1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61 #endif
62
63 /*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
69 /*
70 * period over which we measure -rt task CPU usage in us.
71 * default: 1s
72 */
73 unsigned int sysctl_sched_rt_period = 1000000;
74
75 __read_mostly int scheduler_running;
76
77 /*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81 int sysctl_sched_rt_runtime = 950000;
82
83
84 /*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
100 * always looks at the local rq data structures to find the most elegible task
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
177 /*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 __acquires(rq->lock)
182 {
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 rq_pin_lock(rq, rf);
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199 }
200
201 /*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207 {
208 struct rq *rq;
209
210 for (;;) {
211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
224 * If we observe the old CPU in task_rq_lock(), the acquire of
225 * the old rq->lock will fully serialize against the stores.
226 *
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 rq_pin_lock(rq, rf);
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241 }
242
243 /*
244 * RQ-clock updating methods:
245 */
246
update_rq_clock_task(struct rq * rq,s64 delta)247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((¶virt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290 #endif
291
292 rq->clock_task += delta;
293
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 update_rq_clock_pelt(rq, delta);
299 }
300
update_rq_clock(struct rq * rq)301 void update_rq_clock(struct rq *rq)
302 {
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310 #ifdef CONFIG_SCHED_DEBUG
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321 }
322
323 static inline void
rq_csd_init(struct rq * rq,call_single_data_t * csd,smp_call_func_t func)324 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
325 {
326 csd->flags = 0;
327 csd->func = func;
328 csd->info = rq;
329 }
330
331 #ifdef CONFIG_SCHED_HRTICK
332 /*
333 * Use HR-timers to deliver accurate preemption points.
334 */
335
hrtick_clear(struct rq * rq)336 static void hrtick_clear(struct rq *rq)
337 {
338 if (hrtimer_active(&rq->hrtick_timer))
339 hrtimer_cancel(&rq->hrtick_timer);
340 }
341
342 /*
343 * High-resolution timer tick.
344 * Runs from hardirq context with interrupts disabled.
345 */
hrtick(struct hrtimer * timer)346 static enum hrtimer_restart hrtick(struct hrtimer *timer)
347 {
348 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
349 struct rq_flags rf;
350
351 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
352
353 rq_lock(rq, &rf);
354 update_rq_clock(rq);
355 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
356 rq_unlock(rq, &rf);
357
358 return HRTIMER_NORESTART;
359 }
360
361 #ifdef CONFIG_SMP
362
__hrtick_restart(struct rq * rq)363 static void __hrtick_restart(struct rq *rq)
364 {
365 struct hrtimer *timer = &rq->hrtick_timer;
366
367 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
368 }
369
370 /*
371 * called from hardirq (IPI) context
372 */
__hrtick_start(void * arg)373 static void __hrtick_start(void *arg)
374 {
375 struct rq *rq = arg;
376 struct rq_flags rf;
377
378 rq_lock(rq, &rf);
379 __hrtick_restart(rq);
380 rq_unlock(rq, &rf);
381 }
382
383 /*
384 * Called to set the hrtick timer state.
385 *
386 * called with rq->lock held and irqs disabled
387 */
hrtick_start(struct rq * rq,u64 delay)388 void hrtick_start(struct rq *rq, u64 delay)
389 {
390 struct hrtimer *timer = &rq->hrtick_timer;
391 ktime_t time;
392 s64 delta;
393
394 /*
395 * Don't schedule slices shorter than 10000ns, that just
396 * doesn't make sense and can cause timer DoS.
397 */
398 delta = max_t(s64, delay, 10000LL);
399 time = ktime_add_ns(timer->base->get_time(), delta);
400
401 hrtimer_set_expires(timer, time);
402
403 if (rq == this_rq())
404 __hrtick_restart(rq);
405 else
406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
407 }
408
409 #else
410 /*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
hrtick_start(struct rq * rq,u64 delay)415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED_HARD);
424 }
425
426 #endif /* CONFIG_SMP */
427
hrtick_rq_init(struct rq * rq)428 static void hrtick_rq_init(struct rq *rq)
429 {
430 #ifdef CONFIG_SMP
431 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
432 #endif
433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
434 rq->hrtick_timer.function = hrtick;
435 }
436 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)437 static inline void hrtick_clear(struct rq *rq)
438 {
439 }
440
hrtick_rq_init(struct rq * rq)441 static inline void hrtick_rq_init(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SCHED_HRTICK */
445
446 /*
447 * cmpxchg based fetch_or, macro so it works for different integer types
448 */
449 #define fetch_or(ptr, mask) \
450 ({ \
451 typeof(ptr) _ptr = (ptr); \
452 typeof(mask) _mask = (mask); \
453 typeof(*_ptr) _old, _val = *_ptr; \
454 \
455 for (;;) { \
456 _old = cmpxchg(_ptr, _val, _val | _mask); \
457 if (_old == _val) \
458 break; \
459 _val = _old; \
460 } \
461 _old; \
462 })
463
464 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
465 /*
466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
467 * this avoids any races wrt polling state changes and thereby avoids
468 * spurious IPIs.
469 */
set_nr_and_not_polling(struct task_struct * p)470 static bool set_nr_and_not_polling(struct task_struct *p)
471 {
472 struct thread_info *ti = task_thread_info(p);
473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
474 }
475
476 /*
477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478 *
479 * If this returns true, then the idle task promises to call
480 * sched_ttwu_pending() and reschedule soon.
481 */
set_nr_if_polling(struct task_struct * p)482 static bool set_nr_if_polling(struct task_struct *p)
483 {
484 struct thread_info *ti = task_thread_info(p);
485 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
486
487 for (;;) {
488 if (!(val & _TIF_POLLING_NRFLAG))
489 return false;
490 if (val & _TIF_NEED_RESCHED)
491 return true;
492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
493 if (old == val)
494 break;
495 val = old;
496 }
497 return true;
498 }
499
500 #else
set_nr_and_not_polling(struct task_struct * p)501 static bool set_nr_and_not_polling(struct task_struct *p)
502 {
503 set_tsk_need_resched(p);
504 return true;
505 }
506
507 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 return false;
511 }
512 #endif
513 #endif
514
__wake_q_add(struct wake_q_head * head,struct task_struct * task)515 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
516 {
517 struct wake_q_node *node = &task->wake_q;
518
519 /*
520 * Atomically grab the task, if ->wake_q is !nil already it means
521 * its already queued (either by us or someone else) and will get the
522 * wakeup due to that.
523 *
524 * In order to ensure that a pending wakeup will observe our pending
525 * state, even in the failed case, an explicit smp_mb() must be used.
526 */
527 smp_mb__before_atomic();
528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
529 return false;
530
531 /*
532 * The head is context local, there can be no concurrency.
533 */
534 *head->lastp = node;
535 head->lastp = &node->next;
536 return true;
537 }
538
539 /**
540 * wake_q_add() - queue a wakeup for 'later' waking.
541 * @head: the wake_q_head to add @task to
542 * @task: the task to queue for 'later' wakeup
543 *
544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
546 * instantly.
547 *
548 * This function must be used as-if it were wake_up_process(); IOW the task
549 * must be ready to be woken at this location.
550 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)551 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
552 {
553 if (__wake_q_add(head, task))
554 get_task_struct(task);
555 }
556
557 /**
558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
559 * @head: the wake_q_head to add @task to
560 * @task: the task to queue for 'later' wakeup
561 *
562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
564 * instantly.
565 *
566 * This function must be used as-if it were wake_up_process(); IOW the task
567 * must be ready to be woken at this location.
568 *
569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
570 * that already hold reference to @task can call the 'safe' version and trust
571 * wake_q to do the right thing depending whether or not the @task is already
572 * queued for wakeup.
573 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)574 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
575 {
576 if (!__wake_q_add(head, task))
577 put_task_struct(task);
578 }
579
wake_up_q(struct wake_q_head * head)580 void wake_up_q(struct wake_q_head *head)
581 {
582 struct wake_q_node *node = head->first;
583
584 while (node != WAKE_Q_TAIL) {
585 struct task_struct *task;
586
587 task = container_of(node, struct task_struct, wake_q);
588 BUG_ON(!task);
589 /* Task can safely be re-inserted now: */
590 node = node->next;
591 task->wake_q.next = NULL;
592
593 /*
594 * wake_up_process() executes a full barrier, which pairs with
595 * the queueing in wake_q_add() so as not to miss wakeups.
596 */
597 wake_up_process(task);
598 put_task_struct(task);
599 }
600 }
601
602 /*
603 * resched_curr - mark rq's current task 'to be rescheduled now'.
604 *
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
607 * the target CPU.
608 */
resched_curr(struct rq * rq)609 void resched_curr(struct rq *rq)
610 {
611 struct task_struct *curr = rq->curr;
612 int cpu;
613
614 lockdep_assert_held(&rq->lock);
615
616 if (test_tsk_need_resched(curr))
617 return;
618
619 cpu = cpu_of(rq);
620
621 if (cpu == smp_processor_id()) {
622 set_tsk_need_resched(curr);
623 set_preempt_need_resched();
624 return;
625 }
626
627 if (set_nr_and_not_polling(curr))
628 smp_send_reschedule(cpu);
629 else
630 trace_sched_wake_idle_without_ipi(cpu);
631 }
632
resched_cpu(int cpu)633 void resched_cpu(int cpu)
634 {
635 struct rq *rq = cpu_rq(cpu);
636 unsigned long flags;
637
638 raw_spin_lock_irqsave(&rq->lock, flags);
639 if (cpu_online(cpu) || cpu == smp_processor_id())
640 resched_curr(rq);
641 raw_spin_unlock_irqrestore(&rq->lock, flags);
642 }
643
644 #ifdef CONFIG_SMP
645 #ifdef CONFIG_NO_HZ_COMMON
646 /*
647 * In the semi idle case, use the nearest busy CPU for migrating timers
648 * from an idle CPU. This is good for power-savings.
649 *
650 * We don't do similar optimization for completely idle system, as
651 * selecting an idle CPU will add more delays to the timers than intended
652 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
653 */
get_nohz_timer_target(void)654 int get_nohz_timer_target(void)
655 {
656 int i, cpu = smp_processor_id(), default_cpu = -1;
657 struct sched_domain *sd;
658
659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
660 if (!idle_cpu(cpu))
661 return cpu;
662 default_cpu = cpu;
663 }
664
665 rcu_read_lock();
666 for_each_domain(cpu, sd) {
667 for_each_cpu_and(i, sched_domain_span(sd),
668 housekeeping_cpumask(HK_FLAG_TIMER)) {
669 if (cpu == i)
670 continue;
671
672 if (!idle_cpu(i)) {
673 cpu = i;
674 goto unlock;
675 }
676 }
677 }
678
679 if (default_cpu == -1)
680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
681 cpu = default_cpu;
682 unlock:
683 rcu_read_unlock();
684 return cpu;
685 }
686
687 /*
688 * When add_timer_on() enqueues a timer into the timer wheel of an
689 * idle CPU then this timer might expire before the next timer event
690 * which is scheduled to wake up that CPU. In case of a completely
691 * idle system the next event might even be infinite time into the
692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
693 * leaves the inner idle loop so the newly added timer is taken into
694 * account when the CPU goes back to idle and evaluates the timer
695 * wheel for the next timer event.
696 */
wake_up_idle_cpu(int cpu)697 static void wake_up_idle_cpu(int cpu)
698 {
699 struct rq *rq = cpu_rq(cpu);
700
701 if (cpu == smp_processor_id())
702 return;
703
704 if (set_nr_and_not_polling(rq->idle))
705 smp_send_reschedule(cpu);
706 else
707 trace_sched_wake_idle_without_ipi(cpu);
708 }
709
wake_up_full_nohz_cpu(int cpu)710 static bool wake_up_full_nohz_cpu(int cpu)
711 {
712 /*
713 * We just need the target to call irq_exit() and re-evaluate
714 * the next tick. The nohz full kick at least implies that.
715 * If needed we can still optimize that later with an
716 * empty IRQ.
717 */
718 if (cpu_is_offline(cpu))
719 return true; /* Don't try to wake offline CPUs. */
720 if (tick_nohz_full_cpu(cpu)) {
721 if (cpu != smp_processor_id() ||
722 tick_nohz_tick_stopped())
723 tick_nohz_full_kick_cpu(cpu);
724 return true;
725 }
726
727 return false;
728 }
729
730 /*
731 * Wake up the specified CPU. If the CPU is going offline, it is the
732 * caller's responsibility to deal with the lost wakeup, for example,
733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734 */
wake_up_nohz_cpu(int cpu)735 void wake_up_nohz_cpu(int cpu)
736 {
737 if (!wake_up_full_nohz_cpu(cpu))
738 wake_up_idle_cpu(cpu);
739 }
740
nohz_csd_func(void * info)741 static void nohz_csd_func(void *info)
742 {
743 struct rq *rq = info;
744 int cpu = cpu_of(rq);
745 unsigned int flags;
746
747 /*
748 * Release the rq::nohz_csd.
749 */
750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
751 WARN_ON(!(flags & NOHZ_KICK_MASK));
752
753 rq->idle_balance = idle_cpu(cpu);
754 if (rq->idle_balance && !need_resched()) {
755 rq->nohz_idle_balance = flags;
756 raise_softirq_irqoff(SCHED_SOFTIRQ);
757 }
758 }
759
760 #endif /* CONFIG_NO_HZ_COMMON */
761
762 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)763 bool sched_can_stop_tick(struct rq *rq)
764 {
765 int fifo_nr_running;
766
767 /* Deadline tasks, even if single, need the tick */
768 if (rq->dl.dl_nr_running)
769 return false;
770
771 /*
772 * If there are more than one RR tasks, we need the tick to effect the
773 * actual RR behaviour.
774 */
775 if (rq->rt.rr_nr_running) {
776 if (rq->rt.rr_nr_running == 1)
777 return true;
778 else
779 return false;
780 }
781
782 /*
783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
784 * forced preemption between FIFO tasks.
785 */
786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
787 if (fifo_nr_running)
788 return true;
789
790 /*
791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
792 * if there's more than one we need the tick for involuntary
793 * preemption.
794 */
795 if (rq->nr_running > 1)
796 return false;
797
798 return true;
799 }
800 #endif /* CONFIG_NO_HZ_FULL */
801 #endif /* CONFIG_SMP */
802
803 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
805 /*
806 * Iterate task_group tree rooted at *from, calling @down when first entering a
807 * node and @up when leaving it for the final time.
808 *
809 * Caller must hold rcu_lock or sufficient equivalent.
810 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)811 int walk_tg_tree_from(struct task_group *from,
812 tg_visitor down, tg_visitor up, void *data)
813 {
814 struct task_group *parent, *child;
815 int ret;
816
817 parent = from;
818
819 down:
820 ret = (*down)(parent, data);
821 if (ret)
822 goto out;
823 list_for_each_entry_rcu(child, &parent->children, siblings) {
824 parent = child;
825 goto down;
826
827 up:
828 continue;
829 }
830 ret = (*up)(parent, data);
831 if (ret || parent == from)
832 goto out;
833
834 child = parent;
835 parent = parent->parent;
836 if (parent)
837 goto up;
838 out:
839 return ret;
840 }
841
tg_nop(struct task_group * tg,void * data)842 int tg_nop(struct task_group *tg, void *data)
843 {
844 return 0;
845 }
846 #endif
847
set_load_weight(struct task_struct * p,bool update_load)848 static void set_load_weight(struct task_struct *p, bool update_load)
849 {
850 int prio = p->static_prio - MAX_RT_PRIO;
851 struct load_weight *load = &p->se.load;
852
853 /*
854 * SCHED_IDLE tasks get minimal weight:
855 */
856 if (task_has_idle_policy(p)) {
857 load->weight = scale_load(WEIGHT_IDLEPRIO);
858 load->inv_weight = WMULT_IDLEPRIO;
859 return;
860 }
861
862 /*
863 * SCHED_OTHER tasks have to update their load when changing their
864 * weight
865 */
866 if (update_load && p->sched_class == &fair_sched_class) {
867 reweight_task(p, prio);
868 } else {
869 load->weight = scale_load(sched_prio_to_weight[prio]);
870 load->inv_weight = sched_prio_to_wmult[prio];
871 }
872 }
873
874 #ifdef CONFIG_UCLAMP_TASK
875 /*
876 * Serializes updates of utilization clamp values
877 *
878 * The (slow-path) user-space triggers utilization clamp value updates which
879 * can require updates on (fast-path) scheduler's data structures used to
880 * support enqueue/dequeue operations.
881 * While the per-CPU rq lock protects fast-path update operations, user-space
882 * requests are serialized using a mutex to reduce the risk of conflicting
883 * updates or API abuses.
884 */
885 static DEFINE_MUTEX(uclamp_mutex);
886
887 /* Max allowed minimum utilization */
888 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
889
890 /* Max allowed maximum utilization */
891 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
892
893 /*
894 * By default RT tasks run at the maximum performance point/capacity of the
895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
896 * SCHED_CAPACITY_SCALE.
897 *
898 * This knob allows admins to change the default behavior when uclamp is being
899 * used. In battery powered devices, particularly, running at the maximum
900 * capacity and frequency will increase energy consumption and shorten the
901 * battery life.
902 *
903 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904 *
905 * This knob will not override the system default sched_util_clamp_min defined
906 * above.
907 */
908 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
909
910 /* All clamps are required to be less or equal than these values */
911 static struct uclamp_se uclamp_default[UCLAMP_CNT];
912
913 /*
914 * This static key is used to reduce the uclamp overhead in the fast path. It
915 * primarily disables the call to uclamp_rq_{inc, dec}() in
916 * enqueue/dequeue_task().
917 *
918 * This allows users to continue to enable uclamp in their kernel config with
919 * minimum uclamp overhead in the fast path.
920 *
921 * As soon as userspace modifies any of the uclamp knobs, the static key is
922 * enabled, since we have an actual users that make use of uclamp
923 * functionality.
924 *
925 * The knobs that would enable this static key are:
926 *
927 * * A task modifying its uclamp value with sched_setattr().
928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
929 * * An admin modifying the cgroup cpu.uclamp.{min, max}
930 */
931 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
932
933 /* Integer rounded range for each bucket */
934 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935
936 #define for_each_clamp_id(clamp_id) \
937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938
uclamp_bucket_id(unsigned int clamp_value)939 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
940 {
941 return clamp_value / UCLAMP_BUCKET_DELTA;
942 }
943
uclamp_none(enum uclamp_id clamp_id)944 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
945 {
946 if (clamp_id == UCLAMP_MIN)
947 return 0;
948 return SCHED_CAPACITY_SCALE;
949 }
950
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)951 static inline void uclamp_se_set(struct uclamp_se *uc_se,
952 unsigned int value, bool user_defined)
953 {
954 uc_se->value = value;
955 uc_se->bucket_id = uclamp_bucket_id(value);
956 uc_se->user_defined = user_defined;
957 }
958
959 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)960 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
961 unsigned int clamp_value)
962 {
963 /*
964 * Avoid blocked utilization pushing up the frequency when we go
965 * idle (which drops the max-clamp) by retaining the last known
966 * max-clamp.
967 */
968 if (clamp_id == UCLAMP_MAX) {
969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
970 return clamp_value;
971 }
972
973 return uclamp_none(UCLAMP_MIN);
974 }
975
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)976 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
977 unsigned int clamp_value)
978 {
979 /* Reset max-clamp retention only on idle exit */
980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
981 return;
982
983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
984 }
985
986 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)987 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
988 unsigned int clamp_value)
989 {
990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
991 int bucket_id = UCLAMP_BUCKETS - 1;
992
993 /*
994 * Since both min and max clamps are max aggregated, find the
995 * top most bucket with tasks in.
996 */
997 for ( ; bucket_id >= 0; bucket_id--) {
998 if (!bucket[bucket_id].tasks)
999 continue;
1000 return bucket[bucket_id].value;
1001 }
1002
1003 /* No tasks -- default clamp values */
1004 return uclamp_idle_value(rq, clamp_id, clamp_value);
1005 }
1006
__uclamp_update_util_min_rt_default(struct task_struct * p)1007 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008 {
1009 unsigned int default_util_min;
1010 struct uclamp_se *uc_se;
1011
1012 lockdep_assert_held(&p->pi_lock);
1013
1014 uc_se = &p->uclamp_req[UCLAMP_MIN];
1015
1016 /* Only sync if user didn't override the default */
1017 if (uc_se->user_defined)
1018 return;
1019
1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021 uclamp_se_set(uc_se, default_util_min, false);
1022 }
1023
uclamp_update_util_min_rt_default(struct task_struct * p)1024 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025 {
1026 struct rq_flags rf;
1027 struct rq *rq;
1028
1029 if (!rt_task(p))
1030 return;
1031
1032 /* Protect updates to p->uclamp_* */
1033 rq = task_rq_lock(p, &rf);
1034 __uclamp_update_util_min_rt_default(p);
1035 task_rq_unlock(rq, p, &rf);
1036 }
1037
uclamp_sync_util_min_rt_default(void)1038 static void uclamp_sync_util_min_rt_default(void)
1039 {
1040 struct task_struct *g, *p;
1041
1042 /*
1043 * copy_process() sysctl_uclamp
1044 * uclamp_min_rt = X;
1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1046 * // link thread smp_mb__after_spinlock()
1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1048 * sched_post_fork() for_each_process_thread()
1049 * __uclamp_sync_rt() __uclamp_sync_rt()
1050 *
1051 * Ensures that either sched_post_fork() will observe the new
1052 * uclamp_min_rt or for_each_process_thread() will observe the new
1053 * task.
1054 */
1055 read_lock(&tasklist_lock);
1056 smp_mb__after_spinlock();
1057 read_unlock(&tasklist_lock);
1058
1059 rcu_read_lock();
1060 for_each_process_thread(g, p)
1061 uclamp_update_util_min_rt_default(p);
1062 rcu_read_unlock();
1063 }
1064
1065 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1066 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1067 {
1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069 #ifdef CONFIG_UCLAMP_TASK_GROUP
1070 struct uclamp_se uc_max;
1071
1072 /*
1073 * Tasks in autogroups or root task group will be
1074 * restricted by system defaults.
1075 */
1076 if (task_group_is_autogroup(task_group(p)))
1077 return uc_req;
1078 if (task_group(p) == &root_task_group)
1079 return uc_req;
1080
1081 uc_max = task_group(p)->uclamp[clamp_id];
1082 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083 return uc_max;
1084 #endif
1085
1086 return uc_req;
1087 }
1088
1089 /*
1090 * The effective clamp bucket index of a task depends on, by increasing
1091 * priority:
1092 * - the task specific clamp value, when explicitly requested from userspace
1093 * - the task group effective clamp value, for tasks not either in the root
1094 * group or in an autogroup
1095 * - the system default clamp value, defined by the sysadmin
1096 */
1097 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1098 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1099 {
1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1101 struct uclamp_se uc_max = uclamp_default[clamp_id];
1102
1103 /* System default restrictions always apply */
1104 if (unlikely(uc_req.value > uc_max.value))
1105 return uc_max;
1106
1107 return uc_req;
1108 }
1109
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1110 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1111 {
1112 struct uclamp_se uc_eff;
1113
1114 /* Task currently refcounted: use back-annotated (effective) value */
1115 if (p->uclamp[clamp_id].active)
1116 return (unsigned long)p->uclamp[clamp_id].value;
1117
1118 uc_eff = uclamp_eff_get(p, clamp_id);
1119
1120 return (unsigned long)uc_eff.value;
1121 }
1122
1123 /*
1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126 * updates the rq's clamp value if required.
1127 *
1128 * Tasks can have a task-specific value requested from user-space, track
1129 * within each bucket the maximum value for tasks refcounted in it.
1130 * This "local max aggregation" allows to track the exact "requested" value
1131 * for each bucket when all its RUNNABLE tasks require the same clamp.
1132 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1133 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1134 enum uclamp_id clamp_id)
1135 {
1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138 struct uclamp_bucket *bucket;
1139
1140 lockdep_assert_held(&rq->lock);
1141
1142 /* Update task effective clamp */
1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144
1145 bucket = &uc_rq->bucket[uc_se->bucket_id];
1146 bucket->tasks++;
1147 uc_se->active = true;
1148
1149 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150
1151 /*
1152 * Local max aggregation: rq buckets always track the max
1153 * "requested" clamp value of its RUNNABLE tasks.
1154 */
1155 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156 bucket->value = uc_se->value;
1157
1158 if (uc_se->value > READ_ONCE(uc_rq->value))
1159 WRITE_ONCE(uc_rq->value, uc_se->value);
1160 }
1161
1162 /*
1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164 * is released. If this is the last task reference counting the rq's max
1165 * active clamp value, then the rq's clamp value is updated.
1166 *
1167 * Both refcounted tasks and rq's cached clamp values are expected to be
1168 * always valid. If it's detected they are not, as defensive programming,
1169 * enforce the expected state and warn.
1170 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1171 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1172 enum uclamp_id clamp_id)
1173 {
1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176 struct uclamp_bucket *bucket;
1177 unsigned int bkt_clamp;
1178 unsigned int rq_clamp;
1179
1180 lockdep_assert_held(&rq->lock);
1181
1182 /*
1183 * If sched_uclamp_used was enabled after task @p was enqueued,
1184 * we could end up with unbalanced call to uclamp_rq_dec_id().
1185 *
1186 * In this case the uc_se->active flag should be false since no uclamp
1187 * accounting was performed at enqueue time and we can just return
1188 * here.
1189 *
1190 * Need to be careful of the following enqeueue/dequeue ordering
1191 * problem too
1192 *
1193 * enqueue(taskA)
1194 * // sched_uclamp_used gets enabled
1195 * enqueue(taskB)
1196 * dequeue(taskA)
1197 * // Must not decrement bukcet->tasks here
1198 * dequeue(taskB)
1199 *
1200 * where we could end up with stale data in uc_se and
1201 * bucket[uc_se->bucket_id].
1202 *
1203 * The following check here eliminates the possibility of such race.
1204 */
1205 if (unlikely(!uc_se->active))
1206 return;
1207
1208 bucket = &uc_rq->bucket[uc_se->bucket_id];
1209
1210 SCHED_WARN_ON(!bucket->tasks);
1211 if (likely(bucket->tasks))
1212 bucket->tasks--;
1213
1214 uc_se->active = false;
1215
1216 /*
1217 * Keep "local max aggregation" simple and accept to (possibly)
1218 * overboost some RUNNABLE tasks in the same bucket.
1219 * The rq clamp bucket value is reset to its base value whenever
1220 * there are no more RUNNABLE tasks refcounting it.
1221 */
1222 if (likely(bucket->tasks))
1223 return;
1224
1225 rq_clamp = READ_ONCE(uc_rq->value);
1226 /*
1227 * Defensive programming: this should never happen. If it happens,
1228 * e.g. due to future modification, warn and fixup the expected value.
1229 */
1230 SCHED_WARN_ON(bucket->value > rq_clamp);
1231 if (bucket->value >= rq_clamp) {
1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233 WRITE_ONCE(uc_rq->value, bkt_clamp);
1234 }
1235 }
1236
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1237 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238 {
1239 enum uclamp_id clamp_id;
1240
1241 /*
1242 * Avoid any overhead until uclamp is actually used by the userspace.
1243 *
1244 * The condition is constructed such that a NOP is generated when
1245 * sched_uclamp_used is disabled.
1246 */
1247 if (!static_branch_unlikely(&sched_uclamp_used))
1248 return;
1249
1250 if (unlikely(!p->sched_class->uclamp_enabled))
1251 return;
1252
1253 for_each_clamp_id(clamp_id)
1254 uclamp_rq_inc_id(rq, p, clamp_id);
1255
1256 /* Reset clamp idle holding when there is one RUNNABLE task */
1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1259 }
1260
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1261 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262 {
1263 enum uclamp_id clamp_id;
1264
1265 /*
1266 * Avoid any overhead until uclamp is actually used by the userspace.
1267 *
1268 * The condition is constructed such that a NOP is generated when
1269 * sched_uclamp_used is disabled.
1270 */
1271 if (!static_branch_unlikely(&sched_uclamp_used))
1272 return;
1273
1274 if (unlikely(!p->sched_class->uclamp_enabled))
1275 return;
1276
1277 for_each_clamp_id(clamp_id)
1278 uclamp_rq_dec_id(rq, p, clamp_id);
1279 }
1280
1281 static inline void
uclamp_update_active(struct task_struct * p,enum uclamp_id clamp_id)1282 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1283 {
1284 struct rq_flags rf;
1285 struct rq *rq;
1286
1287 /*
1288 * Lock the task and the rq where the task is (or was) queued.
1289 *
1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291 * price to pay to safely serialize util_{min,max} updates with
1292 * enqueues, dequeues and migration operations.
1293 * This is the same locking schema used by __set_cpus_allowed_ptr().
1294 */
1295 rq = task_rq_lock(p, &rf);
1296
1297 /*
1298 * Setting the clamp bucket is serialized by task_rq_lock().
1299 * If the task is not yet RUNNABLE and its task_struct is not
1300 * affecting a valid clamp bucket, the next time it's enqueued,
1301 * it will already see the updated clamp bucket value.
1302 */
1303 if (p->uclamp[clamp_id].active) {
1304 uclamp_rq_dec_id(rq, p, clamp_id);
1305 uclamp_rq_inc_id(rq, p, clamp_id);
1306 }
1307
1308 task_rq_unlock(rq, p, &rf);
1309 }
1310
1311 #ifdef CONFIG_UCLAMP_TASK_GROUP
1312 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css,unsigned int clamps)1313 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314 unsigned int clamps)
1315 {
1316 enum uclamp_id clamp_id;
1317 struct css_task_iter it;
1318 struct task_struct *p;
1319
1320 css_task_iter_start(css, 0, &it);
1321 while ((p = css_task_iter_next(&it))) {
1322 for_each_clamp_id(clamp_id) {
1323 if ((0x1 << clamp_id) & clamps)
1324 uclamp_update_active(p, clamp_id);
1325 }
1326 }
1327 css_task_iter_end(&it);
1328 }
1329
1330 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1331 static void uclamp_update_root_tg(void)
1332 {
1333 struct task_group *tg = &root_task_group;
1334
1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336 sysctl_sched_uclamp_util_min, false);
1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338 sysctl_sched_uclamp_util_max, false);
1339
1340 rcu_read_lock();
1341 cpu_util_update_eff(&root_task_group.css);
1342 rcu_read_unlock();
1343 }
1344 #else
uclamp_update_root_tg(void)1345 static void uclamp_update_root_tg(void) { }
1346 #endif
1347
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1348 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1349 void *buffer, size_t *lenp, loff_t *ppos)
1350 {
1351 bool update_root_tg = false;
1352 int old_min, old_max, old_min_rt;
1353 int result;
1354
1355 mutex_lock(&uclamp_mutex);
1356 old_min = sysctl_sched_uclamp_util_min;
1357 old_max = sysctl_sched_uclamp_util_max;
1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1359
1360 result = proc_dointvec(table, write, buffer, lenp, ppos);
1361 if (result)
1362 goto undo;
1363 if (!write)
1364 goto done;
1365
1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369
1370 result = -EINVAL;
1371 goto undo;
1372 }
1373
1374 if (old_min != sysctl_sched_uclamp_util_min) {
1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1376 sysctl_sched_uclamp_util_min, false);
1377 update_root_tg = true;
1378 }
1379 if (old_max != sysctl_sched_uclamp_util_max) {
1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1381 sysctl_sched_uclamp_util_max, false);
1382 update_root_tg = true;
1383 }
1384
1385 if (update_root_tg) {
1386 static_branch_enable(&sched_uclamp_used);
1387 uclamp_update_root_tg();
1388 }
1389
1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391 static_branch_enable(&sched_uclamp_used);
1392 uclamp_sync_util_min_rt_default();
1393 }
1394
1395 /*
1396 * We update all RUNNABLE tasks only when task groups are in use.
1397 * Otherwise, keep it simple and do just a lazy update at each next
1398 * task enqueue time.
1399 */
1400
1401 goto done;
1402
1403 undo:
1404 sysctl_sched_uclamp_util_min = old_min;
1405 sysctl_sched_uclamp_util_max = old_max;
1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1407 done:
1408 mutex_unlock(&uclamp_mutex);
1409
1410 return result;
1411 }
1412
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1413 static int uclamp_validate(struct task_struct *p,
1414 const struct sched_attr *attr)
1415 {
1416 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1417 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1418
1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1420 lower_bound = attr->sched_util_min;
1421 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1422 upper_bound = attr->sched_util_max;
1423
1424 if (lower_bound > upper_bound)
1425 return -EINVAL;
1426 if (upper_bound > SCHED_CAPACITY_SCALE)
1427 return -EINVAL;
1428
1429 /*
1430 * We have valid uclamp attributes; make sure uclamp is enabled.
1431 *
1432 * We need to do that here, because enabling static branches is a
1433 * blocking operation which obviously cannot be done while holding
1434 * scheduler locks.
1435 */
1436 static_branch_enable(&sched_uclamp_used);
1437
1438 return 0;
1439 }
1440
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1441 static void __setscheduler_uclamp(struct task_struct *p,
1442 const struct sched_attr *attr)
1443 {
1444 enum uclamp_id clamp_id;
1445
1446 /*
1447 * On scheduling class change, reset to default clamps for tasks
1448 * without a task-specific value.
1449 */
1450 for_each_clamp_id(clamp_id) {
1451 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1452
1453 /* Keep using defined clamps across class changes */
1454 if (uc_se->user_defined)
1455 continue;
1456
1457 /*
1458 * RT by default have a 100% boost value that could be modified
1459 * at runtime.
1460 */
1461 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1462 __uclamp_update_util_min_rt_default(p);
1463 else
1464 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1465
1466 }
1467
1468 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1469 return;
1470
1471 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1472 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1473 attr->sched_util_min, true);
1474 }
1475
1476 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1477 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1478 attr->sched_util_max, true);
1479 }
1480 }
1481
uclamp_fork(struct task_struct * p)1482 static void uclamp_fork(struct task_struct *p)
1483 {
1484 enum uclamp_id clamp_id;
1485
1486 /*
1487 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1488 * as the task is still at its early fork stages.
1489 */
1490 for_each_clamp_id(clamp_id)
1491 p->uclamp[clamp_id].active = false;
1492
1493 if (likely(!p->sched_reset_on_fork))
1494 return;
1495
1496 for_each_clamp_id(clamp_id) {
1497 uclamp_se_set(&p->uclamp_req[clamp_id],
1498 uclamp_none(clamp_id), false);
1499 }
1500 }
1501
uclamp_post_fork(struct task_struct * p)1502 static void uclamp_post_fork(struct task_struct *p)
1503 {
1504 uclamp_update_util_min_rt_default(p);
1505 }
1506
init_uclamp_rq(struct rq * rq)1507 static void __init init_uclamp_rq(struct rq *rq)
1508 {
1509 enum uclamp_id clamp_id;
1510 struct uclamp_rq *uc_rq = rq->uclamp;
1511
1512 for_each_clamp_id(clamp_id) {
1513 uc_rq[clamp_id] = (struct uclamp_rq) {
1514 .value = uclamp_none(clamp_id)
1515 };
1516 }
1517
1518 rq->uclamp_flags = 0;
1519 }
1520
init_uclamp(void)1521 static void __init init_uclamp(void)
1522 {
1523 struct uclamp_se uc_max = {};
1524 enum uclamp_id clamp_id;
1525 int cpu;
1526
1527 for_each_possible_cpu(cpu)
1528 init_uclamp_rq(cpu_rq(cpu));
1529
1530 for_each_clamp_id(clamp_id) {
1531 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1532 uclamp_none(clamp_id), false);
1533 }
1534
1535 /* System defaults allow max clamp values for both indexes */
1536 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1537 for_each_clamp_id(clamp_id) {
1538 uclamp_default[clamp_id] = uc_max;
1539 #ifdef CONFIG_UCLAMP_TASK_GROUP
1540 root_task_group.uclamp_req[clamp_id] = uc_max;
1541 root_task_group.uclamp[clamp_id] = uc_max;
1542 #endif
1543 }
1544 }
1545
1546 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1547 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1548 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1549 static inline int uclamp_validate(struct task_struct *p,
1550 const struct sched_attr *attr)
1551 {
1552 return -EOPNOTSUPP;
1553 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1554 static void __setscheduler_uclamp(struct task_struct *p,
1555 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1556 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1557 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1558 static inline void init_uclamp(void) { }
1559 #endif /* CONFIG_UCLAMP_TASK */
1560
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1561 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1562 {
1563 if (!(flags & ENQUEUE_NOCLOCK))
1564 update_rq_clock(rq);
1565
1566 if (!(flags & ENQUEUE_RESTORE)) {
1567 sched_info_queued(rq, p);
1568 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1569 }
1570
1571 uclamp_rq_inc(rq, p);
1572 p->sched_class->enqueue_task(rq, p, flags);
1573 }
1574
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1575 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1576 {
1577 if (!(flags & DEQUEUE_NOCLOCK))
1578 update_rq_clock(rq);
1579
1580 if (!(flags & DEQUEUE_SAVE)) {
1581 sched_info_dequeued(rq, p);
1582 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1583 }
1584
1585 uclamp_rq_dec(rq, p);
1586 p->sched_class->dequeue_task(rq, p, flags);
1587 }
1588
activate_task(struct rq * rq,struct task_struct * p,int flags)1589 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1590 {
1591 enqueue_task(rq, p, flags);
1592
1593 p->on_rq = TASK_ON_RQ_QUEUED;
1594 }
1595
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1596 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1597 {
1598 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1599
1600 dequeue_task(rq, p, flags);
1601 }
1602
1603 /*
1604 * __normal_prio - return the priority that is based on the static prio
1605 */
__normal_prio(struct task_struct * p)1606 static inline int __normal_prio(struct task_struct *p)
1607 {
1608 return p->static_prio;
1609 }
1610
1611 /*
1612 * Calculate the expected normal priority: i.e. priority
1613 * without taking RT-inheritance into account. Might be
1614 * boosted by interactivity modifiers. Changes upon fork,
1615 * setprio syscalls, and whenever the interactivity
1616 * estimator recalculates.
1617 */
normal_prio(struct task_struct * p)1618 static inline int normal_prio(struct task_struct *p)
1619 {
1620 int prio;
1621
1622 if (task_has_dl_policy(p))
1623 prio = MAX_DL_PRIO-1;
1624 else if (task_has_rt_policy(p))
1625 prio = MAX_RT_PRIO-1 - p->rt_priority;
1626 else
1627 prio = __normal_prio(p);
1628 return prio;
1629 }
1630
1631 /*
1632 * Calculate the current priority, i.e. the priority
1633 * taken into account by the scheduler. This value might
1634 * be boosted by RT tasks, or might be boosted by
1635 * interactivity modifiers. Will be RT if the task got
1636 * RT-boosted. If not then it returns p->normal_prio.
1637 */
effective_prio(struct task_struct * p)1638 static int effective_prio(struct task_struct *p)
1639 {
1640 p->normal_prio = normal_prio(p);
1641 /*
1642 * If we are RT tasks or we were boosted to RT priority,
1643 * keep the priority unchanged. Otherwise, update priority
1644 * to the normal priority:
1645 */
1646 if (!rt_prio(p->prio))
1647 return p->normal_prio;
1648 return p->prio;
1649 }
1650
1651 /**
1652 * task_curr - is this task currently executing on a CPU?
1653 * @p: the task in question.
1654 *
1655 * Return: 1 if the task is currently executing. 0 otherwise.
1656 */
task_curr(const struct task_struct * p)1657 inline int task_curr(const struct task_struct *p)
1658 {
1659 return cpu_curr(task_cpu(p)) == p;
1660 }
1661
1662 /*
1663 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1664 * use the balance_callback list if you want balancing.
1665 *
1666 * this means any call to check_class_changed() must be followed by a call to
1667 * balance_callback().
1668 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1669 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1670 const struct sched_class *prev_class,
1671 int oldprio)
1672 {
1673 if (prev_class != p->sched_class) {
1674 if (prev_class->switched_from)
1675 prev_class->switched_from(rq, p);
1676
1677 p->sched_class->switched_to(rq, p);
1678 } else if (oldprio != p->prio || dl_task(p))
1679 p->sched_class->prio_changed(rq, p, oldprio);
1680 }
1681
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1682 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1683 {
1684 if (p->sched_class == rq->curr->sched_class)
1685 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1686 else if (p->sched_class > rq->curr->sched_class)
1687 resched_curr(rq);
1688
1689 /*
1690 * A queue event has occurred, and we're going to schedule. In
1691 * this case, we can save a useless back to back clock update.
1692 */
1693 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1694 rq_clock_skip_update(rq);
1695 }
1696
1697 #ifdef CONFIG_SMP
1698
1699 /*
1700 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1701 * __set_cpus_allowed_ptr() and select_fallback_rq().
1702 */
is_cpu_allowed(struct task_struct * p,int cpu)1703 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1704 {
1705 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1706 return false;
1707
1708 if (is_per_cpu_kthread(p))
1709 return cpu_online(cpu);
1710
1711 return cpu_active(cpu);
1712 }
1713
1714 /*
1715 * This is how migration works:
1716 *
1717 * 1) we invoke migration_cpu_stop() on the target CPU using
1718 * stop_one_cpu().
1719 * 2) stopper starts to run (implicitly forcing the migrated thread
1720 * off the CPU)
1721 * 3) it checks whether the migrated task is still in the wrong runqueue.
1722 * 4) if it's in the wrong runqueue then the migration thread removes
1723 * it and puts it into the right queue.
1724 * 5) stopper completes and stop_one_cpu() returns and the migration
1725 * is done.
1726 */
1727
1728 /*
1729 * move_queued_task - move a queued task to new rq.
1730 *
1731 * Returns (locked) new rq. Old rq's lock is released.
1732 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1733 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1734 struct task_struct *p, int new_cpu)
1735 {
1736 lockdep_assert_held(&rq->lock);
1737
1738 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1739 set_task_cpu(p, new_cpu);
1740 rq_unlock(rq, rf);
1741
1742 rq = cpu_rq(new_cpu);
1743
1744 rq_lock(rq, rf);
1745 BUG_ON(task_cpu(p) != new_cpu);
1746 activate_task(rq, p, 0);
1747 check_preempt_curr(rq, p, 0);
1748
1749 return rq;
1750 }
1751
1752 struct migration_arg {
1753 struct task_struct *task;
1754 int dest_cpu;
1755 };
1756
1757 /*
1758 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1759 * this because either it can't run here any more (set_cpus_allowed()
1760 * away from this CPU, or CPU going down), or because we're
1761 * attempting to rebalance this task on exec (sched_exec).
1762 *
1763 * So we race with normal scheduler movements, but that's OK, as long
1764 * as the task is no longer on this CPU.
1765 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1766 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1767 struct task_struct *p, int dest_cpu)
1768 {
1769 /* Affinity changed (again). */
1770 if (!is_cpu_allowed(p, dest_cpu))
1771 return rq;
1772
1773 update_rq_clock(rq);
1774 rq = move_queued_task(rq, rf, p, dest_cpu);
1775
1776 return rq;
1777 }
1778
1779 /*
1780 * migration_cpu_stop - this will be executed by a highprio stopper thread
1781 * and performs thread migration by bumping thread off CPU then
1782 * 'pushing' onto another runqueue.
1783 */
migration_cpu_stop(void * data)1784 static int migration_cpu_stop(void *data)
1785 {
1786 struct migration_arg *arg = data;
1787 struct task_struct *p = arg->task;
1788 struct rq *rq = this_rq();
1789 struct rq_flags rf;
1790
1791 /*
1792 * The original target CPU might have gone down and we might
1793 * be on another CPU but it doesn't matter.
1794 */
1795 local_irq_disable();
1796 /*
1797 * We need to explicitly wake pending tasks before running
1798 * __migrate_task() such that we will not miss enforcing cpus_ptr
1799 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1800 */
1801 flush_smp_call_function_from_idle();
1802
1803 raw_spin_lock(&p->pi_lock);
1804 rq_lock(rq, &rf);
1805 /*
1806 * If task_rq(p) != rq, it cannot be migrated here, because we're
1807 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1808 * we're holding p->pi_lock.
1809 */
1810 if (task_rq(p) == rq) {
1811 if (task_on_rq_queued(p))
1812 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1813 else
1814 p->wake_cpu = arg->dest_cpu;
1815 }
1816 rq_unlock(rq, &rf);
1817 raw_spin_unlock(&p->pi_lock);
1818
1819 local_irq_enable();
1820 return 0;
1821 }
1822
1823 /*
1824 * sched_class::set_cpus_allowed must do the below, but is not required to
1825 * actually call this function.
1826 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1827 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1828 {
1829 cpumask_copy(&p->cpus_mask, new_mask);
1830 p->nr_cpus_allowed = cpumask_weight(new_mask);
1831 }
1832
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1833 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1834 {
1835 struct rq *rq = task_rq(p);
1836 bool queued, running;
1837
1838 lockdep_assert_held(&p->pi_lock);
1839
1840 queued = task_on_rq_queued(p);
1841 running = task_current(rq, p);
1842
1843 if (queued) {
1844 /*
1845 * Because __kthread_bind() calls this on blocked tasks without
1846 * holding rq->lock.
1847 */
1848 lockdep_assert_held(&rq->lock);
1849 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1850 }
1851 if (running)
1852 put_prev_task(rq, p);
1853
1854 p->sched_class->set_cpus_allowed(p, new_mask);
1855
1856 if (queued)
1857 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1858 if (running)
1859 set_next_task(rq, p);
1860 }
1861
1862 /*
1863 * Change a given task's CPU affinity. Migrate the thread to a
1864 * proper CPU and schedule it away if the CPU it's executing on
1865 * is removed from the allowed bitmask.
1866 *
1867 * NOTE: the caller must have a valid reference to the task, the
1868 * task must not exit() & deallocate itself prematurely. The
1869 * call is not atomic; no spinlocks may be held.
1870 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1871 static int __set_cpus_allowed_ptr(struct task_struct *p,
1872 const struct cpumask *new_mask, bool check)
1873 {
1874 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1875 unsigned int dest_cpu;
1876 struct rq_flags rf;
1877 struct rq *rq;
1878 int ret = 0;
1879
1880 rq = task_rq_lock(p, &rf);
1881 update_rq_clock(rq);
1882
1883 if (p->flags & PF_KTHREAD) {
1884 /*
1885 * Kernel threads are allowed on online && !active CPUs
1886 */
1887 cpu_valid_mask = cpu_online_mask;
1888 }
1889
1890 /*
1891 * Must re-check here, to close a race against __kthread_bind(),
1892 * sched_setaffinity() is not guaranteed to observe the flag.
1893 */
1894 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1895 ret = -EINVAL;
1896 goto out;
1897 }
1898
1899 if (cpumask_equal(&p->cpus_mask, new_mask))
1900 goto out;
1901
1902 /*
1903 * Picking a ~random cpu helps in cases where we are changing affinity
1904 * for groups of tasks (ie. cpuset), so that load balancing is not
1905 * immediately required to distribute the tasks within their new mask.
1906 */
1907 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1908 if (dest_cpu >= nr_cpu_ids) {
1909 ret = -EINVAL;
1910 goto out;
1911 }
1912
1913 do_set_cpus_allowed(p, new_mask);
1914
1915 if (p->flags & PF_KTHREAD) {
1916 /*
1917 * For kernel threads that do indeed end up on online &&
1918 * !active we want to ensure they are strict per-CPU threads.
1919 */
1920 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1921 !cpumask_intersects(new_mask, cpu_active_mask) &&
1922 p->nr_cpus_allowed != 1);
1923 }
1924
1925 /* Can the task run on the task's current CPU? If so, we're done */
1926 if (cpumask_test_cpu(task_cpu(p), new_mask))
1927 goto out;
1928
1929 if (task_running(rq, p) || p->state == TASK_WAKING) {
1930 struct migration_arg arg = { p, dest_cpu };
1931 /* Need help from migration thread: drop lock and wait. */
1932 task_rq_unlock(rq, p, &rf);
1933 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1934 return 0;
1935 } else if (task_on_rq_queued(p)) {
1936 /*
1937 * OK, since we're going to drop the lock immediately
1938 * afterwards anyway.
1939 */
1940 rq = move_queued_task(rq, &rf, p, dest_cpu);
1941 }
1942 out:
1943 task_rq_unlock(rq, p, &rf);
1944
1945 return ret;
1946 }
1947
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1948 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1949 {
1950 return __set_cpus_allowed_ptr(p, new_mask, false);
1951 }
1952 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1953
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 {
1956 #ifdef CONFIG_SCHED_DEBUG
1957 /*
1958 * We should never call set_task_cpu() on a blocked task,
1959 * ttwu() will sort out the placement.
1960 */
1961 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1962 !p->on_rq);
1963
1964 /*
1965 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1966 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1967 * time relying on p->on_rq.
1968 */
1969 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1970 p->sched_class == &fair_sched_class &&
1971 (p->on_rq && !task_on_rq_migrating(p)));
1972
1973 #ifdef CONFIG_LOCKDEP
1974 /*
1975 * The caller should hold either p->pi_lock or rq->lock, when changing
1976 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1977 *
1978 * sched_move_task() holds both and thus holding either pins the cgroup,
1979 * see task_group().
1980 *
1981 * Furthermore, all task_rq users should acquire both locks, see
1982 * task_rq_lock().
1983 */
1984 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1985 lockdep_is_held(&task_rq(p)->lock)));
1986 #endif
1987 /*
1988 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1989 */
1990 WARN_ON_ONCE(!cpu_online(new_cpu));
1991 #endif
1992
1993 trace_sched_migrate_task(p, new_cpu);
1994
1995 if (task_cpu(p) != new_cpu) {
1996 if (p->sched_class->migrate_task_rq)
1997 p->sched_class->migrate_task_rq(p, new_cpu);
1998 p->se.nr_migrations++;
1999 rseq_migrate(p);
2000 perf_event_task_migrate(p);
2001 }
2002
2003 __set_task_cpu(p, new_cpu);
2004 }
2005
2006 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)2007 static void __migrate_swap_task(struct task_struct *p, int cpu)
2008 {
2009 if (task_on_rq_queued(p)) {
2010 struct rq *src_rq, *dst_rq;
2011 struct rq_flags srf, drf;
2012
2013 src_rq = task_rq(p);
2014 dst_rq = cpu_rq(cpu);
2015
2016 rq_pin_lock(src_rq, &srf);
2017 rq_pin_lock(dst_rq, &drf);
2018
2019 deactivate_task(src_rq, p, 0);
2020 set_task_cpu(p, cpu);
2021 activate_task(dst_rq, p, 0);
2022 check_preempt_curr(dst_rq, p, 0);
2023
2024 rq_unpin_lock(dst_rq, &drf);
2025 rq_unpin_lock(src_rq, &srf);
2026
2027 } else {
2028 /*
2029 * Task isn't running anymore; make it appear like we migrated
2030 * it before it went to sleep. This means on wakeup we make the
2031 * previous CPU our target instead of where it really is.
2032 */
2033 p->wake_cpu = cpu;
2034 }
2035 }
2036
2037 struct migration_swap_arg {
2038 struct task_struct *src_task, *dst_task;
2039 int src_cpu, dst_cpu;
2040 };
2041
migrate_swap_stop(void * data)2042 static int migrate_swap_stop(void *data)
2043 {
2044 struct migration_swap_arg *arg = data;
2045 struct rq *src_rq, *dst_rq;
2046 int ret = -EAGAIN;
2047
2048 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2049 return -EAGAIN;
2050
2051 src_rq = cpu_rq(arg->src_cpu);
2052 dst_rq = cpu_rq(arg->dst_cpu);
2053
2054 double_raw_lock(&arg->src_task->pi_lock,
2055 &arg->dst_task->pi_lock);
2056 double_rq_lock(src_rq, dst_rq);
2057
2058 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2059 goto unlock;
2060
2061 if (task_cpu(arg->src_task) != arg->src_cpu)
2062 goto unlock;
2063
2064 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2065 goto unlock;
2066
2067 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2068 goto unlock;
2069
2070 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2071 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2072
2073 ret = 0;
2074
2075 unlock:
2076 double_rq_unlock(src_rq, dst_rq);
2077 raw_spin_unlock(&arg->dst_task->pi_lock);
2078 raw_spin_unlock(&arg->src_task->pi_lock);
2079
2080 return ret;
2081 }
2082
2083 /*
2084 * Cross migrate two tasks
2085 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)2086 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2087 int target_cpu, int curr_cpu)
2088 {
2089 struct migration_swap_arg arg;
2090 int ret = -EINVAL;
2091
2092 arg = (struct migration_swap_arg){
2093 .src_task = cur,
2094 .src_cpu = curr_cpu,
2095 .dst_task = p,
2096 .dst_cpu = target_cpu,
2097 };
2098
2099 if (arg.src_cpu == arg.dst_cpu)
2100 goto out;
2101
2102 /*
2103 * These three tests are all lockless; this is OK since all of them
2104 * will be re-checked with proper locks held further down the line.
2105 */
2106 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2107 goto out;
2108
2109 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2110 goto out;
2111
2112 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2113 goto out;
2114
2115 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2116 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2117
2118 out:
2119 return ret;
2120 }
2121 #endif /* CONFIG_NUMA_BALANCING */
2122
2123 /*
2124 * wait_task_inactive - wait for a thread to unschedule.
2125 *
2126 * If @match_state is nonzero, it's the @p->state value just checked and
2127 * not expected to change. If it changes, i.e. @p might have woken up,
2128 * then return zero. When we succeed in waiting for @p to be off its CPU,
2129 * we return a positive number (its total switch count). If a second call
2130 * a short while later returns the same number, the caller can be sure that
2131 * @p has remained unscheduled the whole time.
2132 *
2133 * The caller must ensure that the task *will* unschedule sometime soon,
2134 * else this function might spin for a *long* time. This function can't
2135 * be called with interrupts off, or it may introduce deadlock with
2136 * smp_call_function() if an IPI is sent by the same process we are
2137 * waiting to become inactive.
2138 */
wait_task_inactive(struct task_struct * p,long match_state)2139 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2140 {
2141 int running, queued;
2142 struct rq_flags rf;
2143 unsigned long ncsw;
2144 struct rq *rq;
2145
2146 for (;;) {
2147 /*
2148 * We do the initial early heuristics without holding
2149 * any task-queue locks at all. We'll only try to get
2150 * the runqueue lock when things look like they will
2151 * work out!
2152 */
2153 rq = task_rq(p);
2154
2155 /*
2156 * If the task is actively running on another CPU
2157 * still, just relax and busy-wait without holding
2158 * any locks.
2159 *
2160 * NOTE! Since we don't hold any locks, it's not
2161 * even sure that "rq" stays as the right runqueue!
2162 * But we don't care, since "task_running()" will
2163 * return false if the runqueue has changed and p
2164 * is actually now running somewhere else!
2165 */
2166 while (task_running(rq, p)) {
2167 if (match_state && unlikely(p->state != match_state))
2168 return 0;
2169 cpu_relax();
2170 }
2171
2172 /*
2173 * Ok, time to look more closely! We need the rq
2174 * lock now, to be *sure*. If we're wrong, we'll
2175 * just go back and repeat.
2176 */
2177 rq = task_rq_lock(p, &rf);
2178 trace_sched_wait_task(p);
2179 running = task_running(rq, p);
2180 queued = task_on_rq_queued(p);
2181 ncsw = 0;
2182 if (!match_state || p->state == match_state)
2183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2184 task_rq_unlock(rq, p, &rf);
2185
2186 /*
2187 * If it changed from the expected state, bail out now.
2188 */
2189 if (unlikely(!ncsw))
2190 break;
2191
2192 /*
2193 * Was it really running after all now that we
2194 * checked with the proper locks actually held?
2195 *
2196 * Oops. Go back and try again..
2197 */
2198 if (unlikely(running)) {
2199 cpu_relax();
2200 continue;
2201 }
2202
2203 /*
2204 * It's not enough that it's not actively running,
2205 * it must be off the runqueue _entirely_, and not
2206 * preempted!
2207 *
2208 * So if it was still runnable (but just not actively
2209 * running right now), it's preempted, and we should
2210 * yield - it could be a while.
2211 */
2212 if (unlikely(queued)) {
2213 ktime_t to = NSEC_PER_SEC / HZ;
2214
2215 set_current_state(TASK_UNINTERRUPTIBLE);
2216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2217 continue;
2218 }
2219
2220 /*
2221 * Ahh, all good. It wasn't running, and it wasn't
2222 * runnable, which means that it will never become
2223 * running in the future either. We're all done!
2224 */
2225 break;
2226 }
2227
2228 return ncsw;
2229 }
2230
2231 /***
2232 * kick_process - kick a running thread to enter/exit the kernel
2233 * @p: the to-be-kicked thread
2234 *
2235 * Cause a process which is running on another CPU to enter
2236 * kernel-mode, without any delay. (to get signals handled.)
2237 *
2238 * NOTE: this function doesn't have to take the runqueue lock,
2239 * because all it wants to ensure is that the remote task enters
2240 * the kernel. If the IPI races and the task has been migrated
2241 * to another CPU then no harm is done and the purpose has been
2242 * achieved as well.
2243 */
kick_process(struct task_struct * p)2244 void kick_process(struct task_struct *p)
2245 {
2246 int cpu;
2247
2248 preempt_disable();
2249 cpu = task_cpu(p);
2250 if ((cpu != smp_processor_id()) && task_curr(p))
2251 smp_send_reschedule(cpu);
2252 preempt_enable();
2253 }
2254 EXPORT_SYMBOL_GPL(kick_process);
2255
2256 /*
2257 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2258 *
2259 * A few notes on cpu_active vs cpu_online:
2260 *
2261 * - cpu_active must be a subset of cpu_online
2262 *
2263 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2264 * see __set_cpus_allowed_ptr(). At this point the newly online
2265 * CPU isn't yet part of the sched domains, and balancing will not
2266 * see it.
2267 *
2268 * - on CPU-down we clear cpu_active() to mask the sched domains and
2269 * avoid the load balancer to place new tasks on the to be removed
2270 * CPU. Existing tasks will remain running there and will be taken
2271 * off.
2272 *
2273 * This means that fallback selection must not select !active CPUs.
2274 * And can assume that any active CPU must be online. Conversely
2275 * select_task_rq() below may allow selection of !active CPUs in order
2276 * to satisfy the above rules.
2277 */
select_fallback_rq(int cpu,struct task_struct * p)2278 static int select_fallback_rq(int cpu, struct task_struct *p)
2279 {
2280 int nid = cpu_to_node(cpu);
2281 const struct cpumask *nodemask = NULL;
2282 enum { cpuset, possible, fail } state = cpuset;
2283 int dest_cpu;
2284
2285 /*
2286 * If the node that the CPU is on has been offlined, cpu_to_node()
2287 * will return -1. There is no CPU on the node, and we should
2288 * select the CPU on the other node.
2289 */
2290 if (nid != -1) {
2291 nodemask = cpumask_of_node(nid);
2292
2293 /* Look for allowed, online CPU in same node. */
2294 for_each_cpu(dest_cpu, nodemask) {
2295 if (!cpu_active(dest_cpu))
2296 continue;
2297 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2298 return dest_cpu;
2299 }
2300 }
2301
2302 for (;;) {
2303 /* Any allowed, online CPU? */
2304 for_each_cpu(dest_cpu, p->cpus_ptr) {
2305 if (!is_cpu_allowed(p, dest_cpu))
2306 continue;
2307
2308 goto out;
2309 }
2310
2311 /* No more Mr. Nice Guy. */
2312 switch (state) {
2313 case cpuset:
2314 if (IS_ENABLED(CONFIG_CPUSETS)) {
2315 cpuset_cpus_allowed_fallback(p);
2316 state = possible;
2317 break;
2318 }
2319 fallthrough;
2320 case possible:
2321 do_set_cpus_allowed(p, cpu_possible_mask);
2322 state = fail;
2323 break;
2324
2325 case fail:
2326 BUG();
2327 break;
2328 }
2329 }
2330
2331 out:
2332 if (state != cpuset) {
2333 /*
2334 * Don't tell them about moving exiting tasks or
2335 * kernel threads (both mm NULL), since they never
2336 * leave kernel.
2337 */
2338 if (p->mm && printk_ratelimit()) {
2339 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2340 task_pid_nr(p), p->comm, cpu);
2341 }
2342 }
2343
2344 return dest_cpu;
2345 }
2346
2347 /*
2348 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2349 */
2350 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2351 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2352 {
2353 lockdep_assert_held(&p->pi_lock);
2354
2355 if (p->nr_cpus_allowed > 1)
2356 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2357 else
2358 cpu = cpumask_any(p->cpus_ptr);
2359
2360 /*
2361 * In order not to call set_task_cpu() on a blocking task we need
2362 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2363 * CPU.
2364 *
2365 * Since this is common to all placement strategies, this lives here.
2366 *
2367 * [ this allows ->select_task() to simply return task_cpu(p) and
2368 * not worry about this generic constraint ]
2369 */
2370 if (unlikely(!is_cpu_allowed(p, cpu)))
2371 cpu = select_fallback_rq(task_cpu(p), p);
2372
2373 return cpu;
2374 }
2375
sched_set_stop_task(int cpu,struct task_struct * stop)2376 void sched_set_stop_task(int cpu, struct task_struct *stop)
2377 {
2378 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2379 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2380
2381 if (stop) {
2382 /*
2383 * Make it appear like a SCHED_FIFO task, its something
2384 * userspace knows about and won't get confused about.
2385 *
2386 * Also, it will make PI more or less work without too
2387 * much confusion -- but then, stop work should not
2388 * rely on PI working anyway.
2389 */
2390 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2391
2392 stop->sched_class = &stop_sched_class;
2393 }
2394
2395 cpu_rq(cpu)->stop = stop;
2396
2397 if (old_stop) {
2398 /*
2399 * Reset it back to a normal scheduling class so that
2400 * it can die in pieces.
2401 */
2402 old_stop->sched_class = &rt_sched_class;
2403 }
2404 }
2405
2406 #else
2407
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2408 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2409 const struct cpumask *new_mask, bool check)
2410 {
2411 return set_cpus_allowed_ptr(p, new_mask);
2412 }
2413
2414 #endif /* CONFIG_SMP */
2415
2416 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2417 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2418 {
2419 struct rq *rq;
2420
2421 if (!schedstat_enabled())
2422 return;
2423
2424 rq = this_rq();
2425
2426 #ifdef CONFIG_SMP
2427 if (cpu == rq->cpu) {
2428 __schedstat_inc(rq->ttwu_local);
2429 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2430 } else {
2431 struct sched_domain *sd;
2432
2433 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2434 rcu_read_lock();
2435 for_each_domain(rq->cpu, sd) {
2436 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2437 __schedstat_inc(sd->ttwu_wake_remote);
2438 break;
2439 }
2440 }
2441 rcu_read_unlock();
2442 }
2443
2444 if (wake_flags & WF_MIGRATED)
2445 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2446 #endif /* CONFIG_SMP */
2447
2448 __schedstat_inc(rq->ttwu_count);
2449 __schedstat_inc(p->se.statistics.nr_wakeups);
2450
2451 if (wake_flags & WF_SYNC)
2452 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2453 }
2454
2455 /*
2456 * Mark the task runnable and perform wakeup-preemption.
2457 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2458 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2459 struct rq_flags *rf)
2460 {
2461 check_preempt_curr(rq, p, wake_flags);
2462 p->state = TASK_RUNNING;
2463 trace_sched_wakeup(p);
2464
2465 #ifdef CONFIG_SMP
2466 if (p->sched_class->task_woken) {
2467 /*
2468 * Our task @p is fully woken up and running; so its safe to
2469 * drop the rq->lock, hereafter rq is only used for statistics.
2470 */
2471 rq_unpin_lock(rq, rf);
2472 p->sched_class->task_woken(rq, p);
2473 rq_repin_lock(rq, rf);
2474 }
2475
2476 if (rq->idle_stamp) {
2477 u64 delta = rq_clock(rq) - rq->idle_stamp;
2478 u64 max = 2*rq->max_idle_balance_cost;
2479
2480 update_avg(&rq->avg_idle, delta);
2481
2482 if (rq->avg_idle > max)
2483 rq->avg_idle = max;
2484
2485 rq->idle_stamp = 0;
2486 }
2487 #endif
2488 }
2489
2490 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2491 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2492 struct rq_flags *rf)
2493 {
2494 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2495
2496 lockdep_assert_held(&rq->lock);
2497
2498 if (p->sched_contributes_to_load)
2499 rq->nr_uninterruptible--;
2500
2501 #ifdef CONFIG_SMP
2502 if (wake_flags & WF_MIGRATED)
2503 en_flags |= ENQUEUE_MIGRATED;
2504 else
2505 #endif
2506 if (p->in_iowait) {
2507 delayacct_blkio_end(p);
2508 atomic_dec(&task_rq(p)->nr_iowait);
2509 }
2510
2511 activate_task(rq, p, en_flags);
2512 ttwu_do_wakeup(rq, p, wake_flags, rf);
2513 }
2514
2515 /*
2516 * Consider @p being inside a wait loop:
2517 *
2518 * for (;;) {
2519 * set_current_state(TASK_UNINTERRUPTIBLE);
2520 *
2521 * if (CONDITION)
2522 * break;
2523 *
2524 * schedule();
2525 * }
2526 * __set_current_state(TASK_RUNNING);
2527 *
2528 * between set_current_state() and schedule(). In this case @p is still
2529 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2530 * an atomic manner.
2531 *
2532 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2533 * then schedule() must still happen and p->state can be changed to
2534 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2535 * need to do a full wakeup with enqueue.
2536 *
2537 * Returns: %true when the wakeup is done,
2538 * %false otherwise.
2539 */
ttwu_runnable(struct task_struct * p,int wake_flags)2540 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2541 {
2542 struct rq_flags rf;
2543 struct rq *rq;
2544 int ret = 0;
2545
2546 rq = __task_rq_lock(p, &rf);
2547 if (task_on_rq_queued(p)) {
2548 /* check_preempt_curr() may use rq clock */
2549 update_rq_clock(rq);
2550 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2551 ret = 1;
2552 }
2553 __task_rq_unlock(rq, &rf);
2554
2555 return ret;
2556 }
2557
2558 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)2559 void sched_ttwu_pending(void *arg)
2560 {
2561 struct llist_node *llist = arg;
2562 struct rq *rq = this_rq();
2563 struct task_struct *p, *t;
2564 struct rq_flags rf;
2565
2566 if (!llist)
2567 return;
2568
2569 /*
2570 * rq::ttwu_pending racy indication of out-standing wakeups.
2571 * Races such that false-negatives are possible, since they
2572 * are shorter lived that false-positives would be.
2573 */
2574 WRITE_ONCE(rq->ttwu_pending, 0);
2575
2576 rq_lock_irqsave(rq, &rf);
2577 update_rq_clock(rq);
2578
2579 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2580 if (WARN_ON_ONCE(p->on_cpu))
2581 smp_cond_load_acquire(&p->on_cpu, !VAL);
2582
2583 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2584 set_task_cpu(p, cpu_of(rq));
2585
2586 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2587 }
2588
2589 rq_unlock_irqrestore(rq, &rf);
2590 }
2591
send_call_function_single_ipi(int cpu)2592 void send_call_function_single_ipi(int cpu)
2593 {
2594 struct rq *rq = cpu_rq(cpu);
2595
2596 if (!set_nr_if_polling(rq->idle))
2597 arch_send_call_function_single_ipi(cpu);
2598 else
2599 trace_sched_wake_idle_without_ipi(cpu);
2600 }
2601
2602 /*
2603 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2604 * necessary. The wakee CPU on receipt of the IPI will queue the task
2605 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2606 * of the wakeup instead of the waker.
2607 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2608 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2609 {
2610 struct rq *rq = cpu_rq(cpu);
2611
2612 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2613
2614 WRITE_ONCE(rq->ttwu_pending, 1);
2615 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2616 }
2617
wake_up_if_idle(int cpu)2618 void wake_up_if_idle(int cpu)
2619 {
2620 struct rq *rq = cpu_rq(cpu);
2621 struct rq_flags rf;
2622
2623 rcu_read_lock();
2624
2625 if (!is_idle_task(rcu_dereference(rq->curr)))
2626 goto out;
2627
2628 if (set_nr_if_polling(rq->idle)) {
2629 trace_sched_wake_idle_without_ipi(cpu);
2630 } else {
2631 rq_lock_irqsave(rq, &rf);
2632 if (is_idle_task(rq->curr))
2633 smp_send_reschedule(cpu);
2634 /* Else CPU is not idle, do nothing here: */
2635 rq_unlock_irqrestore(rq, &rf);
2636 }
2637
2638 out:
2639 rcu_read_unlock();
2640 }
2641
cpus_share_cache(int this_cpu,int that_cpu)2642 bool cpus_share_cache(int this_cpu, int that_cpu)
2643 {
2644 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2645 }
2646
ttwu_queue_cond(int cpu,int wake_flags)2647 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2648 {
2649 /*
2650 * If the CPU does not share cache, then queue the task on the
2651 * remote rqs wakelist to avoid accessing remote data.
2652 */
2653 if (!cpus_share_cache(smp_processor_id(), cpu))
2654 return true;
2655
2656 /*
2657 * If the task is descheduling and the only running task on the
2658 * CPU then use the wakelist to offload the task activation to
2659 * the soon-to-be-idle CPU as the current CPU is likely busy.
2660 * nr_running is checked to avoid unnecessary task stacking.
2661 */
2662 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2663 return true;
2664
2665 return false;
2666 }
2667
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2668 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2669 {
2670 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2671 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2672 return false;
2673
2674 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2675 __ttwu_queue_wakelist(p, cpu, wake_flags);
2676 return true;
2677 }
2678
2679 return false;
2680 }
2681
2682 #else /* !CONFIG_SMP */
2683
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2684 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2685 {
2686 return false;
2687 }
2688
2689 #endif /* CONFIG_SMP */
2690
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2691 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2692 {
2693 struct rq *rq = cpu_rq(cpu);
2694 struct rq_flags rf;
2695
2696 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2697 return;
2698
2699 rq_lock(rq, &rf);
2700 update_rq_clock(rq);
2701 ttwu_do_activate(rq, p, wake_flags, &rf);
2702 rq_unlock(rq, &rf);
2703 }
2704
2705 /*
2706 * Notes on Program-Order guarantees on SMP systems.
2707 *
2708 * MIGRATION
2709 *
2710 * The basic program-order guarantee on SMP systems is that when a task [t]
2711 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2712 * execution on its new CPU [c1].
2713 *
2714 * For migration (of runnable tasks) this is provided by the following means:
2715 *
2716 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2717 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2718 * rq(c1)->lock (if not at the same time, then in that order).
2719 * C) LOCK of the rq(c1)->lock scheduling in task
2720 *
2721 * Release/acquire chaining guarantees that B happens after A and C after B.
2722 * Note: the CPU doing B need not be c0 or c1
2723 *
2724 * Example:
2725 *
2726 * CPU0 CPU1 CPU2
2727 *
2728 * LOCK rq(0)->lock
2729 * sched-out X
2730 * sched-in Y
2731 * UNLOCK rq(0)->lock
2732 *
2733 * LOCK rq(0)->lock // orders against CPU0
2734 * dequeue X
2735 * UNLOCK rq(0)->lock
2736 *
2737 * LOCK rq(1)->lock
2738 * enqueue X
2739 * UNLOCK rq(1)->lock
2740 *
2741 * LOCK rq(1)->lock // orders against CPU2
2742 * sched-out Z
2743 * sched-in X
2744 * UNLOCK rq(1)->lock
2745 *
2746 *
2747 * BLOCKING -- aka. SLEEP + WAKEUP
2748 *
2749 * For blocking we (obviously) need to provide the same guarantee as for
2750 * migration. However the means are completely different as there is no lock
2751 * chain to provide order. Instead we do:
2752 *
2753 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2754 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2755 *
2756 * Example:
2757 *
2758 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2759 *
2760 * LOCK rq(0)->lock LOCK X->pi_lock
2761 * dequeue X
2762 * sched-out X
2763 * smp_store_release(X->on_cpu, 0);
2764 *
2765 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2766 * X->state = WAKING
2767 * set_task_cpu(X,2)
2768 *
2769 * LOCK rq(2)->lock
2770 * enqueue X
2771 * X->state = RUNNING
2772 * UNLOCK rq(2)->lock
2773 *
2774 * LOCK rq(2)->lock // orders against CPU1
2775 * sched-out Z
2776 * sched-in X
2777 * UNLOCK rq(2)->lock
2778 *
2779 * UNLOCK X->pi_lock
2780 * UNLOCK rq(0)->lock
2781 *
2782 *
2783 * However, for wakeups there is a second guarantee we must provide, namely we
2784 * must ensure that CONDITION=1 done by the caller can not be reordered with
2785 * accesses to the task state; see try_to_wake_up() and set_current_state().
2786 */
2787
2788 /**
2789 * try_to_wake_up - wake up a thread
2790 * @p: the thread to be awakened
2791 * @state: the mask of task states that can be woken
2792 * @wake_flags: wake modifier flags (WF_*)
2793 *
2794 * Conceptually does:
2795 *
2796 * If (@state & @p->state) @p->state = TASK_RUNNING.
2797 *
2798 * If the task was not queued/runnable, also place it back on a runqueue.
2799 *
2800 * This function is atomic against schedule() which would dequeue the task.
2801 *
2802 * It issues a full memory barrier before accessing @p->state, see the comment
2803 * with set_current_state().
2804 *
2805 * Uses p->pi_lock to serialize against concurrent wake-ups.
2806 *
2807 * Relies on p->pi_lock stabilizing:
2808 * - p->sched_class
2809 * - p->cpus_ptr
2810 * - p->sched_task_group
2811 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2812 *
2813 * Tries really hard to only take one task_rq(p)->lock for performance.
2814 * Takes rq->lock in:
2815 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2816 * - ttwu_queue() -- new rq, for enqueue of the task;
2817 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2818 *
2819 * As a consequence we race really badly with just about everything. See the
2820 * many memory barriers and their comments for details.
2821 *
2822 * Return: %true if @p->state changes (an actual wakeup was done),
2823 * %false otherwise.
2824 */
2825 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2826 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2827 {
2828 unsigned long flags;
2829 int cpu, success = 0;
2830
2831 preempt_disable();
2832 if (p == current) {
2833 /*
2834 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2835 * == smp_processor_id()'. Together this means we can special
2836 * case the whole 'p->on_rq && ttwu_runnable()' case below
2837 * without taking any locks.
2838 *
2839 * In particular:
2840 * - we rely on Program-Order guarantees for all the ordering,
2841 * - we're serialized against set_special_state() by virtue of
2842 * it disabling IRQs (this allows not taking ->pi_lock).
2843 */
2844 if (!(p->state & state))
2845 goto out;
2846
2847 success = 1;
2848 trace_sched_waking(p);
2849 p->state = TASK_RUNNING;
2850 trace_sched_wakeup(p);
2851 goto out;
2852 }
2853
2854 /*
2855 * If we are going to wake up a thread waiting for CONDITION we
2856 * need to ensure that CONDITION=1 done by the caller can not be
2857 * reordered with p->state check below. This pairs with smp_store_mb()
2858 * in set_current_state() that the waiting thread does.
2859 */
2860 raw_spin_lock_irqsave(&p->pi_lock, flags);
2861 smp_mb__after_spinlock();
2862 if (!(p->state & state))
2863 goto unlock;
2864
2865 trace_sched_waking(p);
2866
2867 /* We're going to change ->state: */
2868 success = 1;
2869
2870 /*
2871 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2872 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2873 * in smp_cond_load_acquire() below.
2874 *
2875 * sched_ttwu_pending() try_to_wake_up()
2876 * STORE p->on_rq = 1 LOAD p->state
2877 * UNLOCK rq->lock
2878 *
2879 * __schedule() (switch to task 'p')
2880 * LOCK rq->lock smp_rmb();
2881 * smp_mb__after_spinlock();
2882 * UNLOCK rq->lock
2883 *
2884 * [task p]
2885 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2886 *
2887 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2888 * __schedule(). See the comment for smp_mb__after_spinlock().
2889 *
2890 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2891 */
2892 smp_rmb();
2893 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2894 goto unlock;
2895
2896 #ifdef CONFIG_SMP
2897 /*
2898 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2899 * possible to, falsely, observe p->on_cpu == 0.
2900 *
2901 * One must be running (->on_cpu == 1) in order to remove oneself
2902 * from the runqueue.
2903 *
2904 * __schedule() (switch to task 'p') try_to_wake_up()
2905 * STORE p->on_cpu = 1 LOAD p->on_rq
2906 * UNLOCK rq->lock
2907 *
2908 * __schedule() (put 'p' to sleep)
2909 * LOCK rq->lock smp_rmb();
2910 * smp_mb__after_spinlock();
2911 * STORE p->on_rq = 0 LOAD p->on_cpu
2912 *
2913 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2914 * __schedule(). See the comment for smp_mb__after_spinlock().
2915 *
2916 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2917 * schedule()'s deactivate_task() has 'happened' and p will no longer
2918 * care about it's own p->state. See the comment in __schedule().
2919 */
2920 smp_acquire__after_ctrl_dep();
2921
2922 /*
2923 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2924 * == 0), which means we need to do an enqueue, change p->state to
2925 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2926 * enqueue, such as ttwu_queue_wakelist().
2927 */
2928 p->state = TASK_WAKING;
2929
2930 /*
2931 * If the owning (remote) CPU is still in the middle of schedule() with
2932 * this task as prev, considering queueing p on the remote CPUs wake_list
2933 * which potentially sends an IPI instead of spinning on p->on_cpu to
2934 * let the waker make forward progress. This is safe because IRQs are
2935 * disabled and the IPI will deliver after on_cpu is cleared.
2936 *
2937 * Ensure we load task_cpu(p) after p->on_cpu:
2938 *
2939 * set_task_cpu(p, cpu);
2940 * STORE p->cpu = @cpu
2941 * __schedule() (switch to task 'p')
2942 * LOCK rq->lock
2943 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
2944 * STORE p->on_cpu = 1 LOAD p->cpu
2945 *
2946 * to ensure we observe the correct CPU on which the task is currently
2947 * scheduling.
2948 */
2949 if (smp_load_acquire(&p->on_cpu) &&
2950 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2951 goto unlock;
2952
2953 /*
2954 * If the owning (remote) CPU is still in the middle of schedule() with
2955 * this task as prev, wait until its done referencing the task.
2956 *
2957 * Pairs with the smp_store_release() in finish_task().
2958 *
2959 * This ensures that tasks getting woken will be fully ordered against
2960 * their previous state and preserve Program Order.
2961 */
2962 smp_cond_load_acquire(&p->on_cpu, !VAL);
2963
2964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2965 if (task_cpu(p) != cpu) {
2966 if (p->in_iowait) {
2967 delayacct_blkio_end(p);
2968 atomic_dec(&task_rq(p)->nr_iowait);
2969 }
2970
2971 wake_flags |= WF_MIGRATED;
2972 psi_ttwu_dequeue(p);
2973 set_task_cpu(p, cpu);
2974 }
2975 #else
2976 cpu = task_cpu(p);
2977 #endif /* CONFIG_SMP */
2978
2979 ttwu_queue(p, cpu, wake_flags);
2980 unlock:
2981 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2982 out:
2983 if (success)
2984 ttwu_stat(p, task_cpu(p), wake_flags);
2985 preempt_enable();
2986
2987 return success;
2988 }
2989
2990 /**
2991 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2992 * @p: Process for which the function is to be invoked.
2993 * @func: Function to invoke.
2994 * @arg: Argument to function.
2995 *
2996 * If the specified task can be quickly locked into a definite state
2997 * (either sleeping or on a given runqueue), arrange to keep it in that
2998 * state while invoking @func(@arg). This function can use ->on_rq and
2999 * task_curr() to work out what the state is, if required. Given that
3000 * @func can be invoked with a runqueue lock held, it had better be quite
3001 * lightweight.
3002 *
3003 * Returns:
3004 * @false if the task slipped out from under the locks.
3005 * @true if the task was locked onto a runqueue or is sleeping.
3006 * However, @func can override this by returning @false.
3007 */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)3008 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3009 {
3010 bool ret = false;
3011 struct rq_flags rf;
3012 struct rq *rq;
3013
3014 lockdep_assert_irqs_enabled();
3015 raw_spin_lock_irq(&p->pi_lock);
3016 if (p->on_rq) {
3017 rq = __task_rq_lock(p, &rf);
3018 if (task_rq(p) == rq)
3019 ret = func(p, arg);
3020 rq_unlock(rq, &rf);
3021 } else {
3022 switch (p->state) {
3023 case TASK_RUNNING:
3024 case TASK_WAKING:
3025 break;
3026 default:
3027 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3028 if (!p->on_rq)
3029 ret = func(p, arg);
3030 }
3031 }
3032 raw_spin_unlock_irq(&p->pi_lock);
3033 return ret;
3034 }
3035
3036 /**
3037 * wake_up_process - Wake up a specific process
3038 * @p: The process to be woken up.
3039 *
3040 * Attempt to wake up the nominated process and move it to the set of runnable
3041 * processes.
3042 *
3043 * Return: 1 if the process was woken up, 0 if it was already running.
3044 *
3045 * This function executes a full memory barrier before accessing the task state.
3046 */
wake_up_process(struct task_struct * p)3047 int wake_up_process(struct task_struct *p)
3048 {
3049 return try_to_wake_up(p, TASK_NORMAL, 0);
3050 }
3051 EXPORT_SYMBOL(wake_up_process);
3052
wake_up_state(struct task_struct * p,unsigned int state)3053 int wake_up_state(struct task_struct *p, unsigned int state)
3054 {
3055 return try_to_wake_up(p, state, 0);
3056 }
3057
3058 /*
3059 * Perform scheduler related setup for a newly forked process p.
3060 * p is forked by current.
3061 *
3062 * __sched_fork() is basic setup used by init_idle() too:
3063 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)3064 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3065 {
3066 p->on_rq = 0;
3067
3068 p->se.on_rq = 0;
3069 p->se.exec_start = 0;
3070 p->se.sum_exec_runtime = 0;
3071 p->se.prev_sum_exec_runtime = 0;
3072 p->se.nr_migrations = 0;
3073 p->se.vruntime = 0;
3074 INIT_LIST_HEAD(&p->se.group_node);
3075
3076 #ifdef CONFIG_FAIR_GROUP_SCHED
3077 p->se.cfs_rq = NULL;
3078 #endif
3079
3080 #ifdef CONFIG_SCHEDSTATS
3081 /* Even if schedstat is disabled, there should not be garbage */
3082 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3083 #endif
3084
3085 RB_CLEAR_NODE(&p->dl.rb_node);
3086 init_dl_task_timer(&p->dl);
3087 init_dl_inactive_task_timer(&p->dl);
3088 __dl_clear_params(p);
3089
3090 INIT_LIST_HEAD(&p->rt.run_list);
3091 p->rt.timeout = 0;
3092 p->rt.time_slice = sched_rr_timeslice;
3093 p->rt.on_rq = 0;
3094 p->rt.on_list = 0;
3095
3096 #ifdef CONFIG_PREEMPT_NOTIFIERS
3097 INIT_HLIST_HEAD(&p->preempt_notifiers);
3098 #endif
3099
3100 #ifdef CONFIG_COMPACTION
3101 p->capture_control = NULL;
3102 #endif
3103 init_numa_balancing(clone_flags, p);
3104 #ifdef CONFIG_SMP
3105 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3106 #endif
3107 }
3108
3109 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3110
3111 #ifdef CONFIG_NUMA_BALANCING
3112
set_numabalancing_state(bool enabled)3113 void set_numabalancing_state(bool enabled)
3114 {
3115 if (enabled)
3116 static_branch_enable(&sched_numa_balancing);
3117 else
3118 static_branch_disable(&sched_numa_balancing);
3119 }
3120
3121 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3122 int sysctl_numa_balancing(struct ctl_table *table, int write,
3123 void *buffer, size_t *lenp, loff_t *ppos)
3124 {
3125 struct ctl_table t;
3126 int err;
3127 int state = static_branch_likely(&sched_numa_balancing);
3128
3129 if (write && !capable(CAP_SYS_ADMIN))
3130 return -EPERM;
3131
3132 t = *table;
3133 t.data = &state;
3134 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3135 if (err < 0)
3136 return err;
3137 if (write)
3138 set_numabalancing_state(state);
3139 return err;
3140 }
3141 #endif
3142 #endif
3143
3144 #ifdef CONFIG_SCHEDSTATS
3145
3146 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3147 static bool __initdata __sched_schedstats = false;
3148
set_schedstats(bool enabled)3149 static void set_schedstats(bool enabled)
3150 {
3151 if (enabled)
3152 static_branch_enable(&sched_schedstats);
3153 else
3154 static_branch_disable(&sched_schedstats);
3155 }
3156
force_schedstat_enabled(void)3157 void force_schedstat_enabled(void)
3158 {
3159 if (!schedstat_enabled()) {
3160 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3161 static_branch_enable(&sched_schedstats);
3162 }
3163 }
3164
setup_schedstats(char * str)3165 static int __init setup_schedstats(char *str)
3166 {
3167 int ret = 0;
3168 if (!str)
3169 goto out;
3170
3171 /*
3172 * This code is called before jump labels have been set up, so we can't
3173 * change the static branch directly just yet. Instead set a temporary
3174 * variable so init_schedstats() can do it later.
3175 */
3176 if (!strcmp(str, "enable")) {
3177 __sched_schedstats = true;
3178 ret = 1;
3179 } else if (!strcmp(str, "disable")) {
3180 __sched_schedstats = false;
3181 ret = 1;
3182 }
3183 out:
3184 if (!ret)
3185 pr_warn("Unable to parse schedstats=\n");
3186
3187 return ret;
3188 }
3189 __setup("schedstats=", setup_schedstats);
3190
init_schedstats(void)3191 static void __init init_schedstats(void)
3192 {
3193 set_schedstats(__sched_schedstats);
3194 }
3195
3196 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3197 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3198 size_t *lenp, loff_t *ppos)
3199 {
3200 struct ctl_table t;
3201 int err;
3202 int state = static_branch_likely(&sched_schedstats);
3203
3204 if (write && !capable(CAP_SYS_ADMIN))
3205 return -EPERM;
3206
3207 t = *table;
3208 t.data = &state;
3209 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3210 if (err < 0)
3211 return err;
3212 if (write)
3213 set_schedstats(state);
3214 return err;
3215 }
3216 #endif /* CONFIG_PROC_SYSCTL */
3217 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)3218 static inline void init_schedstats(void) {}
3219 #endif /* CONFIG_SCHEDSTATS */
3220
3221 /*
3222 * fork()/clone()-time setup:
3223 */
sched_fork(unsigned long clone_flags,struct task_struct * p)3224 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3225 {
3226 unsigned long flags;
3227
3228 __sched_fork(clone_flags, p);
3229 /*
3230 * We mark the process as NEW here. This guarantees that
3231 * nobody will actually run it, and a signal or other external
3232 * event cannot wake it up and insert it on the runqueue either.
3233 */
3234 p->state = TASK_NEW;
3235
3236 /*
3237 * Make sure we do not leak PI boosting priority to the child.
3238 */
3239 p->prio = current->normal_prio;
3240
3241 uclamp_fork(p);
3242
3243 /*
3244 * Revert to default priority/policy on fork if requested.
3245 */
3246 if (unlikely(p->sched_reset_on_fork)) {
3247 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3248 p->policy = SCHED_NORMAL;
3249 p->static_prio = NICE_TO_PRIO(0);
3250 p->rt_priority = 0;
3251 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3252 p->static_prio = NICE_TO_PRIO(0);
3253
3254 p->prio = p->normal_prio = __normal_prio(p);
3255 set_load_weight(p, false);
3256
3257 /*
3258 * We don't need the reset flag anymore after the fork. It has
3259 * fulfilled its duty:
3260 */
3261 p->sched_reset_on_fork = 0;
3262 }
3263
3264 if (dl_prio(p->prio))
3265 return -EAGAIN;
3266 else if (rt_prio(p->prio))
3267 p->sched_class = &rt_sched_class;
3268 else
3269 p->sched_class = &fair_sched_class;
3270
3271 init_entity_runnable_average(&p->se);
3272
3273 /*
3274 * The child is not yet in the pid-hash so no cgroup attach races,
3275 * and the cgroup is pinned to this child due to cgroup_fork()
3276 * is ran before sched_fork().
3277 *
3278 * Silence PROVE_RCU.
3279 */
3280 raw_spin_lock_irqsave(&p->pi_lock, flags);
3281 rseq_migrate(p);
3282 /*
3283 * We're setting the CPU for the first time, we don't migrate,
3284 * so use __set_task_cpu().
3285 */
3286 __set_task_cpu(p, smp_processor_id());
3287 if (p->sched_class->task_fork)
3288 p->sched_class->task_fork(p);
3289 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3290
3291 #ifdef CONFIG_SCHED_INFO
3292 if (likely(sched_info_on()))
3293 memset(&p->sched_info, 0, sizeof(p->sched_info));
3294 #endif
3295 #if defined(CONFIG_SMP)
3296 p->on_cpu = 0;
3297 #endif
3298 init_task_preempt_count(p);
3299 #ifdef CONFIG_SMP
3300 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3301 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3302 #endif
3303 return 0;
3304 }
3305
sched_post_fork(struct task_struct * p)3306 void sched_post_fork(struct task_struct *p)
3307 {
3308 uclamp_post_fork(p);
3309 }
3310
to_ratio(u64 period,u64 runtime)3311 unsigned long to_ratio(u64 period, u64 runtime)
3312 {
3313 if (runtime == RUNTIME_INF)
3314 return BW_UNIT;
3315
3316 /*
3317 * Doing this here saves a lot of checks in all
3318 * the calling paths, and returning zero seems
3319 * safe for them anyway.
3320 */
3321 if (period == 0)
3322 return 0;
3323
3324 return div64_u64(runtime << BW_SHIFT, period);
3325 }
3326
3327 /*
3328 * wake_up_new_task - wake up a newly created task for the first time.
3329 *
3330 * This function will do some initial scheduler statistics housekeeping
3331 * that must be done for every newly created context, then puts the task
3332 * on the runqueue and wakes it.
3333 */
wake_up_new_task(struct task_struct * p)3334 void wake_up_new_task(struct task_struct *p)
3335 {
3336 struct rq_flags rf;
3337 struct rq *rq;
3338
3339 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3340 p->state = TASK_RUNNING;
3341 #ifdef CONFIG_SMP
3342 /*
3343 * Fork balancing, do it here and not earlier because:
3344 * - cpus_ptr can change in the fork path
3345 * - any previously selected CPU might disappear through hotplug
3346 *
3347 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3348 * as we're not fully set-up yet.
3349 */
3350 p->recent_used_cpu = task_cpu(p);
3351 rseq_migrate(p);
3352 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3353 #endif
3354 rq = __task_rq_lock(p, &rf);
3355 update_rq_clock(rq);
3356 post_init_entity_util_avg(p);
3357
3358 activate_task(rq, p, ENQUEUE_NOCLOCK);
3359 trace_sched_wakeup_new(p);
3360 check_preempt_curr(rq, p, WF_FORK);
3361 #ifdef CONFIG_SMP
3362 if (p->sched_class->task_woken) {
3363 /*
3364 * Nothing relies on rq->lock after this, so its fine to
3365 * drop it.
3366 */
3367 rq_unpin_lock(rq, &rf);
3368 p->sched_class->task_woken(rq, p);
3369 rq_repin_lock(rq, &rf);
3370 }
3371 #endif
3372 task_rq_unlock(rq, p, &rf);
3373 }
3374
3375 #ifdef CONFIG_PREEMPT_NOTIFIERS
3376
3377 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3378
preempt_notifier_inc(void)3379 void preempt_notifier_inc(void)
3380 {
3381 static_branch_inc(&preempt_notifier_key);
3382 }
3383 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3384
preempt_notifier_dec(void)3385 void preempt_notifier_dec(void)
3386 {
3387 static_branch_dec(&preempt_notifier_key);
3388 }
3389 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3390
3391 /**
3392 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3393 * @notifier: notifier struct to register
3394 */
preempt_notifier_register(struct preempt_notifier * notifier)3395 void preempt_notifier_register(struct preempt_notifier *notifier)
3396 {
3397 if (!static_branch_unlikely(&preempt_notifier_key))
3398 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3399
3400 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3401 }
3402 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3403
3404 /**
3405 * preempt_notifier_unregister - no longer interested in preemption notifications
3406 * @notifier: notifier struct to unregister
3407 *
3408 * This is *not* safe to call from within a preemption notifier.
3409 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3410 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3411 {
3412 hlist_del(¬ifier->link);
3413 }
3414 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3415
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3416 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3417 {
3418 struct preempt_notifier *notifier;
3419
3420 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3421 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3422 }
3423
fire_sched_in_preempt_notifiers(struct task_struct * curr)3424 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3425 {
3426 if (static_branch_unlikely(&preempt_notifier_key))
3427 __fire_sched_in_preempt_notifiers(curr);
3428 }
3429
3430 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3431 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3432 struct task_struct *next)
3433 {
3434 struct preempt_notifier *notifier;
3435
3436 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3437 notifier->ops->sched_out(notifier, next);
3438 }
3439
3440 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3441 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3442 struct task_struct *next)
3443 {
3444 if (static_branch_unlikely(&preempt_notifier_key))
3445 __fire_sched_out_preempt_notifiers(curr, next);
3446 }
3447
3448 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3449
fire_sched_in_preempt_notifiers(struct task_struct * curr)3450 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3451 {
3452 }
3453
3454 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3455 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3456 struct task_struct *next)
3457 {
3458 }
3459
3460 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3461
prepare_task(struct task_struct * next)3462 static inline void prepare_task(struct task_struct *next)
3463 {
3464 #ifdef CONFIG_SMP
3465 /*
3466 * Claim the task as running, we do this before switching to it
3467 * such that any running task will have this set.
3468 *
3469 * See the ttwu() WF_ON_CPU case and its ordering comment.
3470 */
3471 WRITE_ONCE(next->on_cpu, 1);
3472 #endif
3473 }
3474
finish_task(struct task_struct * prev)3475 static inline void finish_task(struct task_struct *prev)
3476 {
3477 #ifdef CONFIG_SMP
3478 /*
3479 * This must be the very last reference to @prev from this CPU. After
3480 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3481 * must ensure this doesn't happen until the switch is completely
3482 * finished.
3483 *
3484 * In particular, the load of prev->state in finish_task_switch() must
3485 * happen before this.
3486 *
3487 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3488 */
3489 smp_store_release(&prev->on_cpu, 0);
3490 #endif
3491 }
3492
3493 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3494 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3495 {
3496 /*
3497 * Since the runqueue lock will be released by the next
3498 * task (which is an invalid locking op but in the case
3499 * of the scheduler it's an obvious special-case), so we
3500 * do an early lockdep release here:
3501 */
3502 rq_unpin_lock(rq, rf);
3503 spin_release(&rq->lock.dep_map, _THIS_IP_);
3504 #ifdef CONFIG_DEBUG_SPINLOCK
3505 /* this is a valid case when another task releases the spinlock */
3506 rq->lock.owner = next;
3507 #endif
3508 }
3509
finish_lock_switch(struct rq * rq)3510 static inline void finish_lock_switch(struct rq *rq)
3511 {
3512 /*
3513 * If we are tracking spinlock dependencies then we have to
3514 * fix up the runqueue lock - which gets 'carried over' from
3515 * prev into current:
3516 */
3517 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3518 raw_spin_unlock_irq(&rq->lock);
3519 }
3520
3521 /*
3522 * NOP if the arch has not defined these:
3523 */
3524
3525 #ifndef prepare_arch_switch
3526 # define prepare_arch_switch(next) do { } while (0)
3527 #endif
3528
3529 #ifndef finish_arch_post_lock_switch
3530 # define finish_arch_post_lock_switch() do { } while (0)
3531 #endif
3532
3533 /**
3534 * prepare_task_switch - prepare to switch tasks
3535 * @rq: the runqueue preparing to switch
3536 * @prev: the current task that is being switched out
3537 * @next: the task we are going to switch to.
3538 *
3539 * This is called with the rq lock held and interrupts off. It must
3540 * be paired with a subsequent finish_task_switch after the context
3541 * switch.
3542 *
3543 * prepare_task_switch sets up locking and calls architecture specific
3544 * hooks.
3545 */
3546 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3547 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3548 struct task_struct *next)
3549 {
3550 kcov_prepare_switch(prev);
3551 sched_info_switch(rq, prev, next);
3552 perf_event_task_sched_out(prev, next);
3553 rseq_preempt(prev);
3554 fire_sched_out_preempt_notifiers(prev, next);
3555 prepare_task(next);
3556 prepare_arch_switch(next);
3557 }
3558
3559 /**
3560 * finish_task_switch - clean up after a task-switch
3561 * @prev: the thread we just switched away from.
3562 *
3563 * finish_task_switch must be called after the context switch, paired
3564 * with a prepare_task_switch call before the context switch.
3565 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3566 * and do any other architecture-specific cleanup actions.
3567 *
3568 * Note that we may have delayed dropping an mm in context_switch(). If
3569 * so, we finish that here outside of the runqueue lock. (Doing it
3570 * with the lock held can cause deadlocks; see schedule() for
3571 * details.)
3572 *
3573 * The context switch have flipped the stack from under us and restored the
3574 * local variables which were saved when this task called schedule() in the
3575 * past. prev == current is still correct but we need to recalculate this_rq
3576 * because prev may have moved to another CPU.
3577 */
finish_task_switch(struct task_struct * prev)3578 static struct rq *finish_task_switch(struct task_struct *prev)
3579 __releases(rq->lock)
3580 {
3581 struct rq *rq = this_rq();
3582 struct mm_struct *mm = rq->prev_mm;
3583 long prev_state;
3584
3585 /*
3586 * The previous task will have left us with a preempt_count of 2
3587 * because it left us after:
3588 *
3589 * schedule()
3590 * preempt_disable(); // 1
3591 * __schedule()
3592 * raw_spin_lock_irq(&rq->lock) // 2
3593 *
3594 * Also, see FORK_PREEMPT_COUNT.
3595 */
3596 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3597 "corrupted preempt_count: %s/%d/0x%x\n",
3598 current->comm, current->pid, preempt_count()))
3599 preempt_count_set(FORK_PREEMPT_COUNT);
3600
3601 rq->prev_mm = NULL;
3602
3603 /*
3604 * A task struct has one reference for the use as "current".
3605 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3606 * schedule one last time. The schedule call will never return, and
3607 * the scheduled task must drop that reference.
3608 *
3609 * We must observe prev->state before clearing prev->on_cpu (in
3610 * finish_task), otherwise a concurrent wakeup can get prev
3611 * running on another CPU and we could rave with its RUNNING -> DEAD
3612 * transition, resulting in a double drop.
3613 */
3614 prev_state = prev->state;
3615 vtime_task_switch(prev);
3616 perf_event_task_sched_in(prev, current);
3617 finish_task(prev);
3618 finish_lock_switch(rq);
3619 finish_arch_post_lock_switch();
3620 kcov_finish_switch(current);
3621
3622 fire_sched_in_preempt_notifiers(current);
3623 /*
3624 * When switching through a kernel thread, the loop in
3625 * membarrier_{private,global}_expedited() may have observed that
3626 * kernel thread and not issued an IPI. It is therefore possible to
3627 * schedule between user->kernel->user threads without passing though
3628 * switch_mm(). Membarrier requires a barrier after storing to
3629 * rq->curr, before returning to userspace, so provide them here:
3630 *
3631 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3632 * provided by mmdrop(),
3633 * - a sync_core for SYNC_CORE.
3634 */
3635 if (mm) {
3636 membarrier_mm_sync_core_before_usermode(mm);
3637 mmdrop(mm);
3638 }
3639 if (unlikely(prev_state == TASK_DEAD)) {
3640 if (prev->sched_class->task_dead)
3641 prev->sched_class->task_dead(prev);
3642
3643 /*
3644 * Remove function-return probe instances associated with this
3645 * task and put them back on the free list.
3646 */
3647 kprobe_flush_task(prev);
3648
3649 /* Task is done with its stack. */
3650 put_task_stack(prev);
3651
3652 put_task_struct_rcu_user(prev);
3653 }
3654
3655 tick_nohz_task_switch();
3656 return rq;
3657 }
3658
3659 #ifdef CONFIG_SMP
3660
3661 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3662 static void __balance_callback(struct rq *rq)
3663 {
3664 struct callback_head *head, *next;
3665 void (*func)(struct rq *rq);
3666 unsigned long flags;
3667
3668 raw_spin_lock_irqsave(&rq->lock, flags);
3669 head = rq->balance_callback;
3670 rq->balance_callback = NULL;
3671 while (head) {
3672 func = (void (*)(struct rq *))head->func;
3673 next = head->next;
3674 head->next = NULL;
3675 head = next;
3676
3677 func(rq);
3678 }
3679 raw_spin_unlock_irqrestore(&rq->lock, flags);
3680 }
3681
balance_callback(struct rq * rq)3682 static inline void balance_callback(struct rq *rq)
3683 {
3684 if (unlikely(rq->balance_callback))
3685 __balance_callback(rq);
3686 }
3687
3688 #else
3689
balance_callback(struct rq * rq)3690 static inline void balance_callback(struct rq *rq)
3691 {
3692 }
3693
3694 #endif
3695
3696 /**
3697 * schedule_tail - first thing a freshly forked thread must call.
3698 * @prev: the thread we just switched away from.
3699 */
schedule_tail(struct task_struct * prev)3700 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3701 __releases(rq->lock)
3702 {
3703 struct rq *rq;
3704
3705 /*
3706 * New tasks start with FORK_PREEMPT_COUNT, see there and
3707 * finish_task_switch() for details.
3708 *
3709 * finish_task_switch() will drop rq->lock() and lower preempt_count
3710 * and the preempt_enable() will end up enabling preemption (on
3711 * PREEMPT_COUNT kernels).
3712 */
3713
3714 rq = finish_task_switch(prev);
3715 balance_callback(rq);
3716 preempt_enable();
3717
3718 if (current->set_child_tid)
3719 put_user(task_pid_vnr(current), current->set_child_tid);
3720
3721 calculate_sigpending();
3722 }
3723
3724 /*
3725 * context_switch - switch to the new MM and the new thread's register state.
3726 */
3727 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3728 context_switch(struct rq *rq, struct task_struct *prev,
3729 struct task_struct *next, struct rq_flags *rf)
3730 {
3731 prepare_task_switch(rq, prev, next);
3732
3733 /*
3734 * For paravirt, this is coupled with an exit in switch_to to
3735 * combine the page table reload and the switch backend into
3736 * one hypercall.
3737 */
3738 arch_start_context_switch(prev);
3739
3740 /*
3741 * kernel -> kernel lazy + transfer active
3742 * user -> kernel lazy + mmgrab() active
3743 *
3744 * kernel -> user switch + mmdrop() active
3745 * user -> user switch
3746 */
3747 if (!next->mm) { // to kernel
3748 enter_lazy_tlb(prev->active_mm, next);
3749
3750 next->active_mm = prev->active_mm;
3751 if (prev->mm) // from user
3752 mmgrab(prev->active_mm);
3753 else
3754 prev->active_mm = NULL;
3755 } else { // to user
3756 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3757 /*
3758 * sys_membarrier() requires an smp_mb() between setting
3759 * rq->curr / membarrier_switch_mm() and returning to userspace.
3760 *
3761 * The below provides this either through switch_mm(), or in
3762 * case 'prev->active_mm == next->mm' through
3763 * finish_task_switch()'s mmdrop().
3764 */
3765 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3766
3767 if (!prev->mm) { // from kernel
3768 /* will mmdrop() in finish_task_switch(). */
3769 rq->prev_mm = prev->active_mm;
3770 prev->active_mm = NULL;
3771 }
3772 }
3773
3774 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3775
3776 prepare_lock_switch(rq, next, rf);
3777
3778 /* Here we just switch the register state and the stack. */
3779 switch_to(prev, next, prev);
3780 barrier();
3781
3782 return finish_task_switch(prev);
3783 }
3784
3785 /*
3786 * nr_running and nr_context_switches:
3787 *
3788 * externally visible scheduler statistics: current number of runnable
3789 * threads, total number of context switches performed since bootup.
3790 */
nr_running(void)3791 unsigned long nr_running(void)
3792 {
3793 unsigned long i, sum = 0;
3794
3795 for_each_online_cpu(i)
3796 sum += cpu_rq(i)->nr_running;
3797
3798 return sum;
3799 }
3800
3801 /*
3802 * Check if only the current task is running on the CPU.
3803 *
3804 * Caution: this function does not check that the caller has disabled
3805 * preemption, thus the result might have a time-of-check-to-time-of-use
3806 * race. The caller is responsible to use it correctly, for example:
3807 *
3808 * - from a non-preemptible section (of course)
3809 *
3810 * - from a thread that is bound to a single CPU
3811 *
3812 * - in a loop with very short iterations (e.g. a polling loop)
3813 */
single_task_running(void)3814 bool single_task_running(void)
3815 {
3816 return raw_rq()->nr_running == 1;
3817 }
3818 EXPORT_SYMBOL(single_task_running);
3819
nr_context_switches(void)3820 unsigned long long nr_context_switches(void)
3821 {
3822 int i;
3823 unsigned long long sum = 0;
3824
3825 for_each_possible_cpu(i)
3826 sum += cpu_rq(i)->nr_switches;
3827
3828 return sum;
3829 }
3830
3831 /*
3832 * Consumers of these two interfaces, like for example the cpuidle menu
3833 * governor, are using nonsensical data. Preferring shallow idle state selection
3834 * for a CPU that has IO-wait which might not even end up running the task when
3835 * it does become runnable.
3836 */
3837
nr_iowait_cpu(int cpu)3838 unsigned long nr_iowait_cpu(int cpu)
3839 {
3840 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3841 }
3842
3843 /*
3844 * IO-wait accounting, and how its mostly bollocks (on SMP).
3845 *
3846 * The idea behind IO-wait account is to account the idle time that we could
3847 * have spend running if it were not for IO. That is, if we were to improve the
3848 * storage performance, we'd have a proportional reduction in IO-wait time.
3849 *
3850 * This all works nicely on UP, where, when a task blocks on IO, we account
3851 * idle time as IO-wait, because if the storage were faster, it could've been
3852 * running and we'd not be idle.
3853 *
3854 * This has been extended to SMP, by doing the same for each CPU. This however
3855 * is broken.
3856 *
3857 * Imagine for instance the case where two tasks block on one CPU, only the one
3858 * CPU will have IO-wait accounted, while the other has regular idle. Even
3859 * though, if the storage were faster, both could've ran at the same time,
3860 * utilising both CPUs.
3861 *
3862 * This means, that when looking globally, the current IO-wait accounting on
3863 * SMP is a lower bound, by reason of under accounting.
3864 *
3865 * Worse, since the numbers are provided per CPU, they are sometimes
3866 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3867 * associated with any one particular CPU, it can wake to another CPU than it
3868 * blocked on. This means the per CPU IO-wait number is meaningless.
3869 *
3870 * Task CPU affinities can make all that even more 'interesting'.
3871 */
3872
nr_iowait(void)3873 unsigned long nr_iowait(void)
3874 {
3875 unsigned long i, sum = 0;
3876
3877 for_each_possible_cpu(i)
3878 sum += nr_iowait_cpu(i);
3879
3880 return sum;
3881 }
3882
3883 #ifdef CONFIG_SMP
3884
3885 /*
3886 * sched_exec - execve() is a valuable balancing opportunity, because at
3887 * this point the task has the smallest effective memory and cache footprint.
3888 */
sched_exec(void)3889 void sched_exec(void)
3890 {
3891 struct task_struct *p = current;
3892 unsigned long flags;
3893 int dest_cpu;
3894
3895 raw_spin_lock_irqsave(&p->pi_lock, flags);
3896 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3897 if (dest_cpu == smp_processor_id())
3898 goto unlock;
3899
3900 if (likely(cpu_active(dest_cpu))) {
3901 struct migration_arg arg = { p, dest_cpu };
3902
3903 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3904 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3905 return;
3906 }
3907 unlock:
3908 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3909 }
3910
3911 #endif
3912
3913 DEFINE_PER_CPU(struct kernel_stat, kstat);
3914 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3915
3916 EXPORT_PER_CPU_SYMBOL(kstat);
3917 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3918
3919 /*
3920 * The function fair_sched_class.update_curr accesses the struct curr
3921 * and its field curr->exec_start; when called from task_sched_runtime(),
3922 * we observe a high rate of cache misses in practice.
3923 * Prefetching this data results in improved performance.
3924 */
prefetch_curr_exec_start(struct task_struct * p)3925 static inline void prefetch_curr_exec_start(struct task_struct *p)
3926 {
3927 #ifdef CONFIG_FAIR_GROUP_SCHED
3928 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3929 #else
3930 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3931 #endif
3932 prefetch(curr);
3933 prefetch(&curr->exec_start);
3934 }
3935
3936 /*
3937 * Return accounted runtime for the task.
3938 * In case the task is currently running, return the runtime plus current's
3939 * pending runtime that have not been accounted yet.
3940 */
task_sched_runtime(struct task_struct * p)3941 unsigned long long task_sched_runtime(struct task_struct *p)
3942 {
3943 struct rq_flags rf;
3944 struct rq *rq;
3945 u64 ns;
3946
3947 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3948 /*
3949 * 64-bit doesn't need locks to atomically read a 64-bit value.
3950 * So we have a optimization chance when the task's delta_exec is 0.
3951 * Reading ->on_cpu is racy, but this is ok.
3952 *
3953 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3954 * If we race with it entering CPU, unaccounted time is 0. This is
3955 * indistinguishable from the read occurring a few cycles earlier.
3956 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3957 * been accounted, so we're correct here as well.
3958 */
3959 if (!p->on_cpu || !task_on_rq_queued(p))
3960 return p->se.sum_exec_runtime;
3961 #endif
3962
3963 rq = task_rq_lock(p, &rf);
3964 /*
3965 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3966 * project cycles that may never be accounted to this
3967 * thread, breaking clock_gettime().
3968 */
3969 if (task_current(rq, p) && task_on_rq_queued(p)) {
3970 prefetch_curr_exec_start(p);
3971 update_rq_clock(rq);
3972 p->sched_class->update_curr(rq);
3973 }
3974 ns = p->se.sum_exec_runtime;
3975 task_rq_unlock(rq, p, &rf);
3976
3977 return ns;
3978 }
3979
3980 /*
3981 * This function gets called by the timer code, with HZ frequency.
3982 * We call it with interrupts disabled.
3983 */
scheduler_tick(void)3984 void scheduler_tick(void)
3985 {
3986 int cpu = smp_processor_id();
3987 struct rq *rq = cpu_rq(cpu);
3988 struct task_struct *curr = rq->curr;
3989 struct rq_flags rf;
3990 unsigned long thermal_pressure;
3991
3992 arch_scale_freq_tick();
3993 sched_clock_tick();
3994
3995 rq_lock(rq, &rf);
3996
3997 update_rq_clock(rq);
3998 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3999 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4000 curr->sched_class->task_tick(rq, curr, 0);
4001 calc_global_load_tick(rq);
4002 psi_task_tick(rq);
4003
4004 rq_unlock(rq, &rf);
4005
4006 perf_event_task_tick();
4007
4008 #ifdef CONFIG_SMP
4009 rq->idle_balance = idle_cpu(cpu);
4010 trigger_load_balance(rq);
4011 #endif
4012 }
4013
4014 #ifdef CONFIG_NO_HZ_FULL
4015
4016 struct tick_work {
4017 int cpu;
4018 atomic_t state;
4019 struct delayed_work work;
4020 };
4021 /* Values for ->state, see diagram below. */
4022 #define TICK_SCHED_REMOTE_OFFLINE 0
4023 #define TICK_SCHED_REMOTE_OFFLINING 1
4024 #define TICK_SCHED_REMOTE_RUNNING 2
4025
4026 /*
4027 * State diagram for ->state:
4028 *
4029 *
4030 * TICK_SCHED_REMOTE_OFFLINE
4031 * | ^
4032 * | |
4033 * | | sched_tick_remote()
4034 * | |
4035 * | |
4036 * +--TICK_SCHED_REMOTE_OFFLINING
4037 * | ^
4038 * | |
4039 * sched_tick_start() | | sched_tick_stop()
4040 * | |
4041 * V |
4042 * TICK_SCHED_REMOTE_RUNNING
4043 *
4044 *
4045 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4046 * and sched_tick_start() are happy to leave the state in RUNNING.
4047 */
4048
4049 static struct tick_work __percpu *tick_work_cpu;
4050
sched_tick_remote(struct work_struct * work)4051 static void sched_tick_remote(struct work_struct *work)
4052 {
4053 struct delayed_work *dwork = to_delayed_work(work);
4054 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4055 int cpu = twork->cpu;
4056 struct rq *rq = cpu_rq(cpu);
4057 struct task_struct *curr;
4058 struct rq_flags rf;
4059 u64 delta;
4060 int os;
4061
4062 /*
4063 * Handle the tick only if it appears the remote CPU is running in full
4064 * dynticks mode. The check is racy by nature, but missing a tick or
4065 * having one too much is no big deal because the scheduler tick updates
4066 * statistics and checks timeslices in a time-independent way, regardless
4067 * of when exactly it is running.
4068 */
4069 if (!tick_nohz_tick_stopped_cpu(cpu))
4070 goto out_requeue;
4071
4072 rq_lock_irq(rq, &rf);
4073 curr = rq->curr;
4074 if (cpu_is_offline(cpu))
4075 goto out_unlock;
4076
4077 update_rq_clock(rq);
4078
4079 if (!is_idle_task(curr)) {
4080 /*
4081 * Make sure the next tick runs within a reasonable
4082 * amount of time.
4083 */
4084 delta = rq_clock_task(rq) - curr->se.exec_start;
4085 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4086 }
4087 curr->sched_class->task_tick(rq, curr, 0);
4088
4089 calc_load_nohz_remote(rq);
4090 out_unlock:
4091 rq_unlock_irq(rq, &rf);
4092 out_requeue:
4093
4094 /*
4095 * Run the remote tick once per second (1Hz). This arbitrary
4096 * frequency is large enough to avoid overload but short enough
4097 * to keep scheduler internal stats reasonably up to date. But
4098 * first update state to reflect hotplug activity if required.
4099 */
4100 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4101 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4102 if (os == TICK_SCHED_REMOTE_RUNNING)
4103 queue_delayed_work(system_unbound_wq, dwork, HZ);
4104 }
4105
sched_tick_start(int cpu)4106 static void sched_tick_start(int cpu)
4107 {
4108 int os;
4109 struct tick_work *twork;
4110
4111 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4112 return;
4113
4114 WARN_ON_ONCE(!tick_work_cpu);
4115
4116 twork = per_cpu_ptr(tick_work_cpu, cpu);
4117 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4118 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4119 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4120 twork->cpu = cpu;
4121 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4122 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4123 }
4124 }
4125
4126 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)4127 static void sched_tick_stop(int cpu)
4128 {
4129 struct tick_work *twork;
4130 int os;
4131
4132 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4133 return;
4134
4135 WARN_ON_ONCE(!tick_work_cpu);
4136
4137 twork = per_cpu_ptr(tick_work_cpu, cpu);
4138 /* There cannot be competing actions, but don't rely on stop-machine. */
4139 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4140 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4141 /* Don't cancel, as this would mess up the state machine. */
4142 }
4143 #endif /* CONFIG_HOTPLUG_CPU */
4144
sched_tick_offload_init(void)4145 int __init sched_tick_offload_init(void)
4146 {
4147 tick_work_cpu = alloc_percpu(struct tick_work);
4148 BUG_ON(!tick_work_cpu);
4149 return 0;
4150 }
4151
4152 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)4153 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)4154 static inline void sched_tick_stop(int cpu) { }
4155 #endif
4156
4157 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4158 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4159 /*
4160 * If the value passed in is equal to the current preempt count
4161 * then we just disabled preemption. Start timing the latency.
4162 */
preempt_latency_start(int val)4163 static inline void preempt_latency_start(int val)
4164 {
4165 if (preempt_count() == val) {
4166 unsigned long ip = get_lock_parent_ip();
4167 #ifdef CONFIG_DEBUG_PREEMPT
4168 current->preempt_disable_ip = ip;
4169 #endif
4170 trace_preempt_off(CALLER_ADDR0, ip);
4171 }
4172 }
4173
preempt_count_add(int val)4174 void preempt_count_add(int val)
4175 {
4176 #ifdef CONFIG_DEBUG_PREEMPT
4177 /*
4178 * Underflow?
4179 */
4180 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4181 return;
4182 #endif
4183 __preempt_count_add(val);
4184 #ifdef CONFIG_DEBUG_PREEMPT
4185 /*
4186 * Spinlock count overflowing soon?
4187 */
4188 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4189 PREEMPT_MASK - 10);
4190 #endif
4191 preempt_latency_start(val);
4192 }
4193 EXPORT_SYMBOL(preempt_count_add);
4194 NOKPROBE_SYMBOL(preempt_count_add);
4195
4196 /*
4197 * If the value passed in equals to the current preempt count
4198 * then we just enabled preemption. Stop timing the latency.
4199 */
preempt_latency_stop(int val)4200 static inline void preempt_latency_stop(int val)
4201 {
4202 if (preempt_count() == val)
4203 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4204 }
4205
preempt_count_sub(int val)4206 void preempt_count_sub(int val)
4207 {
4208 #ifdef CONFIG_DEBUG_PREEMPT
4209 /*
4210 * Underflow?
4211 */
4212 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4213 return;
4214 /*
4215 * Is the spinlock portion underflowing?
4216 */
4217 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4218 !(preempt_count() & PREEMPT_MASK)))
4219 return;
4220 #endif
4221
4222 preempt_latency_stop(val);
4223 __preempt_count_sub(val);
4224 }
4225 EXPORT_SYMBOL(preempt_count_sub);
4226 NOKPROBE_SYMBOL(preempt_count_sub);
4227
4228 #else
preempt_latency_start(int val)4229 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)4230 static inline void preempt_latency_stop(int val) { }
4231 #endif
4232
get_preempt_disable_ip(struct task_struct * p)4233 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4234 {
4235 #ifdef CONFIG_DEBUG_PREEMPT
4236 return p->preempt_disable_ip;
4237 #else
4238 return 0;
4239 #endif
4240 }
4241
4242 /*
4243 * Print scheduling while atomic bug:
4244 */
__schedule_bug(struct task_struct * prev)4245 static noinline void __schedule_bug(struct task_struct *prev)
4246 {
4247 /* Save this before calling printk(), since that will clobber it */
4248 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4249
4250 if (oops_in_progress)
4251 return;
4252
4253 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4254 prev->comm, prev->pid, preempt_count());
4255
4256 debug_show_held_locks(prev);
4257 print_modules();
4258 if (irqs_disabled())
4259 print_irqtrace_events(prev);
4260 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4261 && in_atomic_preempt_off()) {
4262 pr_err("Preemption disabled at:");
4263 print_ip_sym(KERN_ERR, preempt_disable_ip);
4264 }
4265 if (panic_on_warn)
4266 panic("scheduling while atomic\n");
4267
4268 dump_stack();
4269 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4270 }
4271
4272 /*
4273 * Various schedule()-time debugging checks and statistics:
4274 */
schedule_debug(struct task_struct * prev,bool preempt)4275 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4276 {
4277 #ifdef CONFIG_SCHED_STACK_END_CHECK
4278 if (task_stack_end_corrupted(prev))
4279 panic("corrupted stack end detected inside scheduler\n");
4280
4281 if (task_scs_end_corrupted(prev))
4282 panic("corrupted shadow stack detected inside scheduler\n");
4283 #endif
4284
4285 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4286 if (!preempt && prev->state && prev->non_block_count) {
4287 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4288 prev->comm, prev->pid, prev->non_block_count);
4289 dump_stack();
4290 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4291 }
4292 #endif
4293
4294 if (unlikely(in_atomic_preempt_off())) {
4295 __schedule_bug(prev);
4296 preempt_count_set(PREEMPT_DISABLED);
4297 }
4298 rcu_sleep_check();
4299
4300 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4301
4302 schedstat_inc(this_rq()->sched_count);
4303 }
4304
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4305 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4306 struct rq_flags *rf)
4307 {
4308 #ifdef CONFIG_SMP
4309 const struct sched_class *class;
4310 /*
4311 * We must do the balancing pass before put_prev_task(), such
4312 * that when we release the rq->lock the task is in the same
4313 * state as before we took rq->lock.
4314 *
4315 * We can terminate the balance pass as soon as we know there is
4316 * a runnable task of @class priority or higher.
4317 */
4318 for_class_range(class, prev->sched_class, &idle_sched_class) {
4319 if (class->balance(rq, prev, rf))
4320 break;
4321 }
4322 #endif
4323
4324 put_prev_task(rq, prev);
4325 }
4326
4327 /*
4328 * Pick up the highest-prio task:
4329 */
4330 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4331 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4332 {
4333 const struct sched_class *class;
4334 struct task_struct *p;
4335
4336 /*
4337 * Optimization: we know that if all tasks are in the fair class we can
4338 * call that function directly, but only if the @prev task wasn't of a
4339 * higher scheduling class, because otherwise those loose the
4340 * opportunity to pull in more work from other CPUs.
4341 */
4342 if (likely(prev->sched_class <= &fair_sched_class &&
4343 rq->nr_running == rq->cfs.h_nr_running)) {
4344
4345 p = pick_next_task_fair(rq, prev, rf);
4346 if (unlikely(p == RETRY_TASK))
4347 goto restart;
4348
4349 /* Assumes fair_sched_class->next == idle_sched_class */
4350 if (!p) {
4351 put_prev_task(rq, prev);
4352 p = pick_next_task_idle(rq);
4353 }
4354
4355 return p;
4356 }
4357
4358 restart:
4359 put_prev_task_balance(rq, prev, rf);
4360
4361 for_each_class(class) {
4362 p = class->pick_next_task(rq);
4363 if (p)
4364 return p;
4365 }
4366
4367 /* The idle class should always have a runnable task: */
4368 BUG();
4369 }
4370
4371 /*
4372 * __schedule() is the main scheduler function.
4373 *
4374 * The main means of driving the scheduler and thus entering this function are:
4375 *
4376 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4377 *
4378 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4379 * paths. For example, see arch/x86/entry_64.S.
4380 *
4381 * To drive preemption between tasks, the scheduler sets the flag in timer
4382 * interrupt handler scheduler_tick().
4383 *
4384 * 3. Wakeups don't really cause entry into schedule(). They add a
4385 * task to the run-queue and that's it.
4386 *
4387 * Now, if the new task added to the run-queue preempts the current
4388 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4389 * called on the nearest possible occasion:
4390 *
4391 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4392 *
4393 * - in syscall or exception context, at the next outmost
4394 * preempt_enable(). (this might be as soon as the wake_up()'s
4395 * spin_unlock()!)
4396 *
4397 * - in IRQ context, return from interrupt-handler to
4398 * preemptible context
4399 *
4400 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4401 * then at the next:
4402 *
4403 * - cond_resched() call
4404 * - explicit schedule() call
4405 * - return from syscall or exception to user-space
4406 * - return from interrupt-handler to user-space
4407 *
4408 * WARNING: must be called with preemption disabled!
4409 */
__schedule(bool preempt)4410 static void __sched notrace __schedule(bool preempt)
4411 {
4412 struct task_struct *prev, *next;
4413 unsigned long *switch_count;
4414 unsigned long prev_state;
4415 struct rq_flags rf;
4416 struct rq *rq;
4417 int cpu;
4418
4419 cpu = smp_processor_id();
4420 rq = cpu_rq(cpu);
4421 prev = rq->curr;
4422
4423 schedule_debug(prev, preempt);
4424
4425 if (sched_feat(HRTICK))
4426 hrtick_clear(rq);
4427
4428 local_irq_disable();
4429 rcu_note_context_switch(preempt);
4430
4431 /*
4432 * Make sure that signal_pending_state()->signal_pending() below
4433 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4434 * done by the caller to avoid the race with signal_wake_up():
4435 *
4436 * __set_current_state(@state) signal_wake_up()
4437 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4438 * wake_up_state(p, state)
4439 * LOCK rq->lock LOCK p->pi_state
4440 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4441 * if (signal_pending_state()) if (p->state & @state)
4442 *
4443 * Also, the membarrier system call requires a full memory barrier
4444 * after coming from user-space, before storing to rq->curr.
4445 */
4446 rq_lock(rq, &rf);
4447 smp_mb__after_spinlock();
4448
4449 /* Promote REQ to ACT */
4450 rq->clock_update_flags <<= 1;
4451 update_rq_clock(rq);
4452
4453 switch_count = &prev->nivcsw;
4454
4455 /*
4456 * We must load prev->state once (task_struct::state is volatile), such
4457 * that:
4458 *
4459 * - we form a control dependency vs deactivate_task() below.
4460 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4461 */
4462 prev_state = prev->state;
4463 if (!preempt && prev_state) {
4464 if (signal_pending_state(prev_state, prev)) {
4465 prev->state = TASK_RUNNING;
4466 } else {
4467 prev->sched_contributes_to_load =
4468 (prev_state & TASK_UNINTERRUPTIBLE) &&
4469 !(prev_state & TASK_NOLOAD) &&
4470 !(prev->flags & PF_FROZEN);
4471
4472 if (prev->sched_contributes_to_load)
4473 rq->nr_uninterruptible++;
4474
4475 /*
4476 * __schedule() ttwu()
4477 * prev_state = prev->state; if (p->on_rq && ...)
4478 * if (prev_state) goto out;
4479 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4480 * p->state = TASK_WAKING
4481 *
4482 * Where __schedule() and ttwu() have matching control dependencies.
4483 *
4484 * After this, schedule() must not care about p->state any more.
4485 */
4486 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4487
4488 if (prev->in_iowait) {
4489 atomic_inc(&rq->nr_iowait);
4490 delayacct_blkio_start();
4491 }
4492 }
4493 switch_count = &prev->nvcsw;
4494 }
4495
4496 next = pick_next_task(rq, prev, &rf);
4497 clear_tsk_need_resched(prev);
4498 clear_preempt_need_resched();
4499
4500 if (likely(prev != next)) {
4501 rq->nr_switches++;
4502 /*
4503 * RCU users of rcu_dereference(rq->curr) may not see
4504 * changes to task_struct made by pick_next_task().
4505 */
4506 RCU_INIT_POINTER(rq->curr, next);
4507 /*
4508 * The membarrier system call requires each architecture
4509 * to have a full memory barrier after updating
4510 * rq->curr, before returning to user-space.
4511 *
4512 * Here are the schemes providing that barrier on the
4513 * various architectures:
4514 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4515 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4516 * - finish_lock_switch() for weakly-ordered
4517 * architectures where spin_unlock is a full barrier,
4518 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4519 * is a RELEASE barrier),
4520 */
4521 ++*switch_count;
4522
4523 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4524
4525 trace_sched_switch(preempt, prev, next);
4526
4527 /* Also unlocks the rq: */
4528 rq = context_switch(rq, prev, next, &rf);
4529 } else {
4530 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4531 rq_unlock_irq(rq, &rf);
4532 }
4533
4534 balance_callback(rq);
4535 }
4536
do_task_dead(void)4537 void __noreturn do_task_dead(void)
4538 {
4539 /* Causes final put_task_struct in finish_task_switch(): */
4540 set_special_state(TASK_DEAD);
4541
4542 /* Tell freezer to ignore us: */
4543 current->flags |= PF_NOFREEZE;
4544
4545 __schedule(false);
4546 BUG();
4547
4548 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4549 for (;;)
4550 cpu_relax();
4551 }
4552
sched_submit_work(struct task_struct * tsk)4553 static inline void sched_submit_work(struct task_struct *tsk)
4554 {
4555 unsigned int task_flags;
4556
4557 if (!tsk->state)
4558 return;
4559
4560 task_flags = tsk->flags;
4561 /*
4562 * If a worker went to sleep, notify and ask workqueue whether
4563 * it wants to wake up a task to maintain concurrency.
4564 * As this function is called inside the schedule() context,
4565 * we disable preemption to avoid it calling schedule() again
4566 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4567 * requires it.
4568 */
4569 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4570 preempt_disable();
4571 if (task_flags & PF_WQ_WORKER)
4572 wq_worker_sleeping(tsk);
4573 else
4574 io_wq_worker_sleeping(tsk);
4575 preempt_enable_no_resched();
4576 }
4577
4578 if (tsk_is_pi_blocked(tsk))
4579 return;
4580
4581 /*
4582 * If we are going to sleep and we have plugged IO queued,
4583 * make sure to submit it to avoid deadlocks.
4584 */
4585 if (blk_needs_flush_plug(tsk))
4586 blk_schedule_flush_plug(tsk);
4587 }
4588
sched_update_worker(struct task_struct * tsk)4589 static void sched_update_worker(struct task_struct *tsk)
4590 {
4591 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4592 if (tsk->flags & PF_WQ_WORKER)
4593 wq_worker_running(tsk);
4594 else
4595 io_wq_worker_running(tsk);
4596 }
4597 }
4598
schedule(void)4599 asmlinkage __visible void __sched schedule(void)
4600 {
4601 struct task_struct *tsk = current;
4602
4603 sched_submit_work(tsk);
4604 do {
4605 preempt_disable();
4606 __schedule(false);
4607 sched_preempt_enable_no_resched();
4608 } while (need_resched());
4609 sched_update_worker(tsk);
4610 }
4611 EXPORT_SYMBOL(schedule);
4612
4613 /*
4614 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4615 * state (have scheduled out non-voluntarily) by making sure that all
4616 * tasks have either left the run queue or have gone into user space.
4617 * As idle tasks do not do either, they must not ever be preempted
4618 * (schedule out non-voluntarily).
4619 *
4620 * schedule_idle() is similar to schedule_preempt_disable() except that it
4621 * never enables preemption because it does not call sched_submit_work().
4622 */
schedule_idle(void)4623 void __sched schedule_idle(void)
4624 {
4625 /*
4626 * As this skips calling sched_submit_work(), which the idle task does
4627 * regardless because that function is a nop when the task is in a
4628 * TASK_RUNNING state, make sure this isn't used someplace that the
4629 * current task can be in any other state. Note, idle is always in the
4630 * TASK_RUNNING state.
4631 */
4632 WARN_ON_ONCE(current->state);
4633 do {
4634 __schedule(false);
4635 } while (need_resched());
4636 }
4637
4638 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4639 asmlinkage __visible void __sched schedule_user(void)
4640 {
4641 /*
4642 * If we come here after a random call to set_need_resched(),
4643 * or we have been woken up remotely but the IPI has not yet arrived,
4644 * we haven't yet exited the RCU idle mode. Do it here manually until
4645 * we find a better solution.
4646 *
4647 * NB: There are buggy callers of this function. Ideally we
4648 * should warn if prev_state != CONTEXT_USER, but that will trigger
4649 * too frequently to make sense yet.
4650 */
4651 enum ctx_state prev_state = exception_enter();
4652 schedule();
4653 exception_exit(prev_state);
4654 }
4655 #endif
4656
4657 /**
4658 * schedule_preempt_disabled - called with preemption disabled
4659 *
4660 * Returns with preemption disabled. Note: preempt_count must be 1
4661 */
schedule_preempt_disabled(void)4662 void __sched schedule_preempt_disabled(void)
4663 {
4664 sched_preempt_enable_no_resched();
4665 schedule();
4666 preempt_disable();
4667 }
4668
preempt_schedule_common(void)4669 static void __sched notrace preempt_schedule_common(void)
4670 {
4671 do {
4672 /*
4673 * Because the function tracer can trace preempt_count_sub()
4674 * and it also uses preempt_enable/disable_notrace(), if
4675 * NEED_RESCHED is set, the preempt_enable_notrace() called
4676 * by the function tracer will call this function again and
4677 * cause infinite recursion.
4678 *
4679 * Preemption must be disabled here before the function
4680 * tracer can trace. Break up preempt_disable() into two
4681 * calls. One to disable preemption without fear of being
4682 * traced. The other to still record the preemption latency,
4683 * which can also be traced by the function tracer.
4684 */
4685 preempt_disable_notrace();
4686 preempt_latency_start(1);
4687 __schedule(true);
4688 preempt_latency_stop(1);
4689 preempt_enable_no_resched_notrace();
4690
4691 /*
4692 * Check again in case we missed a preemption opportunity
4693 * between schedule and now.
4694 */
4695 } while (need_resched());
4696 }
4697
4698 #ifdef CONFIG_PREEMPTION
4699 /*
4700 * This is the entry point to schedule() from in-kernel preemption
4701 * off of preempt_enable.
4702 */
preempt_schedule(void)4703 asmlinkage __visible void __sched notrace preempt_schedule(void)
4704 {
4705 /*
4706 * If there is a non-zero preempt_count or interrupts are disabled,
4707 * we do not want to preempt the current task. Just return..
4708 */
4709 if (likely(!preemptible()))
4710 return;
4711
4712 preempt_schedule_common();
4713 }
4714 NOKPROBE_SYMBOL(preempt_schedule);
4715 EXPORT_SYMBOL(preempt_schedule);
4716
4717 /**
4718 * preempt_schedule_notrace - preempt_schedule called by tracing
4719 *
4720 * The tracing infrastructure uses preempt_enable_notrace to prevent
4721 * recursion and tracing preempt enabling caused by the tracing
4722 * infrastructure itself. But as tracing can happen in areas coming
4723 * from userspace or just about to enter userspace, a preempt enable
4724 * can occur before user_exit() is called. This will cause the scheduler
4725 * to be called when the system is still in usermode.
4726 *
4727 * To prevent this, the preempt_enable_notrace will use this function
4728 * instead of preempt_schedule() to exit user context if needed before
4729 * calling the scheduler.
4730 */
preempt_schedule_notrace(void)4731 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4732 {
4733 enum ctx_state prev_ctx;
4734
4735 if (likely(!preemptible()))
4736 return;
4737
4738 do {
4739 /*
4740 * Because the function tracer can trace preempt_count_sub()
4741 * and it also uses preempt_enable/disable_notrace(), if
4742 * NEED_RESCHED is set, the preempt_enable_notrace() called
4743 * by the function tracer will call this function again and
4744 * cause infinite recursion.
4745 *
4746 * Preemption must be disabled here before the function
4747 * tracer can trace. Break up preempt_disable() into two
4748 * calls. One to disable preemption without fear of being
4749 * traced. The other to still record the preemption latency,
4750 * which can also be traced by the function tracer.
4751 */
4752 preempt_disable_notrace();
4753 preempt_latency_start(1);
4754 /*
4755 * Needs preempt disabled in case user_exit() is traced
4756 * and the tracer calls preempt_enable_notrace() causing
4757 * an infinite recursion.
4758 */
4759 prev_ctx = exception_enter();
4760 __schedule(true);
4761 exception_exit(prev_ctx);
4762
4763 preempt_latency_stop(1);
4764 preempt_enable_no_resched_notrace();
4765 } while (need_resched());
4766 }
4767 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4768
4769 #endif /* CONFIG_PREEMPTION */
4770
4771 /*
4772 * This is the entry point to schedule() from kernel preemption
4773 * off of irq context.
4774 * Note, that this is called and return with irqs disabled. This will
4775 * protect us against recursive calling from irq.
4776 */
preempt_schedule_irq(void)4777 asmlinkage __visible void __sched preempt_schedule_irq(void)
4778 {
4779 enum ctx_state prev_state;
4780
4781 /* Catch callers which need to be fixed */
4782 BUG_ON(preempt_count() || !irqs_disabled());
4783
4784 prev_state = exception_enter();
4785
4786 do {
4787 preempt_disable();
4788 local_irq_enable();
4789 __schedule(true);
4790 local_irq_disable();
4791 sched_preempt_enable_no_resched();
4792 } while (need_resched());
4793
4794 exception_exit(prev_state);
4795 }
4796
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)4797 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4798 void *key)
4799 {
4800 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4801 return try_to_wake_up(curr->private, mode, wake_flags);
4802 }
4803 EXPORT_SYMBOL(default_wake_function);
4804
4805 #ifdef CONFIG_RT_MUTEXES
4806
__rt_effective_prio(struct task_struct * pi_task,int prio)4807 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4808 {
4809 if (pi_task)
4810 prio = min(prio, pi_task->prio);
4811
4812 return prio;
4813 }
4814
rt_effective_prio(struct task_struct * p,int prio)4815 static inline int rt_effective_prio(struct task_struct *p, int prio)
4816 {
4817 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4818
4819 return __rt_effective_prio(pi_task, prio);
4820 }
4821
4822 /*
4823 * rt_mutex_setprio - set the current priority of a task
4824 * @p: task to boost
4825 * @pi_task: donor task
4826 *
4827 * This function changes the 'effective' priority of a task. It does
4828 * not touch ->normal_prio like __setscheduler().
4829 *
4830 * Used by the rt_mutex code to implement priority inheritance
4831 * logic. Call site only calls if the priority of the task changed.
4832 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)4833 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4834 {
4835 int prio, oldprio, queued, running, queue_flag =
4836 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4837 const struct sched_class *prev_class;
4838 struct rq_flags rf;
4839 struct rq *rq;
4840
4841 /* XXX used to be waiter->prio, not waiter->task->prio */
4842 prio = __rt_effective_prio(pi_task, p->normal_prio);
4843
4844 /*
4845 * If nothing changed; bail early.
4846 */
4847 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4848 return;
4849
4850 rq = __task_rq_lock(p, &rf);
4851 update_rq_clock(rq);
4852 /*
4853 * Set under pi_lock && rq->lock, such that the value can be used under
4854 * either lock.
4855 *
4856 * Note that there is loads of tricky to make this pointer cache work
4857 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4858 * ensure a task is de-boosted (pi_task is set to NULL) before the
4859 * task is allowed to run again (and can exit). This ensures the pointer
4860 * points to a blocked task -- which guaratees the task is present.
4861 */
4862 p->pi_top_task = pi_task;
4863
4864 /*
4865 * For FIFO/RR we only need to set prio, if that matches we're done.
4866 */
4867 if (prio == p->prio && !dl_prio(prio))
4868 goto out_unlock;
4869
4870 /*
4871 * Idle task boosting is a nono in general. There is one
4872 * exception, when PREEMPT_RT and NOHZ is active:
4873 *
4874 * The idle task calls get_next_timer_interrupt() and holds
4875 * the timer wheel base->lock on the CPU and another CPU wants
4876 * to access the timer (probably to cancel it). We can safely
4877 * ignore the boosting request, as the idle CPU runs this code
4878 * with interrupts disabled and will complete the lock
4879 * protected section without being interrupted. So there is no
4880 * real need to boost.
4881 */
4882 if (unlikely(p == rq->idle)) {
4883 WARN_ON(p != rq->curr);
4884 WARN_ON(p->pi_blocked_on);
4885 goto out_unlock;
4886 }
4887
4888 trace_sched_pi_setprio(p, pi_task);
4889 oldprio = p->prio;
4890
4891 if (oldprio == prio)
4892 queue_flag &= ~DEQUEUE_MOVE;
4893
4894 prev_class = p->sched_class;
4895 queued = task_on_rq_queued(p);
4896 running = task_current(rq, p);
4897 if (queued)
4898 dequeue_task(rq, p, queue_flag);
4899 if (running)
4900 put_prev_task(rq, p);
4901
4902 /*
4903 * Boosting condition are:
4904 * 1. -rt task is running and holds mutex A
4905 * --> -dl task blocks on mutex A
4906 *
4907 * 2. -dl task is running and holds mutex A
4908 * --> -dl task blocks on mutex A and could preempt the
4909 * running task
4910 */
4911 if (dl_prio(prio)) {
4912 if (!dl_prio(p->normal_prio) ||
4913 (pi_task && dl_prio(pi_task->prio) &&
4914 dl_entity_preempt(&pi_task->dl, &p->dl))) {
4915 p->dl.pi_se = pi_task->dl.pi_se;
4916 queue_flag |= ENQUEUE_REPLENISH;
4917 } else {
4918 p->dl.pi_se = &p->dl;
4919 }
4920 p->sched_class = &dl_sched_class;
4921 } else if (rt_prio(prio)) {
4922 if (dl_prio(oldprio))
4923 p->dl.pi_se = &p->dl;
4924 if (oldprio < prio)
4925 queue_flag |= ENQUEUE_HEAD;
4926 p->sched_class = &rt_sched_class;
4927 } else {
4928 if (dl_prio(oldprio))
4929 p->dl.pi_se = &p->dl;
4930 if (rt_prio(oldprio))
4931 p->rt.timeout = 0;
4932 p->sched_class = &fair_sched_class;
4933 }
4934
4935 p->prio = prio;
4936
4937 if (queued)
4938 enqueue_task(rq, p, queue_flag);
4939 if (running)
4940 set_next_task(rq, p);
4941
4942 check_class_changed(rq, p, prev_class, oldprio);
4943 out_unlock:
4944 /* Avoid rq from going away on us: */
4945 preempt_disable();
4946 __task_rq_unlock(rq, &rf);
4947
4948 balance_callback(rq);
4949 preempt_enable();
4950 }
4951 #else
rt_effective_prio(struct task_struct * p,int prio)4952 static inline int rt_effective_prio(struct task_struct *p, int prio)
4953 {
4954 return prio;
4955 }
4956 #endif
4957
set_user_nice(struct task_struct * p,long nice)4958 void set_user_nice(struct task_struct *p, long nice)
4959 {
4960 bool queued, running;
4961 int old_prio;
4962 struct rq_flags rf;
4963 struct rq *rq;
4964
4965 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4966 return;
4967 /*
4968 * We have to be careful, if called from sys_setpriority(),
4969 * the task might be in the middle of scheduling on another CPU.
4970 */
4971 rq = task_rq_lock(p, &rf);
4972 update_rq_clock(rq);
4973
4974 /*
4975 * The RT priorities are set via sched_setscheduler(), but we still
4976 * allow the 'normal' nice value to be set - but as expected
4977 * it wont have any effect on scheduling until the task is
4978 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4979 */
4980 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4981 p->static_prio = NICE_TO_PRIO(nice);
4982 goto out_unlock;
4983 }
4984 queued = task_on_rq_queued(p);
4985 running = task_current(rq, p);
4986 if (queued)
4987 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4988 if (running)
4989 put_prev_task(rq, p);
4990
4991 p->static_prio = NICE_TO_PRIO(nice);
4992 set_load_weight(p, true);
4993 old_prio = p->prio;
4994 p->prio = effective_prio(p);
4995
4996 if (queued)
4997 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4998 if (running)
4999 set_next_task(rq, p);
5000
5001 /*
5002 * If the task increased its priority or is running and
5003 * lowered its priority, then reschedule its CPU:
5004 */
5005 p->sched_class->prio_changed(rq, p, old_prio);
5006
5007 out_unlock:
5008 task_rq_unlock(rq, p, &rf);
5009 }
5010 EXPORT_SYMBOL(set_user_nice);
5011
5012 /*
5013 * can_nice - check if a task can reduce its nice value
5014 * @p: task
5015 * @nice: nice value
5016 */
can_nice(const struct task_struct * p,const int nice)5017 int can_nice(const struct task_struct *p, const int nice)
5018 {
5019 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5020 int nice_rlim = nice_to_rlimit(nice);
5021
5022 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5023 capable(CAP_SYS_NICE));
5024 }
5025
5026 #ifdef __ARCH_WANT_SYS_NICE
5027
5028 /*
5029 * sys_nice - change the priority of the current process.
5030 * @increment: priority increment
5031 *
5032 * sys_setpriority is a more generic, but much slower function that
5033 * does similar things.
5034 */
SYSCALL_DEFINE1(nice,int,increment)5035 SYSCALL_DEFINE1(nice, int, increment)
5036 {
5037 long nice, retval;
5038
5039 /*
5040 * Setpriority might change our priority at the same moment.
5041 * We don't have to worry. Conceptually one call occurs first
5042 * and we have a single winner.
5043 */
5044 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5045 nice = task_nice(current) + increment;
5046
5047 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5048 if (increment < 0 && !can_nice(current, nice))
5049 return -EPERM;
5050
5051 retval = security_task_setnice(current, nice);
5052 if (retval)
5053 return retval;
5054
5055 set_user_nice(current, nice);
5056 return 0;
5057 }
5058
5059 #endif
5060
5061 /**
5062 * task_prio - return the priority value of a given task.
5063 * @p: the task in question.
5064 *
5065 * Return: The priority value as seen by users in /proc.
5066 * RT tasks are offset by -200. Normal tasks are centered
5067 * around 0, value goes from -16 to +15.
5068 */
task_prio(const struct task_struct * p)5069 int task_prio(const struct task_struct *p)
5070 {
5071 return p->prio - MAX_RT_PRIO;
5072 }
5073
5074 /**
5075 * idle_cpu - is a given CPU idle currently?
5076 * @cpu: the processor in question.
5077 *
5078 * Return: 1 if the CPU is currently idle. 0 otherwise.
5079 */
idle_cpu(int cpu)5080 int idle_cpu(int cpu)
5081 {
5082 struct rq *rq = cpu_rq(cpu);
5083
5084 if (rq->curr != rq->idle)
5085 return 0;
5086
5087 if (rq->nr_running)
5088 return 0;
5089
5090 #ifdef CONFIG_SMP
5091 if (rq->ttwu_pending)
5092 return 0;
5093 #endif
5094
5095 return 1;
5096 }
5097
5098 /**
5099 * available_idle_cpu - is a given CPU idle for enqueuing work.
5100 * @cpu: the CPU in question.
5101 *
5102 * Return: 1 if the CPU is currently idle. 0 otherwise.
5103 */
available_idle_cpu(int cpu)5104 int available_idle_cpu(int cpu)
5105 {
5106 if (!idle_cpu(cpu))
5107 return 0;
5108
5109 if (vcpu_is_preempted(cpu))
5110 return 0;
5111
5112 return 1;
5113 }
5114
5115 /**
5116 * idle_task - return the idle task for a given CPU.
5117 * @cpu: the processor in question.
5118 *
5119 * Return: The idle task for the CPU @cpu.
5120 */
idle_task(int cpu)5121 struct task_struct *idle_task(int cpu)
5122 {
5123 return cpu_rq(cpu)->idle;
5124 }
5125
5126 /**
5127 * find_process_by_pid - find a process with a matching PID value.
5128 * @pid: the pid in question.
5129 *
5130 * The task of @pid, if found. %NULL otherwise.
5131 */
find_process_by_pid(pid_t pid)5132 static struct task_struct *find_process_by_pid(pid_t pid)
5133 {
5134 return pid ? find_task_by_vpid(pid) : current;
5135 }
5136
5137 /*
5138 * sched_setparam() passes in -1 for its policy, to let the functions
5139 * it calls know not to change it.
5140 */
5141 #define SETPARAM_POLICY -1
5142
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)5143 static void __setscheduler_params(struct task_struct *p,
5144 const struct sched_attr *attr)
5145 {
5146 int policy = attr->sched_policy;
5147
5148 if (policy == SETPARAM_POLICY)
5149 policy = p->policy;
5150
5151 p->policy = policy;
5152
5153 if (dl_policy(policy))
5154 __setparam_dl(p, attr);
5155 else if (fair_policy(policy))
5156 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5157
5158 /*
5159 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5160 * !rt_policy. Always setting this ensures that things like
5161 * getparam()/getattr() don't report silly values for !rt tasks.
5162 */
5163 p->rt_priority = attr->sched_priority;
5164 p->normal_prio = normal_prio(p);
5165 set_load_weight(p, true);
5166 }
5167
5168 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)5169 static void __setscheduler(struct rq *rq, struct task_struct *p,
5170 const struct sched_attr *attr, bool keep_boost)
5171 {
5172 /*
5173 * If params can't change scheduling class changes aren't allowed
5174 * either.
5175 */
5176 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5177 return;
5178
5179 __setscheduler_params(p, attr);
5180
5181 /*
5182 * Keep a potential priority boosting if called from
5183 * sched_setscheduler().
5184 */
5185 p->prio = normal_prio(p);
5186 if (keep_boost)
5187 p->prio = rt_effective_prio(p, p->prio);
5188
5189 if (dl_prio(p->prio))
5190 p->sched_class = &dl_sched_class;
5191 else if (rt_prio(p->prio))
5192 p->sched_class = &rt_sched_class;
5193 else
5194 p->sched_class = &fair_sched_class;
5195 }
5196
5197 /*
5198 * Check the target process has a UID that matches the current process's:
5199 */
check_same_owner(struct task_struct * p)5200 static bool check_same_owner(struct task_struct *p)
5201 {
5202 const struct cred *cred = current_cred(), *pcred;
5203 bool match;
5204
5205 rcu_read_lock();
5206 pcred = __task_cred(p);
5207 match = (uid_eq(cred->euid, pcred->euid) ||
5208 uid_eq(cred->euid, pcred->uid));
5209 rcu_read_unlock();
5210 return match;
5211 }
5212
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)5213 static int __sched_setscheduler(struct task_struct *p,
5214 const struct sched_attr *attr,
5215 bool user, bool pi)
5216 {
5217 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5218 MAX_RT_PRIO - 1 - attr->sched_priority;
5219 int retval, oldprio, oldpolicy = -1, queued, running;
5220 int new_effective_prio, policy = attr->sched_policy;
5221 const struct sched_class *prev_class;
5222 struct rq_flags rf;
5223 int reset_on_fork;
5224 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5225 struct rq *rq;
5226
5227 /* The pi code expects interrupts enabled */
5228 BUG_ON(pi && in_interrupt());
5229 recheck:
5230 /* Double check policy once rq lock held: */
5231 if (policy < 0) {
5232 reset_on_fork = p->sched_reset_on_fork;
5233 policy = oldpolicy = p->policy;
5234 } else {
5235 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5236
5237 if (!valid_policy(policy))
5238 return -EINVAL;
5239 }
5240
5241 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5242 return -EINVAL;
5243
5244 /*
5245 * Valid priorities for SCHED_FIFO and SCHED_RR are
5246 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5247 * SCHED_BATCH and SCHED_IDLE is 0.
5248 */
5249 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5250 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5251 return -EINVAL;
5252 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5253 (rt_policy(policy) != (attr->sched_priority != 0)))
5254 return -EINVAL;
5255
5256 /*
5257 * Allow unprivileged RT tasks to decrease priority:
5258 */
5259 if (user && !capable(CAP_SYS_NICE)) {
5260 if (fair_policy(policy)) {
5261 if (attr->sched_nice < task_nice(p) &&
5262 !can_nice(p, attr->sched_nice))
5263 return -EPERM;
5264 }
5265
5266 if (rt_policy(policy)) {
5267 unsigned long rlim_rtprio =
5268 task_rlimit(p, RLIMIT_RTPRIO);
5269
5270 /* Can't set/change the rt policy: */
5271 if (policy != p->policy && !rlim_rtprio)
5272 return -EPERM;
5273
5274 /* Can't increase priority: */
5275 if (attr->sched_priority > p->rt_priority &&
5276 attr->sched_priority > rlim_rtprio)
5277 return -EPERM;
5278 }
5279
5280 /*
5281 * Can't set/change SCHED_DEADLINE policy at all for now
5282 * (safest behavior); in the future we would like to allow
5283 * unprivileged DL tasks to increase their relative deadline
5284 * or reduce their runtime (both ways reducing utilization)
5285 */
5286 if (dl_policy(policy))
5287 return -EPERM;
5288
5289 /*
5290 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5291 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5292 */
5293 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5294 if (!can_nice(p, task_nice(p)))
5295 return -EPERM;
5296 }
5297
5298 /* Can't change other user's priorities: */
5299 if (!check_same_owner(p))
5300 return -EPERM;
5301
5302 /* Normal users shall not reset the sched_reset_on_fork flag: */
5303 if (p->sched_reset_on_fork && !reset_on_fork)
5304 return -EPERM;
5305 }
5306
5307 if (user) {
5308 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5309 return -EINVAL;
5310
5311 retval = security_task_setscheduler(p);
5312 if (retval)
5313 return retval;
5314 }
5315
5316 /* Update task specific "requested" clamps */
5317 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5318 retval = uclamp_validate(p, attr);
5319 if (retval)
5320 return retval;
5321 }
5322
5323 if (pi)
5324 cpuset_read_lock();
5325
5326 /*
5327 * Make sure no PI-waiters arrive (or leave) while we are
5328 * changing the priority of the task:
5329 *
5330 * To be able to change p->policy safely, the appropriate
5331 * runqueue lock must be held.
5332 */
5333 rq = task_rq_lock(p, &rf);
5334 update_rq_clock(rq);
5335
5336 /*
5337 * Changing the policy of the stop threads its a very bad idea:
5338 */
5339 if (p == rq->stop) {
5340 retval = -EINVAL;
5341 goto unlock;
5342 }
5343
5344 /*
5345 * If not changing anything there's no need to proceed further,
5346 * but store a possible modification of reset_on_fork.
5347 */
5348 if (unlikely(policy == p->policy)) {
5349 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5350 goto change;
5351 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5352 goto change;
5353 if (dl_policy(policy) && dl_param_changed(p, attr))
5354 goto change;
5355 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5356 goto change;
5357
5358 p->sched_reset_on_fork = reset_on_fork;
5359 retval = 0;
5360 goto unlock;
5361 }
5362 change:
5363
5364 if (user) {
5365 #ifdef CONFIG_RT_GROUP_SCHED
5366 /*
5367 * Do not allow realtime tasks into groups that have no runtime
5368 * assigned.
5369 */
5370 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5371 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5372 !task_group_is_autogroup(task_group(p))) {
5373 retval = -EPERM;
5374 goto unlock;
5375 }
5376 #endif
5377 #ifdef CONFIG_SMP
5378 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5379 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5380 cpumask_t *span = rq->rd->span;
5381
5382 /*
5383 * Don't allow tasks with an affinity mask smaller than
5384 * the entire root_domain to become SCHED_DEADLINE. We
5385 * will also fail if there's no bandwidth available.
5386 */
5387 if (!cpumask_subset(span, p->cpus_ptr) ||
5388 rq->rd->dl_bw.bw == 0) {
5389 retval = -EPERM;
5390 goto unlock;
5391 }
5392 }
5393 #endif
5394 }
5395
5396 /* Re-check policy now with rq lock held: */
5397 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5398 policy = oldpolicy = -1;
5399 task_rq_unlock(rq, p, &rf);
5400 if (pi)
5401 cpuset_read_unlock();
5402 goto recheck;
5403 }
5404
5405 /*
5406 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5407 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5408 * is available.
5409 */
5410 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5411 retval = -EBUSY;
5412 goto unlock;
5413 }
5414
5415 p->sched_reset_on_fork = reset_on_fork;
5416 oldprio = p->prio;
5417
5418 if (pi) {
5419 /*
5420 * Take priority boosted tasks into account. If the new
5421 * effective priority is unchanged, we just store the new
5422 * normal parameters and do not touch the scheduler class and
5423 * the runqueue. This will be done when the task deboost
5424 * itself.
5425 */
5426 new_effective_prio = rt_effective_prio(p, newprio);
5427 if (new_effective_prio == oldprio)
5428 queue_flags &= ~DEQUEUE_MOVE;
5429 }
5430
5431 queued = task_on_rq_queued(p);
5432 running = task_current(rq, p);
5433 if (queued)
5434 dequeue_task(rq, p, queue_flags);
5435 if (running)
5436 put_prev_task(rq, p);
5437
5438 prev_class = p->sched_class;
5439
5440 __setscheduler(rq, p, attr, pi);
5441 __setscheduler_uclamp(p, attr);
5442
5443 if (queued) {
5444 /*
5445 * We enqueue to tail when the priority of a task is
5446 * increased (user space view).
5447 */
5448 if (oldprio < p->prio)
5449 queue_flags |= ENQUEUE_HEAD;
5450
5451 enqueue_task(rq, p, queue_flags);
5452 }
5453 if (running)
5454 set_next_task(rq, p);
5455
5456 check_class_changed(rq, p, prev_class, oldprio);
5457
5458 /* Avoid rq from going away on us: */
5459 preempt_disable();
5460 task_rq_unlock(rq, p, &rf);
5461
5462 if (pi) {
5463 cpuset_read_unlock();
5464 rt_mutex_adjust_pi(p);
5465 }
5466
5467 /* Run balance callbacks after we've adjusted the PI chain: */
5468 balance_callback(rq);
5469 preempt_enable();
5470
5471 return 0;
5472
5473 unlock:
5474 task_rq_unlock(rq, p, &rf);
5475 if (pi)
5476 cpuset_read_unlock();
5477 return retval;
5478 }
5479
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5480 static int _sched_setscheduler(struct task_struct *p, int policy,
5481 const struct sched_param *param, bool check)
5482 {
5483 struct sched_attr attr = {
5484 .sched_policy = policy,
5485 .sched_priority = param->sched_priority,
5486 .sched_nice = PRIO_TO_NICE(p->static_prio),
5487 };
5488
5489 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5490 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5491 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5492 policy &= ~SCHED_RESET_ON_FORK;
5493 attr.sched_policy = policy;
5494 }
5495
5496 return __sched_setscheduler(p, &attr, check, true);
5497 }
5498 /**
5499 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5500 * @p: the task in question.
5501 * @policy: new policy.
5502 * @param: structure containing the new RT priority.
5503 *
5504 * Use sched_set_fifo(), read its comment.
5505 *
5506 * Return: 0 on success. An error code otherwise.
5507 *
5508 * NOTE that the task may be already dead.
5509 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5510 int sched_setscheduler(struct task_struct *p, int policy,
5511 const struct sched_param *param)
5512 {
5513 return _sched_setscheduler(p, policy, param, true);
5514 }
5515
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5516 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5517 {
5518 return __sched_setscheduler(p, attr, true, true);
5519 }
5520
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5521 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5522 {
5523 return __sched_setscheduler(p, attr, false, true);
5524 }
5525
5526 /**
5527 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5528 * @p: the task in question.
5529 * @policy: new policy.
5530 * @param: structure containing the new RT priority.
5531 *
5532 * Just like sched_setscheduler, only don't bother checking if the
5533 * current context has permission. For example, this is needed in
5534 * stop_machine(): we create temporary high priority worker threads,
5535 * but our caller might not have that capability.
5536 *
5537 * Return: 0 on success. An error code otherwise.
5538 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5539 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5540 const struct sched_param *param)
5541 {
5542 return _sched_setscheduler(p, policy, param, false);
5543 }
5544
5545 /*
5546 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5547 * incapable of resource management, which is the one thing an OS really should
5548 * be doing.
5549 *
5550 * This is of course the reason it is limited to privileged users only.
5551 *
5552 * Worse still; it is fundamentally impossible to compose static priority
5553 * workloads. You cannot take two correctly working static prio workloads
5554 * and smash them together and still expect them to work.
5555 *
5556 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5557 *
5558 * MAX_RT_PRIO / 2
5559 *
5560 * The administrator _MUST_ configure the system, the kernel simply doesn't
5561 * know enough information to make a sensible choice.
5562 */
sched_set_fifo(struct task_struct * p)5563 void sched_set_fifo(struct task_struct *p)
5564 {
5565 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5566 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5567 }
5568 EXPORT_SYMBOL_GPL(sched_set_fifo);
5569
5570 /*
5571 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5572 */
sched_set_fifo_low(struct task_struct * p)5573 void sched_set_fifo_low(struct task_struct *p)
5574 {
5575 struct sched_param sp = { .sched_priority = 1 };
5576 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5577 }
5578 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5579
sched_set_normal(struct task_struct * p,int nice)5580 void sched_set_normal(struct task_struct *p, int nice)
5581 {
5582 struct sched_attr attr = {
5583 .sched_policy = SCHED_NORMAL,
5584 .sched_nice = nice,
5585 };
5586 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5587 }
5588 EXPORT_SYMBOL_GPL(sched_set_normal);
5589
5590 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5591 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5592 {
5593 struct sched_param lparam;
5594 struct task_struct *p;
5595 int retval;
5596
5597 if (!param || pid < 0)
5598 return -EINVAL;
5599 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5600 return -EFAULT;
5601
5602 rcu_read_lock();
5603 retval = -ESRCH;
5604 p = find_process_by_pid(pid);
5605 if (likely(p))
5606 get_task_struct(p);
5607 rcu_read_unlock();
5608
5609 if (likely(p)) {
5610 retval = sched_setscheduler(p, policy, &lparam);
5611 put_task_struct(p);
5612 }
5613
5614 return retval;
5615 }
5616
5617 /*
5618 * Mimics kernel/events/core.c perf_copy_attr().
5619 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5620 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5621 {
5622 u32 size;
5623 int ret;
5624
5625 /* Zero the full structure, so that a short copy will be nice: */
5626 memset(attr, 0, sizeof(*attr));
5627
5628 ret = get_user(size, &uattr->size);
5629 if (ret)
5630 return ret;
5631
5632 /* ABI compatibility quirk: */
5633 if (!size)
5634 size = SCHED_ATTR_SIZE_VER0;
5635 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5636 goto err_size;
5637
5638 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5639 if (ret) {
5640 if (ret == -E2BIG)
5641 goto err_size;
5642 return ret;
5643 }
5644
5645 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5646 size < SCHED_ATTR_SIZE_VER1)
5647 return -EINVAL;
5648
5649 /*
5650 * XXX: Do we want to be lenient like existing syscalls; or do we want
5651 * to be strict and return an error on out-of-bounds values?
5652 */
5653 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5654
5655 return 0;
5656
5657 err_size:
5658 put_user(sizeof(*attr), &uattr->size);
5659 return -E2BIG;
5660 }
5661
5662 /**
5663 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5664 * @pid: the pid in question.
5665 * @policy: new policy.
5666 * @param: structure containing the new RT priority.
5667 *
5668 * Return: 0 on success. An error code otherwise.
5669 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5670 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5671 {
5672 if (policy < 0)
5673 return -EINVAL;
5674
5675 return do_sched_setscheduler(pid, policy, param);
5676 }
5677
5678 /**
5679 * sys_sched_setparam - set/change the RT priority of a thread
5680 * @pid: the pid in question.
5681 * @param: structure containing the new RT priority.
5682 *
5683 * Return: 0 on success. An error code otherwise.
5684 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5685 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5686 {
5687 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5688 }
5689
5690 /**
5691 * sys_sched_setattr - same as above, but with extended sched_attr
5692 * @pid: the pid in question.
5693 * @uattr: structure containing the extended parameters.
5694 * @flags: for future extension.
5695 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5696 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5697 unsigned int, flags)
5698 {
5699 struct sched_attr attr;
5700 struct task_struct *p;
5701 int retval;
5702
5703 if (!uattr || pid < 0 || flags)
5704 return -EINVAL;
5705
5706 retval = sched_copy_attr(uattr, &attr);
5707 if (retval)
5708 return retval;
5709
5710 if ((int)attr.sched_policy < 0)
5711 return -EINVAL;
5712 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5713 attr.sched_policy = SETPARAM_POLICY;
5714
5715 rcu_read_lock();
5716 retval = -ESRCH;
5717 p = find_process_by_pid(pid);
5718 if (likely(p))
5719 get_task_struct(p);
5720 rcu_read_unlock();
5721
5722 if (likely(p)) {
5723 retval = sched_setattr(p, &attr);
5724 put_task_struct(p);
5725 }
5726
5727 return retval;
5728 }
5729
5730 /**
5731 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5732 * @pid: the pid in question.
5733 *
5734 * Return: On success, the policy of the thread. Otherwise, a negative error
5735 * code.
5736 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5737 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5738 {
5739 struct task_struct *p;
5740 int retval;
5741
5742 if (pid < 0)
5743 return -EINVAL;
5744
5745 retval = -ESRCH;
5746 rcu_read_lock();
5747 p = find_process_by_pid(pid);
5748 if (p) {
5749 retval = security_task_getscheduler(p);
5750 if (!retval)
5751 retval = p->policy
5752 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5753 }
5754 rcu_read_unlock();
5755 return retval;
5756 }
5757
5758 /**
5759 * sys_sched_getparam - get the RT priority of a thread
5760 * @pid: the pid in question.
5761 * @param: structure containing the RT priority.
5762 *
5763 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5764 * code.
5765 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5766 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5767 {
5768 struct sched_param lp = { .sched_priority = 0 };
5769 struct task_struct *p;
5770 int retval;
5771
5772 if (!param || pid < 0)
5773 return -EINVAL;
5774
5775 rcu_read_lock();
5776 p = find_process_by_pid(pid);
5777 retval = -ESRCH;
5778 if (!p)
5779 goto out_unlock;
5780
5781 retval = security_task_getscheduler(p);
5782 if (retval)
5783 goto out_unlock;
5784
5785 if (task_has_rt_policy(p))
5786 lp.sched_priority = p->rt_priority;
5787 rcu_read_unlock();
5788
5789 /*
5790 * This one might sleep, we cannot do it with a spinlock held ...
5791 */
5792 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5793
5794 return retval;
5795
5796 out_unlock:
5797 rcu_read_unlock();
5798 return retval;
5799 }
5800
5801 /*
5802 * Copy the kernel size attribute structure (which might be larger
5803 * than what user-space knows about) to user-space.
5804 *
5805 * Note that all cases are valid: user-space buffer can be larger or
5806 * smaller than the kernel-space buffer. The usual case is that both
5807 * have the same size.
5808 */
5809 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)5810 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5811 struct sched_attr *kattr,
5812 unsigned int usize)
5813 {
5814 unsigned int ksize = sizeof(*kattr);
5815
5816 if (!access_ok(uattr, usize))
5817 return -EFAULT;
5818
5819 /*
5820 * sched_getattr() ABI forwards and backwards compatibility:
5821 *
5822 * If usize == ksize then we just copy everything to user-space and all is good.
5823 *
5824 * If usize < ksize then we only copy as much as user-space has space for,
5825 * this keeps ABI compatibility as well. We skip the rest.
5826 *
5827 * If usize > ksize then user-space is using a newer version of the ABI,
5828 * which part the kernel doesn't know about. Just ignore it - tooling can
5829 * detect the kernel's knowledge of attributes from the attr->size value
5830 * which is set to ksize in this case.
5831 */
5832 kattr->size = min(usize, ksize);
5833
5834 if (copy_to_user(uattr, kattr, kattr->size))
5835 return -EFAULT;
5836
5837 return 0;
5838 }
5839
5840 /**
5841 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5842 * @pid: the pid in question.
5843 * @uattr: structure containing the extended parameters.
5844 * @usize: sizeof(attr) for fwd/bwd comp.
5845 * @flags: for future extension.
5846 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)5847 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5848 unsigned int, usize, unsigned int, flags)
5849 {
5850 struct sched_attr kattr = { };
5851 struct task_struct *p;
5852 int retval;
5853
5854 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5855 usize < SCHED_ATTR_SIZE_VER0 || flags)
5856 return -EINVAL;
5857
5858 rcu_read_lock();
5859 p = find_process_by_pid(pid);
5860 retval = -ESRCH;
5861 if (!p)
5862 goto out_unlock;
5863
5864 retval = security_task_getscheduler(p);
5865 if (retval)
5866 goto out_unlock;
5867
5868 kattr.sched_policy = p->policy;
5869 if (p->sched_reset_on_fork)
5870 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5871 if (task_has_dl_policy(p))
5872 __getparam_dl(p, &kattr);
5873 else if (task_has_rt_policy(p))
5874 kattr.sched_priority = p->rt_priority;
5875 else
5876 kattr.sched_nice = task_nice(p);
5877
5878 #ifdef CONFIG_UCLAMP_TASK
5879 /*
5880 * This could race with another potential updater, but this is fine
5881 * because it'll correctly read the old or the new value. We don't need
5882 * to guarantee who wins the race as long as it doesn't return garbage.
5883 */
5884 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5885 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5886 #endif
5887
5888 rcu_read_unlock();
5889
5890 return sched_attr_copy_to_user(uattr, &kattr, usize);
5891
5892 out_unlock:
5893 rcu_read_unlock();
5894 return retval;
5895 }
5896
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)5897 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5898 {
5899 cpumask_var_t cpus_allowed, new_mask;
5900 struct task_struct *p;
5901 int retval;
5902
5903 rcu_read_lock();
5904
5905 p = find_process_by_pid(pid);
5906 if (!p) {
5907 rcu_read_unlock();
5908 return -ESRCH;
5909 }
5910
5911 /* Prevent p going away */
5912 get_task_struct(p);
5913 rcu_read_unlock();
5914
5915 if (p->flags & PF_NO_SETAFFINITY) {
5916 retval = -EINVAL;
5917 goto out_put_task;
5918 }
5919 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5920 retval = -ENOMEM;
5921 goto out_put_task;
5922 }
5923 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5924 retval = -ENOMEM;
5925 goto out_free_cpus_allowed;
5926 }
5927 retval = -EPERM;
5928 if (!check_same_owner(p)) {
5929 rcu_read_lock();
5930 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5931 rcu_read_unlock();
5932 goto out_free_new_mask;
5933 }
5934 rcu_read_unlock();
5935 }
5936
5937 retval = security_task_setscheduler(p);
5938 if (retval)
5939 goto out_free_new_mask;
5940
5941
5942 cpuset_cpus_allowed(p, cpus_allowed);
5943 cpumask_and(new_mask, in_mask, cpus_allowed);
5944
5945 /*
5946 * Since bandwidth control happens on root_domain basis,
5947 * if admission test is enabled, we only admit -deadline
5948 * tasks allowed to run on all the CPUs in the task's
5949 * root_domain.
5950 */
5951 #ifdef CONFIG_SMP
5952 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5953 rcu_read_lock();
5954 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5955 retval = -EBUSY;
5956 rcu_read_unlock();
5957 goto out_free_new_mask;
5958 }
5959 rcu_read_unlock();
5960 }
5961 #endif
5962 again:
5963 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5964
5965 if (!retval) {
5966 cpuset_cpus_allowed(p, cpus_allowed);
5967 if (!cpumask_subset(new_mask, cpus_allowed)) {
5968 /*
5969 * We must have raced with a concurrent cpuset
5970 * update. Just reset the cpus_allowed to the
5971 * cpuset's cpus_allowed
5972 */
5973 cpumask_copy(new_mask, cpus_allowed);
5974 goto again;
5975 }
5976 }
5977 out_free_new_mask:
5978 free_cpumask_var(new_mask);
5979 out_free_cpus_allowed:
5980 free_cpumask_var(cpus_allowed);
5981 out_put_task:
5982 put_task_struct(p);
5983 return retval;
5984 }
5985
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)5986 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5987 struct cpumask *new_mask)
5988 {
5989 if (len < cpumask_size())
5990 cpumask_clear(new_mask);
5991 else if (len > cpumask_size())
5992 len = cpumask_size();
5993
5994 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5995 }
5996
5997 /**
5998 * sys_sched_setaffinity - set the CPU affinity of a process
5999 * @pid: pid of the process
6000 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6001 * @user_mask_ptr: user-space pointer to the new CPU mask
6002 *
6003 * Return: 0 on success. An error code otherwise.
6004 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6005 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6006 unsigned long __user *, user_mask_ptr)
6007 {
6008 cpumask_var_t new_mask;
6009 int retval;
6010
6011 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6012 return -ENOMEM;
6013
6014 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6015 if (retval == 0)
6016 retval = sched_setaffinity(pid, new_mask);
6017 free_cpumask_var(new_mask);
6018 return retval;
6019 }
6020
sched_getaffinity(pid_t pid,struct cpumask * mask)6021 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6022 {
6023 struct task_struct *p;
6024 unsigned long flags;
6025 int retval;
6026
6027 rcu_read_lock();
6028
6029 retval = -ESRCH;
6030 p = find_process_by_pid(pid);
6031 if (!p)
6032 goto out_unlock;
6033
6034 retval = security_task_getscheduler(p);
6035 if (retval)
6036 goto out_unlock;
6037
6038 raw_spin_lock_irqsave(&p->pi_lock, flags);
6039 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6040 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6041
6042 out_unlock:
6043 rcu_read_unlock();
6044
6045 return retval;
6046 }
6047
6048 /**
6049 * sys_sched_getaffinity - get the CPU affinity of a process
6050 * @pid: pid of the process
6051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6052 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6053 *
6054 * Return: size of CPU mask copied to user_mask_ptr on success. An
6055 * error code otherwise.
6056 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6057 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6058 unsigned long __user *, user_mask_ptr)
6059 {
6060 int ret;
6061 cpumask_var_t mask;
6062
6063 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6064 return -EINVAL;
6065 if (len & (sizeof(unsigned long)-1))
6066 return -EINVAL;
6067
6068 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6069 return -ENOMEM;
6070
6071 ret = sched_getaffinity(pid, mask);
6072 if (ret == 0) {
6073 unsigned int retlen = min(len, cpumask_size());
6074
6075 if (copy_to_user(user_mask_ptr, mask, retlen))
6076 ret = -EFAULT;
6077 else
6078 ret = retlen;
6079 }
6080 free_cpumask_var(mask);
6081
6082 return ret;
6083 }
6084
6085 /**
6086 * sys_sched_yield - yield the current processor to other threads.
6087 *
6088 * This function yields the current CPU to other tasks. If there are no
6089 * other threads running on this CPU then this function will return.
6090 *
6091 * Return: 0.
6092 */
do_sched_yield(void)6093 static void do_sched_yield(void)
6094 {
6095 struct rq_flags rf;
6096 struct rq *rq;
6097
6098 rq = this_rq_lock_irq(&rf);
6099
6100 schedstat_inc(rq->yld_count);
6101 current->sched_class->yield_task(rq);
6102
6103 /*
6104 * Since we are going to call schedule() anyway, there's
6105 * no need to preempt or enable interrupts:
6106 */
6107 preempt_disable();
6108 rq_unlock(rq, &rf);
6109 sched_preempt_enable_no_resched();
6110
6111 schedule();
6112 }
6113
SYSCALL_DEFINE0(sched_yield)6114 SYSCALL_DEFINE0(sched_yield)
6115 {
6116 do_sched_yield();
6117 return 0;
6118 }
6119
6120 #ifndef CONFIG_PREEMPTION
_cond_resched(void)6121 int __sched _cond_resched(void)
6122 {
6123 if (should_resched(0)) {
6124 preempt_schedule_common();
6125 return 1;
6126 }
6127 rcu_all_qs();
6128 return 0;
6129 }
6130 EXPORT_SYMBOL(_cond_resched);
6131 #endif
6132
6133 /*
6134 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6135 * call schedule, and on return reacquire the lock.
6136 *
6137 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6138 * operations here to prevent schedule() from being called twice (once via
6139 * spin_unlock(), once by hand).
6140 */
__cond_resched_lock(spinlock_t * lock)6141 int __cond_resched_lock(spinlock_t *lock)
6142 {
6143 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6144 int ret = 0;
6145
6146 lockdep_assert_held(lock);
6147
6148 if (spin_needbreak(lock) || resched) {
6149 spin_unlock(lock);
6150 if (resched)
6151 preempt_schedule_common();
6152 else
6153 cpu_relax();
6154 ret = 1;
6155 spin_lock(lock);
6156 }
6157 return ret;
6158 }
6159 EXPORT_SYMBOL(__cond_resched_lock);
6160
6161 /**
6162 * yield - yield the current processor to other threads.
6163 *
6164 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6165 *
6166 * The scheduler is at all times free to pick the calling task as the most
6167 * eligible task to run, if removing the yield() call from your code breaks
6168 * it, its already broken.
6169 *
6170 * Typical broken usage is:
6171 *
6172 * while (!event)
6173 * yield();
6174 *
6175 * where one assumes that yield() will let 'the other' process run that will
6176 * make event true. If the current task is a SCHED_FIFO task that will never
6177 * happen. Never use yield() as a progress guarantee!!
6178 *
6179 * If you want to use yield() to wait for something, use wait_event().
6180 * If you want to use yield() to be 'nice' for others, use cond_resched().
6181 * If you still want to use yield(), do not!
6182 */
yield(void)6183 void __sched yield(void)
6184 {
6185 set_current_state(TASK_RUNNING);
6186 do_sched_yield();
6187 }
6188 EXPORT_SYMBOL(yield);
6189
6190 /**
6191 * yield_to - yield the current processor to another thread in
6192 * your thread group, or accelerate that thread toward the
6193 * processor it's on.
6194 * @p: target task
6195 * @preempt: whether task preemption is allowed or not
6196 *
6197 * It's the caller's job to ensure that the target task struct
6198 * can't go away on us before we can do any checks.
6199 *
6200 * Return:
6201 * true (>0) if we indeed boosted the target task.
6202 * false (0) if we failed to boost the target.
6203 * -ESRCH if there's no task to yield to.
6204 */
yield_to(struct task_struct * p,bool preempt)6205 int __sched yield_to(struct task_struct *p, bool preempt)
6206 {
6207 struct task_struct *curr = current;
6208 struct rq *rq, *p_rq;
6209 unsigned long flags;
6210 int yielded = 0;
6211
6212 local_irq_save(flags);
6213 rq = this_rq();
6214
6215 again:
6216 p_rq = task_rq(p);
6217 /*
6218 * If we're the only runnable task on the rq and target rq also
6219 * has only one task, there's absolutely no point in yielding.
6220 */
6221 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6222 yielded = -ESRCH;
6223 goto out_irq;
6224 }
6225
6226 double_rq_lock(rq, p_rq);
6227 if (task_rq(p) != p_rq) {
6228 double_rq_unlock(rq, p_rq);
6229 goto again;
6230 }
6231
6232 if (!curr->sched_class->yield_to_task)
6233 goto out_unlock;
6234
6235 if (curr->sched_class != p->sched_class)
6236 goto out_unlock;
6237
6238 if (task_running(p_rq, p) || p->state)
6239 goto out_unlock;
6240
6241 yielded = curr->sched_class->yield_to_task(rq, p);
6242 if (yielded) {
6243 schedstat_inc(rq->yld_count);
6244 /*
6245 * Make p's CPU reschedule; pick_next_entity takes care of
6246 * fairness.
6247 */
6248 if (preempt && rq != p_rq)
6249 resched_curr(p_rq);
6250 }
6251
6252 out_unlock:
6253 double_rq_unlock(rq, p_rq);
6254 out_irq:
6255 local_irq_restore(flags);
6256
6257 if (yielded > 0)
6258 schedule();
6259
6260 return yielded;
6261 }
6262 EXPORT_SYMBOL_GPL(yield_to);
6263
io_schedule_prepare(void)6264 int io_schedule_prepare(void)
6265 {
6266 int old_iowait = current->in_iowait;
6267
6268 current->in_iowait = 1;
6269 blk_schedule_flush_plug(current);
6270
6271 return old_iowait;
6272 }
6273
io_schedule_finish(int token)6274 void io_schedule_finish(int token)
6275 {
6276 current->in_iowait = token;
6277 }
6278
6279 /*
6280 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6281 * that process accounting knows that this is a task in IO wait state.
6282 */
io_schedule_timeout(long timeout)6283 long __sched io_schedule_timeout(long timeout)
6284 {
6285 int token;
6286 long ret;
6287
6288 token = io_schedule_prepare();
6289 ret = schedule_timeout(timeout);
6290 io_schedule_finish(token);
6291
6292 return ret;
6293 }
6294 EXPORT_SYMBOL(io_schedule_timeout);
6295
io_schedule(void)6296 void __sched io_schedule(void)
6297 {
6298 int token;
6299
6300 token = io_schedule_prepare();
6301 schedule();
6302 io_schedule_finish(token);
6303 }
6304 EXPORT_SYMBOL(io_schedule);
6305
6306 /**
6307 * sys_sched_get_priority_max - return maximum RT priority.
6308 * @policy: scheduling class.
6309 *
6310 * Return: On success, this syscall returns the maximum
6311 * rt_priority that can be used by a given scheduling class.
6312 * On failure, a negative error code is returned.
6313 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)6314 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6315 {
6316 int ret = -EINVAL;
6317
6318 switch (policy) {
6319 case SCHED_FIFO:
6320 case SCHED_RR:
6321 ret = MAX_USER_RT_PRIO-1;
6322 break;
6323 case SCHED_DEADLINE:
6324 case SCHED_NORMAL:
6325 case SCHED_BATCH:
6326 case SCHED_IDLE:
6327 ret = 0;
6328 break;
6329 }
6330 return ret;
6331 }
6332
6333 /**
6334 * sys_sched_get_priority_min - return minimum RT priority.
6335 * @policy: scheduling class.
6336 *
6337 * Return: On success, this syscall returns the minimum
6338 * rt_priority that can be used by a given scheduling class.
6339 * On failure, a negative error code is returned.
6340 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)6341 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6342 {
6343 int ret = -EINVAL;
6344
6345 switch (policy) {
6346 case SCHED_FIFO:
6347 case SCHED_RR:
6348 ret = 1;
6349 break;
6350 case SCHED_DEADLINE:
6351 case SCHED_NORMAL:
6352 case SCHED_BATCH:
6353 case SCHED_IDLE:
6354 ret = 0;
6355 }
6356 return ret;
6357 }
6358
sched_rr_get_interval(pid_t pid,struct timespec64 * t)6359 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6360 {
6361 struct task_struct *p;
6362 unsigned int time_slice;
6363 struct rq_flags rf;
6364 struct rq *rq;
6365 int retval;
6366
6367 if (pid < 0)
6368 return -EINVAL;
6369
6370 retval = -ESRCH;
6371 rcu_read_lock();
6372 p = find_process_by_pid(pid);
6373 if (!p)
6374 goto out_unlock;
6375
6376 retval = security_task_getscheduler(p);
6377 if (retval)
6378 goto out_unlock;
6379
6380 rq = task_rq_lock(p, &rf);
6381 time_slice = 0;
6382 if (p->sched_class->get_rr_interval)
6383 time_slice = p->sched_class->get_rr_interval(rq, p);
6384 task_rq_unlock(rq, p, &rf);
6385
6386 rcu_read_unlock();
6387 jiffies_to_timespec64(time_slice, t);
6388 return 0;
6389
6390 out_unlock:
6391 rcu_read_unlock();
6392 return retval;
6393 }
6394
6395 /**
6396 * sys_sched_rr_get_interval - return the default timeslice of a process.
6397 * @pid: pid of the process.
6398 * @interval: userspace pointer to the timeslice value.
6399 *
6400 * this syscall writes the default timeslice value of a given process
6401 * into the user-space timespec buffer. A value of '0' means infinity.
6402 *
6403 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6404 * an error code.
6405 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6406 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6407 struct __kernel_timespec __user *, interval)
6408 {
6409 struct timespec64 t;
6410 int retval = sched_rr_get_interval(pid, &t);
6411
6412 if (retval == 0)
6413 retval = put_timespec64(&t, interval);
6414
6415 return retval;
6416 }
6417
6418 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6419 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6420 struct old_timespec32 __user *, interval)
6421 {
6422 struct timespec64 t;
6423 int retval = sched_rr_get_interval(pid, &t);
6424
6425 if (retval == 0)
6426 retval = put_old_timespec32(&t, interval);
6427 return retval;
6428 }
6429 #endif
6430
sched_show_task(struct task_struct * p)6431 void sched_show_task(struct task_struct *p)
6432 {
6433 unsigned long free = 0;
6434 int ppid;
6435
6436 if (!try_get_task_stack(p))
6437 return;
6438
6439 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6440
6441 if (p->state == TASK_RUNNING)
6442 pr_cont(" running task ");
6443 #ifdef CONFIG_DEBUG_STACK_USAGE
6444 free = stack_not_used(p);
6445 #endif
6446 ppid = 0;
6447 rcu_read_lock();
6448 if (pid_alive(p))
6449 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6450 rcu_read_unlock();
6451 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6452 free, task_pid_nr(p), ppid,
6453 (unsigned long)task_thread_info(p)->flags);
6454
6455 print_worker_info(KERN_INFO, p);
6456 show_stack(p, NULL, KERN_INFO);
6457 put_task_stack(p);
6458 }
6459 EXPORT_SYMBOL_GPL(sched_show_task);
6460
6461 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6462 state_filter_match(unsigned long state_filter, struct task_struct *p)
6463 {
6464 /* no filter, everything matches */
6465 if (!state_filter)
6466 return true;
6467
6468 /* filter, but doesn't match */
6469 if (!(p->state & state_filter))
6470 return false;
6471
6472 /*
6473 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6474 * TASK_KILLABLE).
6475 */
6476 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6477 return false;
6478
6479 return true;
6480 }
6481
6482
show_state_filter(unsigned long state_filter)6483 void show_state_filter(unsigned long state_filter)
6484 {
6485 struct task_struct *g, *p;
6486
6487 rcu_read_lock();
6488 for_each_process_thread(g, p) {
6489 /*
6490 * reset the NMI-timeout, listing all files on a slow
6491 * console might take a lot of time:
6492 * Also, reset softlockup watchdogs on all CPUs, because
6493 * another CPU might be blocked waiting for us to process
6494 * an IPI.
6495 */
6496 touch_nmi_watchdog();
6497 touch_all_softlockup_watchdogs();
6498 if (state_filter_match(state_filter, p))
6499 sched_show_task(p);
6500 }
6501
6502 #ifdef CONFIG_SCHED_DEBUG
6503 if (!state_filter)
6504 sysrq_sched_debug_show();
6505 #endif
6506 rcu_read_unlock();
6507 /*
6508 * Only show locks if all tasks are dumped:
6509 */
6510 if (!state_filter)
6511 debug_show_all_locks();
6512 }
6513
6514 /**
6515 * init_idle - set up an idle thread for a given CPU
6516 * @idle: task in question
6517 * @cpu: CPU the idle task belongs to
6518 *
6519 * NOTE: this function does not set the idle thread's NEED_RESCHED
6520 * flag, to make booting more robust.
6521 */
init_idle(struct task_struct * idle,int cpu)6522 void init_idle(struct task_struct *idle, int cpu)
6523 {
6524 struct rq *rq = cpu_rq(cpu);
6525 unsigned long flags;
6526
6527 __sched_fork(0, idle);
6528
6529 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6530 raw_spin_lock(&rq->lock);
6531
6532 idle->state = TASK_RUNNING;
6533 idle->se.exec_start = sched_clock();
6534 idle->flags |= PF_IDLE;
6535
6536 scs_task_reset(idle);
6537 kasan_unpoison_task_stack(idle);
6538
6539 #ifdef CONFIG_SMP
6540 /*
6541 * Its possible that init_idle() gets called multiple times on a task,
6542 * in that case do_set_cpus_allowed() will not do the right thing.
6543 *
6544 * And since this is boot we can forgo the serialization.
6545 */
6546 set_cpus_allowed_common(idle, cpumask_of(cpu));
6547 #endif
6548 /*
6549 * We're having a chicken and egg problem, even though we are
6550 * holding rq->lock, the CPU isn't yet set to this CPU so the
6551 * lockdep check in task_group() will fail.
6552 *
6553 * Similar case to sched_fork(). / Alternatively we could
6554 * use task_rq_lock() here and obtain the other rq->lock.
6555 *
6556 * Silence PROVE_RCU
6557 */
6558 rcu_read_lock();
6559 __set_task_cpu(idle, cpu);
6560 rcu_read_unlock();
6561
6562 rq->idle = idle;
6563 rcu_assign_pointer(rq->curr, idle);
6564 idle->on_rq = TASK_ON_RQ_QUEUED;
6565 #ifdef CONFIG_SMP
6566 idle->on_cpu = 1;
6567 #endif
6568 raw_spin_unlock(&rq->lock);
6569 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6570
6571 /* Set the preempt count _outside_ the spinlocks! */
6572 init_idle_preempt_count(idle, cpu);
6573
6574 /*
6575 * The idle tasks have their own, simple scheduling class:
6576 */
6577 idle->sched_class = &idle_sched_class;
6578 ftrace_graph_init_idle_task(idle, cpu);
6579 vtime_init_idle(idle, cpu);
6580 #ifdef CONFIG_SMP
6581 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6582 #endif
6583 }
6584
6585 #ifdef CONFIG_SMP
6586
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6587 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6588 const struct cpumask *trial)
6589 {
6590 int ret = 1;
6591
6592 if (!cpumask_weight(cur))
6593 return ret;
6594
6595 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6596
6597 return ret;
6598 }
6599
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)6600 int task_can_attach(struct task_struct *p,
6601 const struct cpumask *cs_cpus_allowed)
6602 {
6603 int ret = 0;
6604
6605 /*
6606 * Kthreads which disallow setaffinity shouldn't be moved
6607 * to a new cpuset; we don't want to change their CPU
6608 * affinity and isolating such threads by their set of
6609 * allowed nodes is unnecessary. Thus, cpusets are not
6610 * applicable for such threads. This prevents checking for
6611 * success of set_cpus_allowed_ptr() on all attached tasks
6612 * before cpus_mask may be changed.
6613 */
6614 if (p->flags & PF_NO_SETAFFINITY) {
6615 ret = -EINVAL;
6616 goto out;
6617 }
6618
6619 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6620 cs_cpus_allowed))
6621 ret = dl_task_can_attach(p, cs_cpus_allowed);
6622
6623 out:
6624 return ret;
6625 }
6626
6627 bool sched_smp_initialized __read_mostly;
6628
6629 #ifdef CONFIG_NUMA_BALANCING
6630 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6631 int migrate_task_to(struct task_struct *p, int target_cpu)
6632 {
6633 struct migration_arg arg = { p, target_cpu };
6634 int curr_cpu = task_cpu(p);
6635
6636 if (curr_cpu == target_cpu)
6637 return 0;
6638
6639 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6640 return -EINVAL;
6641
6642 /* TODO: This is not properly updating schedstats */
6643
6644 trace_sched_move_numa(p, curr_cpu, target_cpu);
6645 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6646 }
6647
6648 /*
6649 * Requeue a task on a given node and accurately track the number of NUMA
6650 * tasks on the runqueues
6651 */
sched_setnuma(struct task_struct * p,int nid)6652 void sched_setnuma(struct task_struct *p, int nid)
6653 {
6654 bool queued, running;
6655 struct rq_flags rf;
6656 struct rq *rq;
6657
6658 rq = task_rq_lock(p, &rf);
6659 queued = task_on_rq_queued(p);
6660 running = task_current(rq, p);
6661
6662 if (queued)
6663 dequeue_task(rq, p, DEQUEUE_SAVE);
6664 if (running)
6665 put_prev_task(rq, p);
6666
6667 p->numa_preferred_nid = nid;
6668
6669 if (queued)
6670 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6671 if (running)
6672 set_next_task(rq, p);
6673 task_rq_unlock(rq, p, &rf);
6674 }
6675 #endif /* CONFIG_NUMA_BALANCING */
6676
6677 #ifdef CONFIG_HOTPLUG_CPU
6678 /*
6679 * Ensure that the idle task is using init_mm right before its CPU goes
6680 * offline.
6681 */
idle_task_exit(void)6682 void idle_task_exit(void)
6683 {
6684 struct mm_struct *mm = current->active_mm;
6685
6686 BUG_ON(cpu_online(smp_processor_id()));
6687 BUG_ON(current != this_rq()->idle);
6688
6689 if (mm != &init_mm) {
6690 switch_mm(mm, &init_mm, current);
6691 finish_arch_post_lock_switch();
6692 }
6693
6694 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6695 }
6696
6697 /*
6698 * Since this CPU is going 'away' for a while, fold any nr_active delta
6699 * we might have. Assumes we're called after migrate_tasks() so that the
6700 * nr_active count is stable. We need to take the teardown thread which
6701 * is calling this into account, so we hand in adjust = 1 to the load
6702 * calculation.
6703 *
6704 * Also see the comment "Global load-average calculations".
6705 */
calc_load_migrate(struct rq * rq)6706 static void calc_load_migrate(struct rq *rq)
6707 {
6708 long delta = calc_load_fold_active(rq, 1);
6709 if (delta)
6710 atomic_long_add(delta, &calc_load_tasks);
6711 }
6712
__pick_migrate_task(struct rq * rq)6713 static struct task_struct *__pick_migrate_task(struct rq *rq)
6714 {
6715 const struct sched_class *class;
6716 struct task_struct *next;
6717
6718 for_each_class(class) {
6719 next = class->pick_next_task(rq);
6720 if (next) {
6721 next->sched_class->put_prev_task(rq, next);
6722 return next;
6723 }
6724 }
6725
6726 /* The idle class should always have a runnable task */
6727 BUG();
6728 }
6729
6730 /*
6731 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6732 * try_to_wake_up()->select_task_rq().
6733 *
6734 * Called with rq->lock held even though we'er in stop_machine() and
6735 * there's no concurrency possible, we hold the required locks anyway
6736 * because of lock validation efforts.
6737 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf)6738 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6739 {
6740 struct rq *rq = dead_rq;
6741 struct task_struct *next, *stop = rq->stop;
6742 struct rq_flags orf = *rf;
6743 int dest_cpu;
6744
6745 /*
6746 * Fudge the rq selection such that the below task selection loop
6747 * doesn't get stuck on the currently eligible stop task.
6748 *
6749 * We're currently inside stop_machine() and the rq is either stuck
6750 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6751 * either way we should never end up calling schedule() until we're
6752 * done here.
6753 */
6754 rq->stop = NULL;
6755
6756 /*
6757 * put_prev_task() and pick_next_task() sched
6758 * class method both need to have an up-to-date
6759 * value of rq->clock[_task]
6760 */
6761 update_rq_clock(rq);
6762
6763 for (;;) {
6764 /*
6765 * There's this thread running, bail when that's the only
6766 * remaining thread:
6767 */
6768 if (rq->nr_running == 1)
6769 break;
6770
6771 next = __pick_migrate_task(rq);
6772
6773 /*
6774 * Rules for changing task_struct::cpus_mask are holding
6775 * both pi_lock and rq->lock, such that holding either
6776 * stabilizes the mask.
6777 *
6778 * Drop rq->lock is not quite as disastrous as it usually is
6779 * because !cpu_active at this point, which means load-balance
6780 * will not interfere. Also, stop-machine.
6781 */
6782 rq_unlock(rq, rf);
6783 raw_spin_lock(&next->pi_lock);
6784 rq_relock(rq, rf);
6785
6786 /*
6787 * Since we're inside stop-machine, _nothing_ should have
6788 * changed the task, WARN if weird stuff happened, because in
6789 * that case the above rq->lock drop is a fail too.
6790 */
6791 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6792 raw_spin_unlock(&next->pi_lock);
6793 continue;
6794 }
6795
6796 /* Find suitable destination for @next, with force if needed. */
6797 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6798 rq = __migrate_task(rq, rf, next, dest_cpu);
6799 if (rq != dead_rq) {
6800 rq_unlock(rq, rf);
6801 rq = dead_rq;
6802 *rf = orf;
6803 rq_relock(rq, rf);
6804 }
6805 raw_spin_unlock(&next->pi_lock);
6806 }
6807
6808 rq->stop = stop;
6809 }
6810 #endif /* CONFIG_HOTPLUG_CPU */
6811
set_rq_online(struct rq * rq)6812 void set_rq_online(struct rq *rq)
6813 {
6814 if (!rq->online) {
6815 const struct sched_class *class;
6816
6817 cpumask_set_cpu(rq->cpu, rq->rd->online);
6818 rq->online = 1;
6819
6820 for_each_class(class) {
6821 if (class->rq_online)
6822 class->rq_online(rq);
6823 }
6824 }
6825 }
6826
set_rq_offline(struct rq * rq)6827 void set_rq_offline(struct rq *rq)
6828 {
6829 if (rq->online) {
6830 const struct sched_class *class;
6831
6832 for_each_class(class) {
6833 if (class->rq_offline)
6834 class->rq_offline(rq);
6835 }
6836
6837 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6838 rq->online = 0;
6839 }
6840 }
6841
6842 /*
6843 * used to mark begin/end of suspend/resume:
6844 */
6845 static int num_cpus_frozen;
6846
6847 /*
6848 * Update cpusets according to cpu_active mask. If cpusets are
6849 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6850 * around partition_sched_domains().
6851 *
6852 * If we come here as part of a suspend/resume, don't touch cpusets because we
6853 * want to restore it back to its original state upon resume anyway.
6854 */
cpuset_cpu_active(void)6855 static void cpuset_cpu_active(void)
6856 {
6857 if (cpuhp_tasks_frozen) {
6858 /*
6859 * num_cpus_frozen tracks how many CPUs are involved in suspend
6860 * resume sequence. As long as this is not the last online
6861 * operation in the resume sequence, just build a single sched
6862 * domain, ignoring cpusets.
6863 */
6864 partition_sched_domains(1, NULL, NULL);
6865 if (--num_cpus_frozen)
6866 return;
6867 /*
6868 * This is the last CPU online operation. So fall through and
6869 * restore the original sched domains by considering the
6870 * cpuset configurations.
6871 */
6872 cpuset_force_rebuild();
6873 }
6874 cpuset_update_active_cpus();
6875 }
6876
cpuset_cpu_inactive(unsigned int cpu)6877 static int cpuset_cpu_inactive(unsigned int cpu)
6878 {
6879 if (!cpuhp_tasks_frozen) {
6880 if (dl_cpu_busy(cpu))
6881 return -EBUSY;
6882 cpuset_update_active_cpus();
6883 } else {
6884 num_cpus_frozen++;
6885 partition_sched_domains(1, NULL, NULL);
6886 }
6887 return 0;
6888 }
6889
sched_cpu_activate(unsigned int cpu)6890 int sched_cpu_activate(unsigned int cpu)
6891 {
6892 struct rq *rq = cpu_rq(cpu);
6893 struct rq_flags rf;
6894
6895 #ifdef CONFIG_SCHED_SMT
6896 /*
6897 * When going up, increment the number of cores with SMT present.
6898 */
6899 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6900 static_branch_inc_cpuslocked(&sched_smt_present);
6901 #endif
6902 set_cpu_active(cpu, true);
6903
6904 if (sched_smp_initialized) {
6905 sched_domains_numa_masks_set(cpu);
6906 cpuset_cpu_active();
6907 }
6908
6909 /*
6910 * Put the rq online, if not already. This happens:
6911 *
6912 * 1) In the early boot process, because we build the real domains
6913 * after all CPUs have been brought up.
6914 *
6915 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6916 * domains.
6917 */
6918 rq_lock_irqsave(rq, &rf);
6919 if (rq->rd) {
6920 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6921 set_rq_online(rq);
6922 }
6923 rq_unlock_irqrestore(rq, &rf);
6924
6925 return 0;
6926 }
6927
sched_cpu_deactivate(unsigned int cpu)6928 int sched_cpu_deactivate(unsigned int cpu)
6929 {
6930 int ret;
6931
6932 set_cpu_active(cpu, false);
6933 /*
6934 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6935 * users of this state to go away such that all new such users will
6936 * observe it.
6937 *
6938 * Do sync before park smpboot threads to take care the rcu boost case.
6939 */
6940 synchronize_rcu();
6941
6942 #ifdef CONFIG_SCHED_SMT
6943 /*
6944 * When going down, decrement the number of cores with SMT present.
6945 */
6946 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6947 static_branch_dec_cpuslocked(&sched_smt_present);
6948 #endif
6949
6950 if (!sched_smp_initialized)
6951 return 0;
6952
6953 ret = cpuset_cpu_inactive(cpu);
6954 if (ret) {
6955 set_cpu_active(cpu, true);
6956 return ret;
6957 }
6958 sched_domains_numa_masks_clear(cpu);
6959 return 0;
6960 }
6961
sched_rq_cpu_starting(unsigned int cpu)6962 static void sched_rq_cpu_starting(unsigned int cpu)
6963 {
6964 struct rq *rq = cpu_rq(cpu);
6965
6966 rq->calc_load_update = calc_load_update;
6967 update_max_interval();
6968 }
6969
sched_cpu_starting(unsigned int cpu)6970 int sched_cpu_starting(unsigned int cpu)
6971 {
6972 sched_rq_cpu_starting(cpu);
6973 sched_tick_start(cpu);
6974 return 0;
6975 }
6976
6977 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)6978 int sched_cpu_dying(unsigned int cpu)
6979 {
6980 struct rq *rq = cpu_rq(cpu);
6981 struct rq_flags rf;
6982
6983 /* Handle pending wakeups and then migrate everything off */
6984 sched_tick_stop(cpu);
6985
6986 rq_lock_irqsave(rq, &rf);
6987 if (rq->rd) {
6988 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6989 set_rq_offline(rq);
6990 }
6991 migrate_tasks(rq, &rf);
6992 BUG_ON(rq->nr_running != 1);
6993 rq_unlock_irqrestore(rq, &rf);
6994
6995 calc_load_migrate(rq);
6996 update_max_interval();
6997 nohz_balance_exit_idle(rq);
6998 hrtick_clear(rq);
6999 return 0;
7000 }
7001 #endif
7002
sched_init_smp(void)7003 void __init sched_init_smp(void)
7004 {
7005 sched_init_numa();
7006
7007 /*
7008 * There's no userspace yet to cause hotplug operations; hence all the
7009 * CPU masks are stable and all blatant races in the below code cannot
7010 * happen.
7011 */
7012 mutex_lock(&sched_domains_mutex);
7013 sched_init_domains(cpu_active_mask);
7014 mutex_unlock(&sched_domains_mutex);
7015
7016 /* Move init over to a non-isolated CPU */
7017 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7018 BUG();
7019 sched_init_granularity();
7020
7021 init_sched_rt_class();
7022 init_sched_dl_class();
7023
7024 sched_smp_initialized = true;
7025 }
7026
migration_init(void)7027 static int __init migration_init(void)
7028 {
7029 sched_cpu_starting(smp_processor_id());
7030 return 0;
7031 }
7032 early_initcall(migration_init);
7033
7034 #else
sched_init_smp(void)7035 void __init sched_init_smp(void)
7036 {
7037 sched_init_granularity();
7038 }
7039 #endif /* CONFIG_SMP */
7040
in_sched_functions(unsigned long addr)7041 int in_sched_functions(unsigned long addr)
7042 {
7043 return in_lock_functions(addr) ||
7044 (addr >= (unsigned long)__sched_text_start
7045 && addr < (unsigned long)__sched_text_end);
7046 }
7047
7048 #ifdef CONFIG_CGROUP_SCHED
7049 /*
7050 * Default task group.
7051 * Every task in system belongs to this group at bootup.
7052 */
7053 struct task_group root_task_group;
7054 LIST_HEAD(task_groups);
7055
7056 /* Cacheline aligned slab cache for task_group */
7057 static struct kmem_cache *task_group_cache __read_mostly;
7058 #endif
7059
7060 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7061 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7062
sched_init(void)7063 void __init sched_init(void)
7064 {
7065 unsigned long ptr = 0;
7066 int i;
7067
7068 /* Make sure the linker didn't screw up */
7069 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7070 &fair_sched_class + 1 != &rt_sched_class ||
7071 &rt_sched_class + 1 != &dl_sched_class);
7072 #ifdef CONFIG_SMP
7073 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7074 #endif
7075
7076 wait_bit_init();
7077
7078 #ifdef CONFIG_FAIR_GROUP_SCHED
7079 ptr += 2 * nr_cpu_ids * sizeof(void **);
7080 #endif
7081 #ifdef CONFIG_RT_GROUP_SCHED
7082 ptr += 2 * nr_cpu_ids * sizeof(void **);
7083 #endif
7084 if (ptr) {
7085 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7086
7087 #ifdef CONFIG_FAIR_GROUP_SCHED
7088 root_task_group.se = (struct sched_entity **)ptr;
7089 ptr += nr_cpu_ids * sizeof(void **);
7090
7091 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7092 ptr += nr_cpu_ids * sizeof(void **);
7093
7094 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7095 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7096 #endif /* CONFIG_FAIR_GROUP_SCHED */
7097 #ifdef CONFIG_RT_GROUP_SCHED
7098 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7099 ptr += nr_cpu_ids * sizeof(void **);
7100
7101 root_task_group.rt_rq = (struct rt_rq **)ptr;
7102 ptr += nr_cpu_ids * sizeof(void **);
7103
7104 #endif /* CONFIG_RT_GROUP_SCHED */
7105 }
7106 #ifdef CONFIG_CPUMASK_OFFSTACK
7107 for_each_possible_cpu(i) {
7108 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7109 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7110 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7111 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7112 }
7113 #endif /* CONFIG_CPUMASK_OFFSTACK */
7114
7115 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7116 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7117
7118 #ifdef CONFIG_SMP
7119 init_defrootdomain();
7120 #endif
7121
7122 #ifdef CONFIG_RT_GROUP_SCHED
7123 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7124 global_rt_period(), global_rt_runtime());
7125 #endif /* CONFIG_RT_GROUP_SCHED */
7126
7127 #ifdef CONFIG_CGROUP_SCHED
7128 task_group_cache = KMEM_CACHE(task_group, 0);
7129
7130 list_add(&root_task_group.list, &task_groups);
7131 INIT_LIST_HEAD(&root_task_group.children);
7132 INIT_LIST_HEAD(&root_task_group.siblings);
7133 autogroup_init(&init_task);
7134 #endif /* CONFIG_CGROUP_SCHED */
7135
7136 for_each_possible_cpu(i) {
7137 struct rq *rq;
7138
7139 rq = cpu_rq(i);
7140 raw_spin_lock_init(&rq->lock);
7141 rq->nr_running = 0;
7142 rq->calc_load_active = 0;
7143 rq->calc_load_update = jiffies + LOAD_FREQ;
7144 init_cfs_rq(&rq->cfs);
7145 init_rt_rq(&rq->rt);
7146 init_dl_rq(&rq->dl);
7147 #ifdef CONFIG_FAIR_GROUP_SCHED
7148 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7149 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7150 /*
7151 * How much CPU bandwidth does root_task_group get?
7152 *
7153 * In case of task-groups formed thr' the cgroup filesystem, it
7154 * gets 100% of the CPU resources in the system. This overall
7155 * system CPU resource is divided among the tasks of
7156 * root_task_group and its child task-groups in a fair manner,
7157 * based on each entity's (task or task-group's) weight
7158 * (se->load.weight).
7159 *
7160 * In other words, if root_task_group has 10 tasks of weight
7161 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7162 * then A0's share of the CPU resource is:
7163 *
7164 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7165 *
7166 * We achieve this by letting root_task_group's tasks sit
7167 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7168 */
7169 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7170 #endif /* CONFIG_FAIR_GROUP_SCHED */
7171
7172 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7173 #ifdef CONFIG_RT_GROUP_SCHED
7174 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7175 #endif
7176 #ifdef CONFIG_SMP
7177 rq->sd = NULL;
7178 rq->rd = NULL;
7179 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7180 rq->balance_callback = NULL;
7181 rq->active_balance = 0;
7182 rq->next_balance = jiffies;
7183 rq->push_cpu = 0;
7184 rq->cpu = i;
7185 rq->online = 0;
7186 rq->idle_stamp = 0;
7187 rq->avg_idle = 2*sysctl_sched_migration_cost;
7188 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7189
7190 INIT_LIST_HEAD(&rq->cfs_tasks);
7191
7192 rq_attach_root(rq, &def_root_domain);
7193 #ifdef CONFIG_NO_HZ_COMMON
7194 rq->last_blocked_load_update_tick = jiffies;
7195 atomic_set(&rq->nohz_flags, 0);
7196
7197 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7198 #endif
7199 #endif /* CONFIG_SMP */
7200 hrtick_rq_init(rq);
7201 atomic_set(&rq->nr_iowait, 0);
7202 }
7203
7204 set_load_weight(&init_task, false);
7205
7206 /*
7207 * The boot idle thread does lazy MMU switching as well:
7208 */
7209 mmgrab(&init_mm);
7210 enter_lazy_tlb(&init_mm, current);
7211
7212 /*
7213 * Make us the idle thread. Technically, schedule() should not be
7214 * called from this thread, however somewhere below it might be,
7215 * but because we are the idle thread, we just pick up running again
7216 * when this runqueue becomes "idle".
7217 */
7218 init_idle(current, smp_processor_id());
7219
7220 calc_load_update = jiffies + LOAD_FREQ;
7221
7222 #ifdef CONFIG_SMP
7223 idle_thread_set_boot_cpu();
7224 #endif
7225 init_sched_fair_class();
7226
7227 init_schedstats();
7228
7229 psi_init();
7230
7231 init_uclamp();
7232
7233 scheduler_running = 1;
7234 }
7235
7236 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7237 static inline int preempt_count_equals(int preempt_offset)
7238 {
7239 int nested = preempt_count() + rcu_preempt_depth();
7240
7241 return (nested == preempt_offset);
7242 }
7243
__might_sleep(const char * file,int line,int preempt_offset)7244 void __might_sleep(const char *file, int line, int preempt_offset)
7245 {
7246 /*
7247 * Blocking primitives will set (and therefore destroy) current->state,
7248 * since we will exit with TASK_RUNNING make sure we enter with it,
7249 * otherwise we will destroy state.
7250 */
7251 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7252 "do not call blocking ops when !TASK_RUNNING; "
7253 "state=%lx set at [<%p>] %pS\n",
7254 current->state,
7255 (void *)current->task_state_change,
7256 (void *)current->task_state_change);
7257
7258 ___might_sleep(file, line, preempt_offset);
7259 }
7260 EXPORT_SYMBOL(__might_sleep);
7261
___might_sleep(const char * file,int line,int preempt_offset)7262 void ___might_sleep(const char *file, int line, int preempt_offset)
7263 {
7264 /* Ratelimiting timestamp: */
7265 static unsigned long prev_jiffy;
7266
7267 unsigned long preempt_disable_ip;
7268
7269 /* WARN_ON_ONCE() by default, no rate limit required: */
7270 rcu_sleep_check();
7271
7272 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7273 !is_idle_task(current) && !current->non_block_count) ||
7274 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7275 oops_in_progress)
7276 return;
7277
7278 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7279 return;
7280 prev_jiffy = jiffies;
7281
7282 /* Save this before calling printk(), since that will clobber it: */
7283 preempt_disable_ip = get_preempt_disable_ip(current);
7284
7285 printk(KERN_ERR
7286 "BUG: sleeping function called from invalid context at %s:%d\n",
7287 file, line);
7288 printk(KERN_ERR
7289 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7290 in_atomic(), irqs_disabled(), current->non_block_count,
7291 current->pid, current->comm);
7292
7293 if (task_stack_end_corrupted(current))
7294 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7295
7296 debug_show_held_locks(current);
7297 if (irqs_disabled())
7298 print_irqtrace_events(current);
7299 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7300 && !preempt_count_equals(preempt_offset)) {
7301 pr_err("Preemption disabled at:");
7302 print_ip_sym(KERN_ERR, preempt_disable_ip);
7303 }
7304 dump_stack();
7305 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7306 }
7307 EXPORT_SYMBOL(___might_sleep);
7308
__cant_sleep(const char * file,int line,int preempt_offset)7309 void __cant_sleep(const char *file, int line, int preempt_offset)
7310 {
7311 static unsigned long prev_jiffy;
7312
7313 if (irqs_disabled())
7314 return;
7315
7316 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7317 return;
7318
7319 if (preempt_count() > preempt_offset)
7320 return;
7321
7322 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7323 return;
7324 prev_jiffy = jiffies;
7325
7326 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7327 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7328 in_atomic(), irqs_disabled(),
7329 current->pid, current->comm);
7330
7331 debug_show_held_locks(current);
7332 dump_stack();
7333 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7334 }
7335 EXPORT_SYMBOL_GPL(__cant_sleep);
7336 #endif
7337
7338 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7339 void normalize_rt_tasks(void)
7340 {
7341 struct task_struct *g, *p;
7342 struct sched_attr attr = {
7343 .sched_policy = SCHED_NORMAL,
7344 };
7345
7346 read_lock(&tasklist_lock);
7347 for_each_process_thread(g, p) {
7348 /*
7349 * Only normalize user tasks:
7350 */
7351 if (p->flags & PF_KTHREAD)
7352 continue;
7353
7354 p->se.exec_start = 0;
7355 schedstat_set(p->se.statistics.wait_start, 0);
7356 schedstat_set(p->se.statistics.sleep_start, 0);
7357 schedstat_set(p->se.statistics.block_start, 0);
7358
7359 if (!dl_task(p) && !rt_task(p)) {
7360 /*
7361 * Renice negative nice level userspace
7362 * tasks back to 0:
7363 */
7364 if (task_nice(p) < 0)
7365 set_user_nice(p, 0);
7366 continue;
7367 }
7368
7369 __sched_setscheduler(p, &attr, false, false);
7370 }
7371 read_unlock(&tasklist_lock);
7372 }
7373
7374 #endif /* CONFIG_MAGIC_SYSRQ */
7375
7376 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7377 /*
7378 * These functions are only useful for the IA64 MCA handling, or kdb.
7379 *
7380 * They can only be called when the whole system has been
7381 * stopped - every CPU needs to be quiescent, and no scheduling
7382 * activity can take place. Using them for anything else would
7383 * be a serious bug, and as a result, they aren't even visible
7384 * under any other configuration.
7385 */
7386
7387 /**
7388 * curr_task - return the current task for a given CPU.
7389 * @cpu: the processor in question.
7390 *
7391 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7392 *
7393 * Return: The current task for @cpu.
7394 */
curr_task(int cpu)7395 struct task_struct *curr_task(int cpu)
7396 {
7397 return cpu_curr(cpu);
7398 }
7399
7400 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7401
7402 #ifdef CONFIG_IA64
7403 /**
7404 * ia64_set_curr_task - set the current task for a given CPU.
7405 * @cpu: the processor in question.
7406 * @p: the task pointer to set.
7407 *
7408 * Description: This function must only be used when non-maskable interrupts
7409 * are serviced on a separate stack. It allows the architecture to switch the
7410 * notion of the current task on a CPU in a non-blocking manner. This function
7411 * must be called with all CPU's synchronized, and interrupts disabled, the
7412 * and caller must save the original value of the current task (see
7413 * curr_task() above) and restore that value before reenabling interrupts and
7414 * re-starting the system.
7415 *
7416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7417 */
ia64_set_curr_task(int cpu,struct task_struct * p)7418 void ia64_set_curr_task(int cpu, struct task_struct *p)
7419 {
7420 cpu_curr(cpu) = p;
7421 }
7422
7423 #endif
7424
7425 #ifdef CONFIG_CGROUP_SCHED
7426 /* task_group_lock serializes the addition/removal of task groups */
7427 static DEFINE_SPINLOCK(task_group_lock);
7428
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)7429 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7430 struct task_group *parent)
7431 {
7432 #ifdef CONFIG_UCLAMP_TASK_GROUP
7433 enum uclamp_id clamp_id;
7434
7435 for_each_clamp_id(clamp_id) {
7436 uclamp_se_set(&tg->uclamp_req[clamp_id],
7437 uclamp_none(clamp_id), false);
7438 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7439 }
7440 #endif
7441 }
7442
sched_free_group(struct task_group * tg)7443 static void sched_free_group(struct task_group *tg)
7444 {
7445 free_fair_sched_group(tg);
7446 free_rt_sched_group(tg);
7447 autogroup_free(tg);
7448 kmem_cache_free(task_group_cache, tg);
7449 }
7450
7451 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7452 struct task_group *sched_create_group(struct task_group *parent)
7453 {
7454 struct task_group *tg;
7455
7456 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7457 if (!tg)
7458 return ERR_PTR(-ENOMEM);
7459
7460 if (!alloc_fair_sched_group(tg, parent))
7461 goto err;
7462
7463 if (!alloc_rt_sched_group(tg, parent))
7464 goto err;
7465
7466 alloc_uclamp_sched_group(tg, parent);
7467
7468 return tg;
7469
7470 err:
7471 sched_free_group(tg);
7472 return ERR_PTR(-ENOMEM);
7473 }
7474
sched_online_group(struct task_group * tg,struct task_group * parent)7475 void sched_online_group(struct task_group *tg, struct task_group *parent)
7476 {
7477 unsigned long flags;
7478
7479 spin_lock_irqsave(&task_group_lock, flags);
7480 list_add_rcu(&tg->list, &task_groups);
7481
7482 /* Root should already exist: */
7483 WARN_ON(!parent);
7484
7485 tg->parent = parent;
7486 INIT_LIST_HEAD(&tg->children);
7487 list_add_rcu(&tg->siblings, &parent->children);
7488 spin_unlock_irqrestore(&task_group_lock, flags);
7489
7490 online_fair_sched_group(tg);
7491 }
7492
7493 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)7494 static void sched_free_group_rcu(struct rcu_head *rhp)
7495 {
7496 /* Now it should be safe to free those cfs_rqs: */
7497 sched_free_group(container_of(rhp, struct task_group, rcu));
7498 }
7499
sched_destroy_group(struct task_group * tg)7500 void sched_destroy_group(struct task_group *tg)
7501 {
7502 /* Wait for possible concurrent references to cfs_rqs complete: */
7503 call_rcu(&tg->rcu, sched_free_group_rcu);
7504 }
7505
sched_offline_group(struct task_group * tg)7506 void sched_offline_group(struct task_group *tg)
7507 {
7508 unsigned long flags;
7509
7510 /* End participation in shares distribution: */
7511 unregister_fair_sched_group(tg);
7512
7513 spin_lock_irqsave(&task_group_lock, flags);
7514 list_del_rcu(&tg->list);
7515 list_del_rcu(&tg->siblings);
7516 spin_unlock_irqrestore(&task_group_lock, flags);
7517 }
7518
sched_change_group(struct task_struct * tsk,int type)7519 static void sched_change_group(struct task_struct *tsk, int type)
7520 {
7521 struct task_group *tg;
7522
7523 /*
7524 * All callers are synchronized by task_rq_lock(); we do not use RCU
7525 * which is pointless here. Thus, we pass "true" to task_css_check()
7526 * to prevent lockdep warnings.
7527 */
7528 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7529 struct task_group, css);
7530 tg = autogroup_task_group(tsk, tg);
7531 tsk->sched_task_group = tg;
7532
7533 #ifdef CONFIG_FAIR_GROUP_SCHED
7534 if (tsk->sched_class->task_change_group)
7535 tsk->sched_class->task_change_group(tsk, type);
7536 else
7537 #endif
7538 set_task_rq(tsk, task_cpu(tsk));
7539 }
7540
7541 /*
7542 * Change task's runqueue when it moves between groups.
7543 *
7544 * The caller of this function should have put the task in its new group by
7545 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7546 * its new group.
7547 */
sched_move_task(struct task_struct * tsk)7548 void sched_move_task(struct task_struct *tsk)
7549 {
7550 int queued, running, queue_flags =
7551 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7552 struct rq_flags rf;
7553 struct rq *rq;
7554
7555 rq = task_rq_lock(tsk, &rf);
7556 update_rq_clock(rq);
7557
7558 running = task_current(rq, tsk);
7559 queued = task_on_rq_queued(tsk);
7560
7561 if (queued)
7562 dequeue_task(rq, tsk, queue_flags);
7563 if (running)
7564 put_prev_task(rq, tsk);
7565
7566 sched_change_group(tsk, TASK_MOVE_GROUP);
7567
7568 if (queued)
7569 enqueue_task(rq, tsk, queue_flags);
7570 if (running) {
7571 set_next_task(rq, tsk);
7572 /*
7573 * After changing group, the running task may have joined a
7574 * throttled one but it's still the running task. Trigger a
7575 * resched to make sure that task can still run.
7576 */
7577 resched_curr(rq);
7578 }
7579
7580 task_rq_unlock(rq, tsk, &rf);
7581 }
7582
css_tg(struct cgroup_subsys_state * css)7583 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7584 {
7585 return css ? container_of(css, struct task_group, css) : NULL;
7586 }
7587
7588 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)7589 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7590 {
7591 struct task_group *parent = css_tg(parent_css);
7592 struct task_group *tg;
7593
7594 if (!parent) {
7595 /* This is early initialization for the top cgroup */
7596 return &root_task_group.css;
7597 }
7598
7599 tg = sched_create_group(parent);
7600 if (IS_ERR(tg))
7601 return ERR_PTR(-ENOMEM);
7602
7603 return &tg->css;
7604 }
7605
7606 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)7607 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7608 {
7609 struct task_group *tg = css_tg(css);
7610 struct task_group *parent = css_tg(css->parent);
7611
7612 if (parent)
7613 sched_online_group(tg, parent);
7614
7615 #ifdef CONFIG_UCLAMP_TASK_GROUP
7616 /* Propagate the effective uclamp value for the new group */
7617 cpu_util_update_eff(css);
7618 #endif
7619
7620 return 0;
7621 }
7622
cpu_cgroup_css_released(struct cgroup_subsys_state * css)7623 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7624 {
7625 struct task_group *tg = css_tg(css);
7626
7627 sched_offline_group(tg);
7628 }
7629
cpu_cgroup_css_free(struct cgroup_subsys_state * css)7630 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7631 {
7632 struct task_group *tg = css_tg(css);
7633
7634 /*
7635 * Relies on the RCU grace period between css_released() and this.
7636 */
7637 sched_free_group(tg);
7638 }
7639
7640 /*
7641 * This is called before wake_up_new_task(), therefore we really only
7642 * have to set its group bits, all the other stuff does not apply.
7643 */
cpu_cgroup_fork(struct task_struct * task)7644 static void cpu_cgroup_fork(struct task_struct *task)
7645 {
7646 struct rq_flags rf;
7647 struct rq *rq;
7648
7649 rq = task_rq_lock(task, &rf);
7650
7651 update_rq_clock(rq);
7652 sched_change_group(task, TASK_SET_GROUP);
7653
7654 task_rq_unlock(rq, task, &rf);
7655 }
7656
cpu_cgroup_can_attach(struct cgroup_taskset * tset)7657 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7658 {
7659 struct task_struct *task;
7660 struct cgroup_subsys_state *css;
7661 int ret = 0;
7662
7663 cgroup_taskset_for_each(task, css, tset) {
7664 #ifdef CONFIG_RT_GROUP_SCHED
7665 if (!sched_rt_can_attach(css_tg(css), task))
7666 return -EINVAL;
7667 #endif
7668 /*
7669 * Serialize against wake_up_new_task() such that if its
7670 * running, we're sure to observe its full state.
7671 */
7672 raw_spin_lock_irq(&task->pi_lock);
7673 /*
7674 * Avoid calling sched_move_task() before wake_up_new_task()
7675 * has happened. This would lead to problems with PELT, due to
7676 * move wanting to detach+attach while we're not attached yet.
7677 */
7678 if (task->state == TASK_NEW)
7679 ret = -EINVAL;
7680 raw_spin_unlock_irq(&task->pi_lock);
7681
7682 if (ret)
7683 break;
7684 }
7685 return ret;
7686 }
7687
cpu_cgroup_attach(struct cgroup_taskset * tset)7688 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7689 {
7690 struct task_struct *task;
7691 struct cgroup_subsys_state *css;
7692
7693 cgroup_taskset_for_each(task, css, tset)
7694 sched_move_task(task);
7695 }
7696
7697 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)7698 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7699 {
7700 struct cgroup_subsys_state *top_css = css;
7701 struct uclamp_se *uc_parent = NULL;
7702 struct uclamp_se *uc_se = NULL;
7703 unsigned int eff[UCLAMP_CNT];
7704 enum uclamp_id clamp_id;
7705 unsigned int clamps;
7706
7707 css_for_each_descendant_pre(css, top_css) {
7708 uc_parent = css_tg(css)->parent
7709 ? css_tg(css)->parent->uclamp : NULL;
7710
7711 for_each_clamp_id(clamp_id) {
7712 /* Assume effective clamps matches requested clamps */
7713 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7714 /* Cap effective clamps with parent's effective clamps */
7715 if (uc_parent &&
7716 eff[clamp_id] > uc_parent[clamp_id].value) {
7717 eff[clamp_id] = uc_parent[clamp_id].value;
7718 }
7719 }
7720 /* Ensure protection is always capped by limit */
7721 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7722
7723 /* Propagate most restrictive effective clamps */
7724 clamps = 0x0;
7725 uc_se = css_tg(css)->uclamp;
7726 for_each_clamp_id(clamp_id) {
7727 if (eff[clamp_id] == uc_se[clamp_id].value)
7728 continue;
7729 uc_se[clamp_id].value = eff[clamp_id];
7730 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7731 clamps |= (0x1 << clamp_id);
7732 }
7733 if (!clamps) {
7734 css = css_rightmost_descendant(css);
7735 continue;
7736 }
7737
7738 /* Immediately update descendants RUNNABLE tasks */
7739 uclamp_update_active_tasks(css, clamps);
7740 }
7741 }
7742
7743 /*
7744 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7745 * C expression. Since there is no way to convert a macro argument (N) into a
7746 * character constant, use two levels of macros.
7747 */
7748 #define _POW10(exp) ((unsigned int)1e##exp)
7749 #define POW10(exp) _POW10(exp)
7750
7751 struct uclamp_request {
7752 #define UCLAMP_PERCENT_SHIFT 2
7753 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7754 s64 percent;
7755 u64 util;
7756 int ret;
7757 };
7758
7759 static inline struct uclamp_request
capacity_from_percent(char * buf)7760 capacity_from_percent(char *buf)
7761 {
7762 struct uclamp_request req = {
7763 .percent = UCLAMP_PERCENT_SCALE,
7764 .util = SCHED_CAPACITY_SCALE,
7765 .ret = 0,
7766 };
7767
7768 buf = strim(buf);
7769 if (strcmp(buf, "max")) {
7770 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7771 &req.percent);
7772 if (req.ret)
7773 return req;
7774 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7775 req.ret = -ERANGE;
7776 return req;
7777 }
7778
7779 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7780 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7781 }
7782
7783 return req;
7784 }
7785
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)7786 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7787 size_t nbytes, loff_t off,
7788 enum uclamp_id clamp_id)
7789 {
7790 struct uclamp_request req;
7791 struct task_group *tg;
7792
7793 req = capacity_from_percent(buf);
7794 if (req.ret)
7795 return req.ret;
7796
7797 static_branch_enable(&sched_uclamp_used);
7798
7799 mutex_lock(&uclamp_mutex);
7800 rcu_read_lock();
7801
7802 tg = css_tg(of_css(of));
7803 if (tg->uclamp_req[clamp_id].value != req.util)
7804 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7805
7806 /*
7807 * Because of not recoverable conversion rounding we keep track of the
7808 * exact requested value
7809 */
7810 tg->uclamp_pct[clamp_id] = req.percent;
7811
7812 /* Update effective clamps to track the most restrictive value */
7813 cpu_util_update_eff(of_css(of));
7814
7815 rcu_read_unlock();
7816 mutex_unlock(&uclamp_mutex);
7817
7818 return nbytes;
7819 }
7820
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7821 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7822 char *buf, size_t nbytes,
7823 loff_t off)
7824 {
7825 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7826 }
7827
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7828 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7829 char *buf, size_t nbytes,
7830 loff_t off)
7831 {
7832 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7833 }
7834
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)7835 static inline void cpu_uclamp_print(struct seq_file *sf,
7836 enum uclamp_id clamp_id)
7837 {
7838 struct task_group *tg;
7839 u64 util_clamp;
7840 u64 percent;
7841 u32 rem;
7842
7843 rcu_read_lock();
7844 tg = css_tg(seq_css(sf));
7845 util_clamp = tg->uclamp_req[clamp_id].value;
7846 rcu_read_unlock();
7847
7848 if (util_clamp == SCHED_CAPACITY_SCALE) {
7849 seq_puts(sf, "max\n");
7850 return;
7851 }
7852
7853 percent = tg->uclamp_pct[clamp_id];
7854 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7855 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7856 }
7857
cpu_uclamp_min_show(struct seq_file * sf,void * v)7858 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7859 {
7860 cpu_uclamp_print(sf, UCLAMP_MIN);
7861 return 0;
7862 }
7863
cpu_uclamp_max_show(struct seq_file * sf,void * v)7864 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7865 {
7866 cpu_uclamp_print(sf, UCLAMP_MAX);
7867 return 0;
7868 }
7869 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7870
7871 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)7872 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7873 struct cftype *cftype, u64 shareval)
7874 {
7875 if (shareval > scale_load_down(ULONG_MAX))
7876 shareval = MAX_SHARES;
7877 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7878 }
7879
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7880 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7881 struct cftype *cft)
7882 {
7883 struct task_group *tg = css_tg(css);
7884
7885 return (u64) scale_load_down(tg->shares);
7886 }
7887
7888 #ifdef CONFIG_CFS_BANDWIDTH
7889 static DEFINE_MUTEX(cfs_constraints_mutex);
7890
7891 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7892 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7893 /* More than 203 days if BW_SHIFT equals 20. */
7894 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7895
7896 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7897
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)7898 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7899 {
7900 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7901 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7902
7903 if (tg == &root_task_group)
7904 return -EINVAL;
7905
7906 /*
7907 * Ensure we have at some amount of bandwidth every period. This is
7908 * to prevent reaching a state of large arrears when throttled via
7909 * entity_tick() resulting in prolonged exit starvation.
7910 */
7911 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7912 return -EINVAL;
7913
7914 /*
7915 * Likewise, bound things on the otherside by preventing insane quota
7916 * periods. This also allows us to normalize in computing quota
7917 * feasibility.
7918 */
7919 if (period > max_cfs_quota_period)
7920 return -EINVAL;
7921
7922 /*
7923 * Bound quota to defend quota against overflow during bandwidth shift.
7924 */
7925 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7926 return -EINVAL;
7927
7928 /*
7929 * Prevent race between setting of cfs_rq->runtime_enabled and
7930 * unthrottle_offline_cfs_rqs().
7931 */
7932 get_online_cpus();
7933 mutex_lock(&cfs_constraints_mutex);
7934 ret = __cfs_schedulable(tg, period, quota);
7935 if (ret)
7936 goto out_unlock;
7937
7938 runtime_enabled = quota != RUNTIME_INF;
7939 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7940 /*
7941 * If we need to toggle cfs_bandwidth_used, off->on must occur
7942 * before making related changes, and on->off must occur afterwards
7943 */
7944 if (runtime_enabled && !runtime_was_enabled)
7945 cfs_bandwidth_usage_inc();
7946 raw_spin_lock_irq(&cfs_b->lock);
7947 cfs_b->period = ns_to_ktime(period);
7948 cfs_b->quota = quota;
7949
7950 __refill_cfs_bandwidth_runtime(cfs_b);
7951
7952 /* Restart the period timer (if active) to handle new period expiry: */
7953 if (runtime_enabled)
7954 start_cfs_bandwidth(cfs_b);
7955
7956 raw_spin_unlock_irq(&cfs_b->lock);
7957
7958 for_each_online_cpu(i) {
7959 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7960 struct rq *rq = cfs_rq->rq;
7961 struct rq_flags rf;
7962
7963 rq_lock_irq(rq, &rf);
7964 cfs_rq->runtime_enabled = runtime_enabled;
7965 cfs_rq->runtime_remaining = 0;
7966
7967 if (cfs_rq->throttled)
7968 unthrottle_cfs_rq(cfs_rq);
7969 rq_unlock_irq(rq, &rf);
7970 }
7971 if (runtime_was_enabled && !runtime_enabled)
7972 cfs_bandwidth_usage_dec();
7973 out_unlock:
7974 mutex_unlock(&cfs_constraints_mutex);
7975 put_online_cpus();
7976
7977 return ret;
7978 }
7979
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)7980 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7981 {
7982 u64 quota, period;
7983
7984 period = ktime_to_ns(tg->cfs_bandwidth.period);
7985 if (cfs_quota_us < 0)
7986 quota = RUNTIME_INF;
7987 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7988 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7989 else
7990 return -EINVAL;
7991
7992 return tg_set_cfs_bandwidth(tg, period, quota);
7993 }
7994
tg_get_cfs_quota(struct task_group * tg)7995 static long tg_get_cfs_quota(struct task_group *tg)
7996 {
7997 u64 quota_us;
7998
7999 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8000 return -1;
8001
8002 quota_us = tg->cfs_bandwidth.quota;
8003 do_div(quota_us, NSEC_PER_USEC);
8004
8005 return quota_us;
8006 }
8007
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8008 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8009 {
8010 u64 quota, period;
8011
8012 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8013 return -EINVAL;
8014
8015 period = (u64)cfs_period_us * NSEC_PER_USEC;
8016 quota = tg->cfs_bandwidth.quota;
8017
8018 return tg_set_cfs_bandwidth(tg, period, quota);
8019 }
8020
tg_get_cfs_period(struct task_group * tg)8021 static long tg_get_cfs_period(struct task_group *tg)
8022 {
8023 u64 cfs_period_us;
8024
8025 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8026 do_div(cfs_period_us, NSEC_PER_USEC);
8027
8028 return cfs_period_us;
8029 }
8030
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8031 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8032 struct cftype *cft)
8033 {
8034 return tg_get_cfs_quota(css_tg(css));
8035 }
8036
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8037 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8038 struct cftype *cftype, s64 cfs_quota_us)
8039 {
8040 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8041 }
8042
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8043 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8044 struct cftype *cft)
8045 {
8046 return tg_get_cfs_period(css_tg(css));
8047 }
8048
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8049 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8050 struct cftype *cftype, u64 cfs_period_us)
8051 {
8052 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8053 }
8054
8055 struct cfs_schedulable_data {
8056 struct task_group *tg;
8057 u64 period, quota;
8058 };
8059
8060 /*
8061 * normalize group quota/period to be quota/max_period
8062 * note: units are usecs
8063 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8064 static u64 normalize_cfs_quota(struct task_group *tg,
8065 struct cfs_schedulable_data *d)
8066 {
8067 u64 quota, period;
8068
8069 if (tg == d->tg) {
8070 period = d->period;
8071 quota = d->quota;
8072 } else {
8073 period = tg_get_cfs_period(tg);
8074 quota = tg_get_cfs_quota(tg);
8075 }
8076
8077 /* note: these should typically be equivalent */
8078 if (quota == RUNTIME_INF || quota == -1)
8079 return RUNTIME_INF;
8080
8081 return to_ratio(period, quota);
8082 }
8083
tg_cfs_schedulable_down(struct task_group * tg,void * data)8084 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8085 {
8086 struct cfs_schedulable_data *d = data;
8087 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8088 s64 quota = 0, parent_quota = -1;
8089
8090 if (!tg->parent) {
8091 quota = RUNTIME_INF;
8092 } else {
8093 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8094
8095 quota = normalize_cfs_quota(tg, d);
8096 parent_quota = parent_b->hierarchical_quota;
8097
8098 /*
8099 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8100 * always take the min. On cgroup1, only inherit when no
8101 * limit is set:
8102 */
8103 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8104 quota = min(quota, parent_quota);
8105 } else {
8106 if (quota == RUNTIME_INF)
8107 quota = parent_quota;
8108 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8109 return -EINVAL;
8110 }
8111 }
8112 cfs_b->hierarchical_quota = quota;
8113
8114 return 0;
8115 }
8116
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8117 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8118 {
8119 int ret;
8120 struct cfs_schedulable_data data = {
8121 .tg = tg,
8122 .period = period,
8123 .quota = quota,
8124 };
8125
8126 if (quota != RUNTIME_INF) {
8127 do_div(data.period, NSEC_PER_USEC);
8128 do_div(data.quota, NSEC_PER_USEC);
8129 }
8130
8131 rcu_read_lock();
8132 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8133 rcu_read_unlock();
8134
8135 return ret;
8136 }
8137
cpu_cfs_stat_show(struct seq_file * sf,void * v)8138 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8139 {
8140 struct task_group *tg = css_tg(seq_css(sf));
8141 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8142
8143 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8144 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8145 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8146
8147 if (schedstat_enabled() && tg != &root_task_group) {
8148 u64 ws = 0;
8149 int i;
8150
8151 for_each_possible_cpu(i)
8152 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8153
8154 seq_printf(sf, "wait_sum %llu\n", ws);
8155 }
8156
8157 return 0;
8158 }
8159 #endif /* CONFIG_CFS_BANDWIDTH */
8160 #endif /* CONFIG_FAIR_GROUP_SCHED */
8161
8162 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8163 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8164 struct cftype *cft, s64 val)
8165 {
8166 return sched_group_set_rt_runtime(css_tg(css), val);
8167 }
8168
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8169 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8170 struct cftype *cft)
8171 {
8172 return sched_group_rt_runtime(css_tg(css));
8173 }
8174
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8175 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8176 struct cftype *cftype, u64 rt_period_us)
8177 {
8178 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8179 }
8180
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8181 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8182 struct cftype *cft)
8183 {
8184 return sched_group_rt_period(css_tg(css));
8185 }
8186 #endif /* CONFIG_RT_GROUP_SCHED */
8187
8188 static struct cftype cpu_legacy_files[] = {
8189 #ifdef CONFIG_FAIR_GROUP_SCHED
8190 {
8191 .name = "shares",
8192 .read_u64 = cpu_shares_read_u64,
8193 .write_u64 = cpu_shares_write_u64,
8194 },
8195 #endif
8196 #ifdef CONFIG_CFS_BANDWIDTH
8197 {
8198 .name = "cfs_quota_us",
8199 .read_s64 = cpu_cfs_quota_read_s64,
8200 .write_s64 = cpu_cfs_quota_write_s64,
8201 },
8202 {
8203 .name = "cfs_period_us",
8204 .read_u64 = cpu_cfs_period_read_u64,
8205 .write_u64 = cpu_cfs_period_write_u64,
8206 },
8207 {
8208 .name = "stat",
8209 .seq_show = cpu_cfs_stat_show,
8210 },
8211 #endif
8212 #ifdef CONFIG_RT_GROUP_SCHED
8213 {
8214 .name = "rt_runtime_us",
8215 .read_s64 = cpu_rt_runtime_read,
8216 .write_s64 = cpu_rt_runtime_write,
8217 },
8218 {
8219 .name = "rt_period_us",
8220 .read_u64 = cpu_rt_period_read_uint,
8221 .write_u64 = cpu_rt_period_write_uint,
8222 },
8223 #endif
8224 #ifdef CONFIG_UCLAMP_TASK_GROUP
8225 {
8226 .name = "uclamp.min",
8227 .flags = CFTYPE_NOT_ON_ROOT,
8228 .seq_show = cpu_uclamp_min_show,
8229 .write = cpu_uclamp_min_write,
8230 },
8231 {
8232 .name = "uclamp.max",
8233 .flags = CFTYPE_NOT_ON_ROOT,
8234 .seq_show = cpu_uclamp_max_show,
8235 .write = cpu_uclamp_max_write,
8236 },
8237 #endif
8238 { } /* Terminate */
8239 };
8240
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)8241 static int cpu_extra_stat_show(struct seq_file *sf,
8242 struct cgroup_subsys_state *css)
8243 {
8244 #ifdef CONFIG_CFS_BANDWIDTH
8245 {
8246 struct task_group *tg = css_tg(css);
8247 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8248 u64 throttled_usec;
8249
8250 throttled_usec = cfs_b->throttled_time;
8251 do_div(throttled_usec, NSEC_PER_USEC);
8252
8253 seq_printf(sf, "nr_periods %d\n"
8254 "nr_throttled %d\n"
8255 "throttled_usec %llu\n",
8256 cfs_b->nr_periods, cfs_b->nr_throttled,
8257 throttled_usec);
8258 }
8259 #endif
8260 return 0;
8261 }
8262
8263 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8264 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8265 struct cftype *cft)
8266 {
8267 struct task_group *tg = css_tg(css);
8268 u64 weight = scale_load_down(tg->shares);
8269
8270 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8271 }
8272
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)8273 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8274 struct cftype *cft, u64 weight)
8275 {
8276 /*
8277 * cgroup weight knobs should use the common MIN, DFL and MAX
8278 * values which are 1, 100 and 10000 respectively. While it loses
8279 * a bit of range on both ends, it maps pretty well onto the shares
8280 * value used by scheduler and the round-trip conversions preserve
8281 * the original value over the entire range.
8282 */
8283 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8284 return -ERANGE;
8285
8286 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8287
8288 return sched_group_set_shares(css_tg(css), scale_load(weight));
8289 }
8290
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8291 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8292 struct cftype *cft)
8293 {
8294 unsigned long weight = scale_load_down(css_tg(css)->shares);
8295 int last_delta = INT_MAX;
8296 int prio, delta;
8297
8298 /* find the closest nice value to the current weight */
8299 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8300 delta = abs(sched_prio_to_weight[prio] - weight);
8301 if (delta >= last_delta)
8302 break;
8303 last_delta = delta;
8304 }
8305
8306 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8307 }
8308
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)8309 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8310 struct cftype *cft, s64 nice)
8311 {
8312 unsigned long weight;
8313 int idx;
8314
8315 if (nice < MIN_NICE || nice > MAX_NICE)
8316 return -ERANGE;
8317
8318 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8319 idx = array_index_nospec(idx, 40);
8320 weight = sched_prio_to_weight[idx];
8321
8322 return sched_group_set_shares(css_tg(css), scale_load(weight));
8323 }
8324 #endif
8325
cpu_period_quota_print(struct seq_file * sf,long period,long quota)8326 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8327 long period, long quota)
8328 {
8329 if (quota < 0)
8330 seq_puts(sf, "max");
8331 else
8332 seq_printf(sf, "%ld", quota);
8333
8334 seq_printf(sf, " %ld\n", period);
8335 }
8336
8337 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)8338 static int __maybe_unused cpu_period_quota_parse(char *buf,
8339 u64 *periodp, u64 *quotap)
8340 {
8341 char tok[21]; /* U64_MAX */
8342
8343 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8344 return -EINVAL;
8345
8346 *periodp *= NSEC_PER_USEC;
8347
8348 if (sscanf(tok, "%llu", quotap))
8349 *quotap *= NSEC_PER_USEC;
8350 else if (!strcmp(tok, "max"))
8351 *quotap = RUNTIME_INF;
8352 else
8353 return -EINVAL;
8354
8355 return 0;
8356 }
8357
8358 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)8359 static int cpu_max_show(struct seq_file *sf, void *v)
8360 {
8361 struct task_group *tg = css_tg(seq_css(sf));
8362
8363 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8364 return 0;
8365 }
8366
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8367 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8368 char *buf, size_t nbytes, loff_t off)
8369 {
8370 struct task_group *tg = css_tg(of_css(of));
8371 u64 period = tg_get_cfs_period(tg);
8372 u64 quota;
8373 int ret;
8374
8375 ret = cpu_period_quota_parse(buf, &period, "a);
8376 if (!ret)
8377 ret = tg_set_cfs_bandwidth(tg, period, quota);
8378 return ret ?: nbytes;
8379 }
8380 #endif
8381
8382 static struct cftype cpu_files[] = {
8383 #ifdef CONFIG_FAIR_GROUP_SCHED
8384 {
8385 .name = "weight",
8386 .flags = CFTYPE_NOT_ON_ROOT,
8387 .read_u64 = cpu_weight_read_u64,
8388 .write_u64 = cpu_weight_write_u64,
8389 },
8390 {
8391 .name = "weight.nice",
8392 .flags = CFTYPE_NOT_ON_ROOT,
8393 .read_s64 = cpu_weight_nice_read_s64,
8394 .write_s64 = cpu_weight_nice_write_s64,
8395 },
8396 #endif
8397 #ifdef CONFIG_CFS_BANDWIDTH
8398 {
8399 .name = "max",
8400 .flags = CFTYPE_NOT_ON_ROOT,
8401 .seq_show = cpu_max_show,
8402 .write = cpu_max_write,
8403 },
8404 #endif
8405 #ifdef CONFIG_UCLAMP_TASK_GROUP
8406 {
8407 .name = "uclamp.min",
8408 .flags = CFTYPE_NOT_ON_ROOT,
8409 .seq_show = cpu_uclamp_min_show,
8410 .write = cpu_uclamp_min_write,
8411 },
8412 {
8413 .name = "uclamp.max",
8414 .flags = CFTYPE_NOT_ON_ROOT,
8415 .seq_show = cpu_uclamp_max_show,
8416 .write = cpu_uclamp_max_write,
8417 },
8418 #endif
8419 { } /* terminate */
8420 };
8421
8422 struct cgroup_subsys cpu_cgrp_subsys = {
8423 .css_alloc = cpu_cgroup_css_alloc,
8424 .css_online = cpu_cgroup_css_online,
8425 .css_released = cpu_cgroup_css_released,
8426 .css_free = cpu_cgroup_css_free,
8427 .css_extra_stat_show = cpu_extra_stat_show,
8428 .fork = cpu_cgroup_fork,
8429 .can_attach = cpu_cgroup_can_attach,
8430 .attach = cpu_cgroup_attach,
8431 .legacy_cftypes = cpu_legacy_files,
8432 .dfl_cftypes = cpu_files,
8433 .early_init = true,
8434 .threaded = true,
8435 };
8436
8437 #endif /* CONFIG_CGROUP_SCHED */
8438
dump_cpu_task(int cpu)8439 void dump_cpu_task(int cpu)
8440 {
8441 pr_info("Task dump for CPU %d:\n", cpu);
8442 sched_show_task(cpu_curr(cpu));
8443 }
8444
8445 /*
8446 * Nice levels are multiplicative, with a gentle 10% change for every
8447 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8448 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8449 * that remained on nice 0.
8450 *
8451 * The "10% effect" is relative and cumulative: from _any_ nice level,
8452 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8453 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8454 * If a task goes up by ~10% and another task goes down by ~10% then
8455 * the relative distance between them is ~25%.)
8456 */
8457 const int sched_prio_to_weight[40] = {
8458 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8459 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8460 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8461 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8462 /* 0 */ 1024, 820, 655, 526, 423,
8463 /* 5 */ 335, 272, 215, 172, 137,
8464 /* 10 */ 110, 87, 70, 56, 45,
8465 /* 15 */ 36, 29, 23, 18, 15,
8466 };
8467
8468 /*
8469 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8470 *
8471 * In cases where the weight does not change often, we can use the
8472 * precalculated inverse to speed up arithmetics by turning divisions
8473 * into multiplications:
8474 */
8475 const u32 sched_prio_to_wmult[40] = {
8476 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8477 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8478 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8479 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8480 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8481 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8482 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8483 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8484 };
8485
call_trace_sched_update_nr_running(struct rq * rq,int count)8486 void call_trace_sched_update_nr_running(struct rq *rq, int count)
8487 {
8488 trace_sched_update_nr_running_tp(rq, count);
8489 }
8490