1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Keyring handling
3 *
4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/security.h>
13 #include <linux/seq_file.h>
14 #include <linux/err.h>
15 #include <linux/user_namespace.h>
16 #include <linux/nsproxy.h>
17 #include <keys/keyring-type.h>
18 #include <keys/user-type.h>
19 #include <linux/assoc_array_priv.h>
20 #include <linux/uaccess.h>
21 #include <net/net_namespace.h>
22 #include "internal.h"
23
24 /*
25 * When plumbing the depths of the key tree, this sets a hard limit
26 * set on how deep we're willing to go.
27 */
28 #define KEYRING_SEARCH_MAX_DEPTH 6
29
30 /*
31 * We mark pointers we pass to the associative array with bit 1 set if
32 * they're keyrings and clear otherwise.
33 */
34 #define KEYRING_PTR_SUBTYPE 0x2UL
35
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)36 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37 {
38 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)40 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41 {
42 void *object = assoc_array_ptr_to_leaf(x);
43 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44 }
keyring_key_to_ptr(struct key * key)45 static inline void *keyring_key_to_ptr(struct key *key)
46 {
47 if (key->type == &key_type_keyring)
48 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49 return key;
50 }
51
52 static DEFINE_RWLOCK(keyring_name_lock);
53
54 /*
55 * Clean up the bits of user_namespace that belong to us.
56 */
key_free_user_ns(struct user_namespace * ns)57 void key_free_user_ns(struct user_namespace *ns)
58 {
59 write_lock(&keyring_name_lock);
60 list_del_init(&ns->keyring_name_list);
61 write_unlock(&keyring_name_lock);
62
63 key_put(ns->user_keyring_register);
64 #ifdef CONFIG_PERSISTENT_KEYRINGS
65 key_put(ns->persistent_keyring_register);
66 #endif
67 }
68
69 /*
70 * The keyring key type definition. Keyrings are simply keys of this type and
71 * can be treated as ordinary keys in addition to having their own special
72 * operations.
73 */
74 static int keyring_preparse(struct key_preparsed_payload *prep);
75 static void keyring_free_preparse(struct key_preparsed_payload *prep);
76 static int keyring_instantiate(struct key *keyring,
77 struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 char __user *buffer, size_t buflen);
83
84 struct key_type key_type_keyring = {
85 .name = "keyring",
86 .def_datalen = 0,
87 .preparse = keyring_preparse,
88 .free_preparse = keyring_free_preparse,
89 .instantiate = keyring_instantiate,
90 .revoke = keyring_revoke,
91 .destroy = keyring_destroy,
92 .describe = keyring_describe,
93 .read = keyring_read,
94 };
95 EXPORT_SYMBOL(key_type_keyring);
96
97 /*
98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
99 * introducing a cycle.
100 */
101 static DEFINE_MUTEX(keyring_serialise_link_lock);
102
103 /*
104 * Publish the name of a keyring so that it can be found by name (if it has
105 * one and it doesn't begin with a dot).
106 */
keyring_publish_name(struct key * keyring)107 static void keyring_publish_name(struct key *keyring)
108 {
109 struct user_namespace *ns = current_user_ns();
110
111 if (keyring->description &&
112 keyring->description[0] &&
113 keyring->description[0] != '.') {
114 write_lock(&keyring_name_lock);
115 list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116 write_unlock(&keyring_name_lock);
117 }
118 }
119
120 /*
121 * Preparse a keyring payload
122 */
keyring_preparse(struct key_preparsed_payload * prep)123 static int keyring_preparse(struct key_preparsed_payload *prep)
124 {
125 return prep->datalen != 0 ? -EINVAL : 0;
126 }
127
128 /*
129 * Free a preparse of a user defined key payload
130 */
keyring_free_preparse(struct key_preparsed_payload * prep)131 static void keyring_free_preparse(struct key_preparsed_payload *prep)
132 {
133 }
134
135 /*
136 * Initialise a keyring.
137 *
138 * Returns 0 on success, -EINVAL if given any data.
139 */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)140 static int keyring_instantiate(struct key *keyring,
141 struct key_preparsed_payload *prep)
142 {
143 assoc_array_init(&keyring->keys);
144 /* make the keyring available by name if it has one */
145 keyring_publish_name(keyring);
146 return 0;
147 }
148
149 /*
150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
151 * fold the carry back too, but that requires inline asm.
152 */
mult_64x32_and_fold(u64 x,u32 y)153 static u64 mult_64x32_and_fold(u64 x, u32 y)
154 {
155 u64 hi = (u64)(u32)(x >> 32) * y;
156 u64 lo = (u64)(u32)(x) * y;
157 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158 }
159
160 /*
161 * Hash a key type and description.
162 */
hash_key_type_and_desc(struct keyring_index_key * index_key)163 static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164 {
165 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167 const char *description = index_key->description;
168 unsigned long hash, type;
169 u32 piece;
170 u64 acc;
171 int n, desc_len = index_key->desc_len;
172
173 type = (unsigned long)index_key->type;
174 acc = mult_64x32_and_fold(type, desc_len + 13);
175 acc = mult_64x32_and_fold(acc, 9207);
176 piece = (unsigned long)index_key->domain_tag;
177 acc = mult_64x32_and_fold(acc, piece);
178 acc = mult_64x32_and_fold(acc, 9207);
179
180 for (;;) {
181 n = desc_len;
182 if (n <= 0)
183 break;
184 if (n > 4)
185 n = 4;
186 piece = 0;
187 memcpy(&piece, description, n);
188 description += n;
189 desc_len -= n;
190 acc = mult_64x32_and_fold(acc, piece);
191 acc = mult_64x32_and_fold(acc, 9207);
192 }
193
194 /* Fold the hash down to 32 bits if need be. */
195 hash = acc;
196 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197 hash ^= acc >> 32;
198
199 /* Squidge all the keyrings into a separate part of the tree to
200 * ordinary keys by making sure the lowest level segment in the hash is
201 * zero for keyrings and non-zero otherwise.
202 */
203 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204 hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205 else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206 hash = (hash + (hash << level_shift)) & ~fan_mask;
207 index_key->hash = hash;
208 }
209
210 /*
211 * Finalise an index key to include a part of the description actually in the
212 * index key, to set the domain tag and to calculate the hash.
213 */
key_set_index_key(struct keyring_index_key * index_key)214 void key_set_index_key(struct keyring_index_key *index_key)
215 {
216 static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217 size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218
219 memcpy(index_key->desc, index_key->description, n);
220
221 if (!index_key->domain_tag) {
222 if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223 index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224 else
225 index_key->domain_tag = &default_domain_tag;
226 }
227
228 hash_key_type_and_desc(index_key);
229 }
230
231 /**
232 * key_put_tag - Release a ref on a tag.
233 * @tag: The tag to release.
234 *
235 * This releases a reference the given tag and returns true if that ref was the
236 * last one.
237 */
key_put_tag(struct key_tag * tag)238 bool key_put_tag(struct key_tag *tag)
239 {
240 if (refcount_dec_and_test(&tag->usage)) {
241 kfree_rcu(tag, rcu);
242 return true;
243 }
244
245 return false;
246 }
247
248 /**
249 * key_remove_domain - Kill off a key domain and gc its keys
250 * @domain_tag: The domain tag to release.
251 *
252 * This marks a domain tag as being dead and releases a ref on it. If that
253 * wasn't the last reference, the garbage collector is poked to try and delete
254 * all keys that were in the domain.
255 */
key_remove_domain(struct key_tag * domain_tag)256 void key_remove_domain(struct key_tag *domain_tag)
257 {
258 domain_tag->removed = true;
259 if (!key_put_tag(domain_tag))
260 key_schedule_gc_links();
261 }
262
263 /*
264 * Build the next index key chunk.
265 *
266 * We return it one word-sized chunk at a time.
267 */
keyring_get_key_chunk(const void * data,int level)268 static unsigned long keyring_get_key_chunk(const void *data, int level)
269 {
270 const struct keyring_index_key *index_key = data;
271 unsigned long chunk = 0;
272 const u8 *d;
273 int desc_len = index_key->desc_len, n = sizeof(chunk);
274
275 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276 switch (level) {
277 case 0:
278 return index_key->hash;
279 case 1:
280 return index_key->x;
281 case 2:
282 return (unsigned long)index_key->type;
283 case 3:
284 return (unsigned long)index_key->domain_tag;
285 default:
286 level -= 4;
287 if (desc_len <= sizeof(index_key->desc))
288 return 0;
289
290 d = index_key->description + sizeof(index_key->desc);
291 d += level * sizeof(long);
292 desc_len -= sizeof(index_key->desc);
293 if (desc_len > n)
294 desc_len = n;
295 do {
296 chunk <<= 8;
297 chunk |= *d++;
298 } while (--desc_len > 0);
299 return chunk;
300 }
301 }
302
keyring_get_object_key_chunk(const void * object,int level)303 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304 {
305 const struct key *key = keyring_ptr_to_key(object);
306 return keyring_get_key_chunk(&key->index_key, level);
307 }
308
keyring_compare_object(const void * object,const void * data)309 static bool keyring_compare_object(const void *object, const void *data)
310 {
311 const struct keyring_index_key *index_key = data;
312 const struct key *key = keyring_ptr_to_key(object);
313
314 return key->index_key.type == index_key->type &&
315 key->index_key.domain_tag == index_key->domain_tag &&
316 key->index_key.desc_len == index_key->desc_len &&
317 memcmp(key->index_key.description, index_key->description,
318 index_key->desc_len) == 0;
319 }
320
321 /*
322 * Compare the index keys of a pair of objects and determine the bit position
323 * at which they differ - if they differ.
324 */
keyring_diff_objects(const void * object,const void * data)325 static int keyring_diff_objects(const void *object, const void *data)
326 {
327 const struct key *key_a = keyring_ptr_to_key(object);
328 const struct keyring_index_key *a = &key_a->index_key;
329 const struct keyring_index_key *b = data;
330 unsigned long seg_a, seg_b;
331 int level, i;
332
333 level = 0;
334 seg_a = a->hash;
335 seg_b = b->hash;
336 if ((seg_a ^ seg_b) != 0)
337 goto differ;
338 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339
340 /* The number of bits contributed by the hash is controlled by a
341 * constant in the assoc_array headers. Everything else thereafter we
342 * can deal with as being machine word-size dependent.
343 */
344 seg_a = a->x;
345 seg_b = b->x;
346 if ((seg_a ^ seg_b) != 0)
347 goto differ;
348 level += sizeof(unsigned long);
349
350 /* The next bit may not work on big endian */
351 seg_a = (unsigned long)a->type;
352 seg_b = (unsigned long)b->type;
353 if ((seg_a ^ seg_b) != 0)
354 goto differ;
355 level += sizeof(unsigned long);
356
357 seg_a = (unsigned long)a->domain_tag;
358 seg_b = (unsigned long)b->domain_tag;
359 if ((seg_a ^ seg_b) != 0)
360 goto differ;
361 level += sizeof(unsigned long);
362
363 i = sizeof(a->desc);
364 if (a->desc_len <= i)
365 goto same;
366
367 for (; i < a->desc_len; i++) {
368 seg_a = *(unsigned char *)(a->description + i);
369 seg_b = *(unsigned char *)(b->description + i);
370 if ((seg_a ^ seg_b) != 0)
371 goto differ_plus_i;
372 }
373
374 same:
375 return -1;
376
377 differ_plus_i:
378 level += i;
379 differ:
380 i = level * 8 + __ffs(seg_a ^ seg_b);
381 return i;
382 }
383
384 /*
385 * Free an object after stripping the keyring flag off of the pointer.
386 */
keyring_free_object(void * object)387 static void keyring_free_object(void *object)
388 {
389 key_put(keyring_ptr_to_key(object));
390 }
391
392 /*
393 * Operations for keyring management by the index-tree routines.
394 */
395 static const struct assoc_array_ops keyring_assoc_array_ops = {
396 .get_key_chunk = keyring_get_key_chunk,
397 .get_object_key_chunk = keyring_get_object_key_chunk,
398 .compare_object = keyring_compare_object,
399 .diff_objects = keyring_diff_objects,
400 .free_object = keyring_free_object,
401 };
402
403 /*
404 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
405 * and dispose of its data.
406 *
407 * The garbage collector detects the final key_put(), removes the keyring from
408 * the serial number tree and then does RCU synchronisation before coming here,
409 * so we shouldn't need to worry about code poking around here with the RCU
410 * readlock held by this time.
411 */
keyring_destroy(struct key * keyring)412 static void keyring_destroy(struct key *keyring)
413 {
414 if (keyring->description) {
415 write_lock(&keyring_name_lock);
416
417 if (keyring->name_link.next != NULL &&
418 !list_empty(&keyring->name_link))
419 list_del(&keyring->name_link);
420
421 write_unlock(&keyring_name_lock);
422 }
423
424 if (keyring->restrict_link) {
425 struct key_restriction *keyres = keyring->restrict_link;
426
427 key_put(keyres->key);
428 kfree(keyres);
429 }
430
431 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432 }
433
434 /*
435 * Describe a keyring for /proc.
436 */
keyring_describe(const struct key * keyring,struct seq_file * m)437 static void keyring_describe(const struct key *keyring, struct seq_file *m)
438 {
439 if (keyring->description)
440 seq_puts(m, keyring->description);
441 else
442 seq_puts(m, "[anon]");
443
444 if (key_is_positive(keyring)) {
445 if (keyring->keys.nr_leaves_on_tree != 0)
446 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447 else
448 seq_puts(m, ": empty");
449 }
450 }
451
452 struct keyring_read_iterator_context {
453 size_t buflen;
454 size_t count;
455 key_serial_t __user *buffer;
456 };
457
keyring_read_iterator(const void * object,void * data)458 static int keyring_read_iterator(const void *object, void *data)
459 {
460 struct keyring_read_iterator_context *ctx = data;
461 const struct key *key = keyring_ptr_to_key(object);
462
463 kenter("{%s,%d},,{%zu/%zu}",
464 key->type->name, key->serial, ctx->count, ctx->buflen);
465
466 if (ctx->count >= ctx->buflen)
467 return 1;
468
469 *ctx->buffer++ = key->serial;
470 ctx->count += sizeof(key->serial);
471 return 0;
472 }
473
474 /*
475 * Read a list of key IDs from the keyring's contents in binary form
476 *
477 * The keyring's semaphore is read-locked by the caller. This prevents someone
478 * from modifying it under us - which could cause us to read key IDs multiple
479 * times.
480 */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)481 static long keyring_read(const struct key *keyring,
482 char __user *buffer, size_t buflen)
483 {
484 struct keyring_read_iterator_context ctx;
485 long ret;
486
487 kenter("{%d},,%zu", key_serial(keyring), buflen);
488
489 if (buflen & (sizeof(key_serial_t) - 1))
490 return -EINVAL;
491
492 /* Copy as many key IDs as fit into the buffer */
493 if (buffer && buflen) {
494 ctx.buffer = (key_serial_t __user *)buffer;
495 ctx.buflen = buflen;
496 ctx.count = 0;
497 ret = assoc_array_iterate(&keyring->keys,
498 keyring_read_iterator, &ctx);
499 if (ret < 0) {
500 kleave(" = %ld [iterate]", ret);
501 return ret;
502 }
503 }
504
505 /* Return the size of the buffer needed */
506 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
507 if (ret <= buflen)
508 kleave("= %ld [ok]", ret);
509 else
510 kleave("= %ld [buffer too small]", ret);
511 return ret;
512 }
513
514 /*
515 * Allocate a keyring and link into the destination keyring.
516 */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link,struct key * dest)517 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
518 const struct cred *cred, key_perm_t perm,
519 unsigned long flags,
520 struct key_restriction *restrict_link,
521 struct key *dest)
522 {
523 struct key *keyring;
524 int ret;
525
526 keyring = key_alloc(&key_type_keyring, description,
527 uid, gid, cred, perm, flags, restrict_link);
528 if (!IS_ERR(keyring)) {
529 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
530 if (ret < 0) {
531 key_put(keyring);
532 keyring = ERR_PTR(ret);
533 }
534 }
535
536 return keyring;
537 }
538 EXPORT_SYMBOL(keyring_alloc);
539
540 /**
541 * restrict_link_reject - Give -EPERM to restrict link
542 * @keyring: The keyring being added to.
543 * @type: The type of key being added.
544 * @payload: The payload of the key intended to be added.
545 * @restriction_key: Keys providing additional data for evaluating restriction.
546 *
547 * Reject the addition of any links to a keyring. It can be overridden by
548 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
549 * adding a key to a keyring.
550 *
551 * This is meant to be stored in a key_restriction structure which is passed
552 * in the restrict_link parameter to keyring_alloc().
553 */
restrict_link_reject(struct key * keyring,const struct key_type * type,const union key_payload * payload,struct key * restriction_key)554 int restrict_link_reject(struct key *keyring,
555 const struct key_type *type,
556 const union key_payload *payload,
557 struct key *restriction_key)
558 {
559 return -EPERM;
560 }
561
562 /*
563 * By default, we keys found by getting an exact match on their descriptions.
564 */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)565 bool key_default_cmp(const struct key *key,
566 const struct key_match_data *match_data)
567 {
568 return strcmp(key->description, match_data->raw_data) == 0;
569 }
570
571 /*
572 * Iteration function to consider each key found.
573 */
keyring_search_iterator(const void * object,void * iterator_data)574 static int keyring_search_iterator(const void *object, void *iterator_data)
575 {
576 struct keyring_search_context *ctx = iterator_data;
577 const struct key *key = keyring_ptr_to_key(object);
578 unsigned long kflags = READ_ONCE(key->flags);
579 short state = READ_ONCE(key->state);
580
581 kenter("{%d}", key->serial);
582
583 /* ignore keys not of this type */
584 if (key->type != ctx->index_key.type) {
585 kleave(" = 0 [!type]");
586 return 0;
587 }
588
589 /* skip invalidated, revoked and expired keys */
590 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
591 time64_t expiry = READ_ONCE(key->expiry);
592
593 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
594 (1 << KEY_FLAG_REVOKED))) {
595 ctx->result = ERR_PTR(-EKEYREVOKED);
596 kleave(" = %d [invrev]", ctx->skipped_ret);
597 goto skipped;
598 }
599
600 if (expiry && ctx->now >= expiry) {
601 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
602 ctx->result = ERR_PTR(-EKEYEXPIRED);
603 kleave(" = %d [expire]", ctx->skipped_ret);
604 goto skipped;
605 }
606 }
607
608 /* keys that don't match */
609 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
610 kleave(" = 0 [!match]");
611 return 0;
612 }
613
614 /* key must have search permissions */
615 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
616 key_task_permission(make_key_ref(key, ctx->possessed),
617 ctx->cred, KEY_NEED_SEARCH) < 0) {
618 ctx->result = ERR_PTR(-EACCES);
619 kleave(" = %d [!perm]", ctx->skipped_ret);
620 goto skipped;
621 }
622
623 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
624 /* we set a different error code if we pass a negative key */
625 if (state < 0) {
626 ctx->result = ERR_PTR(state);
627 kleave(" = %d [neg]", ctx->skipped_ret);
628 goto skipped;
629 }
630 }
631
632 /* Found */
633 ctx->result = make_key_ref(key, ctx->possessed);
634 kleave(" = 1 [found]");
635 return 1;
636
637 skipped:
638 return ctx->skipped_ret;
639 }
640
641 /*
642 * Search inside a keyring for a key. We can search by walking to it
643 * directly based on its index-key or we can iterate over the entire
644 * tree looking for it, based on the match function.
645 */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)646 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
647 {
648 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
649 const void *object;
650
651 object = assoc_array_find(&keyring->keys,
652 &keyring_assoc_array_ops,
653 &ctx->index_key);
654 return object ? ctx->iterator(object, ctx) : 0;
655 }
656 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
657 }
658
659 /*
660 * Search a tree of keyrings that point to other keyrings up to the maximum
661 * depth.
662 */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)663 static bool search_nested_keyrings(struct key *keyring,
664 struct keyring_search_context *ctx)
665 {
666 struct {
667 struct key *keyring;
668 struct assoc_array_node *node;
669 int slot;
670 } stack[KEYRING_SEARCH_MAX_DEPTH];
671
672 struct assoc_array_shortcut *shortcut;
673 struct assoc_array_node *node;
674 struct assoc_array_ptr *ptr;
675 struct key *key;
676 int sp = 0, slot;
677
678 kenter("{%d},{%s,%s}",
679 keyring->serial,
680 ctx->index_key.type->name,
681 ctx->index_key.description);
682
683 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
684 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
685 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
686
687 if (ctx->index_key.description)
688 key_set_index_key(&ctx->index_key);
689
690 /* Check to see if this top-level keyring is what we are looking for
691 * and whether it is valid or not.
692 */
693 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
694 keyring_compare_object(keyring, &ctx->index_key)) {
695 ctx->skipped_ret = 2;
696 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
697 case 1:
698 goto found;
699 case 2:
700 return false;
701 default:
702 break;
703 }
704 }
705
706 ctx->skipped_ret = 0;
707
708 /* Start processing a new keyring */
709 descend_to_keyring:
710 kdebug("descend to %d", keyring->serial);
711 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
712 (1 << KEY_FLAG_REVOKED)))
713 goto not_this_keyring;
714
715 /* Search through the keys in this keyring before its searching its
716 * subtrees.
717 */
718 if (search_keyring(keyring, ctx))
719 goto found;
720
721 /* Then manually iterate through the keyrings nested in this one.
722 *
723 * Start from the root node of the index tree. Because of the way the
724 * hash function has been set up, keyrings cluster on the leftmost
725 * branch of the root node (root slot 0) or in the root node itself.
726 * Non-keyrings avoid the leftmost branch of the root entirely (root
727 * slots 1-15).
728 */
729 if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
730 goto not_this_keyring;
731
732 ptr = READ_ONCE(keyring->keys.root);
733 if (!ptr)
734 goto not_this_keyring;
735
736 if (assoc_array_ptr_is_shortcut(ptr)) {
737 /* If the root is a shortcut, either the keyring only contains
738 * keyring pointers (everything clusters behind root slot 0) or
739 * doesn't contain any keyring pointers.
740 */
741 shortcut = assoc_array_ptr_to_shortcut(ptr);
742 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
743 goto not_this_keyring;
744
745 ptr = READ_ONCE(shortcut->next_node);
746 node = assoc_array_ptr_to_node(ptr);
747 goto begin_node;
748 }
749
750 node = assoc_array_ptr_to_node(ptr);
751 ptr = node->slots[0];
752 if (!assoc_array_ptr_is_meta(ptr))
753 goto begin_node;
754
755 descend_to_node:
756 /* Descend to a more distal node in this keyring's content tree and go
757 * through that.
758 */
759 kdebug("descend");
760 if (assoc_array_ptr_is_shortcut(ptr)) {
761 shortcut = assoc_array_ptr_to_shortcut(ptr);
762 ptr = READ_ONCE(shortcut->next_node);
763 BUG_ON(!assoc_array_ptr_is_node(ptr));
764 }
765 node = assoc_array_ptr_to_node(ptr);
766
767 begin_node:
768 kdebug("begin_node");
769 slot = 0;
770 ascend_to_node:
771 /* Go through the slots in a node */
772 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
773 ptr = READ_ONCE(node->slots[slot]);
774
775 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
776 goto descend_to_node;
777
778 if (!keyring_ptr_is_keyring(ptr))
779 continue;
780
781 key = keyring_ptr_to_key(ptr);
782
783 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
784 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
785 ctx->result = ERR_PTR(-ELOOP);
786 return false;
787 }
788 goto not_this_keyring;
789 }
790
791 /* Search a nested keyring */
792 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
793 key_task_permission(make_key_ref(key, ctx->possessed),
794 ctx->cred, KEY_NEED_SEARCH) < 0)
795 continue;
796
797 /* stack the current position */
798 stack[sp].keyring = keyring;
799 stack[sp].node = node;
800 stack[sp].slot = slot;
801 sp++;
802
803 /* begin again with the new keyring */
804 keyring = key;
805 goto descend_to_keyring;
806 }
807
808 /* We've dealt with all the slots in the current node, so now we need
809 * to ascend to the parent and continue processing there.
810 */
811 ptr = READ_ONCE(node->back_pointer);
812 slot = node->parent_slot;
813
814 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
815 shortcut = assoc_array_ptr_to_shortcut(ptr);
816 ptr = READ_ONCE(shortcut->back_pointer);
817 slot = shortcut->parent_slot;
818 }
819 if (!ptr)
820 goto not_this_keyring;
821 node = assoc_array_ptr_to_node(ptr);
822 slot++;
823
824 /* If we've ascended to the root (zero backpointer), we must have just
825 * finished processing the leftmost branch rather than the root slots -
826 * so there can't be any more keyrings for us to find.
827 */
828 if (node->back_pointer) {
829 kdebug("ascend %d", slot);
830 goto ascend_to_node;
831 }
832
833 /* The keyring we're looking at was disqualified or didn't contain a
834 * matching key.
835 */
836 not_this_keyring:
837 kdebug("not_this_keyring %d", sp);
838 if (sp <= 0) {
839 kleave(" = false");
840 return false;
841 }
842
843 /* Resume the processing of a keyring higher up in the tree */
844 sp--;
845 keyring = stack[sp].keyring;
846 node = stack[sp].node;
847 slot = stack[sp].slot + 1;
848 kdebug("ascend to %d [%d]", keyring->serial, slot);
849 goto ascend_to_node;
850
851 /* We found a viable match */
852 found:
853 key = key_ref_to_ptr(ctx->result);
854 key_check(key);
855 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
856 key->last_used_at = ctx->now;
857 keyring->last_used_at = ctx->now;
858 while (sp > 0)
859 stack[--sp].keyring->last_used_at = ctx->now;
860 }
861 kleave(" = true");
862 return true;
863 }
864
865 /**
866 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
867 * @keyring_ref: A pointer to the keyring with possession indicator.
868 * @ctx: The keyring search context.
869 *
870 * Search the supplied keyring tree for a key that matches the criteria given.
871 * The root keyring and any linked keyrings must grant Search permission to the
872 * caller to be searchable and keys can only be found if they too grant Search
873 * to the caller. The possession flag on the root keyring pointer controls use
874 * of the possessor bits in permissions checking of the entire tree. In
875 * addition, the LSM gets to forbid keyring searches and key matches.
876 *
877 * The search is performed as a breadth-then-depth search up to the prescribed
878 * limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to
879 * prevent keyrings from being destroyed or rearranged whilst they are being
880 * searched.
881 *
882 * Keys are matched to the type provided and are then filtered by the match
883 * function, which is given the description to use in any way it sees fit. The
884 * match function may use any attributes of a key that it wishes to to
885 * determine the match. Normally the match function from the key type would be
886 * used.
887 *
888 * RCU can be used to prevent the keyring key lists from disappearing without
889 * the need to take lots of locks.
890 *
891 * Returns a pointer to the found key and increments the key usage count if
892 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
893 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
894 * specified keyring wasn't a keyring.
895 *
896 * In the case of a successful return, the possession attribute from
897 * @keyring_ref is propagated to the returned key reference.
898 */
keyring_search_rcu(key_ref_t keyring_ref,struct keyring_search_context * ctx)899 key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
900 struct keyring_search_context *ctx)
901 {
902 struct key *keyring;
903 long err;
904
905 ctx->iterator = keyring_search_iterator;
906 ctx->possessed = is_key_possessed(keyring_ref);
907 ctx->result = ERR_PTR(-EAGAIN);
908
909 keyring = key_ref_to_ptr(keyring_ref);
910 key_check(keyring);
911
912 if (keyring->type != &key_type_keyring)
913 return ERR_PTR(-ENOTDIR);
914
915 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
916 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
917 if (err < 0)
918 return ERR_PTR(err);
919 }
920
921 ctx->now = ktime_get_real_seconds();
922 if (search_nested_keyrings(keyring, ctx))
923 __key_get(key_ref_to_ptr(ctx->result));
924 return ctx->result;
925 }
926
927 /**
928 * keyring_search - Search the supplied keyring tree for a matching key
929 * @keyring: The root of the keyring tree to be searched.
930 * @type: The type of keyring we want to find.
931 * @description: The name of the keyring we want to find.
932 * @recurse: True to search the children of @keyring also
933 *
934 * As keyring_search_rcu() above, but using the current task's credentials and
935 * type's default matching function and preferred search method.
936 */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description,bool recurse)937 key_ref_t keyring_search(key_ref_t keyring,
938 struct key_type *type,
939 const char *description,
940 bool recurse)
941 {
942 struct keyring_search_context ctx = {
943 .index_key.type = type,
944 .index_key.description = description,
945 .index_key.desc_len = strlen(description),
946 .cred = current_cred(),
947 .match_data.cmp = key_default_cmp,
948 .match_data.raw_data = description,
949 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
950 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
951 };
952 key_ref_t key;
953 int ret;
954
955 if (recurse)
956 ctx.flags |= KEYRING_SEARCH_RECURSE;
957 if (type->match_preparse) {
958 ret = type->match_preparse(&ctx.match_data);
959 if (ret < 0)
960 return ERR_PTR(ret);
961 }
962
963 rcu_read_lock();
964 key = keyring_search_rcu(keyring, &ctx);
965 rcu_read_unlock();
966
967 if (type->match_free)
968 type->match_free(&ctx.match_data);
969 return key;
970 }
971 EXPORT_SYMBOL(keyring_search);
972
keyring_restriction_alloc(key_restrict_link_func_t check)973 static struct key_restriction *keyring_restriction_alloc(
974 key_restrict_link_func_t check)
975 {
976 struct key_restriction *keyres =
977 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
978
979 if (!keyres)
980 return ERR_PTR(-ENOMEM);
981
982 keyres->check = check;
983
984 return keyres;
985 }
986
987 /*
988 * Semaphore to serialise restriction setup to prevent reference count
989 * cycles through restriction key pointers.
990 */
991 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
992
993 /*
994 * Check for restriction cycles that would prevent keyring garbage collection.
995 * keyring_serialise_restrict_sem must be held.
996 */
keyring_detect_restriction_cycle(const struct key * dest_keyring,struct key_restriction * keyres)997 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
998 struct key_restriction *keyres)
999 {
1000 while (keyres && keyres->key &&
1001 keyres->key->type == &key_type_keyring) {
1002 if (keyres->key == dest_keyring)
1003 return true;
1004
1005 keyres = keyres->key->restrict_link;
1006 }
1007
1008 return false;
1009 }
1010
1011 /**
1012 * keyring_restrict - Look up and apply a restriction to a keyring
1013 * @keyring_ref: The keyring to be restricted
1014 * @type: The key type that will provide the restriction checker.
1015 * @restriction: The restriction options to apply to the keyring
1016 *
1017 * Look up a keyring and apply a restriction to it. The restriction is managed
1018 * by the specific key type, but can be configured by the options specified in
1019 * the restriction string.
1020 */
keyring_restrict(key_ref_t keyring_ref,const char * type,const char * restriction)1021 int keyring_restrict(key_ref_t keyring_ref, const char *type,
1022 const char *restriction)
1023 {
1024 struct key *keyring;
1025 struct key_type *restrict_type = NULL;
1026 struct key_restriction *restrict_link;
1027 int ret = 0;
1028
1029 keyring = key_ref_to_ptr(keyring_ref);
1030 key_check(keyring);
1031
1032 if (keyring->type != &key_type_keyring)
1033 return -ENOTDIR;
1034
1035 if (!type) {
1036 restrict_link = keyring_restriction_alloc(restrict_link_reject);
1037 } else {
1038 restrict_type = key_type_lookup(type);
1039
1040 if (IS_ERR(restrict_type))
1041 return PTR_ERR(restrict_type);
1042
1043 if (!restrict_type->lookup_restriction) {
1044 ret = -ENOENT;
1045 goto error;
1046 }
1047
1048 restrict_link = restrict_type->lookup_restriction(restriction);
1049 }
1050
1051 if (IS_ERR(restrict_link)) {
1052 ret = PTR_ERR(restrict_link);
1053 goto error;
1054 }
1055
1056 down_write(&keyring->sem);
1057 down_write(&keyring_serialise_restrict_sem);
1058
1059 if (keyring->restrict_link) {
1060 ret = -EEXIST;
1061 } else if (keyring_detect_restriction_cycle(keyring, restrict_link)) {
1062 ret = -EDEADLK;
1063 } else {
1064 keyring->restrict_link = restrict_link;
1065 notify_key(keyring, NOTIFY_KEY_SETATTR, 0);
1066 }
1067
1068 up_write(&keyring_serialise_restrict_sem);
1069 up_write(&keyring->sem);
1070
1071 if (ret < 0) {
1072 key_put(restrict_link->key);
1073 kfree(restrict_link);
1074 }
1075
1076 error:
1077 if (restrict_type)
1078 key_type_put(restrict_type);
1079
1080 return ret;
1081 }
1082 EXPORT_SYMBOL(keyring_restrict);
1083
1084 /*
1085 * Search the given keyring for a key that might be updated.
1086 *
1087 * The caller must guarantee that the keyring is a keyring and that the
1088 * permission is granted to modify the keyring as no check is made here. The
1089 * caller must also hold a lock on the keyring semaphore.
1090 *
1091 * Returns a pointer to the found key with usage count incremented if
1092 * successful and returns NULL if not found. Revoked and invalidated keys are
1093 * skipped over.
1094 *
1095 * If successful, the possession indicator is propagated from the keyring ref
1096 * to the returned key reference.
1097 */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)1098 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1099 const struct keyring_index_key *index_key)
1100 {
1101 struct key *keyring, *key;
1102 const void *object;
1103
1104 keyring = key_ref_to_ptr(keyring_ref);
1105
1106 kenter("{%d},{%s,%s}",
1107 keyring->serial, index_key->type->name, index_key->description);
1108
1109 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1110 index_key);
1111
1112 if (object)
1113 goto found;
1114
1115 kleave(" = NULL");
1116 return NULL;
1117
1118 found:
1119 key = keyring_ptr_to_key(object);
1120 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1121 (1 << KEY_FLAG_REVOKED))) {
1122 kleave(" = NULL [x]");
1123 return NULL;
1124 }
1125 __key_get(key);
1126 kleave(" = {%d}", key->serial);
1127 return make_key_ref(key, is_key_possessed(keyring_ref));
1128 }
1129
1130 /*
1131 * Find a keyring with the specified name.
1132 *
1133 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1134 * user in the current user namespace are considered. If @uid_keyring is %true,
1135 * the keyring additionally must have been allocated as a user or user session
1136 * keyring; otherwise, it must grant Search permission directly to the caller.
1137 *
1138 * Returns a pointer to the keyring with the keyring's refcount having being
1139 * incremented on success. -ENOKEY is returned if a key could not be found.
1140 */
find_keyring_by_name(const char * name,bool uid_keyring)1141 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1142 {
1143 struct user_namespace *ns = current_user_ns();
1144 struct key *keyring;
1145
1146 if (!name)
1147 return ERR_PTR(-EINVAL);
1148
1149 read_lock(&keyring_name_lock);
1150
1151 /* Search this hash bucket for a keyring with a matching name that
1152 * grants Search permission and that hasn't been revoked
1153 */
1154 list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1155 if (!kuid_has_mapping(ns, keyring->user->uid))
1156 continue;
1157
1158 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1159 continue;
1160
1161 if (strcmp(keyring->description, name) != 0)
1162 continue;
1163
1164 if (uid_keyring) {
1165 if (!test_bit(KEY_FLAG_UID_KEYRING,
1166 &keyring->flags))
1167 continue;
1168 } else {
1169 if (key_permission(make_key_ref(keyring, 0),
1170 KEY_NEED_SEARCH) < 0)
1171 continue;
1172 }
1173
1174 /* we've got a match but we might end up racing with
1175 * key_cleanup() if the keyring is currently 'dead'
1176 * (ie. it has a zero usage count) */
1177 if (!refcount_inc_not_zero(&keyring->usage))
1178 continue;
1179 keyring->last_used_at = ktime_get_real_seconds();
1180 goto out;
1181 }
1182
1183 keyring = ERR_PTR(-ENOKEY);
1184 out:
1185 read_unlock(&keyring_name_lock);
1186 return keyring;
1187 }
1188
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1189 static int keyring_detect_cycle_iterator(const void *object,
1190 void *iterator_data)
1191 {
1192 struct keyring_search_context *ctx = iterator_data;
1193 const struct key *key = keyring_ptr_to_key(object);
1194
1195 kenter("{%d}", key->serial);
1196
1197 /* We might get a keyring with matching index-key that is nonetheless a
1198 * different keyring. */
1199 if (key != ctx->match_data.raw_data)
1200 return 0;
1201
1202 ctx->result = ERR_PTR(-EDEADLK);
1203 return 1;
1204 }
1205
1206 /*
1207 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1208 * tree A at the topmost level (ie: as a direct child of A).
1209 *
1210 * Since we are adding B to A at the top level, checking for cycles should just
1211 * be a matter of seeing if node A is somewhere in tree B.
1212 */
keyring_detect_cycle(struct key * A,struct key * B)1213 static int keyring_detect_cycle(struct key *A, struct key *B)
1214 {
1215 struct keyring_search_context ctx = {
1216 .index_key = A->index_key,
1217 .match_data.raw_data = A,
1218 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1219 .iterator = keyring_detect_cycle_iterator,
1220 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1221 KEYRING_SEARCH_NO_UPDATE_TIME |
1222 KEYRING_SEARCH_NO_CHECK_PERM |
1223 KEYRING_SEARCH_DETECT_TOO_DEEP |
1224 KEYRING_SEARCH_RECURSE),
1225 };
1226
1227 rcu_read_lock();
1228 search_nested_keyrings(B, &ctx);
1229 rcu_read_unlock();
1230 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1231 }
1232
1233 /*
1234 * Lock keyring for link.
1235 */
__key_link_lock(struct key * keyring,const struct keyring_index_key * index_key)1236 int __key_link_lock(struct key *keyring,
1237 const struct keyring_index_key *index_key)
1238 __acquires(&keyring->sem)
1239 __acquires(&keyring_serialise_link_lock)
1240 {
1241 if (keyring->type != &key_type_keyring)
1242 return -ENOTDIR;
1243
1244 down_write(&keyring->sem);
1245
1246 /* Serialise link/link calls to prevent parallel calls causing a cycle
1247 * when linking two keyring in opposite orders.
1248 */
1249 if (index_key->type == &key_type_keyring)
1250 mutex_lock(&keyring_serialise_link_lock);
1251
1252 return 0;
1253 }
1254
1255 /*
1256 * Lock keyrings for move (link/unlink combination).
1257 */
__key_move_lock(struct key * l_keyring,struct key * u_keyring,const struct keyring_index_key * index_key)1258 int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1259 const struct keyring_index_key *index_key)
1260 __acquires(&l_keyring->sem)
1261 __acquires(&u_keyring->sem)
1262 __acquires(&keyring_serialise_link_lock)
1263 {
1264 if (l_keyring->type != &key_type_keyring ||
1265 u_keyring->type != &key_type_keyring)
1266 return -ENOTDIR;
1267
1268 /* We have to be very careful here to take the keyring locks in the
1269 * right order, lest we open ourselves to deadlocking against another
1270 * move operation.
1271 */
1272 if (l_keyring < u_keyring) {
1273 down_write(&l_keyring->sem);
1274 down_write_nested(&u_keyring->sem, 1);
1275 } else {
1276 down_write(&u_keyring->sem);
1277 down_write_nested(&l_keyring->sem, 1);
1278 }
1279
1280 /* Serialise link/link calls to prevent parallel calls causing a cycle
1281 * when linking two keyring in opposite orders.
1282 */
1283 if (index_key->type == &key_type_keyring)
1284 mutex_lock(&keyring_serialise_link_lock);
1285
1286 return 0;
1287 }
1288
1289 /*
1290 * Preallocate memory so that a key can be linked into to a keyring.
1291 */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1292 int __key_link_begin(struct key *keyring,
1293 const struct keyring_index_key *index_key,
1294 struct assoc_array_edit **_edit)
1295 {
1296 struct assoc_array_edit *edit;
1297 int ret;
1298
1299 kenter("%d,%s,%s,",
1300 keyring->serial, index_key->type->name, index_key->description);
1301
1302 BUG_ON(index_key->desc_len == 0);
1303 BUG_ON(*_edit != NULL);
1304
1305 *_edit = NULL;
1306
1307 ret = -EKEYREVOKED;
1308 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1309 goto error;
1310
1311 /* Create an edit script that will insert/replace the key in the
1312 * keyring tree.
1313 */
1314 edit = assoc_array_insert(&keyring->keys,
1315 &keyring_assoc_array_ops,
1316 index_key,
1317 NULL);
1318 if (IS_ERR(edit)) {
1319 ret = PTR_ERR(edit);
1320 goto error;
1321 }
1322
1323 /* If we're not replacing a link in-place then we're going to need some
1324 * extra quota.
1325 */
1326 if (!edit->dead_leaf) {
1327 ret = key_payload_reserve(keyring,
1328 keyring->datalen + KEYQUOTA_LINK_BYTES);
1329 if (ret < 0)
1330 goto error_cancel;
1331 }
1332
1333 *_edit = edit;
1334 kleave(" = 0");
1335 return 0;
1336
1337 error_cancel:
1338 assoc_array_cancel_edit(edit);
1339 error:
1340 kleave(" = %d", ret);
1341 return ret;
1342 }
1343
1344 /*
1345 * Check already instantiated keys aren't going to be a problem.
1346 *
1347 * The caller must have called __key_link_begin(). Don't need to call this for
1348 * keys that were created since __key_link_begin() was called.
1349 */
__key_link_check_live_key(struct key * keyring,struct key * key)1350 int __key_link_check_live_key(struct key *keyring, struct key *key)
1351 {
1352 if (key->type == &key_type_keyring)
1353 /* check that we aren't going to create a cycle by linking one
1354 * keyring to another */
1355 return keyring_detect_cycle(keyring, key);
1356 return 0;
1357 }
1358
1359 /*
1360 * Link a key into to a keyring.
1361 *
1362 * Must be called with __key_link_begin() having being called. Discards any
1363 * already extant link to matching key if there is one, so that each keyring
1364 * holds at most one link to any given key of a particular type+description
1365 * combination.
1366 */
__key_link(struct key * keyring,struct key * key,struct assoc_array_edit ** _edit)1367 void __key_link(struct key *keyring, struct key *key,
1368 struct assoc_array_edit **_edit)
1369 {
1370 __key_get(key);
1371 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1372 assoc_array_apply_edit(*_edit);
1373 *_edit = NULL;
1374 notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key));
1375 }
1376
1377 /*
1378 * Finish linking a key into to a keyring.
1379 *
1380 * Must be called with __key_link_begin() having being called.
1381 */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1382 void __key_link_end(struct key *keyring,
1383 const struct keyring_index_key *index_key,
1384 struct assoc_array_edit *edit)
1385 __releases(&keyring->sem)
1386 __releases(&keyring_serialise_link_lock)
1387 {
1388 BUG_ON(index_key->type == NULL);
1389 kenter("%d,%s,", keyring->serial, index_key->type->name);
1390
1391 if (edit) {
1392 if (!edit->dead_leaf) {
1393 key_payload_reserve(keyring,
1394 keyring->datalen - KEYQUOTA_LINK_BYTES);
1395 }
1396 assoc_array_cancel_edit(edit);
1397 }
1398 up_write(&keyring->sem);
1399
1400 if (index_key->type == &key_type_keyring)
1401 mutex_unlock(&keyring_serialise_link_lock);
1402 }
1403
1404 /*
1405 * Check addition of keys to restricted keyrings.
1406 */
__key_link_check_restriction(struct key * keyring,struct key * key)1407 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1408 {
1409 if (!keyring->restrict_link || !keyring->restrict_link->check)
1410 return 0;
1411 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1412 keyring->restrict_link->key);
1413 }
1414
1415 /**
1416 * key_link - Link a key to a keyring
1417 * @keyring: The keyring to make the link in.
1418 * @key: The key to link to.
1419 *
1420 * Make a link in a keyring to a key, such that the keyring holds a reference
1421 * on that key and the key can potentially be found by searching that keyring.
1422 *
1423 * This function will write-lock the keyring's semaphore and will consume some
1424 * of the user's key data quota to hold the link.
1425 *
1426 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1427 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1428 * full, -EDQUOT if there is insufficient key data quota remaining to add
1429 * another link or -ENOMEM if there's insufficient memory.
1430 *
1431 * It is assumed that the caller has checked that it is permitted for a link to
1432 * be made (the keyring should have Write permission and the key Link
1433 * permission).
1434 */
key_link(struct key * keyring,struct key * key)1435 int key_link(struct key *keyring, struct key *key)
1436 {
1437 struct assoc_array_edit *edit = NULL;
1438 int ret;
1439
1440 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1441
1442 key_check(keyring);
1443 key_check(key);
1444
1445 ret = __key_link_lock(keyring, &key->index_key);
1446 if (ret < 0)
1447 goto error;
1448
1449 ret = __key_link_begin(keyring, &key->index_key, &edit);
1450 if (ret < 0)
1451 goto error_end;
1452
1453 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1454 ret = __key_link_check_restriction(keyring, key);
1455 if (ret == 0)
1456 ret = __key_link_check_live_key(keyring, key);
1457 if (ret == 0)
1458 __key_link(keyring, key, &edit);
1459
1460 error_end:
1461 __key_link_end(keyring, &key->index_key, edit);
1462 error:
1463 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1464 return ret;
1465 }
1466 EXPORT_SYMBOL(key_link);
1467
1468 /*
1469 * Lock a keyring for unlink.
1470 */
__key_unlink_lock(struct key * keyring)1471 static int __key_unlink_lock(struct key *keyring)
1472 __acquires(&keyring->sem)
1473 {
1474 if (keyring->type != &key_type_keyring)
1475 return -ENOTDIR;
1476
1477 down_write(&keyring->sem);
1478 return 0;
1479 }
1480
1481 /*
1482 * Begin the process of unlinking a key from a keyring.
1483 */
__key_unlink_begin(struct key * keyring,struct key * key,struct assoc_array_edit ** _edit)1484 static int __key_unlink_begin(struct key *keyring, struct key *key,
1485 struct assoc_array_edit **_edit)
1486 {
1487 struct assoc_array_edit *edit;
1488
1489 BUG_ON(*_edit != NULL);
1490
1491 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1492 &key->index_key);
1493 if (IS_ERR(edit))
1494 return PTR_ERR(edit);
1495
1496 if (!edit)
1497 return -ENOENT;
1498
1499 *_edit = edit;
1500 return 0;
1501 }
1502
1503 /*
1504 * Apply an unlink change.
1505 */
__key_unlink(struct key * keyring,struct key * key,struct assoc_array_edit ** _edit)1506 static void __key_unlink(struct key *keyring, struct key *key,
1507 struct assoc_array_edit **_edit)
1508 {
1509 assoc_array_apply_edit(*_edit);
1510 notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key));
1511 *_edit = NULL;
1512 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1513 }
1514
1515 /*
1516 * Finish unlinking a key from to a keyring.
1517 */
__key_unlink_end(struct key * keyring,struct key * key,struct assoc_array_edit * edit)1518 static void __key_unlink_end(struct key *keyring,
1519 struct key *key,
1520 struct assoc_array_edit *edit)
1521 __releases(&keyring->sem)
1522 {
1523 if (edit)
1524 assoc_array_cancel_edit(edit);
1525 up_write(&keyring->sem);
1526 }
1527
1528 /**
1529 * key_unlink - Unlink the first link to a key from a keyring.
1530 * @keyring: The keyring to remove the link from.
1531 * @key: The key the link is to.
1532 *
1533 * Remove a link from a keyring to a key.
1534 *
1535 * This function will write-lock the keyring's semaphore.
1536 *
1537 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1538 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1539 * memory.
1540 *
1541 * It is assumed that the caller has checked that it is permitted for a link to
1542 * be removed (the keyring should have Write permission; no permissions are
1543 * required on the key).
1544 */
key_unlink(struct key * keyring,struct key * key)1545 int key_unlink(struct key *keyring, struct key *key)
1546 {
1547 struct assoc_array_edit *edit = NULL;
1548 int ret;
1549
1550 key_check(keyring);
1551 key_check(key);
1552
1553 ret = __key_unlink_lock(keyring);
1554 if (ret < 0)
1555 return ret;
1556
1557 ret = __key_unlink_begin(keyring, key, &edit);
1558 if (ret == 0)
1559 __key_unlink(keyring, key, &edit);
1560 __key_unlink_end(keyring, key, edit);
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(key_unlink);
1564
1565 /**
1566 * key_move - Move a key from one keyring to another
1567 * @key: The key to move
1568 * @from_keyring: The keyring to remove the link from.
1569 * @to_keyring: The keyring to make the link in.
1570 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1571 *
1572 * Make a link in @to_keyring to a key, such that the keyring holds a reference
1573 * on that key and the key can potentially be found by searching that keyring
1574 * whilst simultaneously removing a link to the key from @from_keyring.
1575 *
1576 * This function will write-lock both keyring's semaphores and will consume
1577 * some of the user's key data quota to hold the link on @to_keyring.
1578 *
1579 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1580 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1581 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1582 * to add another link or -ENOMEM if there's insufficient memory. If
1583 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1584 * matching key in @to_keyring.
1585 *
1586 * It is assumed that the caller has checked that it is permitted for a link to
1587 * be made (the keyring should have Write permission and the key Link
1588 * permission).
1589 */
key_move(struct key * key,struct key * from_keyring,struct key * to_keyring,unsigned int flags)1590 int key_move(struct key *key,
1591 struct key *from_keyring,
1592 struct key *to_keyring,
1593 unsigned int flags)
1594 {
1595 struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1596 int ret;
1597
1598 kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1599
1600 if (from_keyring == to_keyring)
1601 return 0;
1602
1603 key_check(key);
1604 key_check(from_keyring);
1605 key_check(to_keyring);
1606
1607 ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1608 if (ret < 0)
1609 goto out;
1610 ret = __key_unlink_begin(from_keyring, key, &from_edit);
1611 if (ret < 0)
1612 goto error;
1613 ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1614 if (ret < 0)
1615 goto error;
1616
1617 ret = -EEXIST;
1618 if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1619 goto error;
1620
1621 ret = __key_link_check_restriction(to_keyring, key);
1622 if (ret < 0)
1623 goto error;
1624 ret = __key_link_check_live_key(to_keyring, key);
1625 if (ret < 0)
1626 goto error;
1627
1628 __key_unlink(from_keyring, key, &from_edit);
1629 __key_link(to_keyring, key, &to_edit);
1630 error:
1631 __key_link_end(to_keyring, &key->index_key, to_edit);
1632 __key_unlink_end(from_keyring, key, from_edit);
1633 out:
1634 kleave(" = %d", ret);
1635 return ret;
1636 }
1637 EXPORT_SYMBOL(key_move);
1638
1639 /**
1640 * keyring_clear - Clear a keyring
1641 * @keyring: The keyring to clear.
1642 *
1643 * Clear the contents of the specified keyring.
1644 *
1645 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1646 */
keyring_clear(struct key * keyring)1647 int keyring_clear(struct key *keyring)
1648 {
1649 struct assoc_array_edit *edit;
1650 int ret;
1651
1652 if (keyring->type != &key_type_keyring)
1653 return -ENOTDIR;
1654
1655 down_write(&keyring->sem);
1656
1657 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1658 if (IS_ERR(edit)) {
1659 ret = PTR_ERR(edit);
1660 } else {
1661 if (edit)
1662 assoc_array_apply_edit(edit);
1663 notify_key(keyring, NOTIFY_KEY_CLEARED, 0);
1664 key_payload_reserve(keyring, 0);
1665 ret = 0;
1666 }
1667
1668 up_write(&keyring->sem);
1669 return ret;
1670 }
1671 EXPORT_SYMBOL(keyring_clear);
1672
1673 /*
1674 * Dispose of the links from a revoked keyring.
1675 *
1676 * This is called with the key sem write-locked.
1677 */
keyring_revoke(struct key * keyring)1678 static void keyring_revoke(struct key *keyring)
1679 {
1680 struct assoc_array_edit *edit;
1681
1682 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1683 if (!IS_ERR(edit)) {
1684 if (edit)
1685 assoc_array_apply_edit(edit);
1686 key_payload_reserve(keyring, 0);
1687 }
1688 }
1689
keyring_gc_select_iterator(void * object,void * iterator_data)1690 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1691 {
1692 struct key *key = keyring_ptr_to_key(object);
1693 time64_t *limit = iterator_data;
1694
1695 if (key_is_dead(key, *limit))
1696 return false;
1697 key_get(key);
1698 return true;
1699 }
1700
keyring_gc_check_iterator(const void * object,void * iterator_data)1701 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1702 {
1703 const struct key *key = keyring_ptr_to_key(object);
1704 time64_t *limit = iterator_data;
1705
1706 key_check(key);
1707 return key_is_dead(key, *limit);
1708 }
1709
1710 /*
1711 * Garbage collect pointers from a keyring.
1712 *
1713 * Not called with any locks held. The keyring's key struct will not be
1714 * deallocated under us as only our caller may deallocate it.
1715 */
keyring_gc(struct key * keyring,time64_t limit)1716 void keyring_gc(struct key *keyring, time64_t limit)
1717 {
1718 int result;
1719
1720 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1721
1722 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1723 (1 << KEY_FLAG_REVOKED)))
1724 goto dont_gc;
1725
1726 /* scan the keyring looking for dead keys */
1727 rcu_read_lock();
1728 result = assoc_array_iterate(&keyring->keys,
1729 keyring_gc_check_iterator, &limit);
1730 rcu_read_unlock();
1731 if (result == true)
1732 goto do_gc;
1733
1734 dont_gc:
1735 kleave(" [no gc]");
1736 return;
1737
1738 do_gc:
1739 down_write(&keyring->sem);
1740 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1741 keyring_gc_select_iterator, &limit);
1742 up_write(&keyring->sem);
1743 kleave(" [gc]");
1744 }
1745
1746 /*
1747 * Garbage collect restriction pointers from a keyring.
1748 *
1749 * Keyring restrictions are associated with a key type, and must be cleaned
1750 * up if the key type is unregistered. The restriction is altered to always
1751 * reject additional keys so a keyring cannot be opened up by unregistering
1752 * a key type.
1753 *
1754 * Not called with any keyring locks held. The keyring's key struct will not
1755 * be deallocated under us as only our caller may deallocate it.
1756 *
1757 * The caller is required to hold key_types_sem and dead_type->sem. This is
1758 * fulfilled by key_gc_keytype() holding the locks on behalf of
1759 * key_garbage_collector(), which it invokes on a workqueue.
1760 */
keyring_restriction_gc(struct key * keyring,struct key_type * dead_type)1761 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1762 {
1763 struct key_restriction *keyres;
1764
1765 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1766
1767 /*
1768 * keyring->restrict_link is only assigned at key allocation time
1769 * or with the key type locked, so the only values that could be
1770 * concurrently assigned to keyring->restrict_link are for key
1771 * types other than dead_type. Given this, it's ok to check
1772 * the key type before acquiring keyring->sem.
1773 */
1774 if (!dead_type || !keyring->restrict_link ||
1775 keyring->restrict_link->keytype != dead_type) {
1776 kleave(" [no restriction gc]");
1777 return;
1778 }
1779
1780 /* Lock the keyring to ensure that a link is not in progress */
1781 down_write(&keyring->sem);
1782
1783 keyres = keyring->restrict_link;
1784
1785 keyres->check = restrict_link_reject;
1786
1787 key_put(keyres->key);
1788 keyres->key = NULL;
1789 keyres->keytype = NULL;
1790
1791 up_write(&keyring->sem);
1792
1793 kleave(" [restriction gc]");
1794 }
1795