1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * skl-message.c - HDA DSP interface for FW registration, Pipe and Module
4 * configurations
5 *
6 * Copyright (C) 2015 Intel Corp
7 * Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
8 * Jeeja KP <jeeja.kp@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 */
11
12 #include <linux/slab.h>
13 #include <linux/pci.h>
14 #include <sound/core.h>
15 #include <sound/pcm.h>
16 #include <uapi/sound/skl-tplg-interface.h>
17 #include "skl-sst-dsp.h"
18 #include "cnl-sst-dsp.h"
19 #include "skl-sst-ipc.h"
20 #include "skl.h"
21 #include "../common/sst-dsp.h"
22 #include "../common/sst-dsp-priv.h"
23 #include "skl-topology.h"
24
skl_alloc_dma_buf(struct device * dev,struct snd_dma_buffer * dmab,size_t size)25 static int skl_alloc_dma_buf(struct device *dev,
26 struct snd_dma_buffer *dmab, size_t size)
27 {
28 return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab);
29 }
30
skl_free_dma_buf(struct device * dev,struct snd_dma_buffer * dmab)31 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
32 {
33 snd_dma_free_pages(dmab);
34 return 0;
35 }
36
37 #define SKL_ASTATE_PARAM_ID 4
38
skl_dsp_set_astate_cfg(struct skl_dev * skl,u32 cnt,void * data)39 void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data)
40 {
41 struct skl_ipc_large_config_msg msg = {0};
42
43 msg.large_param_id = SKL_ASTATE_PARAM_ID;
44 msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
45 sizeof(cnt));
46
47 skl_ipc_set_large_config(&skl->ipc, &msg, data);
48 }
49
skl_dsp_setup_spib(struct device * dev,unsigned int size,int stream_tag,int enable)50 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
51 int stream_tag, int enable)
52 {
53 struct hdac_bus *bus = dev_get_drvdata(dev);
54 struct hdac_stream *stream = snd_hdac_get_stream(bus,
55 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
56 struct hdac_ext_stream *estream;
57
58 if (!stream)
59 return -EINVAL;
60
61 estream = stream_to_hdac_ext_stream(stream);
62 /* enable/disable SPIB for this hdac stream */
63 snd_hdac_ext_stream_spbcap_enable(bus, enable, stream->index);
64
65 /* set the spib value */
66 snd_hdac_ext_stream_set_spib(bus, estream, size);
67
68 return 0;
69 }
70
skl_dsp_prepare(struct device * dev,unsigned int format,unsigned int size,struct snd_dma_buffer * dmab)71 static int skl_dsp_prepare(struct device *dev, unsigned int format,
72 unsigned int size, struct snd_dma_buffer *dmab)
73 {
74 struct hdac_bus *bus = dev_get_drvdata(dev);
75 struct hdac_ext_stream *estream;
76 struct hdac_stream *stream;
77 struct snd_pcm_substream substream;
78 int ret;
79
80 if (!bus)
81 return -ENODEV;
82
83 memset(&substream, 0, sizeof(substream));
84 substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
85
86 estream = snd_hdac_ext_stream_assign(bus, &substream,
87 HDAC_EXT_STREAM_TYPE_HOST);
88 if (!estream)
89 return -ENODEV;
90
91 stream = hdac_stream(estream);
92
93 /* assign decouple host dma channel */
94 ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
95 if (ret < 0)
96 return ret;
97
98 skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
99
100 return stream->stream_tag;
101 }
102
skl_dsp_trigger(struct device * dev,bool start,int stream_tag)103 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
104 {
105 struct hdac_bus *bus = dev_get_drvdata(dev);
106 struct hdac_stream *stream;
107
108 if (!bus)
109 return -ENODEV;
110
111 stream = snd_hdac_get_stream(bus,
112 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
113 if (!stream)
114 return -EINVAL;
115
116 snd_hdac_dsp_trigger(stream, start);
117
118 return 0;
119 }
120
skl_dsp_cleanup(struct device * dev,struct snd_dma_buffer * dmab,int stream_tag)121 static int skl_dsp_cleanup(struct device *dev,
122 struct snd_dma_buffer *dmab, int stream_tag)
123 {
124 struct hdac_bus *bus = dev_get_drvdata(dev);
125 struct hdac_stream *stream;
126 struct hdac_ext_stream *estream;
127
128 if (!bus)
129 return -ENODEV;
130
131 stream = snd_hdac_get_stream(bus,
132 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
133 if (!stream)
134 return -EINVAL;
135
136 estream = stream_to_hdac_ext_stream(stream);
137 skl_dsp_setup_spib(dev, 0, stream_tag, false);
138 snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
139
140 snd_hdac_dsp_cleanup(stream, dmab);
141
142 return 0;
143 }
144
skl_get_loader_ops(void)145 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
146 {
147 struct skl_dsp_loader_ops loader_ops;
148
149 memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
150
151 loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
152 loader_ops.free_dma_buf = skl_free_dma_buf;
153
154 return loader_ops;
155 };
156
bxt_get_loader_ops(void)157 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
158 {
159 struct skl_dsp_loader_ops loader_ops;
160
161 memset(&loader_ops, 0, sizeof(loader_ops));
162
163 loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
164 loader_ops.free_dma_buf = skl_free_dma_buf;
165 loader_ops.prepare = skl_dsp_prepare;
166 loader_ops.trigger = skl_dsp_trigger;
167 loader_ops.cleanup = skl_dsp_cleanup;
168
169 return loader_ops;
170 };
171
172 static const struct skl_dsp_ops dsp_ops[] = {
173 {
174 .id = 0x9d70,
175 .num_cores = 2,
176 .loader_ops = skl_get_loader_ops,
177 .init = skl_sst_dsp_init,
178 .init_fw = skl_sst_init_fw,
179 .cleanup = skl_sst_dsp_cleanup
180 },
181 {
182 .id = 0x9d71,
183 .num_cores = 2,
184 .loader_ops = skl_get_loader_ops,
185 .init = skl_sst_dsp_init,
186 .init_fw = skl_sst_init_fw,
187 .cleanup = skl_sst_dsp_cleanup
188 },
189 {
190 .id = 0x5a98,
191 .num_cores = 2,
192 .loader_ops = bxt_get_loader_ops,
193 .init = bxt_sst_dsp_init,
194 .init_fw = bxt_sst_init_fw,
195 .cleanup = bxt_sst_dsp_cleanup
196 },
197 {
198 .id = 0x3198,
199 .num_cores = 2,
200 .loader_ops = bxt_get_loader_ops,
201 .init = bxt_sst_dsp_init,
202 .init_fw = bxt_sst_init_fw,
203 .cleanup = bxt_sst_dsp_cleanup
204 },
205 {
206 .id = 0x9dc8,
207 .num_cores = 4,
208 .loader_ops = bxt_get_loader_ops,
209 .init = cnl_sst_dsp_init,
210 .init_fw = cnl_sst_init_fw,
211 .cleanup = cnl_sst_dsp_cleanup
212 },
213 {
214 .id = 0xa348,
215 .num_cores = 4,
216 .loader_ops = bxt_get_loader_ops,
217 .init = cnl_sst_dsp_init,
218 .init_fw = cnl_sst_init_fw,
219 .cleanup = cnl_sst_dsp_cleanup
220 },
221 {
222 .id = 0x02c8,
223 .num_cores = 4,
224 .loader_ops = bxt_get_loader_ops,
225 .init = cnl_sst_dsp_init,
226 .init_fw = cnl_sst_init_fw,
227 .cleanup = cnl_sst_dsp_cleanup
228 },
229 {
230 .id = 0x06c8,
231 .num_cores = 4,
232 .loader_ops = bxt_get_loader_ops,
233 .init = cnl_sst_dsp_init,
234 .init_fw = cnl_sst_init_fw,
235 .cleanup = cnl_sst_dsp_cleanup
236 },
237 };
238
skl_get_dsp_ops(int pci_id)239 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
240 {
241 int i;
242
243 for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
244 if (dsp_ops[i].id == pci_id)
245 return &dsp_ops[i];
246 }
247
248 return NULL;
249 }
250
skl_init_dsp(struct skl_dev * skl)251 int skl_init_dsp(struct skl_dev *skl)
252 {
253 void __iomem *mmio_base;
254 struct hdac_bus *bus = skl_to_bus(skl);
255 struct skl_dsp_loader_ops loader_ops;
256 int irq = bus->irq;
257 const struct skl_dsp_ops *ops;
258 struct skl_dsp_cores *cores;
259 int ret;
260
261 /* enable ppcap interrupt */
262 snd_hdac_ext_bus_ppcap_enable(bus, true);
263 snd_hdac_ext_bus_ppcap_int_enable(bus, true);
264
265 /* read the BAR of the ADSP MMIO */
266 mmio_base = pci_ioremap_bar(skl->pci, 4);
267 if (mmio_base == NULL) {
268 dev_err(bus->dev, "ioremap error\n");
269 return -ENXIO;
270 }
271
272 ops = skl_get_dsp_ops(skl->pci->device);
273 if (!ops) {
274 ret = -EIO;
275 goto unmap_mmio;
276 }
277
278 loader_ops = ops->loader_ops();
279 ret = ops->init(bus->dev, mmio_base, irq,
280 skl->fw_name, loader_ops,
281 &skl);
282
283 if (ret < 0)
284 goto unmap_mmio;
285
286 skl->dsp_ops = ops;
287 cores = &skl->cores;
288 cores->count = ops->num_cores;
289
290 cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
291 if (!cores->state) {
292 ret = -ENOMEM;
293 goto unmap_mmio;
294 }
295
296 cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
297 GFP_KERNEL);
298 if (!cores->usage_count) {
299 ret = -ENOMEM;
300 goto free_core_state;
301 }
302
303 dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
304
305 return 0;
306
307 free_core_state:
308 kfree(cores->state);
309
310 unmap_mmio:
311 iounmap(mmio_base);
312
313 return ret;
314 }
315
skl_free_dsp(struct skl_dev * skl)316 int skl_free_dsp(struct skl_dev *skl)
317 {
318 struct hdac_bus *bus = skl_to_bus(skl);
319
320 /* disable ppcap interrupt */
321 snd_hdac_ext_bus_ppcap_int_enable(bus, false);
322
323 skl->dsp_ops->cleanup(bus->dev, skl);
324
325 kfree(skl->cores.state);
326 kfree(skl->cores.usage_count);
327
328 if (skl->dsp->addr.lpe)
329 iounmap(skl->dsp->addr.lpe);
330
331 return 0;
332 }
333
334 /*
335 * In the case of "suspend_active" i.e, the Audio IP being active
336 * during system suspend, immediately excecute any pending D0i3 work
337 * before suspending. This is needed for the IP to work in low power
338 * mode during system suspend. In the case of normal suspend, cancel
339 * any pending D0i3 work.
340 */
skl_suspend_late_dsp(struct skl_dev * skl)341 int skl_suspend_late_dsp(struct skl_dev *skl)
342 {
343 struct delayed_work *dwork;
344
345 if (!skl)
346 return 0;
347
348 dwork = &skl->d0i3.work;
349
350 if (dwork->work.func) {
351 if (skl->supend_active)
352 flush_delayed_work(dwork);
353 else
354 cancel_delayed_work_sync(dwork);
355 }
356
357 return 0;
358 }
359
skl_suspend_dsp(struct skl_dev * skl)360 int skl_suspend_dsp(struct skl_dev *skl)
361 {
362 struct hdac_bus *bus = skl_to_bus(skl);
363 int ret;
364
365 /* if ppcap is not supported return 0 */
366 if (!bus->ppcap)
367 return 0;
368
369 ret = skl_dsp_sleep(skl->dsp);
370 if (ret < 0)
371 return ret;
372
373 /* disable ppcap interrupt */
374 snd_hdac_ext_bus_ppcap_int_enable(bus, false);
375 snd_hdac_ext_bus_ppcap_enable(bus, false);
376
377 return 0;
378 }
379
skl_resume_dsp(struct skl_dev * skl)380 int skl_resume_dsp(struct skl_dev *skl)
381 {
382 struct hdac_bus *bus = skl_to_bus(skl);
383 int ret;
384
385 /* if ppcap is not supported return 0 */
386 if (!bus->ppcap)
387 return 0;
388
389 /* enable ppcap interrupt */
390 snd_hdac_ext_bus_ppcap_enable(bus, true);
391 snd_hdac_ext_bus_ppcap_int_enable(bus, true);
392
393 /* check if DSP 1st boot is done */
394 if (skl->is_first_boot)
395 return 0;
396
397 /*
398 * Disable dynamic clock and power gating during firmware
399 * and library download
400 */
401 skl->enable_miscbdcge(skl->dev, false);
402 skl->clock_power_gating(skl->dev, false);
403
404 ret = skl_dsp_wake(skl->dsp);
405 skl->enable_miscbdcge(skl->dev, true);
406 skl->clock_power_gating(skl->dev, true);
407 if (ret < 0)
408 return ret;
409
410 if (skl->cfg.astate_cfg != NULL) {
411 skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count,
412 skl->cfg.astate_cfg);
413 }
414 return ret;
415 }
416
skl_get_bit_depth(int params)417 enum skl_bitdepth skl_get_bit_depth(int params)
418 {
419 switch (params) {
420 case 8:
421 return SKL_DEPTH_8BIT;
422
423 case 16:
424 return SKL_DEPTH_16BIT;
425
426 case 24:
427 return SKL_DEPTH_24BIT;
428
429 case 32:
430 return SKL_DEPTH_32BIT;
431
432 default:
433 return SKL_DEPTH_INVALID;
434
435 }
436 }
437
438 /*
439 * Each module in DSP expects a base module configuration, which consists of
440 * PCM format information, which we calculate in driver and resource values
441 * which are read from widget information passed through topology binary
442 * This is send when we create a module with INIT_INSTANCE IPC msg
443 */
skl_set_base_module_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_base_cfg * base_cfg)444 static void skl_set_base_module_format(struct skl_dev *skl,
445 struct skl_module_cfg *mconfig,
446 struct skl_base_cfg *base_cfg)
447 {
448 struct skl_module *module = mconfig->module;
449 struct skl_module_res *res = &module->resources[mconfig->res_idx];
450 struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
451 struct skl_module_fmt *format = &fmt->inputs[0].fmt;
452
453 base_cfg->audio_fmt.number_of_channels = format->channels;
454
455 base_cfg->audio_fmt.s_freq = format->s_freq;
456 base_cfg->audio_fmt.bit_depth = format->bit_depth;
457 base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
458 base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
459 base_cfg->audio_fmt.sample_type = format->sample_type;
460
461 dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
462 format->bit_depth, format->valid_bit_depth,
463 format->ch_cfg);
464
465 base_cfg->audio_fmt.channel_map = format->ch_map;
466
467 base_cfg->audio_fmt.interleaving = format->interleaving_style;
468
469 base_cfg->cpc = res->cpc;
470 base_cfg->ibs = res->ibs;
471 base_cfg->obs = res->obs;
472 base_cfg->is_pages = res->is_pages;
473 }
474
475 /*
476 * Copies copier capabilities into copier module and updates copier module
477 * config size.
478 */
skl_copy_copier_caps(struct skl_module_cfg * mconfig,struct skl_cpr_cfg * cpr_mconfig)479 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
480 struct skl_cpr_cfg *cpr_mconfig)
481 {
482 if (mconfig->formats_config.caps_size == 0)
483 return;
484
485 memcpy(cpr_mconfig->gtw_cfg.config_data,
486 mconfig->formats_config.caps,
487 mconfig->formats_config.caps_size);
488
489 cpr_mconfig->gtw_cfg.config_length =
490 (mconfig->formats_config.caps_size) / 4;
491 }
492
493 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
494 /*
495 * Calculate the gatewat settings required for copier module, type of
496 * gateway and index of gateway to use
497 */
skl_get_node_id(struct skl_dev * skl,struct skl_module_cfg * mconfig)498 static u32 skl_get_node_id(struct skl_dev *skl,
499 struct skl_module_cfg *mconfig)
500 {
501 union skl_connector_node_id node_id = {0};
502 union skl_ssp_dma_node ssp_node = {0};
503 struct skl_pipe_params *params = mconfig->pipe->p_params;
504
505 switch (mconfig->dev_type) {
506 case SKL_DEVICE_BT:
507 node_id.node.dma_type =
508 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
509 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
510 SKL_DMA_I2S_LINK_INPUT_CLASS;
511 node_id.node.vindex = params->host_dma_id +
512 (mconfig->vbus_id << 3);
513 break;
514
515 case SKL_DEVICE_I2S:
516 node_id.node.dma_type =
517 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
518 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
519 SKL_DMA_I2S_LINK_INPUT_CLASS;
520 ssp_node.dma_node.time_slot_index = mconfig->time_slot;
521 ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
522 node_id.node.vindex = ssp_node.val;
523 break;
524
525 case SKL_DEVICE_DMIC:
526 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
527 node_id.node.vindex = mconfig->vbus_id +
528 (mconfig->time_slot);
529 break;
530
531 case SKL_DEVICE_HDALINK:
532 node_id.node.dma_type =
533 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
534 SKL_DMA_HDA_LINK_OUTPUT_CLASS :
535 SKL_DMA_HDA_LINK_INPUT_CLASS;
536 node_id.node.vindex = params->link_dma_id;
537 break;
538
539 case SKL_DEVICE_HDAHOST:
540 node_id.node.dma_type =
541 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
542 SKL_DMA_HDA_HOST_OUTPUT_CLASS :
543 SKL_DMA_HDA_HOST_INPUT_CLASS;
544 node_id.node.vindex = params->host_dma_id;
545 break;
546
547 default:
548 node_id.val = 0xFFFFFFFF;
549 break;
550 }
551
552 return node_id.val;
553 }
554
skl_setup_cpr_gateway_cfg(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_cpr_cfg * cpr_mconfig)555 static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl,
556 struct skl_module_cfg *mconfig,
557 struct skl_cpr_cfg *cpr_mconfig)
558 {
559 u32 dma_io_buf;
560 struct skl_module_res *res;
561 int res_idx = mconfig->res_idx;
562
563 cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig);
564
565 if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
566 cpr_mconfig->cpr_feature_mask = 0;
567 return;
568 }
569
570 if (skl->nr_modules) {
571 res = &mconfig->module->resources[mconfig->res_idx];
572 cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
573 goto skip_buf_size_calc;
574 } else {
575 res = &mconfig->module->resources[res_idx];
576 }
577
578 switch (mconfig->hw_conn_type) {
579 case SKL_CONN_SOURCE:
580 if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
581 dma_io_buf = res->ibs;
582 else
583 dma_io_buf = res->obs;
584 break;
585
586 case SKL_CONN_SINK:
587 if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
588 dma_io_buf = res->obs;
589 else
590 dma_io_buf = res->ibs;
591 break;
592
593 default:
594 dev_warn(skl->dev, "wrong connection type: %d\n",
595 mconfig->hw_conn_type);
596 return;
597 }
598
599 cpr_mconfig->gtw_cfg.dma_buffer_size =
600 mconfig->dma_buffer_size * dma_io_buf;
601
602 /* fallback to 2ms default value */
603 if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
604 if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
605 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
606 else
607 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
608 }
609
610 skip_buf_size_calc:
611 cpr_mconfig->cpr_feature_mask = 0;
612 cpr_mconfig->gtw_cfg.config_length = 0;
613
614 skl_copy_copier_caps(mconfig, cpr_mconfig);
615 }
616
617 #define DMA_CONTROL_ID 5
618 #define DMA_I2S_BLOB_SIZE 21
619
skl_dsp_set_dma_control(struct skl_dev * skl,u32 * caps,u32 caps_size,u32 node_id)620 int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps,
621 u32 caps_size, u32 node_id)
622 {
623 struct skl_dma_control *dma_ctrl;
624 struct skl_ipc_large_config_msg msg = {0};
625 int err = 0;
626
627
628 /*
629 * if blob size zero, then return
630 */
631 if (caps_size == 0)
632 return 0;
633
634 msg.large_param_id = DMA_CONTROL_ID;
635 msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
636
637 dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
638 if (dma_ctrl == NULL)
639 return -ENOMEM;
640
641 dma_ctrl->node_id = node_id;
642
643 /*
644 * NHLT blob may contain additional configs along with i2s blob.
645 * firmware expects only the i2s blob size as the config_length.
646 * So fix to i2s blob size.
647 * size in dwords.
648 */
649 dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
650
651 memcpy(dma_ctrl->config_data, caps, caps_size);
652
653 err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl);
654
655 kfree(dma_ctrl);
656 return err;
657 }
658 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
659
skl_setup_out_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_audio_data_format * out_fmt)660 static void skl_setup_out_format(struct skl_dev *skl,
661 struct skl_module_cfg *mconfig,
662 struct skl_audio_data_format *out_fmt)
663 {
664 struct skl_module *module = mconfig->module;
665 struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
666 struct skl_module_fmt *format = &fmt->outputs[0].fmt;
667
668 out_fmt->number_of_channels = (u8)format->channels;
669 out_fmt->s_freq = format->s_freq;
670 out_fmt->bit_depth = format->bit_depth;
671 out_fmt->valid_bit_depth = format->valid_bit_depth;
672 out_fmt->ch_cfg = format->ch_cfg;
673
674 out_fmt->channel_map = format->ch_map;
675 out_fmt->interleaving = format->interleaving_style;
676 out_fmt->sample_type = format->sample_type;
677
678 dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
679 out_fmt->number_of_channels, format->s_freq, format->bit_depth);
680 }
681
682 /*
683 * DSP needs SRC module for frequency conversion, SRC takes base module
684 * configuration and the target frequency as extra parameter passed as src
685 * config
686 */
skl_set_src_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_src_module_cfg * src_mconfig)687 static void skl_set_src_format(struct skl_dev *skl,
688 struct skl_module_cfg *mconfig,
689 struct skl_src_module_cfg *src_mconfig)
690 {
691 struct skl_module *module = mconfig->module;
692 struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
693 struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
694
695 skl_set_base_module_format(skl, mconfig,
696 (struct skl_base_cfg *)src_mconfig);
697
698 src_mconfig->src_cfg = fmt->s_freq;
699 }
700
701 /*
702 * DSP needs updown module to do channel conversion. updown module take base
703 * module configuration and channel configuration
704 * It also take coefficients and now we have defaults applied here
705 */
skl_set_updown_mixer_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_up_down_mixer_cfg * mixer_mconfig)706 static void skl_set_updown_mixer_format(struct skl_dev *skl,
707 struct skl_module_cfg *mconfig,
708 struct skl_up_down_mixer_cfg *mixer_mconfig)
709 {
710 struct skl_module *module = mconfig->module;
711 struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
712 struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
713
714 skl_set_base_module_format(skl, mconfig,
715 (struct skl_base_cfg *)mixer_mconfig);
716 mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
717 mixer_mconfig->ch_map = fmt->ch_map;
718 }
719
720 /*
721 * 'copier' is DSP internal module which copies data from Host DMA (HDA host
722 * dma) or link (hda link, SSP, PDM)
723 * Here we calculate the copier module parameters, like PCM format, output
724 * format, gateway settings
725 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
726 */
skl_set_copier_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_cpr_cfg * cpr_mconfig)727 static void skl_set_copier_format(struct skl_dev *skl,
728 struct skl_module_cfg *mconfig,
729 struct skl_cpr_cfg *cpr_mconfig)
730 {
731 struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
732 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
733
734 skl_set_base_module_format(skl, mconfig, base_cfg);
735
736 skl_setup_out_format(skl, mconfig, out_fmt);
737 skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig);
738 }
739
740 /*
741 * Algo module are DSP pre processing modules. Algo module take base module
742 * configuration and params
743 */
744
skl_set_algo_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_algo_cfg * algo_mcfg)745 static void skl_set_algo_format(struct skl_dev *skl,
746 struct skl_module_cfg *mconfig,
747 struct skl_algo_cfg *algo_mcfg)
748 {
749 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
750
751 skl_set_base_module_format(skl, mconfig, base_cfg);
752
753 if (mconfig->formats_config.caps_size == 0)
754 return;
755
756 memcpy(algo_mcfg->params,
757 mconfig->formats_config.caps,
758 mconfig->formats_config.caps_size);
759
760 }
761
762 /*
763 * Mic select module allows selecting one or many input channels, thus
764 * acting as a demux.
765 *
766 * Mic select module take base module configuration and out-format
767 * configuration
768 */
skl_set_base_outfmt_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_base_outfmt_cfg * base_outfmt_mcfg)769 static void skl_set_base_outfmt_format(struct skl_dev *skl,
770 struct skl_module_cfg *mconfig,
771 struct skl_base_outfmt_cfg *base_outfmt_mcfg)
772 {
773 struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
774 struct skl_base_cfg *base_cfg =
775 (struct skl_base_cfg *)base_outfmt_mcfg;
776
777 skl_set_base_module_format(skl, mconfig, base_cfg);
778 skl_setup_out_format(skl, mconfig, out_fmt);
779 }
780
skl_get_module_param_size(struct skl_dev * skl,struct skl_module_cfg * mconfig)781 static u16 skl_get_module_param_size(struct skl_dev *skl,
782 struct skl_module_cfg *mconfig)
783 {
784 u16 param_size;
785
786 switch (mconfig->m_type) {
787 case SKL_MODULE_TYPE_COPIER:
788 param_size = sizeof(struct skl_cpr_cfg);
789 param_size += mconfig->formats_config.caps_size;
790 return param_size;
791
792 case SKL_MODULE_TYPE_SRCINT:
793 return sizeof(struct skl_src_module_cfg);
794
795 case SKL_MODULE_TYPE_UPDWMIX:
796 return sizeof(struct skl_up_down_mixer_cfg);
797
798 case SKL_MODULE_TYPE_ALGO:
799 param_size = sizeof(struct skl_base_cfg);
800 param_size += mconfig->formats_config.caps_size;
801 return param_size;
802
803 case SKL_MODULE_TYPE_BASE_OUTFMT:
804 case SKL_MODULE_TYPE_MIC_SELECT:
805 case SKL_MODULE_TYPE_KPB:
806 return sizeof(struct skl_base_outfmt_cfg);
807
808 default:
809 /*
810 * return only base cfg when no specific module type is
811 * specified
812 */
813 return sizeof(struct skl_base_cfg);
814 }
815
816 return 0;
817 }
818
819 /*
820 * DSP firmware supports various modules like copier, SRC, updown etc.
821 * These modules required various parameters to be calculated and sent for
822 * the module initialization to DSP. By default a generic module needs only
823 * base module format configuration
824 */
825
skl_set_module_format(struct skl_dev * skl,struct skl_module_cfg * module_config,u16 * module_config_size,void ** param_data)826 static int skl_set_module_format(struct skl_dev *skl,
827 struct skl_module_cfg *module_config,
828 u16 *module_config_size,
829 void **param_data)
830 {
831 u16 param_size;
832
833 param_size = skl_get_module_param_size(skl, module_config);
834
835 *param_data = kzalloc(param_size, GFP_KERNEL);
836 if (NULL == *param_data)
837 return -ENOMEM;
838
839 *module_config_size = param_size;
840
841 switch (module_config->m_type) {
842 case SKL_MODULE_TYPE_COPIER:
843 skl_set_copier_format(skl, module_config, *param_data);
844 break;
845
846 case SKL_MODULE_TYPE_SRCINT:
847 skl_set_src_format(skl, module_config, *param_data);
848 break;
849
850 case SKL_MODULE_TYPE_UPDWMIX:
851 skl_set_updown_mixer_format(skl, module_config, *param_data);
852 break;
853
854 case SKL_MODULE_TYPE_ALGO:
855 skl_set_algo_format(skl, module_config, *param_data);
856 break;
857
858 case SKL_MODULE_TYPE_BASE_OUTFMT:
859 case SKL_MODULE_TYPE_MIC_SELECT:
860 case SKL_MODULE_TYPE_KPB:
861 skl_set_base_outfmt_format(skl, module_config, *param_data);
862 break;
863
864 default:
865 skl_set_base_module_format(skl, module_config, *param_data);
866 break;
867
868 }
869
870 dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n",
871 module_config->m_type, module_config->id.module_id,
872 param_size);
873 print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
874 *param_data, param_size, false);
875 return 0;
876 }
877
skl_get_queue_index(struct skl_module_pin * mpin,struct skl_module_inst_id id,int max)878 static int skl_get_queue_index(struct skl_module_pin *mpin,
879 struct skl_module_inst_id id, int max)
880 {
881 int i;
882
883 for (i = 0; i < max; i++) {
884 if (mpin[i].id.module_id == id.module_id &&
885 mpin[i].id.instance_id == id.instance_id)
886 return i;
887 }
888
889 return -EINVAL;
890 }
891
892 /*
893 * Allocates queue for each module.
894 * if dynamic, the pin_index is allocated 0 to max_pin.
895 * In static, the pin_index is fixed based on module_id and instance id
896 */
skl_alloc_queue(struct skl_module_pin * mpin,struct skl_module_cfg * tgt_cfg,int max)897 static int skl_alloc_queue(struct skl_module_pin *mpin,
898 struct skl_module_cfg *tgt_cfg, int max)
899 {
900 int i;
901 struct skl_module_inst_id id = tgt_cfg->id;
902 /*
903 * if pin in dynamic, find first free pin
904 * otherwise find match module and instance id pin as topology will
905 * ensure a unique pin is assigned to this so no need to
906 * allocate/free
907 */
908 for (i = 0; i < max; i++) {
909 if (mpin[i].is_dynamic) {
910 if (!mpin[i].in_use &&
911 mpin[i].pin_state == SKL_PIN_UNBIND) {
912
913 mpin[i].in_use = true;
914 mpin[i].id.module_id = id.module_id;
915 mpin[i].id.instance_id = id.instance_id;
916 mpin[i].id.pvt_id = id.pvt_id;
917 mpin[i].tgt_mcfg = tgt_cfg;
918 return i;
919 }
920 } else {
921 if (mpin[i].id.module_id == id.module_id &&
922 mpin[i].id.instance_id == id.instance_id &&
923 mpin[i].pin_state == SKL_PIN_UNBIND) {
924
925 mpin[i].tgt_mcfg = tgt_cfg;
926 return i;
927 }
928 }
929 }
930
931 return -EINVAL;
932 }
933
skl_free_queue(struct skl_module_pin * mpin,int q_index)934 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
935 {
936 if (mpin[q_index].is_dynamic) {
937 mpin[q_index].in_use = false;
938 mpin[q_index].id.module_id = 0;
939 mpin[q_index].id.instance_id = 0;
940 mpin[q_index].id.pvt_id = 0;
941 }
942 mpin[q_index].pin_state = SKL_PIN_UNBIND;
943 mpin[q_index].tgt_mcfg = NULL;
944 }
945
946 /* Module state will be set to unint, if all the out pin state is UNBIND */
947
skl_clear_module_state(struct skl_module_pin * mpin,int max,struct skl_module_cfg * mcfg)948 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
949 struct skl_module_cfg *mcfg)
950 {
951 int i;
952 bool found = false;
953
954 for (i = 0; i < max; i++) {
955 if (mpin[i].pin_state == SKL_PIN_UNBIND)
956 continue;
957 found = true;
958 break;
959 }
960
961 if (!found)
962 mcfg->m_state = SKL_MODULE_INIT_DONE;
963 return;
964 }
965
966 /*
967 * A module needs to be instanataited in DSP. A mdoule is present in a
968 * collection of module referred as a PIPE.
969 * We first calculate the module format, based on module type and then
970 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
971 */
skl_init_module(struct skl_dev * skl,struct skl_module_cfg * mconfig)972 int skl_init_module(struct skl_dev *skl,
973 struct skl_module_cfg *mconfig)
974 {
975 u16 module_config_size = 0;
976 void *param_data = NULL;
977 int ret;
978 struct skl_ipc_init_instance_msg msg;
979
980 dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__,
981 mconfig->id.module_id, mconfig->id.pvt_id);
982
983 if (mconfig->pipe->state != SKL_PIPE_CREATED) {
984 dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n",
985 mconfig->pipe->state, mconfig->pipe->ppl_id);
986 return -EIO;
987 }
988
989 ret = skl_set_module_format(skl, mconfig,
990 &module_config_size, ¶m_data);
991 if (ret < 0) {
992 dev_err(skl->dev, "Failed to set module format ret=%d\n", ret);
993 return ret;
994 }
995
996 msg.module_id = mconfig->id.module_id;
997 msg.instance_id = mconfig->id.pvt_id;
998 msg.ppl_instance_id = mconfig->pipe->ppl_id;
999 msg.param_data_size = module_config_size;
1000 msg.core_id = mconfig->core_id;
1001 msg.domain = mconfig->domain;
1002
1003 ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data);
1004 if (ret < 0) {
1005 dev_err(skl->dev, "Failed to init instance ret=%d\n", ret);
1006 kfree(param_data);
1007 return ret;
1008 }
1009 mconfig->m_state = SKL_MODULE_INIT_DONE;
1010 kfree(param_data);
1011 return ret;
1012 }
1013
skl_dump_bind_info(struct skl_dev * skl,struct skl_module_cfg * src_module,struct skl_module_cfg * dst_module)1014 static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg
1015 *src_module, struct skl_module_cfg *dst_module)
1016 {
1017 dev_dbg(skl->dev, "%s: src module_id = %d src_instance=%d\n",
1018 __func__, src_module->id.module_id, src_module->id.pvt_id);
1019 dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1020 dst_module->id.module_id, dst_module->id.pvt_id);
1021
1022 dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n",
1023 src_module->m_state, dst_module->m_state);
1024 }
1025
1026 /*
1027 * On module freeup, we need to unbind the module with modules
1028 * it is already bind.
1029 * Find the pin allocated and unbind then using bind_unbind IPC
1030 */
skl_unbind_modules(struct skl_dev * skl,struct skl_module_cfg * src_mcfg,struct skl_module_cfg * dst_mcfg)1031 int skl_unbind_modules(struct skl_dev *skl,
1032 struct skl_module_cfg *src_mcfg,
1033 struct skl_module_cfg *dst_mcfg)
1034 {
1035 int ret;
1036 struct skl_ipc_bind_unbind_msg msg;
1037 struct skl_module_inst_id src_id = src_mcfg->id;
1038 struct skl_module_inst_id dst_id = dst_mcfg->id;
1039 int in_max = dst_mcfg->module->max_input_pins;
1040 int out_max = src_mcfg->module->max_output_pins;
1041 int src_index, dst_index, src_pin_state, dst_pin_state;
1042
1043 skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1044
1045 /* get src queue index */
1046 src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1047 if (src_index < 0)
1048 return 0;
1049
1050 msg.src_queue = src_index;
1051
1052 /* get dst queue index */
1053 dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1054 if (dst_index < 0)
1055 return 0;
1056
1057 msg.dst_queue = dst_index;
1058
1059 src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1060 dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1061
1062 if (src_pin_state != SKL_PIN_BIND_DONE ||
1063 dst_pin_state != SKL_PIN_BIND_DONE)
1064 return 0;
1065
1066 msg.module_id = src_mcfg->id.module_id;
1067 msg.instance_id = src_mcfg->id.pvt_id;
1068 msg.dst_module_id = dst_mcfg->id.module_id;
1069 msg.dst_instance_id = dst_mcfg->id.pvt_id;
1070 msg.bind = false;
1071
1072 ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1073 if (!ret) {
1074 /* free queue only if unbind is success */
1075 skl_free_queue(src_mcfg->m_out_pin, src_index);
1076 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1077
1078 /*
1079 * check only if src module bind state, bind is
1080 * always from src -> sink
1081 */
1082 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1083 }
1084
1085 return ret;
1086 }
1087
fill_pin_params(struct skl_audio_data_format * pin_fmt,struct skl_module_fmt * format)1088 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1089 struct skl_module_fmt *format)
1090 {
1091 pin_fmt->number_of_channels = format->channels;
1092 pin_fmt->s_freq = format->s_freq;
1093 pin_fmt->bit_depth = format->bit_depth;
1094 pin_fmt->valid_bit_depth = format->valid_bit_depth;
1095 pin_fmt->ch_cfg = format->ch_cfg;
1096 pin_fmt->sample_type = format->sample_type;
1097 pin_fmt->channel_map = format->ch_map;
1098 pin_fmt->interleaving = format->interleaving_style;
1099 }
1100
1101 #define CPR_SINK_FMT_PARAM_ID 2
1102
1103 /*
1104 * Once a module is instantiated it need to be 'bind' with other modules in
1105 * the pipeline. For binding we need to find the module pins which are bind
1106 * together
1107 * This function finds the pins and then sends bund_unbind IPC message to
1108 * DSP using IPC helper
1109 */
skl_bind_modules(struct skl_dev * skl,struct skl_module_cfg * src_mcfg,struct skl_module_cfg * dst_mcfg)1110 int skl_bind_modules(struct skl_dev *skl,
1111 struct skl_module_cfg *src_mcfg,
1112 struct skl_module_cfg *dst_mcfg)
1113 {
1114 int ret = 0;
1115 struct skl_ipc_bind_unbind_msg msg;
1116 int in_max = dst_mcfg->module->max_input_pins;
1117 int out_max = src_mcfg->module->max_output_pins;
1118 int src_index, dst_index;
1119 struct skl_module_fmt *format;
1120 struct skl_cpr_pin_fmt pin_fmt;
1121 struct skl_module *module;
1122 struct skl_module_iface *fmt;
1123
1124 skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1125
1126 if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1127 dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1128 return 0;
1129
1130 src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1131 if (src_index < 0)
1132 return -EINVAL;
1133
1134 msg.src_queue = src_index;
1135 dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1136 if (dst_index < 0) {
1137 skl_free_queue(src_mcfg->m_out_pin, src_index);
1138 return -EINVAL;
1139 }
1140
1141 /*
1142 * Copier module requires the separate large_config_set_ipc to
1143 * configure the pins other than 0
1144 */
1145 if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1146 pin_fmt.sink_id = src_index;
1147 module = src_mcfg->module;
1148 fmt = &module->formats[src_mcfg->fmt_idx];
1149
1150 /* Input fmt is same as that of src module input cfg */
1151 format = &fmt->inputs[0].fmt;
1152 fill_pin_params(&(pin_fmt.src_fmt), format);
1153
1154 format = &fmt->outputs[src_index].fmt;
1155 fill_pin_params(&(pin_fmt.dst_fmt), format);
1156 ret = skl_set_module_params(skl, (void *)&pin_fmt,
1157 sizeof(struct skl_cpr_pin_fmt),
1158 CPR_SINK_FMT_PARAM_ID, src_mcfg);
1159
1160 if (ret < 0)
1161 goto out;
1162 }
1163
1164 msg.dst_queue = dst_index;
1165
1166 dev_dbg(skl->dev, "src queue = %d dst queue =%d\n",
1167 msg.src_queue, msg.dst_queue);
1168
1169 msg.module_id = src_mcfg->id.module_id;
1170 msg.instance_id = src_mcfg->id.pvt_id;
1171 msg.dst_module_id = dst_mcfg->id.module_id;
1172 msg.dst_instance_id = dst_mcfg->id.pvt_id;
1173 msg.bind = true;
1174
1175 ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1176
1177 if (!ret) {
1178 src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1179 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1180 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1181 return ret;
1182 }
1183 out:
1184 /* error case , if IPC fails, clear the queue index */
1185 skl_free_queue(src_mcfg->m_out_pin, src_index);
1186 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1187
1188 return ret;
1189 }
1190
skl_set_pipe_state(struct skl_dev * skl,struct skl_pipe * pipe,enum skl_ipc_pipeline_state state)1191 static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe,
1192 enum skl_ipc_pipeline_state state)
1193 {
1194 dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state);
1195
1196 return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state);
1197 }
1198
1199 /*
1200 * A pipeline is a collection of modules. Before a module in instantiated a
1201 * pipeline needs to be created for it.
1202 * This function creates pipeline, by sending create pipeline IPC messages
1203 * to FW
1204 */
skl_create_pipeline(struct skl_dev * skl,struct skl_pipe * pipe)1205 int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe)
1206 {
1207 int ret;
1208
1209 dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1210
1211 ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages,
1212 pipe->pipe_priority, pipe->ppl_id,
1213 pipe->lp_mode);
1214 if (ret < 0) {
1215 dev_err(skl->dev, "Failed to create pipeline\n");
1216 return ret;
1217 }
1218
1219 pipe->state = SKL_PIPE_CREATED;
1220
1221 return 0;
1222 }
1223
1224 /*
1225 * A pipeline needs to be deleted on cleanup. If a pipeline is running,
1226 * then pause it first. Before actual deletion, pipeline should enter
1227 * reset state. Finish the procedure by sending delete pipeline IPC.
1228 * DSP will stop the DMA engines and release resources
1229 */
skl_delete_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1230 int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1231 {
1232 int ret;
1233
1234 dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1235
1236 /* If pipe was not created in FW, do not try to delete it */
1237 if (pipe->state < SKL_PIPE_CREATED)
1238 return 0;
1239
1240 /* If pipe is started, do stop the pipe in FW. */
1241 if (pipe->state >= SKL_PIPE_STARTED) {
1242 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1243 if (ret < 0) {
1244 dev_err(skl->dev, "Failed to stop pipeline\n");
1245 return ret;
1246 }
1247
1248 pipe->state = SKL_PIPE_PAUSED;
1249 }
1250
1251 /* reset pipe state before deletion */
1252 ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1253 if (ret < 0) {
1254 dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1255 return ret;
1256 }
1257
1258 pipe->state = SKL_PIPE_RESET;
1259
1260 ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id);
1261 if (ret < 0) {
1262 dev_err(skl->dev, "Failed to delete pipeline\n");
1263 return ret;
1264 }
1265
1266 pipe->state = SKL_PIPE_INVALID;
1267
1268 return ret;
1269 }
1270
1271 /*
1272 * A pipeline is also a scheduling entity in DSP which can be run, stopped
1273 * For processing data the pipe need to be run by sending IPC set pipe state
1274 * to DSP
1275 */
skl_run_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1276 int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1277 {
1278 int ret;
1279
1280 dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1281
1282 /* If pipe was not created in FW, do not try to pause or delete */
1283 if (pipe->state < SKL_PIPE_CREATED)
1284 return 0;
1285
1286 /* Pipe has to be paused before it is started */
1287 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1288 if (ret < 0) {
1289 dev_err(skl->dev, "Failed to pause pipe\n");
1290 return ret;
1291 }
1292
1293 pipe->state = SKL_PIPE_PAUSED;
1294
1295 ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING);
1296 if (ret < 0) {
1297 dev_err(skl->dev, "Failed to start pipe\n");
1298 return ret;
1299 }
1300
1301 pipe->state = SKL_PIPE_STARTED;
1302
1303 return 0;
1304 }
1305
1306 /*
1307 * Stop the pipeline by sending set pipe state IPC
1308 * DSP doesnt implement stop so we always send pause message
1309 */
skl_stop_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1310 int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1311 {
1312 int ret;
1313
1314 dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1315
1316 /* If pipe was not created in FW, do not try to pause or delete */
1317 if (pipe->state < SKL_PIPE_PAUSED)
1318 return 0;
1319
1320 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1321 if (ret < 0) {
1322 dev_dbg(skl->dev, "Failed to stop pipe\n");
1323 return ret;
1324 }
1325
1326 pipe->state = SKL_PIPE_PAUSED;
1327
1328 return 0;
1329 }
1330
1331 /*
1332 * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1333 * from the DSP side
1334 */
skl_reset_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1335 int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1336 {
1337 int ret;
1338
1339 /* If pipe was not created in FW, do not try to pause or delete */
1340 if (pipe->state < SKL_PIPE_PAUSED)
1341 return 0;
1342
1343 ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1344 if (ret < 0) {
1345 dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1346 return ret;
1347 }
1348
1349 pipe->state = SKL_PIPE_RESET;
1350
1351 return 0;
1352 }
1353
1354 /* Algo parameter set helper function */
skl_set_module_params(struct skl_dev * skl,u32 * params,int size,u32 param_id,struct skl_module_cfg * mcfg)1355 int skl_set_module_params(struct skl_dev *skl, u32 *params, int size,
1356 u32 param_id, struct skl_module_cfg *mcfg)
1357 {
1358 struct skl_ipc_large_config_msg msg;
1359
1360 msg.module_id = mcfg->id.module_id;
1361 msg.instance_id = mcfg->id.pvt_id;
1362 msg.param_data_size = size;
1363 msg.large_param_id = param_id;
1364
1365 return skl_ipc_set_large_config(&skl->ipc, &msg, params);
1366 }
1367
skl_get_module_params(struct skl_dev * skl,u32 * params,int size,u32 param_id,struct skl_module_cfg * mcfg)1368 int skl_get_module_params(struct skl_dev *skl, u32 *params, int size,
1369 u32 param_id, struct skl_module_cfg *mcfg)
1370 {
1371 struct skl_ipc_large_config_msg msg;
1372 size_t bytes = size;
1373
1374 msg.module_id = mcfg->id.module_id;
1375 msg.instance_id = mcfg->id.pvt_id;
1376 msg.param_data_size = size;
1377 msg.large_param_id = param_id;
1378
1379 return skl_ipc_get_large_config(&skl->ipc, &msg, ¶ms, &bytes);
1380 }
1381