1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update definitions shared among RCU implementations.
4 *
5 * Copyright IBM Corporation, 2011
6 *
7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8 */
9
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12
13 #include <trace/events/rcu.h>
14
15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
16 #define DYNTICK_IRQ_NONIDLE ((LONG_MAX / 2) + 1)
17
18
19 /*
20 * Grace-period counter management.
21 */
22
23 #define RCU_SEQ_CTR_SHIFT 2
24 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
25
26 /*
27 * Return the counter portion of a sequence number previously returned
28 * by rcu_seq_snap() or rcu_seq_current().
29 */
rcu_seq_ctr(unsigned long s)30 static inline unsigned long rcu_seq_ctr(unsigned long s)
31 {
32 return s >> RCU_SEQ_CTR_SHIFT;
33 }
34
35 /*
36 * Return the state portion of a sequence number previously returned
37 * by rcu_seq_snap() or rcu_seq_current().
38 */
rcu_seq_state(unsigned long s)39 static inline int rcu_seq_state(unsigned long s)
40 {
41 return s & RCU_SEQ_STATE_MASK;
42 }
43
44 /*
45 * Set the state portion of the pointed-to sequence number.
46 * The caller is responsible for preventing conflicting updates.
47 */
rcu_seq_set_state(unsigned long * sp,int newstate)48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
49 {
50 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
51 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
52 }
53
54 /* Adjust sequence number for start of update-side operation. */
rcu_seq_start(unsigned long * sp)55 static inline void rcu_seq_start(unsigned long *sp)
56 {
57 WRITE_ONCE(*sp, *sp + 1);
58 smp_mb(); /* Ensure update-side operation after counter increment. */
59 WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
60 }
61
62 /* Compute the end-of-grace-period value for the specified sequence number. */
rcu_seq_endval(unsigned long * sp)63 static inline unsigned long rcu_seq_endval(unsigned long *sp)
64 {
65 return (*sp | RCU_SEQ_STATE_MASK) + 1;
66 }
67
68 /* Adjust sequence number for end of update-side operation. */
rcu_seq_end(unsigned long * sp)69 static inline void rcu_seq_end(unsigned long *sp)
70 {
71 smp_mb(); /* Ensure update-side operation before counter increment. */
72 WARN_ON_ONCE(!rcu_seq_state(*sp));
73 WRITE_ONCE(*sp, rcu_seq_endval(sp));
74 }
75
76 /*
77 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
78 *
79 * This function returns the earliest value of the grace-period sequence number
80 * that will indicate that a full grace period has elapsed since the current
81 * time. Once the grace-period sequence number has reached this value, it will
82 * be safe to invoke all callbacks that have been registered prior to the
83 * current time. This value is the current grace-period number plus two to the
84 * power of the number of low-order bits reserved for state, then rounded up to
85 * the next value in which the state bits are all zero.
86 */
rcu_seq_snap(unsigned long * sp)87 static inline unsigned long rcu_seq_snap(unsigned long *sp)
88 {
89 unsigned long s;
90
91 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
92 smp_mb(); /* Above access must not bleed into critical section. */
93 return s;
94 }
95
96 /* Return the current value the update side's sequence number, no ordering. */
rcu_seq_current(unsigned long * sp)97 static inline unsigned long rcu_seq_current(unsigned long *sp)
98 {
99 return READ_ONCE(*sp);
100 }
101
102 /*
103 * Given a snapshot from rcu_seq_snap(), determine whether or not the
104 * corresponding update-side operation has started.
105 */
rcu_seq_started(unsigned long * sp,unsigned long s)106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107 {
108 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109 }
110
111 /*
112 * Given a snapshot from rcu_seq_snap(), determine whether or not a
113 * full update-side operation has occurred.
114 */
rcu_seq_done(unsigned long * sp,unsigned long s)115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116 {
117 return ULONG_CMP_GE(READ_ONCE(*sp), s);
118 }
119
120 /*
121 * Has a grace period completed since the time the old gp_seq was collected?
122 */
rcu_seq_completed_gp(unsigned long old,unsigned long new)123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124 {
125 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126 }
127
128 /*
129 * Has a grace period started since the time the old gp_seq was collected?
130 */
rcu_seq_new_gp(unsigned long old,unsigned long new)131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132 {
133 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134 new);
135 }
136
137 /*
138 * Roughly how many full grace periods have elapsed between the collection
139 * of the two specified grace periods?
140 */
rcu_seq_diff(unsigned long new,unsigned long old)141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142 {
143 unsigned long rnd_diff;
144
145 if (old == new)
146 return 0;
147 /*
148 * Compute the number of grace periods (still shifted up), plus
149 * one if either of new and old is not an exact grace period.
150 */
151 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155 return 1; /* Definitely no grace period has elapsed. */
156 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157 }
158
159 /*
160 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161 * by call_rcu() and rcu callback execution, and are therefore not part
162 * of the RCU API. These are in rcupdate.h because they are used by all
163 * RCU implementations.
164 */
165
166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167 # define STATE_RCU_HEAD_READY 0
168 # define STATE_RCU_HEAD_QUEUED 1
169
170 extern const struct debug_obj_descr rcuhead_debug_descr;
171
debug_rcu_head_queue(struct rcu_head * head)172 static inline int debug_rcu_head_queue(struct rcu_head *head)
173 {
174 int r1;
175
176 r1 = debug_object_activate(head, &rcuhead_debug_descr);
177 debug_object_active_state(head, &rcuhead_debug_descr,
178 STATE_RCU_HEAD_READY,
179 STATE_RCU_HEAD_QUEUED);
180 return r1;
181 }
182
debug_rcu_head_unqueue(struct rcu_head * head)183 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184 {
185 debug_object_active_state(head, &rcuhead_debug_descr,
186 STATE_RCU_HEAD_QUEUED,
187 STATE_RCU_HEAD_READY);
188 debug_object_deactivate(head, &rcuhead_debug_descr);
189 }
190 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
debug_rcu_head_queue(struct rcu_head * head)191 static inline int debug_rcu_head_queue(struct rcu_head *head)
192 {
193 return 0;
194 }
195
debug_rcu_head_unqueue(struct rcu_head * head)196 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197 {
198 }
199 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200
201 extern int rcu_cpu_stall_suppress_at_boot;
202
rcu_stall_is_suppressed_at_boot(void)203 static inline bool rcu_stall_is_suppressed_at_boot(void)
204 {
205 return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
206 }
207
208 #ifdef CONFIG_RCU_STALL_COMMON
209
210 extern int rcu_cpu_stall_ftrace_dump;
211 extern int rcu_cpu_stall_suppress;
212 extern int rcu_cpu_stall_timeout;
213 int rcu_jiffies_till_stall_check(void);
214
rcu_stall_is_suppressed(void)215 static inline bool rcu_stall_is_suppressed(void)
216 {
217 return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
218 }
219
220 #define rcu_ftrace_dump_stall_suppress() \
221 do { \
222 if (!rcu_cpu_stall_suppress) \
223 rcu_cpu_stall_suppress = 3; \
224 } while (0)
225
226 #define rcu_ftrace_dump_stall_unsuppress() \
227 do { \
228 if (rcu_cpu_stall_suppress == 3) \
229 rcu_cpu_stall_suppress = 0; \
230 } while (0)
231
232 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
233
rcu_stall_is_suppressed(void)234 static inline bool rcu_stall_is_suppressed(void)
235 {
236 return rcu_stall_is_suppressed_at_boot();
237 }
238 #define rcu_ftrace_dump_stall_suppress()
239 #define rcu_ftrace_dump_stall_unsuppress()
240 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
241
242 /*
243 * Strings used in tracepoints need to be exported via the
244 * tracing system such that tools like perf and trace-cmd can
245 * translate the string address pointers to actual text.
246 */
247 #define TPS(x) tracepoint_string(x)
248
249 /*
250 * Dump the ftrace buffer, but only one time per callsite per boot.
251 */
252 #define rcu_ftrace_dump(oops_dump_mode) \
253 do { \
254 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
255 \
256 if (!atomic_read(&___rfd_beenhere) && \
257 !atomic_xchg(&___rfd_beenhere, 1)) { \
258 tracing_off(); \
259 rcu_ftrace_dump_stall_suppress(); \
260 ftrace_dump(oops_dump_mode); \
261 rcu_ftrace_dump_stall_unsuppress(); \
262 } \
263 } while (0)
264
265 void rcu_early_boot_tests(void);
266 void rcu_test_sync_prims(void);
267
268 /*
269 * This function really isn't for public consumption, but RCU is special in
270 * that context switches can allow the state machine to make progress.
271 */
272 extern void resched_cpu(int cpu);
273
274 #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU)
275
276 #include <linux/rcu_node_tree.h>
277
278 extern int rcu_num_lvls;
279 extern int num_rcu_lvl[];
280 extern int rcu_num_nodes;
281 static bool rcu_fanout_exact;
282 static int rcu_fanout_leaf;
283
284 /*
285 * Compute the per-level fanout, either using the exact fanout specified
286 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
287 */
rcu_init_levelspread(int * levelspread,const int * levelcnt)288 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
289 {
290 int i;
291
292 for (i = 0; i < RCU_NUM_LVLS; i++)
293 levelspread[i] = INT_MIN;
294 if (rcu_fanout_exact) {
295 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
296 for (i = rcu_num_lvls - 2; i >= 0; i--)
297 levelspread[i] = RCU_FANOUT;
298 } else {
299 int ccur;
300 int cprv;
301
302 cprv = nr_cpu_ids;
303 for (i = rcu_num_lvls - 1; i >= 0; i--) {
304 ccur = levelcnt[i];
305 levelspread[i] = (cprv + ccur - 1) / ccur;
306 cprv = ccur;
307 }
308 }
309 }
310
311 /* Returns a pointer to the first leaf rcu_node structure. */
312 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
313
314 /* Is this rcu_node a leaf? */
315 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
316
317 /* Is this rcu_node the last leaf? */
318 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
319
320 /*
321 * Do a full breadth-first scan of the {s,}rcu_node structures for the
322 * specified state structure (for SRCU) or the only rcu_state structure
323 * (for RCU).
324 */
325 #define srcu_for_each_node_breadth_first(sp, rnp) \
326 for ((rnp) = &(sp)->node[0]; \
327 (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
328 #define rcu_for_each_node_breadth_first(rnp) \
329 srcu_for_each_node_breadth_first(&rcu_state, rnp)
330
331 /*
332 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
333 * Note that if there is a singleton rcu_node tree with but one rcu_node
334 * structure, this loop -will- visit the rcu_node structure. It is still
335 * a leaf node, even if it is also the root node.
336 */
337 #define rcu_for_each_leaf_node(rnp) \
338 for ((rnp) = rcu_first_leaf_node(); \
339 (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
340
341 /*
342 * Iterate over all possible CPUs in a leaf RCU node.
343 */
344 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
345 for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
346 (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
347 (cpu) <= rnp->grphi; \
348 (cpu) = cpumask_next((cpu), cpu_possible_mask))
349
350 /*
351 * Iterate over all CPUs in a leaf RCU node's specified mask.
352 */
353 #define rcu_find_next_bit(rnp, cpu, mask) \
354 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
355 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
356 for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
357 (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
358 (cpu) <= rnp->grphi; \
359 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
360
361 /*
362 * Wrappers for the rcu_node::lock acquire and release.
363 *
364 * Because the rcu_nodes form a tree, the tree traversal locking will observe
365 * different lock values, this in turn means that an UNLOCK of one level
366 * followed by a LOCK of another level does not imply a full memory barrier;
367 * and most importantly transitivity is lost.
368 *
369 * In order to restore full ordering between tree levels, augment the regular
370 * lock acquire functions with smp_mb__after_unlock_lock().
371 *
372 * As ->lock of struct rcu_node is a __private field, therefore one should use
373 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
374 */
375 #define raw_spin_lock_rcu_node(p) \
376 do { \
377 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \
378 smp_mb__after_unlock_lock(); \
379 } while (0)
380
381 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
382
383 #define raw_spin_lock_irq_rcu_node(p) \
384 do { \
385 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
386 smp_mb__after_unlock_lock(); \
387 } while (0)
388
389 #define raw_spin_unlock_irq_rcu_node(p) \
390 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
391
392 #define raw_spin_lock_irqsave_rcu_node(p, flags) \
393 do { \
394 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
395 smp_mb__after_unlock_lock(); \
396 } while (0)
397
398 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \
399 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
400
401 #define raw_spin_trylock_rcu_node(p) \
402 ({ \
403 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \
404 \
405 if (___locked) \
406 smp_mb__after_unlock_lock(); \
407 ___locked; \
408 })
409
410 #define raw_lockdep_assert_held_rcu_node(p) \
411 lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
412
413 #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */
414
415 #ifdef CONFIG_SRCU
416 void srcu_init(void);
417 #else /* #ifdef CONFIG_SRCU */
srcu_init(void)418 static inline void srcu_init(void) { }
419 #endif /* #else #ifdef CONFIG_SRCU */
420
421 #ifdef CONFIG_TINY_RCU
422 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_normal(void)423 static inline bool rcu_gp_is_normal(void) { return true; }
rcu_gp_is_expedited(void)424 static inline bool rcu_gp_is_expedited(void) { return false; }
rcu_expedite_gp(void)425 static inline void rcu_expedite_gp(void) { }
rcu_unexpedite_gp(void)426 static inline void rcu_unexpedite_gp(void) { }
rcu_request_urgent_qs_task(struct task_struct * t)427 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
428 #else /* #ifdef CONFIG_TINY_RCU */
429 bool rcu_gp_is_normal(void); /* Internal RCU use. */
430 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
431 void rcu_expedite_gp(void);
432 void rcu_unexpedite_gp(void);
433 void rcupdate_announce_bootup_oddness(void);
434 void show_rcu_tasks_gp_kthreads(void);
435 void rcu_request_urgent_qs_task(struct task_struct *t);
436 #endif /* #else #ifdef CONFIG_TINY_RCU */
437
438 #define RCU_SCHEDULER_INACTIVE 0
439 #define RCU_SCHEDULER_INIT 1
440 #define RCU_SCHEDULER_RUNNING 2
441
442 enum rcutorture_type {
443 RCU_FLAVOR,
444 RCU_TASKS_FLAVOR,
445 RCU_TASKS_RUDE_FLAVOR,
446 RCU_TASKS_TRACING_FLAVOR,
447 RCU_TRIVIAL_FLAVOR,
448 SRCU_FLAVOR,
449 INVALID_RCU_FLAVOR
450 };
451
452 #if defined(CONFIG_TREE_RCU)
453 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
454 unsigned long *gp_seq);
455 void do_trace_rcu_torture_read(const char *rcutorturename,
456 struct rcu_head *rhp,
457 unsigned long secs,
458 unsigned long c_old,
459 unsigned long c);
460 void rcu_gp_set_torture_wait(int duration);
461 #else
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)462 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
463 int *flags, unsigned long *gp_seq)
464 {
465 *flags = 0;
466 *gp_seq = 0;
467 }
468 #ifdef CONFIG_RCU_TRACE
469 void do_trace_rcu_torture_read(const char *rcutorturename,
470 struct rcu_head *rhp,
471 unsigned long secs,
472 unsigned long c_old,
473 unsigned long c);
474 #else
475 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
476 do { } while (0)
477 #endif
rcu_gp_set_torture_wait(int duration)478 static inline void rcu_gp_set_torture_wait(int duration) { }
479 #endif
480
481 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
482 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
483 #endif
484
485 #ifdef CONFIG_TINY_SRCU
486
srcutorture_get_gp_data(enum rcutorture_type test_type,struct srcu_struct * sp,int * flags,unsigned long * gp_seq)487 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
488 struct srcu_struct *sp, int *flags,
489 unsigned long *gp_seq)
490 {
491 if (test_type != SRCU_FLAVOR)
492 return;
493 *flags = 0;
494 *gp_seq = sp->srcu_idx;
495 }
496
497 #elif defined(CONFIG_TREE_SRCU)
498
499 void srcutorture_get_gp_data(enum rcutorture_type test_type,
500 struct srcu_struct *sp, int *flags,
501 unsigned long *gp_seq);
502
503 #endif
504
505 #ifdef CONFIG_TINY_RCU
rcu_dynticks_zero_in_eqs(int cpu,int * vp)506 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
rcu_get_gp_seq(void)507 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
rcu_exp_batches_completed(void)508 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
509 static inline unsigned long
srcu_batches_completed(struct srcu_struct * sp)510 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
rcu_force_quiescent_state(void)511 static inline void rcu_force_quiescent_state(void) { }
show_rcu_gp_kthreads(void)512 static inline void show_rcu_gp_kthreads(void) { }
rcu_get_gp_kthreads_prio(void)513 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
rcu_fwd_progress_check(unsigned long j)514 static inline void rcu_fwd_progress_check(unsigned long j) { }
515 #else /* #ifdef CONFIG_TINY_RCU */
516 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
517 unsigned long rcu_get_gp_seq(void);
518 unsigned long rcu_exp_batches_completed(void);
519 unsigned long srcu_batches_completed(struct srcu_struct *sp);
520 void show_rcu_gp_kthreads(void);
521 int rcu_get_gp_kthreads_prio(void);
522 void rcu_fwd_progress_check(unsigned long j);
523 void rcu_force_quiescent_state(void);
524 extern struct workqueue_struct *rcu_gp_wq;
525 extern struct workqueue_struct *rcu_par_gp_wq;
526 #endif /* #else #ifdef CONFIG_TINY_RCU */
527
528 #ifdef CONFIG_RCU_NOCB_CPU
529 bool rcu_is_nocb_cpu(int cpu);
530 void rcu_bind_current_to_nocb(void);
531 #else
rcu_is_nocb_cpu(int cpu)532 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
rcu_bind_current_to_nocb(void)533 static inline void rcu_bind_current_to_nocb(void) { }
534 #endif
535
536 #endif /* __LINUX_RCU_H */
537