /* Make sure noone else changes CSSELR during this! */
99 local_irq_disable();
100 write_sysreg(csselr, csselr_el1);
101 isb();
102 ccsidr = read_sysreg(ccsidr_el1);
103 local_irq_enable();
104
105 return ccsidr;
106 }
107
108 /*
109 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
110 */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)111 static bool access_dcsw(struct kvm_vcpu *vcpu,
112 struct sys_reg_params *p,
113 const struct sys_reg_desc *r)
114 {
115 if (!p->is_write)
116 return read_from_write_only(vcpu, p, r);
117
118 /*
119 * Only track S/W ops if we don't have FWB. It still indicates
120 * that the guest is a bit broken (S/W operations should only
121 * be done by firmware, knowing that there is only a single
122 * CPU left in the system, and certainly not from non-secure
123 * software).
124 */
125 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
126 kvm_set_way_flush(vcpu);
127
128 return true;
129 }
130
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)131 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
132 {
133 switch (r->aarch32_map) {
134 case AA32_LO:
135 *mask = GENMASK_ULL(31, 0);
136 *shift = 0;
137 break;
138 case AA32_HI:
139 *mask = GENMASK_ULL(63, 32);
140 *shift = 32;
141 break;
142 default:
143 *mask = GENMASK_ULL(63, 0);
144 *shift = 0;
145 break;
146 }
147 }
148
149 /*
150 * Generic accessor for VM registers. Only called as long as HCR_TVM
151 * is set. If the guest enables the MMU, we stop trapping the VM
152 * sys_regs and leave it in complete control of the caches.
153 */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)154 static bool access_vm_reg(struct kvm_vcpu *vcpu,
155 struct sys_reg_params *p,
156 const struct sys_reg_desc *r)
157 {
158 bool was_enabled = vcpu_has_cache_enabled(vcpu);
159 u64 val, mask, shift;
160
161 BUG_ON(!p->is_write);
162
163 get_access_mask(r, &mask, &shift);
164
165 if (~mask) {
166 val = vcpu_read_sys_reg(vcpu, r->reg);
167 val &= ~mask;
168 } else {
169 val = 0;
170 }
171
172 val |= (p->regval & (mask >> shift)) << shift;
173 vcpu_write_sys_reg(vcpu, val, r->reg);
174
175 kvm_toggle_cache(vcpu, was_enabled);
176 return true;
177 }
178
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)179 static bool access_actlr(struct kvm_vcpu *vcpu,
180 struct sys_reg_params *p,
181 const struct sys_reg_desc *r)
182 {
183 u64 mask, shift;
184
185 if (p->is_write)
186 return ignore_write(vcpu, p);
187
188 get_access_mask(r, &mask, &shift);
189 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
190
191 return true;
192 }
193
194 /*
195 * Trap handler for the GICv3 SGI generation system register.
196 * Forward the request to the VGIC emulation.
197 * The cp15_64 code makes sure this automatically works
198 * for both AArch64 and AArch32 accesses.
199 */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)200 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
201 struct sys_reg_params *p,
202 const struct sys_reg_desc *r)
203 {
204 bool g1;
205
206 if (!p->is_write)
207 return read_from_write_only(vcpu, p, r);
208
209 /*
210 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
211 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
212 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
213 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
214 * group.
215 */
216 if (p->Op0 == 0) { /* AArch32 */
217 switch (p->Op1) {
218 default: /* Keep GCC quiet */
219 case 0: /* ICC_SGI1R */
220 g1 = true;
221 break;
222 case 1: /* ICC_ASGI1R */
223 case 2: /* ICC_SGI0R */
224 g1 = false;
225 break;
226 }
227 } else { /* AArch64 */
228 switch (p->Op2) {
229 default: /* Keep GCC quiet */
230 case 5: /* ICC_SGI1R_EL1 */
231 g1 = true;
232 break;
233 case 6: /* ICC_ASGI1R_EL1 */
234 case 7: /* ICC_SGI0R_EL1 */
235 g1 = false;
236 break;
237 }
238 }
239
240 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
241
242 return true;
243 }
244
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)245 static bool access_gic_sre(struct kvm_vcpu *vcpu,
246 struct sys_reg_params *p,
247 const struct sys_reg_desc *r)
248 {
249 if (p->is_write)
250 return ignore_write(vcpu, p);
251
252 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
253 return true;
254 }
255
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)256 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
257 struct sys_reg_params *p,
258 const struct sys_reg_desc *r)
259 {
260 if (p->is_write)
261 return ignore_write(vcpu, p);
262 else
263 return read_zero(vcpu, p);
264 }
265
266 /*
267 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
268 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
269 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
270 * treat it separately.
271 */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)272 static bool trap_loregion(struct kvm_vcpu *vcpu,
273 struct sys_reg_params *p,
274 const struct sys_reg_desc *r)
275 {
276 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
277 u32 sr = reg_to_encoding(r);
278
279 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
280 kvm_inject_undefined(vcpu);
281 return false;
282 }
283
284 if (p->is_write && sr == SYS_LORID_EL1)
285 return write_to_read_only(vcpu, p, r);
286
287 return trap_raz_wi(vcpu, p, r);
288 }
289
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
291 struct sys_reg_params *p,
292 const struct sys_reg_desc *r)
293 {
294 if (p->is_write) {
295 return ignore_write(vcpu, p);
296 } else {
297 p->regval = (1 << 3);
298 return true;
299 }
300 }
301
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
303 struct sys_reg_params *p,
304 const struct sys_reg_desc *r)
305 {
306 if (p->is_write) {
307 return ignore_write(vcpu, p);
308 } else {
309 p->regval = read_sysreg(dbgauthstatus_el1);
310 return true;
311 }
312 }
313
314 /*
315 * We want to avoid world-switching all the DBG registers all the
316 * time:
317 *
318 * - If we've touched any debug register, it is likely that we're
319 * going to touch more of them. It then makes sense to disable the
320 * traps and start doing the save/restore dance
321 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322 * then mandatory to save/restore the registers, as the guest
323 * depends on them.
324 *
325 * For this, we use a DIRTY bit, indicating the guest has modified the
326 * debug registers, used as follow:
327 *
328 * On guest entry:
329 * - If the dirty bit is set (because we're coming back from trapping),
330 * disable the traps, save host registers, restore guest registers.
331 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332 * set the dirty bit, disable the traps, save host registers,
333 * restore guest registers.
334 * - Otherwise, enable the traps
335 *
336 * On guest exit:
337 * - If the dirty bit is set, save guest registers, restore host
338 * registers and clear the dirty bit. This ensure that the host can
339 * now use the debug registers.
340 */
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)341 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
342 struct sys_reg_params *p,
343 const struct sys_reg_desc *r)
344 {
345 if (p->is_write) {
346 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
347 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
348 } else {
349 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
350 }
351
352 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
353
354 return true;
355 }
356
357 /*
358 * reg_to_dbg/dbg_to_reg
359 *
360 * A 32 bit write to a debug register leave top bits alone
361 * A 32 bit read from a debug register only returns the bottom bits
362 *
363 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364 * hyp.S code switches between host and guest values in future.
365 */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)366 static void reg_to_dbg(struct kvm_vcpu *vcpu,
367 struct sys_reg_params *p,
368 const struct sys_reg_desc *rd,
369 u64 *dbg_reg)
370 {
371 u64 mask, shift, val;
372
373 get_access_mask(rd, &mask, &shift);
374
375 val = *dbg_reg;
376 val &= ~mask;
377 val |= (p->regval & (mask >> shift)) << shift;
378 *dbg_reg = val;
379
380 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
381 }
382
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)383 static void dbg_to_reg(struct kvm_vcpu *vcpu,
384 struct sys_reg_params *p,
385 const struct sys_reg_desc *rd,
386 u64 *dbg_reg)
387 {
388 u64 mask, shift;
389
390 get_access_mask(rd, &mask, &shift);
391 p->regval = (*dbg_reg & mask) >> shift;
392 }
393
trap_bvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)394 static bool trap_bvr(struct kvm_vcpu *vcpu,
395 struct sys_reg_params *p,
396 const struct sys_reg_desc *rd)
397 {
398 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
399
400 if (p->is_write)
401 reg_to_dbg(vcpu, p, rd, dbg_reg);
402 else
403 dbg_to_reg(vcpu, p, rd, dbg_reg);
404
405 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
406
407 return true;
408 }
409
set_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
414
415 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416 return -EFAULT;
417 return 0;
418 }
419
get_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421 const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
424
425 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426 return -EFAULT;
427 return 0;
428 }
429
reset_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)430 static void reset_bvr(struct kvm_vcpu *vcpu,
431 const struct sys_reg_desc *rd)
432 {
433 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
434 }
435
trap_bcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)436 static bool trap_bcr(struct kvm_vcpu *vcpu,
437 struct sys_reg_params *p,
438 const struct sys_reg_desc *rd)
439 {
440 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
441
442 if (p->is_write)
443 reg_to_dbg(vcpu, p, rd, dbg_reg);
444 else
445 dbg_to_reg(vcpu, p, rd, dbg_reg);
446
447 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
448
449 return true;
450 }
451
set_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
453 const struct kvm_one_reg *reg, void __user *uaddr)
454 {
455 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
456
457 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
458 return -EFAULT;
459
460 return 0;
461 }
462
get_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
467
468 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 return -EFAULT;
470 return 0;
471 }
472
reset_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)473 static void reset_bcr(struct kvm_vcpu *vcpu,
474 const struct sys_reg_desc *rd)
475 {
476 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
477 }
478
trap_wvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)479 static bool trap_wvr(struct kvm_vcpu *vcpu,
480 struct sys_reg_params *p,
481 const struct sys_reg_desc *rd)
482 {
483 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
484
485 if (p->is_write)
486 reg_to_dbg(vcpu, p, rd, dbg_reg);
487 else
488 dbg_to_reg(vcpu, p, rd, dbg_reg);
489
490 trace_trap_reg(__func__, rd->CRm, p->is_write,
491 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
492
493 return true;
494 }
495
set_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497 const struct kvm_one_reg *reg, void __user *uaddr)
498 {
499 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
500
501 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
502 return -EFAULT;
503 return 0;
504 }
505
get_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
510
511 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 return -EFAULT;
513 return 0;
514 }
515
reset_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)516 static void reset_wvr(struct kvm_vcpu *vcpu,
517 const struct sys_reg_desc *rd)
518 {
519 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
520 }
521
trap_wcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)522 static bool trap_wcr(struct kvm_vcpu *vcpu,
523 struct sys_reg_params *p,
524 const struct sys_reg_desc *rd)
525 {
526 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
527
528 if (p->is_write)
529 reg_to_dbg(vcpu, p, rd, dbg_reg);
530 else
531 dbg_to_reg(vcpu, p, rd, dbg_reg);
532
533 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
534
535 return true;
536 }
537
set_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539 const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
542
543 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
544 return -EFAULT;
545 return 0;
546 }
547
get_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
549 const struct kvm_one_reg *reg, void __user *uaddr)
550 {
551 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
552
553 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
554 return -EFAULT;
555 return 0;
556 }
557
reset_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)558 static void reset_wcr(struct kvm_vcpu *vcpu,
559 const struct sys_reg_desc *rd)
560 {
561 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
562 }
563
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
565 {
566 u64 amair = read_sysreg(amair_el1);
567 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
568 }
569
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
571 {
572 u64 actlr = read_sysreg(actlr_el1);
573 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
574 }
575
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
577 {
578 u64 mpidr;
579
580 /*
581 * Map the vcpu_id into the first three affinity level fields of
582 * the MPIDR. We limit the number of VCPUs in level 0 due to a
583 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584 * of the GICv3 to be able to address each CPU directly when
585 * sending IPIs.
586 */
587 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
588 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
591 }
592
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)593 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
594 const struct sys_reg_desc *r)
595 {
596 if (kvm_vcpu_has_pmu(vcpu))
597 return 0;
598
599 return REG_HIDDEN;
600 }
601
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)602 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
603 {
604 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
605
606 /* No PMU available, any PMU reg may UNDEF... */
607 if (!kvm_arm_support_pmu_v3())
608 return;
609
610 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
611 n &= ARMV8_PMU_PMCR_N_MASK;
612 if (n)
613 mask |= GENMASK(n - 1, 0);
614
615 reset_unknown(vcpu, r);
616 __vcpu_sys_reg(vcpu, r->reg) &= mask;
617 }
618
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)619 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620 {
621 reset_unknown(vcpu, r);
622 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
623 }
624
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)625 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
626 {
627 reset_unknown(vcpu, r);
628 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
629 }
630
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)631 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
632 {
633 reset_unknown(vcpu, r);
634 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
635 }
636
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)637 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
638 {
639 u64 pmcr, val;
640
641 /* No PMU available, PMCR_EL0 may UNDEF... */
642 if (!kvm_arm_support_pmu_v3())
643 return;
644
645 pmcr = read_sysreg(pmcr_el0);
646 /*
647 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
648 * except PMCR.E resetting to zero.
649 */
650 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
651 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
652 if (!system_supports_32bit_el0())
653 val |= ARMV8_PMU_PMCR_LC;
654 __vcpu_sys_reg(vcpu, r->reg) = val;
655 }
656
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)657 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
658 {
659 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
660 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
661
662 if (!enabled)
663 kvm_inject_undefined(vcpu);
664
665 return !enabled;
666 }
667
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)668 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
669 {
670 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
671 }
672
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)673 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
674 {
675 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
676 }
677
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)678 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
679 {
680 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
681 }
682
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)683 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
684 {
685 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
686 }
687
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)688 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
689 const struct sys_reg_desc *r)
690 {
691 u64 val;
692
693 if (pmu_access_el0_disabled(vcpu))
694 return false;
695
696 if (p->is_write) {
697 /* Only update writeable bits of PMCR */
698 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
699 val &= ~ARMV8_PMU_PMCR_MASK;
700 val |= p->regval & ARMV8_PMU_PMCR_MASK;
701 if (!system_supports_32bit_el0())
702 val |= ARMV8_PMU_PMCR_LC;
703 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
704 kvm_pmu_handle_pmcr(vcpu, val);
705 kvm_vcpu_pmu_restore_guest(vcpu);
706 } else {
707 /* PMCR.P & PMCR.C are RAZ */
708 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
709 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
710 p->regval = val;
711 }
712
713 return true;
714 }
715
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)716 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
717 const struct sys_reg_desc *r)
718 {
719 if (pmu_access_event_counter_el0_disabled(vcpu))
720 return false;
721
722 if (p->is_write)
723 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
724 else
725 /* return PMSELR.SEL field */
726 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
727 & ARMV8_PMU_COUNTER_MASK;
728
729 return true;
730 }
731
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)732 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
733 const struct sys_reg_desc *r)
734 {
735 u64 pmceid, mask, shift;
736
737 BUG_ON(p->is_write);
738
739 if (pmu_access_el0_disabled(vcpu))
740 return false;
741
742 get_access_mask(r, &mask, &shift);
743
744 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
745 pmceid &= mask;
746 pmceid >>= shift;
747
748 p->regval = pmceid;
749
750 return true;
751 }
752
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)753 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
754 {
755 u64 pmcr, val;
756
757 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
758 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
759 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
760 kvm_inject_undefined(vcpu);
761 return false;
762 }
763
764 return true;
765 }
766
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)767 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
768 struct sys_reg_params *p,
769 const struct sys_reg_desc *r)
770 {
771 u64 idx = ~0UL;
772
773 if (r->CRn == 9 && r->CRm == 13) {
774 if (r->Op2 == 2) {
775 /* PMXEVCNTR_EL0 */
776 if (pmu_access_event_counter_el0_disabled(vcpu))
777 return false;
778
779 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
780 & ARMV8_PMU_COUNTER_MASK;
781 } else if (r->Op2 == 0) {
782 /* PMCCNTR_EL0 */
783 if (pmu_access_cycle_counter_el0_disabled(vcpu))
784 return false;
785
786 idx = ARMV8_PMU_CYCLE_IDX;
787 }
788 } else if (r->CRn == 0 && r->CRm == 9) {
789 /* PMCCNTR */
790 if (pmu_access_event_counter_el0_disabled(vcpu))
791 return false;
792
793 idx = ARMV8_PMU_CYCLE_IDX;
794 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
795 /* PMEVCNTRn_EL0 */
796 if (pmu_access_event_counter_el0_disabled(vcpu))
797 return false;
798
799 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
800 }
801
802 /* Catch any decoding mistake */
803 WARN_ON(idx == ~0UL);
804
805 if (!pmu_counter_idx_valid(vcpu, idx))
806 return false;
807
808 if (p->is_write) {
809 if (pmu_access_el0_disabled(vcpu))
810 return false;
811
812 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
813 } else {
814 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
815 }
816
817 return true;
818 }
819
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)820 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
821 const struct sys_reg_desc *r)
822 {
823 u64 idx, reg;
824
825 if (pmu_access_el0_disabled(vcpu))
826 return false;
827
828 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
829 /* PMXEVTYPER_EL0 */
830 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
831 reg = PMEVTYPER0_EL0 + idx;
832 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
833 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
834 if (idx == ARMV8_PMU_CYCLE_IDX)
835 reg = PMCCFILTR_EL0;
836 else
837 /* PMEVTYPERn_EL0 */
838 reg = PMEVTYPER0_EL0 + idx;
839 } else {
840 BUG();
841 }
842
843 if (!pmu_counter_idx_valid(vcpu, idx))
844 return false;
845
846 if (p->is_write) {
847 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
848 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
849 kvm_vcpu_pmu_restore_guest(vcpu);
850 } else {
851 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
852 }
853
854 return true;
855 }
856
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)857 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
858 const struct sys_reg_desc *r)
859 {
860 u64 val, mask;
861
862 if (pmu_access_el0_disabled(vcpu))
863 return false;
864
865 mask = kvm_pmu_valid_counter_mask(vcpu);
866 if (p->is_write) {
867 val = p->regval & mask;
868 if (r->Op2 & 0x1) {
869 /* accessing PMCNTENSET_EL0 */
870 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
871 kvm_pmu_enable_counter_mask(vcpu, val);
872 kvm_vcpu_pmu_restore_guest(vcpu);
873 } else {
874 /* accessing PMCNTENCLR_EL0 */
875 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
876 kvm_pmu_disable_counter_mask(vcpu, val);
877 }
878 } else {
879 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
880 }
881
882 return true;
883 }
884
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)885 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
886 const struct sys_reg_desc *r)
887 {
888 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
889
890 if (check_pmu_access_disabled(vcpu, 0))
891 return false;
892
893 if (p->is_write) {
894 u64 val = p->regval & mask;
895
896 if (r->Op2 & 0x1)
897 /* accessing PMINTENSET_EL1 */
898 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
899 else
900 /* accessing PMINTENCLR_EL1 */
901 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
902 } else {
903 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
904 }
905
906 return true;
907 }
908
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)909 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
910 const struct sys_reg_desc *r)
911 {
912 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
913
914 if (pmu_access_el0_disabled(vcpu))
915 return false;
916
917 if (p->is_write) {
918 if (r->CRm & 0x2)
919 /* accessing PMOVSSET_EL0 */
920 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
921 else
922 /* accessing PMOVSCLR_EL0 */
923 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
924 } else {
925 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
926 }
927
928 return true;
929 }
930
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)931 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
932 const struct sys_reg_desc *r)
933 {
934 u64 mask;
935
936 if (!p->is_write)
937 return read_from_write_only(vcpu, p, r);
938
939 if (pmu_write_swinc_el0_disabled(vcpu))
940 return false;
941
942 mask = kvm_pmu_valid_counter_mask(vcpu);
943 kvm_pmu_software_increment(vcpu, p->regval & mask);
944 return true;
945 }
946
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)947 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
948 const struct sys_reg_desc *r)
949 {
950 if (p->is_write) {
951 if (!vcpu_mode_priv(vcpu)) {
952 kvm_inject_undefined(vcpu);
953 return false;
954 }
955
956 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
957 p->regval & ARMV8_PMU_USERENR_MASK;
958 } else {
959 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
960 & ARMV8_PMU_USERENR_MASK;
961 }
962
963 return true;
964 }
965
966 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
967 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
968 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
969 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
970 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
971 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
972 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
973 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
974 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
975 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
976
977 #define PMU_SYS_REG(r) \
978 SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
979
980 /* Macro to expand the PMEVCNTRn_EL0 register */
981 #define PMU_PMEVCNTR_EL0(n) \
982 { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \
983 .reset = reset_pmevcntr, \
984 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
985
986 /* Macro to expand the PMEVTYPERn_EL0 register */
987 #define PMU_PMEVTYPER_EL0(n) \
988 { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \
989 .reset = reset_pmevtyper, \
990 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
991
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)992 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
993 const struct sys_reg_desc *r)
994 {
995 kvm_inject_undefined(vcpu);
996
997 return false;
998 }
999
1000 /* Macro to expand the AMU counter and type registers*/
1001 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1002 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1003 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1004 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1005
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1006 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1007 const struct sys_reg_desc *rd)
1008 {
1009 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1010 }
1011
1012 /*
1013 * If we land here on a PtrAuth access, that is because we didn't
1014 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1015 * way this happens is when the guest does not have PtrAuth support
1016 * enabled.
1017 */
1018 #define __PTRAUTH_KEY(k) \
1019 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1020 .visibility = ptrauth_visibility}
1021
1022 #define PTRAUTH_KEY(k) \
1023 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1024 __PTRAUTH_KEY(k ## KEYHI_EL1)
1025
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1026 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1027 struct sys_reg_params *p,
1028 const struct sys_reg_desc *r)
1029 {
1030 enum kvm_arch_timers tmr;
1031 enum kvm_arch_timer_regs treg;
1032 u64 reg = reg_to_encoding(r);
1033
1034 switch (reg) {
1035 case SYS_CNTP_TVAL_EL0:
1036 case SYS_AARCH32_CNTP_TVAL:
1037 tmr = TIMER_PTIMER;
1038 treg = TIMER_REG_TVAL;
1039 break;
1040 case SYS_CNTP_CTL_EL0:
1041 case SYS_AARCH32_CNTP_CTL:
1042 tmr = TIMER_PTIMER;
1043 treg = TIMER_REG_CTL;
1044 break;
1045 case SYS_CNTP_CVAL_EL0:
1046 case SYS_AARCH32_CNTP_CVAL:
1047 tmr = TIMER_PTIMER;
1048 treg = TIMER_REG_CVAL;
1049 break;
1050 default:
1051 BUG();
1052 }
1053
1054 if (p->is_write)
1055 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1056 else
1057 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1058
1059 return true;
1060 }
1061
1062 /* Read a sanitised cpufeature ID register by sys_reg_desc */
read_id_reg(const struct kvm_vcpu * vcpu,struct sys_reg_desc const * r,bool raz)1063 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1064 struct sys_reg_desc const *r, bool raz)
1065 {
1066 u32 id = reg_to_encoding(r);
1067 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1068
1069 switch (id) {
1070 case SYS_ID_AA64PFR0_EL1:
1071 if (!vcpu_has_sve(vcpu))
1072 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1073 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1074 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1075 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1076 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1077 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1078 break;
1079 case SYS_ID_AA64PFR1_EL1:
1080 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1081 if (kvm_has_mte(vcpu->kvm)) {
1082 u64 pfr, mte;
1083
1084 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1085 mte = cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR1_MTE_SHIFT);
1086 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR1_MTE), mte);
1087 }
1088 break;
1089 case SYS_ID_AA64ISAR1_EL1:
1090 if (!vcpu_has_ptrauth(vcpu))
1091 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1092 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1093 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1094 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1095 break;
1096 case SYS_ID_AA64DFR0_EL1:
1097 /* Limit debug to ARMv8.0 */
1098 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1099 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1100 /* Limit guests to PMUv3 for ARMv8.4 */
1101 val = cpuid_feature_cap_perfmon_field(val,
1102 ID_AA64DFR0_PMUVER_SHIFT,
1103 kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1104 /* Hide SPE from guests */
1105 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1106 break;
1107 case SYS_ID_DFR0_EL1:
1108 /* Limit guests to PMUv3 for ARMv8.4 */
1109 val = cpuid_feature_cap_perfmon_field(val,
1110 ID_DFR0_PERFMON_SHIFT,
1111 kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1112 break;
1113 }
1114
1115 return val;
1116 }
1117
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1118 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1119 const struct sys_reg_desc *r)
1120 {
1121 u32 id = reg_to_encoding(r);
1122
1123 switch (id) {
1124 case SYS_ID_AA64ZFR0_EL1:
1125 if (!vcpu_has_sve(vcpu))
1126 return REG_RAZ;
1127 break;
1128 }
1129
1130 return 0;
1131 }
1132
1133 /* cpufeature ID register access trap handlers */
1134
__access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r,bool raz)1135 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1136 struct sys_reg_params *p,
1137 const struct sys_reg_desc *r,
1138 bool raz)
1139 {
1140 if (p->is_write)
1141 return write_to_read_only(vcpu, p, r);
1142
1143 p->regval = read_id_reg(vcpu, r, raz);
1144 return true;
1145 }
1146
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1147 static bool access_id_reg(struct kvm_vcpu *vcpu,
1148 struct sys_reg_params *p,
1149 const struct sys_reg_desc *r)
1150 {
1151 bool raz = sysreg_visible_as_raz(vcpu, r);
1152
1153 return __access_id_reg(vcpu, p, r, raz);
1154 }
1155
access_raz_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1156 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1157 struct sys_reg_params *p,
1158 const struct sys_reg_desc *r)
1159 {
1160 return __access_id_reg(vcpu, p, r, true);
1161 }
1162
1163 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1164 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1165 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1166
1167 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1168 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1169 const struct sys_reg_desc *rd)
1170 {
1171 if (vcpu_has_sve(vcpu))
1172 return 0;
1173
1174 return REG_HIDDEN;
1175 }
1176
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1177 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1178 const struct sys_reg_desc *rd,
1179 const struct kvm_one_reg *reg, void __user *uaddr)
1180 {
1181 const u64 id = sys_reg_to_index(rd);
1182 u8 csv2, csv3;
1183 int err;
1184 u64 val;
1185
1186 err = reg_from_user(&val, uaddr, id);
1187 if (err)
1188 return err;
1189
1190 /*
1191 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1192 * it doesn't promise more than what is actually provided (the
1193 * guest could otherwise be covered in ectoplasmic residue).
1194 */
1195 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1196 if (csv2 > 1 ||
1197 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1198 return -EINVAL;
1199
1200 /* Same thing for CSV3 */
1201 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1202 if (csv3 > 1 ||
1203 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1204 return -EINVAL;
1205
1206 /* We can only differ with CSV[23], and anything else is an error */
1207 val ^= read_id_reg(vcpu, rd, false);
1208 val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1209 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1210 if (val)
1211 return -EINVAL;
1212
1213 vcpu->kvm->arch.pfr0_csv2 = csv2;
1214 vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1215
1216 return 0;
1217 }
1218
1219 /*
1220 * cpufeature ID register user accessors
1221 *
1222 * For now, these registers are immutable for userspace, so no values
1223 * are stored, and for set_id_reg() we don't allow the effective value
1224 * to be changed.
1225 */
__get_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1226 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1227 const struct sys_reg_desc *rd, void __user *uaddr,
1228 bool raz)
1229 {
1230 const u64 id = sys_reg_to_index(rd);
1231 const u64 val = read_id_reg(vcpu, rd, raz);
1232
1233 return reg_to_user(uaddr, &val, id);
1234 }
1235
__set_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1236 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1237 const struct sys_reg_desc *rd, void __user *uaddr,
1238 bool raz)
1239 {
1240 const u64 id = sys_reg_to_index(rd);
1241 int err;
1242 u64 val;
1243
1244 err = reg_from_user(&val, uaddr, id);
1245 if (err)
1246 return err;
1247
1248 /* This is what we mean by invariant: you can't change it. */
1249 if (val != read_id_reg(vcpu, rd, raz))
1250 return -EINVAL;
1251
1252 return 0;
1253 }
1254
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1255 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1256 const struct kvm_one_reg *reg, void __user *uaddr)
1257 {
1258 bool raz = sysreg_visible_as_raz(vcpu, rd);
1259
1260 return __get_id_reg(vcpu, rd, uaddr, raz);
1261 }
1262
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1263 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1264 const struct kvm_one_reg *reg, void __user *uaddr)
1265 {
1266 bool raz = sysreg_visible_as_raz(vcpu, rd);
1267
1268 return __set_id_reg(vcpu, rd, uaddr, raz);
1269 }
1270
get_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1271 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1272 const struct kvm_one_reg *reg, void __user *uaddr)
1273 {
1274 return __get_id_reg(vcpu, rd, uaddr, true);
1275 }
1276
set_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1277 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1278 const struct kvm_one_reg *reg, void __user *uaddr)
1279 {
1280 return __set_id_reg(vcpu, rd, uaddr, true);
1281 }
1282
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1283 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1284 const struct kvm_one_reg *reg, void __user *uaddr)
1285 {
1286 int err;
1287 u64 val;
1288
1289 /* Perform the access even if we are going to ignore the value */
1290 err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1291 if (err)
1292 return err;
1293
1294 return 0;
1295 }
1296
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1297 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1298 const struct sys_reg_desc *r)
1299 {
1300 if (p->is_write)
1301 return write_to_read_only(vcpu, p, r);
1302
1303 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1304 return true;
1305 }
1306
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1307 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1308 const struct sys_reg_desc *r)
1309 {
1310 if (p->is_write)
1311 return write_to_read_only(vcpu, p, r);
1312
1313 p->regval = read_sysreg(clidr_el1);
1314 return true;
1315 }
1316
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1317 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1318 const struct sys_reg_desc *r)
1319 {
1320 int reg = r->reg;
1321
1322 if (p->is_write)
1323 vcpu_write_sys_reg(vcpu, p->regval, reg);
1324 else
1325 p->regval = vcpu_read_sys_reg(vcpu, reg);
1326 return true;
1327 }
1328
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1329 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1330 const struct sys_reg_desc *r)
1331 {
1332 u32 csselr;
1333
1334 if (p->is_write)
1335 return write_to_read_only(vcpu, p, r);
1336
1337 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1338 p->regval = get_ccsidr(csselr);
1339
1340 /*
1341 * Guests should not be doing cache operations by set/way at all, and
1342 * for this reason, we trap them and attempt to infer the intent, so
1343 * that we can flush the entire guest's address space at the appropriate
1344 * time.
1345 * To prevent this trapping from causing performance problems, let's
1346 * expose the geometry of all data and unified caches (which are
1347 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1348 * [If guests should attempt to infer aliasing properties from the
1349 * geometry (which is not permitted by the architecture), they would
1350 * only do so for virtually indexed caches.]
1351 */
1352 if (!(csselr & 1)) // data or unified cache
1353 p->regval &= ~GENMASK(27, 3);
1354 return true;
1355 }
1356
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1357 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1358 const struct sys_reg_desc *rd)
1359 {
1360 if (kvm_has_mte(vcpu->kvm))
1361 return 0;
1362
1363 return REG_HIDDEN;
1364 }
1365
1366 #define MTE_REG(name) { \
1367 SYS_DESC(SYS_##name), \
1368 .access = undef_access, \
1369 .reset = reset_unknown, \
1370 .reg = name, \
1371 .visibility = mte_visibility, \
1372 }
1373
1374 /* sys_reg_desc initialiser for known cpufeature ID registers */
1375 #define ID_SANITISED(name) { \
1376 SYS_DESC(SYS_##name), \
1377 .access = access_id_reg, \
1378 .get_user = get_id_reg, \
1379 .set_user = set_id_reg, \
1380 .visibility = id_visibility, \
1381 }
1382
1383 /*
1384 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1385 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1386 * (1 <= crm < 8, 0 <= Op2 < 8).
1387 */
1388 #define ID_UNALLOCATED(crm, op2) { \
1389 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1390 .access = access_raz_id_reg, \
1391 .get_user = get_raz_id_reg, \
1392 .set_user = set_raz_id_reg, \
1393 }
1394
1395 /*
1396 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1397 * For now, these are exposed just like unallocated ID regs: they appear
1398 * RAZ for the guest.
1399 */
1400 #define ID_HIDDEN(name) { \
1401 SYS_DESC(SYS_##name), \
1402 .access = access_raz_id_reg, \
1403 .get_user = get_raz_id_reg, \
1404 .set_user = set_raz_id_reg, \
1405 }
1406
1407 /*
1408 * Architected system registers.
1409 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1410 *
1411 * Debug handling: We do trap most, if not all debug related system
1412 * registers. The implementation is good enough to ensure that a guest
1413 * can use these with minimal performance degradation. The drawback is
1414 * that we don't implement any of the external debug, none of the
1415 * OSlock protocol. This should be revisited if we ever encounter a
1416 * more demanding guest...
1417 */
1418 static const struct sys_reg_desc sys_reg_descs[] = {
1419 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1420 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1421 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1422
1423 DBG_BCR_BVR_WCR_WVR_EL1(0),
1424 DBG_BCR_BVR_WCR_WVR_EL1(1),
1425 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1426 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1427 DBG_BCR_BVR_WCR_WVR_EL1(2),
1428 DBG_BCR_BVR_WCR_WVR_EL1(3),
1429 DBG_BCR_BVR_WCR_WVR_EL1(4),
1430 DBG_BCR_BVR_WCR_WVR_EL1(5),
1431 DBG_BCR_BVR_WCR_WVR_EL1(6),
1432 DBG_BCR_BVR_WCR_WVR_EL1(7),
1433 DBG_BCR_BVR_WCR_WVR_EL1(8),
1434 DBG_BCR_BVR_WCR_WVR_EL1(9),
1435 DBG_BCR_BVR_WCR_WVR_EL1(10),
1436 DBG_BCR_BVR_WCR_WVR_EL1(11),
1437 DBG_BCR_BVR_WCR_WVR_EL1(12),
1438 DBG_BCR_BVR_WCR_WVR_EL1(13),
1439 DBG_BCR_BVR_WCR_WVR_EL1(14),
1440 DBG_BCR_BVR_WCR_WVR_EL1(15),
1441
1442 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1443 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1444 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1445 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1446 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1447 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1448 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1449 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1450
1451 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1452 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1453 // DBGDTR[TR]X_EL0 share the same encoding
1454 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1455
1456 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1457
1458 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1459
1460 /*
1461 * ID regs: all ID_SANITISED() entries here must have corresponding
1462 * entries in arm64_ftr_regs[].
1463 */
1464
1465 /* AArch64 mappings of the AArch32 ID registers */
1466 /* CRm=1 */
1467 ID_SANITISED(ID_PFR0_EL1),
1468 ID_SANITISED(ID_PFR1_EL1),
1469 ID_SANITISED(ID_DFR0_EL1),
1470 ID_HIDDEN(ID_AFR0_EL1),
1471 ID_SANITISED(ID_MMFR0_EL1),
1472 ID_SANITISED(ID_MMFR1_EL1),
1473 ID_SANITISED(ID_MMFR2_EL1),
1474 ID_SANITISED(ID_MMFR3_EL1),
1475
1476 /* CRm=2 */
1477 ID_SANITISED(ID_ISAR0_EL1),
1478 ID_SANITISED(ID_ISAR1_EL1),
1479 ID_SANITISED(ID_ISAR2_EL1),
1480 ID_SANITISED(ID_ISAR3_EL1),
1481 ID_SANITISED(ID_ISAR4_EL1),
1482 ID_SANITISED(ID_ISAR5_EL1),
1483 ID_SANITISED(ID_MMFR4_EL1),
1484 ID_SANITISED(ID_ISAR6_EL1),
1485
1486 /* CRm=3 */
1487 ID_SANITISED(MVFR0_EL1),
1488 ID_SANITISED(MVFR1_EL1),
1489 ID_SANITISED(MVFR2_EL1),
1490 ID_UNALLOCATED(3,3),
1491 ID_SANITISED(ID_PFR2_EL1),
1492 ID_HIDDEN(ID_DFR1_EL1),
1493 ID_SANITISED(ID_MMFR5_EL1),
1494 ID_UNALLOCATED(3,7),
1495
1496 /* AArch64 ID registers */
1497 /* CRm=4 */
1498 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1499 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1500 ID_SANITISED(ID_AA64PFR1_EL1),
1501 ID_UNALLOCATED(4,2),
1502 ID_UNALLOCATED(4,3),
1503 ID_SANITISED(ID_AA64ZFR0_EL1),
1504 ID_UNALLOCATED(4,5),
1505 ID_UNALLOCATED(4,6),
1506 ID_UNALLOCATED(4,7),
1507
1508 /* CRm=5 */
1509 ID_SANITISED(ID_AA64DFR0_EL1),
1510 ID_SANITISED(ID_AA64DFR1_EL1),
1511 ID_UNALLOCATED(5,2),
1512 ID_UNALLOCATED(5,3),
1513 ID_HIDDEN(ID_AA64AFR0_EL1),
1514 ID_HIDDEN(ID_AA64AFR1_EL1),
1515 ID_UNALLOCATED(5,6),
1516 ID_UNALLOCATED(5,7),
1517
1518 /* CRm=6 */
1519 ID_SANITISED(ID_AA64ISAR0_EL1),
1520 ID_SANITISED(ID_AA64ISAR1_EL1),
1521 ID_UNALLOCATED(6,2),
1522 ID_UNALLOCATED(6,3),
1523 ID_UNALLOCATED(6,4),
1524 ID_UNALLOCATED(6,5),
1525 ID_UNALLOCATED(6,6),
1526 ID_UNALLOCATED(6,7),
1527
1528 /* CRm=7 */
1529 ID_SANITISED(ID_AA64MMFR0_EL1),
1530 ID_SANITISED(ID_AA64MMFR1_EL1),
1531 ID_SANITISED(ID_AA64MMFR2_EL1),
1532 ID_UNALLOCATED(7,3),
1533 ID_UNALLOCATED(7,4),
1534 ID_UNALLOCATED(7,5),
1535 ID_UNALLOCATED(7,6),
1536 ID_UNALLOCATED(7,7),
1537
1538 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1539 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1540 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1541
1542 MTE_REG(RGSR_EL1),
1543 MTE_REG(GCR_EL1),
1544
1545 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1546 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1547 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1548 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1549 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1550
1551 PTRAUTH_KEY(APIA),
1552 PTRAUTH_KEY(APIB),
1553 PTRAUTH_KEY(APDA),
1554 PTRAUTH_KEY(APDB),
1555 PTRAUTH_KEY(APGA),
1556
1557 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1558 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1559 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1560
1561 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1562 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1563 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1564 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1565 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1566 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1567 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1568 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1569
1570 MTE_REG(TFSR_EL1),
1571 MTE_REG(TFSRE0_EL1),
1572
1573 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1574 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1575
1576 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1577 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1578 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1579 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1580 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1581 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1582 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1583 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1584 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1585 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1586 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1587 /* PMBIDR_EL1 is not trapped */
1588
1589 { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1590 .access = access_pminten, .reg = PMINTENSET_EL1 },
1591 { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1592 .access = access_pminten, .reg = PMINTENSET_EL1 },
1593 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1594
1595 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1596 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1597
1598 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1599 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1600 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1601 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1602 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1603
1604 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1605 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1606
1607 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1608 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1609 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1610 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1611 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1612 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1613 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1614 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1615 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1616 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1617 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1618 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1619
1620 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1621 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1622
1623 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1624
1625 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1626
1627 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1628 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1629 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1630 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1631
1632 { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1633 .reset = reset_pmcr, .reg = PMCR_EL0 },
1634 { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1635 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1636 { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1637 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1638 { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1639 .access = access_pmovs, .reg = PMOVSSET_EL0 },
1640 /*
1641 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1642 * previously (and pointlessly) advertised in the past...
1643 */
1644 { PMU_SYS_REG(SYS_PMSWINC_EL0),
1645 .get_user = get_raz_id_reg, .set_user = set_wi_reg,
1646 .access = access_pmswinc, .reset = NULL },
1647 { PMU_SYS_REG(SYS_PMSELR_EL0),
1648 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1649 { PMU_SYS_REG(SYS_PMCEID0_EL0),
1650 .access = access_pmceid, .reset = NULL },
1651 { PMU_SYS_REG(SYS_PMCEID1_EL0),
1652 .access = access_pmceid, .reset = NULL },
1653 { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1654 .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1655 { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1656 .access = access_pmu_evtyper, .reset = NULL },
1657 { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1658 .access = access_pmu_evcntr, .reset = NULL },
1659 /*
1660 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1661 * in 32bit mode. Here we choose to reset it as zero for consistency.
1662 */
1663 { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1664 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1665 { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1666 .access = access_pmovs, .reg = PMOVSSET_EL0 },
1667
1668 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1669 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1670
1671 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1672
1673 { SYS_DESC(SYS_AMCR_EL0), undef_access },
1674 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1675 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1676 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1677 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1678 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1679 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1680 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1681 AMU_AMEVCNTR0_EL0(0),
1682 AMU_AMEVCNTR0_EL0(1),
1683 AMU_AMEVCNTR0_EL0(2),
1684 AMU_AMEVCNTR0_EL0(3),
1685 AMU_AMEVCNTR0_EL0(4),
1686 AMU_AMEVCNTR0_EL0(5),
1687 AMU_AMEVCNTR0_EL0(6),
1688 AMU_AMEVCNTR0_EL0(7),
1689 AMU_AMEVCNTR0_EL0(8),
1690 AMU_AMEVCNTR0_EL0(9),
1691 AMU_AMEVCNTR0_EL0(10),
1692 AMU_AMEVCNTR0_EL0(11),
1693 AMU_AMEVCNTR0_EL0(12),
1694 AMU_AMEVCNTR0_EL0(13),
1695 AMU_AMEVCNTR0_EL0(14),
1696 AMU_AMEVCNTR0_EL0(15),
1697 AMU_AMEVTYPER0_EL0(0),
1698 AMU_AMEVTYPER0_EL0(1),
1699 AMU_AMEVTYPER0_EL0(2),
1700 AMU_AMEVTYPER0_EL0(3),
1701 AMU_AMEVTYPER0_EL0(4),
1702 AMU_AMEVTYPER0_EL0(5),
1703 AMU_AMEVTYPER0_EL0(6),
1704 AMU_AMEVTYPER0_EL0(7),
1705 AMU_AMEVTYPER0_EL0(8),
1706 AMU_AMEVTYPER0_EL0(9),
1707 AMU_AMEVTYPER0_EL0(10),
1708 AMU_AMEVTYPER0_EL0(11),
1709 AMU_AMEVTYPER0_EL0(12),
1710 AMU_AMEVTYPER0_EL0(13),
1711 AMU_AMEVTYPER0_EL0(14),
1712 AMU_AMEVTYPER0_EL0(15),
1713 AMU_AMEVCNTR1_EL0(0),
1714 AMU_AMEVCNTR1_EL0(1),
1715 AMU_AMEVCNTR1_EL0(2),
1716 AMU_AMEVCNTR1_EL0(3),
1717 AMU_AMEVCNTR1_EL0(4),
1718 AMU_AMEVCNTR1_EL0(5),
1719 AMU_AMEVCNTR1_EL0(6),
1720 AMU_AMEVCNTR1_EL0(7),
1721 AMU_AMEVCNTR1_EL0(8),
1722 AMU_AMEVCNTR1_EL0(9),
1723 AMU_AMEVCNTR1_EL0(10),
1724 AMU_AMEVCNTR1_EL0(11),
1725 AMU_AMEVCNTR1_EL0(12),
1726 AMU_AMEVCNTR1_EL0(13),
1727 AMU_AMEVCNTR1_EL0(14),
1728 AMU_AMEVCNTR1_EL0(15),
1729 AMU_AMEVTYPER1_EL0(0),
1730 AMU_AMEVTYPER1_EL0(1),
1731 AMU_AMEVTYPER1_EL0(2),
1732 AMU_AMEVTYPER1_EL0(3),
1733 AMU_AMEVTYPER1_EL0(4),
1734 AMU_AMEVTYPER1_EL0(5),
1735 AMU_AMEVTYPER1_EL0(6),
1736 AMU_AMEVTYPER1_EL0(7),
1737 AMU_AMEVTYPER1_EL0(8),
1738 AMU_AMEVTYPER1_EL0(9),
1739 AMU_AMEVTYPER1_EL0(10),
1740 AMU_AMEVTYPER1_EL0(11),
1741 AMU_AMEVTYPER1_EL0(12),
1742 AMU_AMEVTYPER1_EL0(13),
1743 AMU_AMEVTYPER1_EL0(14),
1744 AMU_AMEVTYPER1_EL0(15),
1745
1746 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1747 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1748 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1749
1750 /* PMEVCNTRn_EL0 */
1751 PMU_PMEVCNTR_EL0(0),
1752 PMU_PMEVCNTR_EL0(1),
1753 PMU_PMEVCNTR_EL0(2),
1754 PMU_PMEVCNTR_EL0(3),
1755 PMU_PMEVCNTR_EL0(4),
1756 PMU_PMEVCNTR_EL0(5),
1757 PMU_PMEVCNTR_EL0(6),
1758 PMU_PMEVCNTR_EL0(7),
1759 PMU_PMEVCNTR_EL0(8),
1760 PMU_PMEVCNTR_EL0(9),
1761 PMU_PMEVCNTR_EL0(10),
1762 PMU_PMEVCNTR_EL0(11),
1763 PMU_PMEVCNTR_EL0(12),
1764 PMU_PMEVCNTR_EL0(13),
1765 PMU_PMEVCNTR_EL0(14),
1766 PMU_PMEVCNTR_EL0(15),
1767 PMU_PMEVCNTR_EL0(16),
1768 PMU_PMEVCNTR_EL0(17),
1769 PMU_PMEVCNTR_EL0(18),
1770 PMU_PMEVCNTR_EL0(19),
1771 PMU_PMEVCNTR_EL0(20),
1772 PMU_PMEVCNTR_EL0(21),
1773 PMU_PMEVCNTR_EL0(22),
1774 PMU_PMEVCNTR_EL0(23),
1775 PMU_PMEVCNTR_EL0(24),
1776 PMU_PMEVCNTR_EL0(25),
1777 PMU_PMEVCNTR_EL0(26),
1778 PMU_PMEVCNTR_EL0(27),
1779 PMU_PMEVCNTR_EL0(28),
1780 PMU_PMEVCNTR_EL0(29),
1781 PMU_PMEVCNTR_EL0(30),
1782 /* PMEVTYPERn_EL0 */
1783 PMU_PMEVTYPER_EL0(0),
1784 PMU_PMEVTYPER_EL0(1),
1785 PMU_PMEVTYPER_EL0(2),
1786 PMU_PMEVTYPER_EL0(3),
1787 PMU_PMEVTYPER_EL0(4),
1788 PMU_PMEVTYPER_EL0(5),
1789 PMU_PMEVTYPER_EL0(6),
1790 PMU_PMEVTYPER_EL0(7),
1791 PMU_PMEVTYPER_EL0(8),
1792 PMU_PMEVTYPER_EL0(9),
1793 PMU_PMEVTYPER_EL0(10),
1794 PMU_PMEVTYPER_EL0(11),
1795 PMU_PMEVTYPER_EL0(12),
1796 PMU_PMEVTYPER_EL0(13),
1797 PMU_PMEVTYPER_EL0(14),
1798 PMU_PMEVTYPER_EL0(15),
1799 PMU_PMEVTYPER_EL0(16),
1800 PMU_PMEVTYPER_EL0(17),
1801 PMU_PMEVTYPER_EL0(18),
1802 PMU_PMEVTYPER_EL0(19),
1803 PMU_PMEVTYPER_EL0(20),
1804 PMU_PMEVTYPER_EL0(21),
1805 PMU_PMEVTYPER_EL0(22),
1806 PMU_PMEVTYPER_EL0(23),
1807 PMU_PMEVTYPER_EL0(24),
1808 PMU_PMEVTYPER_EL0(25),
1809 PMU_PMEVTYPER_EL0(26),
1810 PMU_PMEVTYPER_EL0(27),
1811 PMU_PMEVTYPER_EL0(28),
1812 PMU_PMEVTYPER_EL0(29),
1813 PMU_PMEVTYPER_EL0(30),
1814 /*
1815 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1816 * in 32bit mode. Here we choose to reset it as zero for consistency.
1817 */
1818 { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1819 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1820
1821 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1822 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1823 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1824 };
1825
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1826 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1827 struct sys_reg_params *p,
1828 const struct sys_reg_desc *r)
1829 {
1830 if (p->is_write) {
1831 return ignore_write(vcpu, p);
1832 } else {
1833 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1834 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1835 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1836
1837 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1838 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1839 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1840 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1841 return true;
1842 }
1843 }
1844
1845 /*
1846 * AArch32 debug register mappings
1847 *
1848 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1849 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1850 *
1851 * None of the other registers share their location, so treat them as
1852 * if they were 64bit.
1853 */
1854 #define DBG_BCR_BVR_WCR_WVR(n) \
1855 /* DBGBVRn */ \
1856 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1857 /* DBGBCRn */ \
1858 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1859 /* DBGWVRn */ \
1860 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1861 /* DBGWCRn */ \
1862 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1863
1864 #define DBGBXVR(n) \
1865 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1866
1867 /*
1868 * Trapped cp14 registers. We generally ignore most of the external
1869 * debug, on the principle that they don't really make sense to a
1870 * guest. Revisit this one day, would this principle change.
1871 */
1872 static const struct sys_reg_desc cp14_regs[] = {
1873 /* DBGDIDR */
1874 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1875 /* DBGDTRRXext */
1876 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1877
1878 DBG_BCR_BVR_WCR_WVR(0),
1879 /* DBGDSCRint */
1880 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1881 DBG_BCR_BVR_WCR_WVR(1),
1882 /* DBGDCCINT */
1883 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1884 /* DBGDSCRext */
1885 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1886 DBG_BCR_BVR_WCR_WVR(2),
1887 /* DBGDTR[RT]Xint */
1888 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1889 /* DBGDTR[RT]Xext */
1890 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1891 DBG_BCR_BVR_WCR_WVR(3),
1892 DBG_BCR_BVR_WCR_WVR(4),
1893 DBG_BCR_BVR_WCR_WVR(5),
1894 /* DBGWFAR */
1895 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1896 /* DBGOSECCR */
1897 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1898 DBG_BCR_BVR_WCR_WVR(6),
1899 /* DBGVCR */
1900 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1901 DBG_BCR_BVR_WCR_WVR(7),
1902 DBG_BCR_BVR_WCR_WVR(8),
1903 DBG_BCR_BVR_WCR_WVR(9),
1904 DBG_BCR_BVR_WCR_WVR(10),
1905 DBG_BCR_BVR_WCR_WVR(11),
1906 DBG_BCR_BVR_WCR_WVR(12),
1907 DBG_BCR_BVR_WCR_WVR(13),
1908 DBG_BCR_BVR_WCR_WVR(14),
1909 DBG_BCR_BVR_WCR_WVR(15),
1910
1911 /* DBGDRAR (32bit) */
1912 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1913
1914 DBGBXVR(0),
1915 /* DBGOSLAR */
1916 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1917 DBGBXVR(1),
1918 /* DBGOSLSR */
1919 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1920 DBGBXVR(2),
1921 DBGBXVR(3),
1922 /* DBGOSDLR */
1923 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1924 DBGBXVR(4),
1925 /* DBGPRCR */
1926 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1927 DBGBXVR(5),
1928 DBGBXVR(6),
1929 DBGBXVR(7),
1930 DBGBXVR(8),
1931 DBGBXVR(9),
1932 DBGBXVR(10),
1933 DBGBXVR(11),
1934 DBGBXVR(12),
1935 DBGBXVR(13),
1936 DBGBXVR(14),
1937 DBGBXVR(15),
1938
1939 /* DBGDSAR (32bit) */
1940 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1941
1942 /* DBGDEVID2 */
1943 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1944 /* DBGDEVID1 */
1945 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1946 /* DBGDEVID */
1947 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1948 /* DBGCLAIMSET */
1949 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1950 /* DBGCLAIMCLR */
1951 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1952 /* DBGAUTHSTATUS */
1953 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1954 };
1955
1956 /* Trapped cp14 64bit registers */
1957 static const struct sys_reg_desc cp14_64_regs[] = {
1958 /* DBGDRAR (64bit) */
1959 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1960
1961 /* DBGDSAR (64bit) */
1962 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1963 };
1964
1965 /* Macro to expand the PMEVCNTRn register */
1966 #define PMU_PMEVCNTR(n) \
1967 /* PMEVCNTRn */ \
1968 { Op1(0), CRn(0b1110), \
1969 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1970 access_pmu_evcntr }
1971
1972 /* Macro to expand the PMEVTYPERn register */
1973 #define PMU_PMEVTYPER(n) \
1974 /* PMEVTYPERn */ \
1975 { Op1(0), CRn(0b1110), \
1976 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1977 access_pmu_evtyper }
1978
1979 /*
1980 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1981 * depending on the way they are accessed (as a 32bit or a 64bit
1982 * register).
1983 */
1984 static const struct sys_reg_desc cp15_regs[] = {
1985 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1986 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1987 /* ACTLR */
1988 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1989 /* ACTLR2 */
1990 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1991 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1992 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1993 /* TTBCR */
1994 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1995 /* TTBCR2 */
1996 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1997 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1998 /* DFSR */
1999 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2000 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2001 /* ADFSR */
2002 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2003 /* AIFSR */
2004 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2005 /* DFAR */
2006 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2007 /* IFAR */
2008 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2009
2010 /*
2011 * DC{C,I,CI}SW operations:
2012 */
2013 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2014 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2015 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2016
2017 /* PMU */
2018 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2019 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2020 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2021 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2022 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2023 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2024 { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2025 { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2026 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2027 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2028 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2029 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2030 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2031 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2032 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2033 { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2034 { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
2035 /* PMMIR */
2036 { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
2037
2038 /* PRRR/MAIR0 */
2039 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2040 /* NMRR/MAIR1 */
2041 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2042 /* AMAIR0 */
2043 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2044 /* AMAIR1 */
2045 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2046
2047 /* ICC_SRE */
2048 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2049
2050 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2051
2052 /* Arch Tmers */
2053 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2054 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2055
2056 /* PMEVCNTRn */
2057 PMU_PMEVCNTR(0),
2058 PMU_PMEVCNTR(1),
2059 PMU_PMEVCNTR(2),
2060 PMU_PMEVCNTR(3),
2061 PMU_PMEVCNTR(4),
2062 PMU_PMEVCNTR(5),
2063 PMU_PMEVCNTR(6),
2064 PMU_PMEVCNTR(7),
2065 PMU_PMEVCNTR(8),
2066 PMU_PMEVCNTR(9),
2067 PMU_PMEVCNTR(10),
2068 PMU_PMEVCNTR(11),
2069 PMU_PMEVCNTR(12),
2070 PMU_PMEVCNTR(13),
2071 PMU_PMEVCNTR(14),
2072 PMU_PMEVCNTR(15),
2073 PMU_PMEVCNTR(16),
2074 PMU_PMEVCNTR(17),
2075 PMU_PMEVCNTR(18),
2076 PMU_PMEVCNTR(19),
2077 PMU_PMEVCNTR(20),
2078 PMU_PMEVCNTR(21),
2079 PMU_PMEVCNTR(22),
2080 PMU_PMEVCNTR(23),
2081 PMU_PMEVCNTR(24),
2082 PMU_PMEVCNTR(25),
2083 PMU_PMEVCNTR(26),
2084 PMU_PMEVCNTR(27),
2085 PMU_PMEVCNTR(28),
2086 PMU_PMEVCNTR(29),
2087 PMU_PMEVCNTR(30),
2088 /* PMEVTYPERn */
2089 PMU_PMEVTYPER(0),
2090 PMU_PMEVTYPER(1),
2091 PMU_PMEVTYPER(2),
2092 PMU_PMEVTYPER(3),
2093 PMU_PMEVTYPER(4),
2094 PMU_PMEVTYPER(5),
2095 PMU_PMEVTYPER(6),
2096 PMU_PMEVTYPER(7),
2097 PMU_PMEVTYPER(8),
2098 PMU_PMEVTYPER(9),
2099 PMU_PMEVTYPER(10),
2100 PMU_PMEVTYPER(11),
2101 PMU_PMEVTYPER(12),
2102 PMU_PMEVTYPER(13),
2103 PMU_PMEVTYPER(14),
2104 PMU_PMEVTYPER(15),
2105 PMU_PMEVTYPER(16),
2106 PMU_PMEVTYPER(17),
2107 PMU_PMEVTYPER(18),
2108 PMU_PMEVTYPER(19),
2109 PMU_PMEVTYPER(20),
2110 PMU_PMEVTYPER(21),
2111 PMU_PMEVTYPER(22),
2112 PMU_PMEVTYPER(23),
2113 PMU_PMEVTYPER(24),
2114 PMU_PMEVTYPER(25),
2115 PMU_PMEVTYPER(26),
2116 PMU_PMEVTYPER(27),
2117 PMU_PMEVTYPER(28),
2118 PMU_PMEVTYPER(29),
2119 PMU_PMEVTYPER(30),
2120 /* PMCCFILTR */
2121 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2122
2123 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2124 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2125 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2126 };
2127
2128 static const struct sys_reg_desc cp15_64_regs[] = {
2129 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2130 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2131 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2132 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2133 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2134 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2135 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
2136 };
2137
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)2138 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2139 bool is_32)
2140 {
2141 unsigned int i;
2142
2143 for (i = 0; i < n; i++) {
2144 if (!is_32 && table[i].reg && !table[i].reset) {
2145 kvm_err("sys_reg table %p entry %d has lacks reset\n",
2146 table, i);
2147 return 1;
2148 }
2149
2150 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2151 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2152 return 1;
2153 }
2154 }
2155
2156 return 0;
2157 }
2158
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)2159 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2160 {
2161 kvm_inject_undefined(vcpu);
2162 return 1;
2163 }
2164
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)2165 static void perform_access(struct kvm_vcpu *vcpu,
2166 struct sys_reg_params *params,
2167 const struct sys_reg_desc *r)
2168 {
2169 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2170
2171 /* Check for regs disabled by runtime config */
2172 if (sysreg_hidden(vcpu, r)) {
2173 kvm_inject_undefined(vcpu);
2174 return;
2175 }
2176
2177 /*
2178 * Not having an accessor means that we have configured a trap
2179 * that we don't know how to handle. This certainly qualifies
2180 * as a gross bug that should be fixed right away.
2181 */
2182 BUG_ON(!r->access);
2183
2184 /* Skip instruction if instructed so */
2185 if (likely(r->access(vcpu, params, r)))
2186 kvm_incr_pc(vcpu);
2187 }
2188
2189 /*
2190 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2191 * call the corresponding trap handler.
2192 *
2193 * @params: pointer to the descriptor of the access
2194 * @table: array of trap descriptors
2195 * @num: size of the trap descriptor array
2196 *
2197 * Return 0 if the access has been handled, and -1 if not.
2198 */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)2199 static int emulate_cp(struct kvm_vcpu *vcpu,
2200 struct sys_reg_params *params,
2201 const struct sys_reg_desc *table,
2202 size_t num)
2203 {
2204 const struct sys_reg_desc *r;
2205
2206 if (!table)
2207 return -1; /* Not handled */
2208
2209 r = find_reg(params, table, num);
2210
2211 if (r) {
2212 perform_access(vcpu, params, r);
2213 return 0;
2214 }
2215
2216 /* Not handled */
2217 return -1;
2218 }
2219
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2220 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2221 struct sys_reg_params *params)
2222 {
2223 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2224 int cp = -1;
2225
2226 switch (esr_ec) {
2227 case ESR_ELx_EC_CP15_32:
2228 case ESR_ELx_EC_CP15_64:
2229 cp = 15;
2230 break;
2231 case ESR_ELx_EC_CP14_MR:
2232 case ESR_ELx_EC_CP14_64:
2233 cp = 14;
2234 break;
2235 default:
2236 WARN_ON(1);
2237 }
2238
2239 print_sys_reg_msg(params,
2240 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2241 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2242 kvm_inject_undefined(vcpu);
2243 }
2244
2245 /**
2246 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2247 * @vcpu: The VCPU pointer
2248 * @run: The kvm_run struct
2249 */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2250 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2251 const struct sys_reg_desc *global,
2252 size_t nr_global)
2253 {
2254 struct sys_reg_params params;
2255 u32 esr = kvm_vcpu_get_esr(vcpu);
2256 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2257 int Rt2 = (esr >> 10) & 0x1f;
2258
2259 params.CRm = (esr >> 1) & 0xf;
2260 params.is_write = ((esr & 1) == 0);
2261
2262 params.Op0 = 0;
2263 params.Op1 = (esr >> 16) & 0xf;
2264 params.Op2 = 0;
2265 params.CRn = 0;
2266
2267 /*
2268 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2269 * backends between AArch32 and AArch64, we get away with it.
2270 */
2271 if (params.is_write) {
2272 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2273 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2274 }
2275
2276 /*
2277 * If the table contains a handler, handle the
2278 * potential register operation in the case of a read and return
2279 * with success.
2280 */
2281 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) {
2282 /* Split up the value between registers for the read side */
2283 if (!params.is_write) {
2284 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2285 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2286 }
2287
2288 return 1;
2289 }
2290
2291 unhandled_cp_access(vcpu, ¶ms);
2292 return 1;
2293 }
2294
2295 /**
2296 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2297 * @vcpu: The VCPU pointer
2298 * @run: The kvm_run struct
2299 */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2300 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2301 const struct sys_reg_desc *global,
2302 size_t nr_global)
2303 {
2304 struct sys_reg_params params;
2305 u32 esr = kvm_vcpu_get_esr(vcpu);
2306 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2307
2308 params.CRm = (esr >> 1) & 0xf;
2309 params.regval = vcpu_get_reg(vcpu, Rt);
2310 params.is_write = ((esr & 1) == 0);
2311 params.CRn = (esr >> 10) & 0xf;
2312 params.Op0 = 0;
2313 params.Op1 = (esr >> 14) & 0x7;
2314 params.Op2 = (esr >> 17) & 0x7;
2315
2316 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) {
2317 if (!params.is_write)
2318 vcpu_set_reg(vcpu, Rt, params.regval);
2319 return 1;
2320 }
2321
2322 unhandled_cp_access(vcpu, ¶ms);
2323 return 1;
2324 }
2325
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)2326 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2327 {
2328 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2329 }
2330
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)2331 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2332 {
2333 return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2334 }
2335
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)2336 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2337 {
2338 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2339 }
2340
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)2341 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2342 {
2343 return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2344 }
2345
is_imp_def_sys_reg(struct sys_reg_params * params)2346 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2347 {
2348 // See ARM DDI 0487E.a, section D12.3.2
2349 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2350 }
2351
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2352 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2353 struct sys_reg_params *params)
2354 {
2355 const struct sys_reg_desc *r;
2356
2357 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2358
2359 if (likely(r)) {
2360 perform_access(vcpu, params, r);
2361 } else if (is_imp_def_sys_reg(params)) {
2362 kvm_inject_undefined(vcpu);
2363 } else {
2364 print_sys_reg_msg(params,
2365 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2366 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2367 kvm_inject_undefined(vcpu);
2368 }
2369 return 1;
2370 }
2371
2372 /**
2373 * kvm_reset_sys_regs - sets system registers to reset value
2374 * @vcpu: The VCPU pointer
2375 *
2376 * This function finds the right table above and sets the registers on the
2377 * virtual CPU struct to their architecturally defined reset values.
2378 */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)2379 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2380 {
2381 unsigned long i;
2382
2383 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2384 if (sys_reg_descs[i].reset)
2385 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2386 }
2387
2388 /**
2389 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2390 * @vcpu: The VCPU pointer
2391 */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)2392 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2393 {
2394 struct sys_reg_params params;
2395 unsigned long esr = kvm_vcpu_get_esr(vcpu);
2396 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2397 int ret;
2398
2399 trace_kvm_handle_sys_reg(esr);
2400
2401 params = esr_sys64_to_params(esr);
2402 params.regval = vcpu_get_reg(vcpu, Rt);
2403
2404 ret = emulate_sys_reg(vcpu, ¶ms);
2405
2406 if (!params.is_write)
2407 vcpu_set_reg(vcpu, Rt, params.regval);
2408 return ret;
2409 }
2410
2411 /******************************************************************************
2412 * Userspace API
2413 *****************************************************************************/
2414
index_to_params(u64 id,struct sys_reg_params * params)2415 static bool index_to_params(u64 id, struct sys_reg_params *params)
2416 {
2417 switch (id & KVM_REG_SIZE_MASK) {
2418 case KVM_REG_SIZE_U64:
2419 /* Any unused index bits means it's not valid. */
2420 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2421 | KVM_REG_ARM_COPROC_MASK
2422 | KVM_REG_ARM64_SYSREG_OP0_MASK
2423 | KVM_REG_ARM64_SYSREG_OP1_MASK
2424 | KVM_REG_ARM64_SYSREG_CRN_MASK
2425 | KVM_REG_ARM64_SYSREG_CRM_MASK
2426 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2427 return false;
2428 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2429 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2430 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2431 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2432 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2433 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2434 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2435 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2436 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2437 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2438 return true;
2439 default:
2440 return false;
2441 }
2442 }
2443
find_reg_by_id(u64 id,struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2444 const struct sys_reg_desc *find_reg_by_id(u64 id,
2445 struct sys_reg_params *params,
2446 const struct sys_reg_desc table[],
2447 unsigned int num)
2448 {
2449 if (!index_to_params(id, params))
2450 return NULL;
2451
2452 return find_reg(params, table, num);
2453 }
2454
2455 /* Decode an index value, and find the sys_reg_desc entry. */
index_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id)2456 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2457 u64 id)
2458 {
2459 const struct sys_reg_desc *r;
2460 struct sys_reg_params params;
2461
2462 /* We only do sys_reg for now. */
2463 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2464 return NULL;
2465
2466 if (!index_to_params(id, ¶ms))
2467 return NULL;
2468
2469 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2470
2471 /* Not saved in the sys_reg array and not otherwise accessible? */
2472 if (r && !(r->reg || r->get_user))
2473 r = NULL;
2474
2475 return r;
2476 }
2477
2478 /*
2479 * These are the invariant sys_reg registers: we let the guest see the
2480 * host versions of these, so they're part of the guest state.
2481 *
2482 * A future CPU may provide a mechanism to present different values to
2483 * the guest, or a future kvm may trap them.
2484 */
2485
2486 #define FUNCTION_INVARIANT(reg) \
2487 static void get_##reg(struct kvm_vcpu *v, \
2488 const struct sys_reg_desc *r) \
2489 { \
2490 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2491 }
2492
2493 FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)2494 FUNCTION_INVARIANT(revidr_el1)
2495 FUNCTION_INVARIANT(clidr_el1)
2496 FUNCTION_INVARIANT(aidr_el1)
2497
2498 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2499 {
2500 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2501 }
2502
2503 /* ->val is filled in by kvm_sys_reg_table_init() */
2504 static struct sys_reg_desc invariant_sys_regs[] = {
2505 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2506 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2507 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2508 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2509 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2510 };
2511
reg_from_user(u64 * val,const void __user * uaddr,u64 id)2512 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2513 {
2514 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2515 return -EFAULT;
2516 return 0;
2517 }
2518
reg_to_user(void __user * uaddr,const u64 * val,u64 id)2519 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2520 {
2521 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2522 return -EFAULT;
2523 return 0;
2524 }
2525
get_invariant_sys_reg(u64 id,void __user * uaddr)2526 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2527 {
2528 struct sys_reg_params params;
2529 const struct sys_reg_desc *r;
2530
2531 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2532 ARRAY_SIZE(invariant_sys_regs));
2533 if (!r)
2534 return -ENOENT;
2535
2536 return reg_to_user(uaddr, &r->val, id);
2537 }
2538
set_invariant_sys_reg(u64 id,void __user * uaddr)2539 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2540 {
2541 struct sys_reg_params params;
2542 const struct sys_reg_desc *r;
2543 int err;
2544 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2545
2546 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2547 ARRAY_SIZE(invariant_sys_regs));
2548 if (!r)
2549 return -ENOENT;
2550
2551 err = reg_from_user(&val, uaddr, id);
2552 if (err)
2553 return err;
2554
2555 /* This is what we mean by invariant: you can't change it. */
2556 if (r->val != val)
2557 return -EINVAL;
2558
2559 return 0;
2560 }
2561
is_valid_cache(u32 val)2562 static bool is_valid_cache(u32 val)
2563 {
2564 u32 level, ctype;
2565
2566 if (val >= CSSELR_MAX)
2567 return false;
2568
2569 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2570 level = (val >> 1);
2571 ctype = (cache_levels >> (level * 3)) & 7;
2572
2573 switch (ctype) {
2574 case 0: /* No cache */
2575 return false;
2576 case 1: /* Instruction cache only */
2577 return (val & 1);
2578 case 2: /* Data cache only */
2579 case 4: /* Unified cache */
2580 return !(val & 1);
2581 case 3: /* Separate instruction and data caches */
2582 return true;
2583 default: /* Reserved: we can't know instruction or data. */
2584 return false;
2585 }
2586 }
2587
demux_c15_get(u64 id,void __user * uaddr)2588 static int demux_c15_get(u64 id, void __user *uaddr)
2589 {
2590 u32 val;
2591 u32 __user *uval = uaddr;
2592
2593 /* Fail if we have unknown bits set. */
2594 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2595 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2596 return -ENOENT;
2597
2598 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2599 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2600 if (KVM_REG_SIZE(id) != 4)
2601 return -ENOENT;
2602 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2603 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2604 if (!is_valid_cache(val))
2605 return -ENOENT;
2606
2607 return put_user(get_ccsidr(val), uval);
2608 default:
2609 return -ENOENT;
2610 }
2611 }
2612
demux_c15_set(u64 id,void __user * uaddr)2613 static int demux_c15_set(u64 id, void __user *uaddr)
2614 {
2615 u32 val, newval;
2616 u32 __user *uval = uaddr;
2617
2618 /* Fail if we have unknown bits set. */
2619 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2620 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2621 return -ENOENT;
2622
2623 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2624 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2625 if (KVM_REG_SIZE(id) != 4)
2626 return -ENOENT;
2627 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2628 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2629 if (!is_valid_cache(val))
2630 return -ENOENT;
2631
2632 if (get_user(newval, uval))
2633 return -EFAULT;
2634
2635 /* This is also invariant: you can't change it. */
2636 if (newval != get_ccsidr(val))
2637 return -EINVAL;
2638 return 0;
2639 default:
2640 return -ENOENT;
2641 }
2642 }
2643
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2644 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2645 {
2646 const struct sys_reg_desc *r;
2647 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2648
2649 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2650 return demux_c15_get(reg->id, uaddr);
2651
2652 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2653 return -ENOENT;
2654
2655 r = index_to_sys_reg_desc(vcpu, reg->id);
2656 if (!r)
2657 return get_invariant_sys_reg(reg->id, uaddr);
2658
2659 /* Check for regs disabled by runtime config */
2660 if (sysreg_hidden(vcpu, r))
2661 return -ENOENT;
2662
2663 if (r->get_user)
2664 return (r->get_user)(vcpu, r, reg, uaddr);
2665
2666 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2667 }
2668
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2669 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2670 {
2671 const struct sys_reg_desc *r;
2672 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2673
2674 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2675 return demux_c15_set(reg->id, uaddr);
2676
2677 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2678 return -ENOENT;
2679
2680 r = index_to_sys_reg_desc(vcpu, reg->id);
2681 if (!r)
2682 return set_invariant_sys_reg(reg->id, uaddr);
2683
2684 /* Check for regs disabled by runtime config */
2685 if (sysreg_hidden(vcpu, r))
2686 return -ENOENT;
2687
2688 if (r->set_user)
2689 return (r->set_user)(vcpu, r, reg, uaddr);
2690
2691 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2692 }
2693
num_demux_regs(void)2694 static unsigned int num_demux_regs(void)
2695 {
2696 unsigned int i, count = 0;
2697
2698 for (i = 0; i < CSSELR_MAX; i++)
2699 if (is_valid_cache(i))
2700 count++;
2701
2702 return count;
2703 }
2704
write_demux_regids(u64 __user * uindices)2705 static int write_demux_regids(u64 __user *uindices)
2706 {
2707 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2708 unsigned int i;
2709
2710 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2711 for (i = 0; i < CSSELR_MAX; i++) {
2712 if (!is_valid_cache(i))
2713 continue;
2714 if (put_user(val | i, uindices))
2715 return -EFAULT;
2716 uindices++;
2717 }
2718 return 0;
2719 }
2720
sys_reg_to_index(const struct sys_reg_desc * reg)2721 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2722 {
2723 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2724 KVM_REG_ARM64_SYSREG |
2725 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2726 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2727 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2728 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2729 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2730 }
2731
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)2732 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2733 {
2734 if (!*uind)
2735 return true;
2736
2737 if (put_user(sys_reg_to_index(reg), *uind))
2738 return false;
2739
2740 (*uind)++;
2741 return true;
2742 }
2743
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)2744 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2745 const struct sys_reg_desc *rd,
2746 u64 __user **uind,
2747 unsigned int *total)
2748 {
2749 /*
2750 * Ignore registers we trap but don't save,
2751 * and for which no custom user accessor is provided.
2752 */
2753 if (!(rd->reg || rd->get_user))
2754 return 0;
2755
2756 if (sysreg_hidden(vcpu, rd))
2757 return 0;
2758
2759 if (!copy_reg_to_user(rd, uind))
2760 return -EFAULT;
2761
2762 (*total)++;
2763 return 0;
2764 }
2765
2766 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)2767 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2768 {
2769 const struct sys_reg_desc *i2, *end2;
2770 unsigned int total = 0;
2771 int err;
2772
2773 i2 = sys_reg_descs;
2774 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2775
2776 while (i2 != end2) {
2777 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2778 if (err)
2779 return err;
2780 }
2781 return total;
2782 }
2783
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)2784 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2785 {
2786 return ARRAY_SIZE(invariant_sys_regs)
2787 + num_demux_regs()
2788 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2789 }
2790
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)2791 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2792 {
2793 unsigned int i;
2794 int err;
2795
2796 /* Then give them all the invariant registers' indices. */
2797 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2798 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2799 return -EFAULT;
2800 uindices++;
2801 }
2802
2803 err = walk_sys_regs(vcpu, uindices);
2804 if (err < 0)
2805 return err;
2806 uindices += err;
2807
2808 return write_demux_regids(uindices);
2809 }
2810
kvm_sys_reg_table_init(void)2811 void kvm_sys_reg_table_init(void)
2812 {
2813 unsigned int i;
2814 struct sys_reg_desc clidr;
2815
2816 /* Make sure tables are unique and in order. */
2817 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2818 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2819 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2820 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2821 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2822 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2823
2824 /* We abuse the reset function to overwrite the table itself. */
2825 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2826 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2827
2828 /*
2829 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2830 *
2831 * If software reads the Cache Type fields from Ctype1
2832 * upwards, once it has seen a value of 0b000, no caches
2833 * exist at further-out levels of the hierarchy. So, for
2834 * example, if Ctype3 is the first Cache Type field with a
2835 * value of 0b000, the values of Ctype4 to Ctype7 must be
2836 * ignored.
2837 */
2838 get_clidr_el1(NULL, &clidr); /* Ugly... */
2839 cache_levels = clidr.val;
2840 for (i = 0; i < 7; i++)
2841 if (((cache_levels >> (i*3)) & 7) == 0)
2842 break;
2843 /* Clear all higher bits. */
2844 cache_levels &= (1 << (i*3))-1;
2845 }
2846