1 /*
2 * Copyright (c) 2007, 2020 Oracle and/or its affiliates.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37
38 #include "rds.h"
39
40 /*
41 * XXX
42 * - build with sparse
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
45 */
46
47 /*
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
50 *
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
54 */
rds_pages_in_vec(struct rds_iovec * vec)55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56 {
57 if ((vec->addr + vec->bytes <= vec->addr) ||
58 (vec->bytes > (u64)UINT_MAX))
59 return 0;
60
61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 (vec->addr >> PAGE_SHIFT);
63 }
64
rds_mr_tree_walk(struct rb_root * root,u64 key,struct rds_mr * insert)65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 struct rds_mr *insert)
67 {
68 struct rb_node **p = &root->rb_node;
69 struct rb_node *parent = NULL;
70 struct rds_mr *mr;
71
72 while (*p) {
73 parent = *p;
74 mr = rb_entry(parent, struct rds_mr, r_rb_node);
75
76 if (key < mr->r_key)
77 p = &(*p)->rb_left;
78 else if (key > mr->r_key)
79 p = &(*p)->rb_right;
80 else
81 return mr;
82 }
83
84 if (insert) {
85 rb_link_node(&insert->r_rb_node, parent, p);
86 rb_insert_color(&insert->r_rb_node, root);
87 kref_get(&insert->r_kref);
88 }
89 return NULL;
90 }
91
92 /*
93 * Destroy the transport-specific part of a MR.
94 */
rds_destroy_mr(struct rds_mr * mr)95 static void rds_destroy_mr(struct rds_mr *mr)
96 {
97 struct rds_sock *rs = mr->r_sock;
98 void *trans_private = NULL;
99 unsigned long flags;
100
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr->r_key, kref_read(&mr->r_kref));
103
104 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
105 if (!RB_EMPTY_NODE(&mr->r_rb_node))
106 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
107 trans_private = mr->r_trans_private;
108 mr->r_trans_private = NULL;
109 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
110
111 if (trans_private)
112 mr->r_trans->free_mr(trans_private, mr->r_invalidate);
113 }
114
__rds_put_mr_final(struct kref * kref)115 void __rds_put_mr_final(struct kref *kref)
116 {
117 struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref);
118
119 rds_destroy_mr(mr);
120 kfree(mr);
121 }
122
123 /*
124 * By the time this is called we can't have any more ioctls called on
125 * the socket so we don't need to worry about racing with others.
126 */
rds_rdma_drop_keys(struct rds_sock * rs)127 void rds_rdma_drop_keys(struct rds_sock *rs)
128 {
129 struct rds_mr *mr;
130 struct rb_node *node;
131 unsigned long flags;
132
133 /* Release any MRs associated with this socket */
134 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
135 while ((node = rb_first(&rs->rs_rdma_keys))) {
136 mr = rb_entry(node, struct rds_mr, r_rb_node);
137 if (mr->r_trans == rs->rs_transport)
138 mr->r_invalidate = 0;
139 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
140 RB_CLEAR_NODE(&mr->r_rb_node);
141 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
142 kref_put(&mr->r_kref, __rds_put_mr_final);
143 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
144 }
145 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
146
147 if (rs->rs_transport && rs->rs_transport->flush_mrs)
148 rs->rs_transport->flush_mrs();
149 }
150
151 /*
152 * Helper function to pin user pages.
153 */
rds_pin_pages(unsigned long user_addr,unsigned int nr_pages,struct page ** pages,int write)154 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
155 struct page **pages, int write)
156 {
157 unsigned int gup_flags = FOLL_LONGTERM;
158 int ret;
159
160 if (write)
161 gup_flags |= FOLL_WRITE;
162
163 ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages);
164 if (ret >= 0 && ret < nr_pages) {
165 unpin_user_pages(pages, ret);
166 ret = -EFAULT;
167 }
168
169 return ret;
170 }
171
__rds_rdma_map(struct rds_sock * rs,struct rds_get_mr_args * args,u64 * cookie_ret,struct rds_mr ** mr_ret,struct rds_conn_path * cp)172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
173 u64 *cookie_ret, struct rds_mr **mr_ret,
174 struct rds_conn_path *cp)
175 {
176 struct rds_mr *mr = NULL, *found;
177 struct scatterlist *sg = NULL;
178 unsigned int nr_pages;
179 struct page **pages = NULL;
180 void *trans_private;
181 unsigned long flags;
182 rds_rdma_cookie_t cookie;
183 unsigned int nents = 0;
184 int need_odp = 0;
185 long i;
186 int ret;
187
188 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
189 ret = -ENOTCONN; /* XXX not a great errno */
190 goto out;
191 }
192
193 if (!rs->rs_transport->get_mr) {
194 ret = -EOPNOTSUPP;
195 goto out;
196 }
197
198 /* If the combination of the addr and size requested for this memory
199 * region causes an integer overflow, return error.
200 */
201 if (((args->vec.addr + args->vec.bytes) < args->vec.addr) ||
202 PAGE_ALIGN(args->vec.addr + args->vec.bytes) <
203 (args->vec.addr + args->vec.bytes)) {
204 ret = -EINVAL;
205 goto out;
206 }
207
208 if (!can_do_mlock()) {
209 ret = -EPERM;
210 goto out;
211 }
212
213 nr_pages = rds_pages_in_vec(&args->vec);
214 if (nr_pages == 0) {
215 ret = -EINVAL;
216 goto out;
217 }
218
219 /* Restrict the size of mr irrespective of underlying transport
220 * To account for unaligned mr regions, subtract one from nr_pages
221 */
222 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
223 ret = -EMSGSIZE;
224 goto out;
225 }
226
227 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
228 args->vec.addr, args->vec.bytes, nr_pages);
229
230 /* XXX clamp nr_pages to limit the size of this alloc? */
231 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
232 if (!pages) {
233 ret = -ENOMEM;
234 goto out;
235 }
236
237 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
238 if (!mr) {
239 ret = -ENOMEM;
240 goto out;
241 }
242
243 kref_init(&mr->r_kref);
244 RB_CLEAR_NODE(&mr->r_rb_node);
245 mr->r_trans = rs->rs_transport;
246 mr->r_sock = rs;
247
248 if (args->flags & RDS_RDMA_USE_ONCE)
249 mr->r_use_once = 1;
250 if (args->flags & RDS_RDMA_INVALIDATE)
251 mr->r_invalidate = 1;
252 if (args->flags & RDS_RDMA_READWRITE)
253 mr->r_write = 1;
254
255 /*
256 * Pin the pages that make up the user buffer and transfer the page
257 * pointers to the mr's sg array. We check to see if we've mapped
258 * the whole region after transferring the partial page references
259 * to the sg array so that we can have one page ref cleanup path.
260 *
261 * For now we have no flag that tells us whether the mapping is
262 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
263 * the zero page.
264 */
265 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
266 if (ret == -EOPNOTSUPP) {
267 need_odp = 1;
268 } else if (ret <= 0) {
269 goto out;
270 } else {
271 nents = ret;
272 sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL);
273 if (!sg) {
274 ret = -ENOMEM;
275 goto out;
276 }
277 WARN_ON(!nents);
278 sg_init_table(sg, nents);
279
280 /* Stick all pages into the scatterlist */
281 for (i = 0 ; i < nents; i++)
282 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
283
284 rdsdebug("RDS: trans_private nents is %u\n", nents);
285 }
286 /* Obtain a transport specific MR. If this succeeds, the
287 * s/g list is now owned by the MR.
288 * Note that dma_map() implies that pending writes are
289 * flushed to RAM, so no dma_sync is needed here. */
290 trans_private = rs->rs_transport->get_mr(
291 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL,
292 args->vec.addr, args->vec.bytes,
293 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED);
294
295 if (IS_ERR(trans_private)) {
296 /* In ODP case, we don't GUP pages, so don't need
297 * to release anything.
298 */
299 if (!need_odp) {
300 unpin_user_pages(pages, nr_pages);
301 kfree(sg);
302 }
303 ret = PTR_ERR(trans_private);
304 goto out;
305 }
306
307 mr->r_trans_private = trans_private;
308
309 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
310 mr->r_key, (void *)(unsigned long) args->cookie_addr);
311
312 /* The user may pass us an unaligned address, but we can only
313 * map page aligned regions. So we keep the offset, and build
314 * a 64bit cookie containing <R_Key, offset> and pass that
315 * around. */
316 if (need_odp)
317 cookie = rds_rdma_make_cookie(mr->r_key, 0);
318 else
319 cookie = rds_rdma_make_cookie(mr->r_key,
320 args->vec.addr & ~PAGE_MASK);
321 if (cookie_ret)
322 *cookie_ret = cookie;
323
324 if (args->cookie_addr &&
325 put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) {
326 if (!need_odp) {
327 unpin_user_pages(pages, nr_pages);
328 kfree(sg);
329 }
330 ret = -EFAULT;
331 goto out;
332 }
333
334 /* Inserting the new MR into the rbtree bumps its
335 * reference count. */
336 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
337 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
338 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
339
340 BUG_ON(found && found != mr);
341
342 rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
343 if (mr_ret) {
344 kref_get(&mr->r_kref);
345 *mr_ret = mr;
346 }
347
348 ret = 0;
349 out:
350 kfree(pages);
351 if (mr)
352 kref_put(&mr->r_kref, __rds_put_mr_final);
353 return ret;
354 }
355
rds_get_mr(struct rds_sock * rs,sockptr_t optval,int optlen)356 int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
357 {
358 struct rds_get_mr_args args;
359
360 if (optlen != sizeof(struct rds_get_mr_args))
361 return -EINVAL;
362
363 if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args)))
364 return -EFAULT;
365
366 return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
367 }
368
rds_get_mr_for_dest(struct rds_sock * rs,sockptr_t optval,int optlen)369 int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen)
370 {
371 struct rds_get_mr_for_dest_args args;
372 struct rds_get_mr_args new_args;
373
374 if (optlen != sizeof(struct rds_get_mr_for_dest_args))
375 return -EINVAL;
376
377 if (copy_from_sockptr(&args, optval,
378 sizeof(struct rds_get_mr_for_dest_args)))
379 return -EFAULT;
380
381 /*
382 * Initially, just behave like get_mr().
383 * TODO: Implement get_mr as wrapper around this
384 * and deprecate it.
385 */
386 new_args.vec = args.vec;
387 new_args.cookie_addr = args.cookie_addr;
388 new_args.flags = args.flags;
389
390 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
391 }
392
393 /*
394 * Free the MR indicated by the given R_Key
395 */
rds_free_mr(struct rds_sock * rs,sockptr_t optval,int optlen)396 int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
397 {
398 struct rds_free_mr_args args;
399 struct rds_mr *mr;
400 unsigned long flags;
401
402 if (optlen != sizeof(struct rds_free_mr_args))
403 return -EINVAL;
404
405 if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args)))
406 return -EFAULT;
407
408 /* Special case - a null cookie means flush all unused MRs */
409 if (args.cookie == 0) {
410 if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
411 return -EINVAL;
412 rs->rs_transport->flush_mrs();
413 return 0;
414 }
415
416 /* Look up the MR given its R_key and remove it from the rbtree
417 * so nobody else finds it.
418 * This should also prevent races with rds_rdma_unuse.
419 */
420 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
421 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
422 if (mr) {
423 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
424 RB_CLEAR_NODE(&mr->r_rb_node);
425 if (args.flags & RDS_RDMA_INVALIDATE)
426 mr->r_invalidate = 1;
427 }
428 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
429
430 if (!mr)
431 return -EINVAL;
432
433 kref_put(&mr->r_kref, __rds_put_mr_final);
434 return 0;
435 }
436
437 /*
438 * This is called when we receive an extension header that
439 * tells us this MR was used. It allows us to implement
440 * use_once semantics
441 */
rds_rdma_unuse(struct rds_sock * rs,u32 r_key,int force)442 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
443 {
444 struct rds_mr *mr;
445 unsigned long flags;
446 int zot_me = 0;
447
448 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
449 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
450 if (!mr) {
451 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
452 r_key);
453 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
454 return;
455 }
456
457 /* Get a reference so that the MR won't go away before calling
458 * sync_mr() below.
459 */
460 kref_get(&mr->r_kref);
461
462 /* If it is going to be freed, remove it from the tree now so
463 * that no other thread can find it and free it.
464 */
465 if (mr->r_use_once || force) {
466 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
467 RB_CLEAR_NODE(&mr->r_rb_node);
468 zot_me = 1;
469 }
470 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
471
472 /* May have to issue a dma_sync on this memory region.
473 * Note we could avoid this if the operation was a RDMA READ,
474 * but at this point we can't tell. */
475 if (mr->r_trans->sync_mr)
476 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
477
478 /* Release the reference held above. */
479 kref_put(&mr->r_kref, __rds_put_mr_final);
480
481 /* If the MR was marked as invalidate, this will
482 * trigger an async flush. */
483 if (zot_me)
484 kref_put(&mr->r_kref, __rds_put_mr_final);
485 }
486
rds_rdma_free_op(struct rm_rdma_op * ro)487 void rds_rdma_free_op(struct rm_rdma_op *ro)
488 {
489 unsigned int i;
490
491 if (ro->op_odp_mr) {
492 kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final);
493 } else {
494 for (i = 0; i < ro->op_nents; i++) {
495 struct page *page = sg_page(&ro->op_sg[i]);
496
497 /* Mark page dirty if it was possibly modified, which
498 * is the case for a RDMA_READ which copies from remote
499 * to local memory
500 */
501 unpin_user_pages_dirty_lock(&page, 1, !ro->op_write);
502 }
503 }
504
505 kfree(ro->op_notifier);
506 ro->op_notifier = NULL;
507 ro->op_active = 0;
508 ro->op_odp_mr = NULL;
509 }
510
rds_atomic_free_op(struct rm_atomic_op * ao)511 void rds_atomic_free_op(struct rm_atomic_op *ao)
512 {
513 struct page *page = sg_page(ao->op_sg);
514
515 /* Mark page dirty if it was possibly modified, which
516 * is the case for a RDMA_READ which copies from remote
517 * to local memory */
518 unpin_user_pages_dirty_lock(&page, 1, true);
519
520 kfree(ao->op_notifier);
521 ao->op_notifier = NULL;
522 ao->op_active = 0;
523 }
524
525
526 /*
527 * Count the number of pages needed to describe an incoming iovec array.
528 */
rds_rdma_pages(struct rds_iovec iov[],int nr_iovecs)529 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
530 {
531 int tot_pages = 0;
532 unsigned int nr_pages;
533 unsigned int i;
534
535 /* figure out the number of pages in the vector */
536 for (i = 0; i < nr_iovecs; i++) {
537 nr_pages = rds_pages_in_vec(&iov[i]);
538 if (nr_pages == 0)
539 return -EINVAL;
540
541 tot_pages += nr_pages;
542
543 /*
544 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
545 * so tot_pages cannot overflow without first going negative.
546 */
547 if (tot_pages < 0)
548 return -EINVAL;
549 }
550
551 return tot_pages;
552 }
553
rds_rdma_extra_size(struct rds_rdma_args * args,struct rds_iov_vector * iov)554 int rds_rdma_extra_size(struct rds_rdma_args *args,
555 struct rds_iov_vector *iov)
556 {
557 struct rds_iovec *vec;
558 struct rds_iovec __user *local_vec;
559 int tot_pages = 0;
560 unsigned int nr_pages;
561 unsigned int i;
562
563 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
564
565 if (args->nr_local == 0)
566 return -EINVAL;
567
568 iov->iov = kcalloc(args->nr_local,
569 sizeof(struct rds_iovec),
570 GFP_KERNEL);
571 if (!iov->iov)
572 return -ENOMEM;
573
574 vec = &iov->iov[0];
575
576 if (copy_from_user(vec, local_vec, args->nr_local *
577 sizeof(struct rds_iovec)))
578 return -EFAULT;
579 iov->len = args->nr_local;
580
581 /* figure out the number of pages in the vector */
582 for (i = 0; i < args->nr_local; i++, vec++) {
583
584 nr_pages = rds_pages_in_vec(vec);
585 if (nr_pages == 0)
586 return -EINVAL;
587
588 tot_pages += nr_pages;
589
590 /*
591 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
592 * so tot_pages cannot overflow without first going negative.
593 */
594 if (tot_pages < 0)
595 return -EINVAL;
596 }
597
598 return tot_pages * sizeof(struct scatterlist);
599 }
600
601 /*
602 * The application asks for a RDMA transfer.
603 * Extract all arguments and set up the rdma_op
604 */
rds_cmsg_rdma_args(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg,struct rds_iov_vector * vec)605 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
606 struct cmsghdr *cmsg,
607 struct rds_iov_vector *vec)
608 {
609 struct rds_rdma_args *args;
610 struct rm_rdma_op *op = &rm->rdma;
611 int nr_pages;
612 unsigned int nr_bytes;
613 struct page **pages = NULL;
614 struct rds_iovec *iovs;
615 unsigned int i, j;
616 int ret = 0;
617 bool odp_supported = true;
618
619 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
620 || rm->rdma.op_active)
621 return -EINVAL;
622
623 args = CMSG_DATA(cmsg);
624
625 if (ipv6_addr_any(&rs->rs_bound_addr)) {
626 ret = -ENOTCONN; /* XXX not a great errno */
627 goto out_ret;
628 }
629
630 if (args->nr_local > UIO_MAXIOV) {
631 ret = -EMSGSIZE;
632 goto out_ret;
633 }
634
635 if (vec->len != args->nr_local) {
636 ret = -EINVAL;
637 goto out_ret;
638 }
639 /* odp-mr is not supported for multiple requests within one message */
640 if (args->nr_local != 1)
641 odp_supported = false;
642
643 iovs = vec->iov;
644
645 nr_pages = rds_rdma_pages(iovs, args->nr_local);
646 if (nr_pages < 0) {
647 ret = -EINVAL;
648 goto out_ret;
649 }
650
651 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
652 if (!pages) {
653 ret = -ENOMEM;
654 goto out_ret;
655 }
656
657 op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
658 op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
659 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
660 op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
661 op->op_active = 1;
662 op->op_recverr = rs->rs_recverr;
663 op->op_odp_mr = NULL;
664
665 WARN_ON(!nr_pages);
666 op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
667 if (IS_ERR(op->op_sg)) {
668 ret = PTR_ERR(op->op_sg);
669 goto out_pages;
670 }
671
672 if (op->op_notify || op->op_recverr) {
673 /* We allocate an uninitialized notifier here, because
674 * we don't want to do that in the completion handler. We
675 * would have to use GFP_ATOMIC there, and don't want to deal
676 * with failed allocations.
677 */
678 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
679 if (!op->op_notifier) {
680 ret = -ENOMEM;
681 goto out_pages;
682 }
683 op->op_notifier->n_user_token = args->user_token;
684 op->op_notifier->n_status = RDS_RDMA_SUCCESS;
685 }
686
687 /* The cookie contains the R_Key of the remote memory region, and
688 * optionally an offset into it. This is how we implement RDMA into
689 * unaligned memory.
690 * When setting up the RDMA, we need to add that offset to the
691 * destination address (which is really an offset into the MR)
692 * FIXME: We may want to move this into ib_rdma.c
693 */
694 op->op_rkey = rds_rdma_cookie_key(args->cookie);
695 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
696
697 nr_bytes = 0;
698
699 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
700 (unsigned long long)args->nr_local,
701 (unsigned long long)args->remote_vec.addr,
702 op->op_rkey);
703
704 for (i = 0; i < args->nr_local; i++) {
705 struct rds_iovec *iov = &iovs[i];
706 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
707 unsigned int nr = rds_pages_in_vec(iov);
708
709 rs->rs_user_addr = iov->addr;
710 rs->rs_user_bytes = iov->bytes;
711
712 /* If it's a WRITE operation, we want to pin the pages for reading.
713 * If it's a READ operation, we need to pin the pages for writing.
714 */
715 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
716 if ((!odp_supported && ret <= 0) ||
717 (odp_supported && ret <= 0 && ret != -EOPNOTSUPP))
718 goto out_pages;
719
720 if (ret == -EOPNOTSUPP) {
721 struct rds_mr *local_odp_mr;
722
723 if (!rs->rs_transport->get_mr) {
724 ret = -EOPNOTSUPP;
725 goto out_pages;
726 }
727 local_odp_mr =
728 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL);
729 if (!local_odp_mr) {
730 ret = -ENOMEM;
731 goto out_pages;
732 }
733 RB_CLEAR_NODE(&local_odp_mr->r_rb_node);
734 kref_init(&local_odp_mr->r_kref);
735 local_odp_mr->r_trans = rs->rs_transport;
736 local_odp_mr->r_sock = rs;
737 local_odp_mr->r_trans_private =
738 rs->rs_transport->get_mr(
739 NULL, 0, rs, &local_odp_mr->r_key, NULL,
740 iov->addr, iov->bytes, ODP_VIRTUAL);
741 if (IS_ERR(local_odp_mr->r_trans_private)) {
742 ret = IS_ERR(local_odp_mr->r_trans_private);
743 rdsdebug("get_mr ret %d %p\"", ret,
744 local_odp_mr->r_trans_private);
745 kfree(local_odp_mr);
746 ret = -EOPNOTSUPP;
747 goto out_pages;
748 }
749 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
750 local_odp_mr, local_odp_mr->r_trans_private);
751 op->op_odp_mr = local_odp_mr;
752 op->op_odp_addr = iov->addr;
753 }
754
755 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
756 nr_bytes, nr, iov->bytes, iov->addr);
757
758 nr_bytes += iov->bytes;
759
760 for (j = 0; j < nr; j++) {
761 unsigned int offset = iov->addr & ~PAGE_MASK;
762 struct scatterlist *sg;
763
764 sg = &op->op_sg[op->op_nents + j];
765 sg_set_page(sg, pages[j],
766 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
767 offset);
768
769 sg_dma_len(sg) = sg->length;
770 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
771 sg->offset, sg->length, iov->addr, iov->bytes);
772
773 iov->addr += sg->length;
774 iov->bytes -= sg->length;
775 }
776
777 op->op_nents += nr;
778 }
779
780 if (nr_bytes > args->remote_vec.bytes) {
781 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
782 nr_bytes,
783 (unsigned int) args->remote_vec.bytes);
784 ret = -EINVAL;
785 goto out_pages;
786 }
787 op->op_bytes = nr_bytes;
788 ret = 0;
789
790 out_pages:
791 kfree(pages);
792 out_ret:
793 if (ret)
794 rds_rdma_free_op(op);
795 else
796 rds_stats_inc(s_send_rdma);
797
798 return ret;
799 }
800
801 /*
802 * The application wants us to pass an RDMA destination (aka MR)
803 * to the remote
804 */
rds_cmsg_rdma_dest(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)805 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
806 struct cmsghdr *cmsg)
807 {
808 unsigned long flags;
809 struct rds_mr *mr;
810 u32 r_key;
811 int err = 0;
812
813 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
814 rm->m_rdma_cookie != 0)
815 return -EINVAL;
816
817 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
818
819 /* We are reusing a previously mapped MR here. Most likely, the
820 * application has written to the buffer, so we need to explicitly
821 * flush those writes to RAM. Otherwise the HCA may not see them
822 * when doing a DMA from that buffer.
823 */
824 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
825
826 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
827 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
828 if (!mr)
829 err = -EINVAL; /* invalid r_key */
830 else
831 kref_get(&mr->r_kref);
832 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
833
834 if (mr) {
835 mr->r_trans->sync_mr(mr->r_trans_private,
836 DMA_TO_DEVICE);
837 rm->rdma.op_rdma_mr = mr;
838 }
839 return err;
840 }
841
842 /*
843 * The application passes us an address range it wants to enable RDMA
844 * to/from. We map the area, and save the <R_Key,offset> pair
845 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
846 * in an extension header.
847 */
rds_cmsg_rdma_map(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)848 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
849 struct cmsghdr *cmsg)
850 {
851 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
852 rm->m_rdma_cookie != 0)
853 return -EINVAL;
854
855 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
856 &rm->rdma.op_rdma_mr, rm->m_conn_path);
857 }
858
859 /*
860 * Fill in rds_message for an atomic request.
861 */
rds_cmsg_atomic(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)862 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
863 struct cmsghdr *cmsg)
864 {
865 struct page *page = NULL;
866 struct rds_atomic_args *args;
867 int ret = 0;
868
869 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
870 || rm->atomic.op_active)
871 return -EINVAL;
872
873 args = CMSG_DATA(cmsg);
874
875 /* Nonmasked & masked cmsg ops converted to masked hw ops */
876 switch (cmsg->cmsg_type) {
877 case RDS_CMSG_ATOMIC_FADD:
878 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
879 rm->atomic.op_m_fadd.add = args->fadd.add;
880 rm->atomic.op_m_fadd.nocarry_mask = 0;
881 break;
882 case RDS_CMSG_MASKED_ATOMIC_FADD:
883 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
884 rm->atomic.op_m_fadd.add = args->m_fadd.add;
885 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
886 break;
887 case RDS_CMSG_ATOMIC_CSWP:
888 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
889 rm->atomic.op_m_cswp.compare = args->cswp.compare;
890 rm->atomic.op_m_cswp.swap = args->cswp.swap;
891 rm->atomic.op_m_cswp.compare_mask = ~0;
892 rm->atomic.op_m_cswp.swap_mask = ~0;
893 break;
894 case RDS_CMSG_MASKED_ATOMIC_CSWP:
895 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
896 rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
897 rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
898 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
899 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
900 break;
901 default:
902 BUG(); /* should never happen */
903 }
904
905 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
906 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
907 rm->atomic.op_active = 1;
908 rm->atomic.op_recverr = rs->rs_recverr;
909 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
910 if (IS_ERR(rm->atomic.op_sg)) {
911 ret = PTR_ERR(rm->atomic.op_sg);
912 goto err;
913 }
914
915 /* verify 8 byte-aligned */
916 if (args->local_addr & 0x7) {
917 ret = -EFAULT;
918 goto err;
919 }
920
921 ret = rds_pin_pages(args->local_addr, 1, &page, 1);
922 if (ret != 1)
923 goto err;
924 ret = 0;
925
926 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
927
928 if (rm->atomic.op_notify || rm->atomic.op_recverr) {
929 /* We allocate an uninitialized notifier here, because
930 * we don't want to do that in the completion handler. We
931 * would have to use GFP_ATOMIC there, and don't want to deal
932 * with failed allocations.
933 */
934 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
935 if (!rm->atomic.op_notifier) {
936 ret = -ENOMEM;
937 goto err;
938 }
939
940 rm->atomic.op_notifier->n_user_token = args->user_token;
941 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
942 }
943
944 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
945 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
946
947 return ret;
948 err:
949 if (page)
950 unpin_user_page(page);
951 rm->atomic.op_active = 0;
952 kfree(rm->atomic.op_notifier);
953
954 return ret;
955 }
956