1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <trace/events/rcu.h>
14 
15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
16 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
17 
18 
19 /*
20  * Grace-period counter management.
21  */
22 
23 #define RCU_SEQ_CTR_SHIFT	2
24 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
25 
26 /*
27  * Return the counter portion of a sequence number previously returned
28  * by rcu_seq_snap() or rcu_seq_current().
29  */
rcu_seq_ctr(unsigned long s)30 static inline unsigned long rcu_seq_ctr(unsigned long s)
31 {
32 	return s >> RCU_SEQ_CTR_SHIFT;
33 }
34 
35 /*
36  * Return the state portion of a sequence number previously returned
37  * by rcu_seq_snap() or rcu_seq_current().
38  */
rcu_seq_state(unsigned long s)39 static inline int rcu_seq_state(unsigned long s)
40 {
41 	return s & RCU_SEQ_STATE_MASK;
42 }
43 
44 /*
45  * Set the state portion of the pointed-to sequence number.
46  * The caller is responsible for preventing conflicting updates.
47  */
rcu_seq_set_state(unsigned long * sp,int newstate)48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
49 {
50 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
51 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
52 }
53 
54 /* Adjust sequence number for start of update-side operation. */
rcu_seq_start(unsigned long * sp)55 static inline void rcu_seq_start(unsigned long *sp)
56 {
57 	WRITE_ONCE(*sp, *sp + 1);
58 	smp_mb(); /* Ensure update-side operation after counter increment. */
59 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
60 }
61 
62 /* Compute the end-of-grace-period value for the specified sequence number. */
rcu_seq_endval(unsigned long * sp)63 static inline unsigned long rcu_seq_endval(unsigned long *sp)
64 {
65 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
66 }
67 
68 /* Adjust sequence number for end of update-side operation. */
rcu_seq_end(unsigned long * sp)69 static inline void rcu_seq_end(unsigned long *sp)
70 {
71 	smp_mb(); /* Ensure update-side operation before counter increment. */
72 	WARN_ON_ONCE(!rcu_seq_state(*sp));
73 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
74 }
75 
76 /*
77  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
78  *
79  * This function returns the earliest value of the grace-period sequence number
80  * that will indicate that a full grace period has elapsed since the current
81  * time.  Once the grace-period sequence number has reached this value, it will
82  * be safe to invoke all callbacks that have been registered prior to the
83  * current time. This value is the current grace-period number plus two to the
84  * power of the number of low-order bits reserved for state, then rounded up to
85  * the next value in which the state bits are all zero.
86  */
rcu_seq_snap(unsigned long * sp)87 static inline unsigned long rcu_seq_snap(unsigned long *sp)
88 {
89 	unsigned long s;
90 
91 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
92 	smp_mb(); /* Above access must not bleed into critical section. */
93 	return s;
94 }
95 
96 /* Return the current value the update side's sequence number, no ordering. */
rcu_seq_current(unsigned long * sp)97 static inline unsigned long rcu_seq_current(unsigned long *sp)
98 {
99 	return READ_ONCE(*sp);
100 }
101 
102 /*
103  * Given a snapshot from rcu_seq_snap(), determine whether or not the
104  * corresponding update-side operation has started.
105  */
rcu_seq_started(unsigned long * sp,unsigned long s)106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107 {
108 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109 }
110 
111 /*
112  * Given a snapshot from rcu_seq_snap(), determine whether or not a
113  * full update-side operation has occurred.
114  */
rcu_seq_done(unsigned long * sp,unsigned long s)115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116 {
117 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
118 }
119 
120 /*
121  * Has a grace period completed since the time the old gp_seq was collected?
122  */
rcu_seq_completed_gp(unsigned long old,unsigned long new)123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124 {
125 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126 }
127 
128 /*
129  * Has a grace period started since the time the old gp_seq was collected?
130  */
rcu_seq_new_gp(unsigned long old,unsigned long new)131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132 {
133 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134 			    new);
135 }
136 
137 /*
138  * Roughly how many full grace periods have elapsed between the collection
139  * of the two specified grace periods?
140  */
rcu_seq_diff(unsigned long new,unsigned long old)141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142 {
143 	unsigned long rnd_diff;
144 
145 	if (old == new)
146 		return 0;
147 	/*
148 	 * Compute the number of grace periods (still shifted up), plus
149 	 * one if either of new and old is not an exact grace period.
150 	 */
151 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155 		return 1; /* Definitely no grace period has elapsed. */
156 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157 }
158 
159 /*
160  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161  * by call_rcu() and rcu callback execution, and are therefore not part
162  * of the RCU API. These are in rcupdate.h because they are used by all
163  * RCU implementations.
164  */
165 
166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167 # define STATE_RCU_HEAD_READY	0
168 # define STATE_RCU_HEAD_QUEUED	1
169 
170 extern const struct debug_obj_descr rcuhead_debug_descr;
171 
debug_rcu_head_queue(struct rcu_head * head)172 static inline int debug_rcu_head_queue(struct rcu_head *head)
173 {
174 	int r1;
175 
176 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
177 	debug_object_active_state(head, &rcuhead_debug_descr,
178 				  STATE_RCU_HEAD_READY,
179 				  STATE_RCU_HEAD_QUEUED);
180 	return r1;
181 }
182 
debug_rcu_head_unqueue(struct rcu_head * head)183 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184 {
185 	debug_object_active_state(head, &rcuhead_debug_descr,
186 				  STATE_RCU_HEAD_QUEUED,
187 				  STATE_RCU_HEAD_READY);
188 	debug_object_deactivate(head, &rcuhead_debug_descr);
189 }
190 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
debug_rcu_head_queue(struct rcu_head * head)191 static inline int debug_rcu_head_queue(struct rcu_head *head)
192 {
193 	return 0;
194 }
195 
debug_rcu_head_unqueue(struct rcu_head * head)196 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197 {
198 }
199 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200 
201 extern int rcu_cpu_stall_suppress_at_boot;
202 
rcu_stall_is_suppressed_at_boot(void)203 static inline bool rcu_stall_is_suppressed_at_boot(void)
204 {
205 	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
206 }
207 
208 #ifdef CONFIG_RCU_STALL_COMMON
209 
210 extern int rcu_cpu_stall_ftrace_dump;
211 extern int rcu_cpu_stall_suppress;
212 extern int rcu_cpu_stall_timeout;
213 int rcu_jiffies_till_stall_check(void);
214 
rcu_stall_is_suppressed(void)215 static inline bool rcu_stall_is_suppressed(void)
216 {
217 	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
218 }
219 
220 #define rcu_ftrace_dump_stall_suppress() \
221 do { \
222 	if (!rcu_cpu_stall_suppress) \
223 		rcu_cpu_stall_suppress = 3; \
224 } while (0)
225 
226 #define rcu_ftrace_dump_stall_unsuppress() \
227 do { \
228 	if (rcu_cpu_stall_suppress == 3) \
229 		rcu_cpu_stall_suppress = 0; \
230 } while (0)
231 
232 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
233 
rcu_stall_is_suppressed(void)234 static inline bool rcu_stall_is_suppressed(void)
235 {
236 	return rcu_stall_is_suppressed_at_boot();
237 }
238 #define rcu_ftrace_dump_stall_suppress()
239 #define rcu_ftrace_dump_stall_unsuppress()
240 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
241 
242 /*
243  * Strings used in tracepoints need to be exported via the
244  * tracing system such that tools like perf and trace-cmd can
245  * translate the string address pointers to actual text.
246  */
247 #define TPS(x)  tracepoint_string(x)
248 
249 /*
250  * Dump the ftrace buffer, but only one time per callsite per boot.
251  */
252 #define rcu_ftrace_dump(oops_dump_mode) \
253 do { \
254 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
255 	\
256 	if (!atomic_read(&___rfd_beenhere) && \
257 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
258 		tracing_off(); \
259 		rcu_ftrace_dump_stall_suppress(); \
260 		ftrace_dump(oops_dump_mode); \
261 		rcu_ftrace_dump_stall_unsuppress(); \
262 	} \
263 } while (0)
264 
265 void rcu_early_boot_tests(void);
266 void rcu_test_sync_prims(void);
267 
268 /*
269  * This function really isn't for public consumption, but RCU is special in
270  * that context switches can allow the state machine to make progress.
271  */
272 extern void resched_cpu(int cpu);
273 
274 #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU)
275 
276 #include <linux/rcu_node_tree.h>
277 
278 extern int rcu_num_lvls;
279 extern int num_rcu_lvl[];
280 extern int rcu_num_nodes;
281 static bool rcu_fanout_exact;
282 static int rcu_fanout_leaf;
283 
284 /*
285  * Compute the per-level fanout, either using the exact fanout specified
286  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
287  */
rcu_init_levelspread(int * levelspread,const int * levelcnt)288 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
289 {
290 	int i;
291 
292 	for (i = 0; i < RCU_NUM_LVLS; i++)
293 		levelspread[i] = INT_MIN;
294 	if (rcu_fanout_exact) {
295 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
296 		for (i = rcu_num_lvls - 2; i >= 0; i--)
297 			levelspread[i] = RCU_FANOUT;
298 	} else {
299 		int ccur;
300 		int cprv;
301 
302 		cprv = nr_cpu_ids;
303 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
304 			ccur = levelcnt[i];
305 			levelspread[i] = (cprv + ccur - 1) / ccur;
306 			cprv = ccur;
307 		}
308 	}
309 }
310 
311 /* Returns a pointer to the first leaf rcu_node structure. */
312 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
313 
314 /* Is this rcu_node a leaf? */
315 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
316 
317 /* Is this rcu_node the last leaf? */
318 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
319 
320 /*
321  * Do a full breadth-first scan of the {s,}rcu_node structures for the
322  * specified state structure (for SRCU) or the only rcu_state structure
323  * (for RCU).
324  */
325 #define srcu_for_each_node_breadth_first(sp, rnp) \
326 	for ((rnp) = &(sp)->node[0]; \
327 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
328 #define rcu_for_each_node_breadth_first(rnp) \
329 	srcu_for_each_node_breadth_first(&rcu_state, rnp)
330 
331 /*
332  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
333  * Note that if there is a singleton rcu_node tree with but one rcu_node
334  * structure, this loop -will- visit the rcu_node structure.  It is still
335  * a leaf node, even if it is also the root node.
336  */
337 #define rcu_for_each_leaf_node(rnp) \
338 	for ((rnp) = rcu_first_leaf_node(); \
339 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
340 
341 /*
342  * Iterate over all possible CPUs in a leaf RCU node.
343  */
344 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
345 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
346 	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
347 	     (cpu) <= rnp->grphi; \
348 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
349 
350 /*
351  * Iterate over all CPUs in a leaf RCU node's specified mask.
352  */
353 #define rcu_find_next_bit(rnp, cpu, mask) \
354 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
355 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
356 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
357 	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
358 	     (cpu) <= rnp->grphi; \
359 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
360 
361 /*
362  * Wrappers for the rcu_node::lock acquire and release.
363  *
364  * Because the rcu_nodes form a tree, the tree traversal locking will observe
365  * different lock values, this in turn means that an UNLOCK of one level
366  * followed by a LOCK of another level does not imply a full memory barrier;
367  * and most importantly transitivity is lost.
368  *
369  * In order to restore full ordering between tree levels, augment the regular
370  * lock acquire functions with smp_mb__after_unlock_lock().
371  *
372  * As ->lock of struct rcu_node is a __private field, therefore one should use
373  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
374  */
375 #define raw_spin_lock_rcu_node(p)					\
376 do {									\
377 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
378 	smp_mb__after_unlock_lock();					\
379 } while (0)
380 
381 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
382 
383 #define raw_spin_lock_irq_rcu_node(p)					\
384 do {									\
385 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
386 	smp_mb__after_unlock_lock();					\
387 } while (0)
388 
389 #define raw_spin_unlock_irq_rcu_node(p)					\
390 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
391 
392 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
393 do {									\
394 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
395 	smp_mb__after_unlock_lock();					\
396 } while (0)
397 
398 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
399 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
400 
401 #define raw_spin_trylock_rcu_node(p)					\
402 ({									\
403 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
404 									\
405 	if (___locked)							\
406 		smp_mb__after_unlock_lock();				\
407 	___locked;							\
408 })
409 
410 #define raw_lockdep_assert_held_rcu_node(p)				\
411 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
412 
413 #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */
414 
415 #ifdef CONFIG_SRCU
416 void srcu_init(void);
417 #else /* #ifdef CONFIG_SRCU */
srcu_init(void)418 static inline void srcu_init(void) { }
419 #endif /* #else #ifdef CONFIG_SRCU */
420 
421 #ifdef CONFIG_TINY_RCU
422 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_normal(void)423 static inline bool rcu_gp_is_normal(void) { return true; }
rcu_gp_is_expedited(void)424 static inline bool rcu_gp_is_expedited(void) { return false; }
rcu_expedite_gp(void)425 static inline void rcu_expedite_gp(void) { }
rcu_unexpedite_gp(void)426 static inline void rcu_unexpedite_gp(void) { }
rcu_request_urgent_qs_task(struct task_struct * t)427 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
428 #else /* #ifdef CONFIG_TINY_RCU */
429 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
430 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
431 void rcu_expedite_gp(void);
432 void rcu_unexpedite_gp(void);
433 void rcupdate_announce_bootup_oddness(void);
434 void show_rcu_tasks_gp_kthreads(void);
435 void rcu_request_urgent_qs_task(struct task_struct *t);
436 #endif /* #else #ifdef CONFIG_TINY_RCU */
437 
438 #define RCU_SCHEDULER_INACTIVE	0
439 #define RCU_SCHEDULER_INIT	1
440 #define RCU_SCHEDULER_RUNNING	2
441 
442 enum rcutorture_type {
443 	RCU_FLAVOR,
444 	RCU_TASKS_FLAVOR,
445 	RCU_TASKS_RUDE_FLAVOR,
446 	RCU_TASKS_TRACING_FLAVOR,
447 	RCU_TRIVIAL_FLAVOR,
448 	SRCU_FLAVOR,
449 	INVALID_RCU_FLAVOR
450 };
451 
452 #if defined(CONFIG_TREE_RCU)
453 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
454 			    unsigned long *gp_seq);
455 void do_trace_rcu_torture_read(const char *rcutorturename,
456 			       struct rcu_head *rhp,
457 			       unsigned long secs,
458 			       unsigned long c_old,
459 			       unsigned long c);
460 void rcu_gp_set_torture_wait(int duration);
461 #else
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)462 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
463 					  int *flags, unsigned long *gp_seq)
464 {
465 	*flags = 0;
466 	*gp_seq = 0;
467 }
468 #ifdef CONFIG_RCU_TRACE
469 void do_trace_rcu_torture_read(const char *rcutorturename,
470 			       struct rcu_head *rhp,
471 			       unsigned long secs,
472 			       unsigned long c_old,
473 			       unsigned long c);
474 #else
475 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
476 	do { } while (0)
477 #endif
rcu_gp_set_torture_wait(int duration)478 static inline void rcu_gp_set_torture_wait(int duration) { }
479 #endif
480 
481 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
482 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
483 #endif
484 
485 #ifdef CONFIG_TINY_SRCU
486 
srcutorture_get_gp_data(enum rcutorture_type test_type,struct srcu_struct * sp,int * flags,unsigned long * gp_seq)487 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
488 					   struct srcu_struct *sp, int *flags,
489 					   unsigned long *gp_seq)
490 {
491 	if (test_type != SRCU_FLAVOR)
492 		return;
493 	*flags = 0;
494 	*gp_seq = sp->srcu_idx;
495 }
496 
497 #elif defined(CONFIG_TREE_SRCU)
498 
499 void srcutorture_get_gp_data(enum rcutorture_type test_type,
500 			     struct srcu_struct *sp, int *flags,
501 			     unsigned long *gp_seq);
502 
503 #endif
504 
505 #ifdef CONFIG_TINY_RCU
rcu_dynticks_zero_in_eqs(int cpu,int * vp)506 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
rcu_get_gp_seq(void)507 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
rcu_exp_batches_completed(void)508 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
509 static inline unsigned long
srcu_batches_completed(struct srcu_struct * sp)510 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
rcu_force_quiescent_state(void)511 static inline void rcu_force_quiescent_state(void) { }
show_rcu_gp_kthreads(void)512 static inline void show_rcu_gp_kthreads(void) { }
rcu_get_gp_kthreads_prio(void)513 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
rcu_fwd_progress_check(unsigned long j)514 static inline void rcu_fwd_progress_check(unsigned long j) { }
515 #else /* #ifdef CONFIG_TINY_RCU */
516 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
517 unsigned long rcu_get_gp_seq(void);
518 unsigned long rcu_exp_batches_completed(void);
519 unsigned long srcu_batches_completed(struct srcu_struct *sp);
520 void show_rcu_gp_kthreads(void);
521 int rcu_get_gp_kthreads_prio(void);
522 void rcu_fwd_progress_check(unsigned long j);
523 void rcu_force_quiescent_state(void);
524 extern struct workqueue_struct *rcu_gp_wq;
525 extern struct workqueue_struct *rcu_par_gp_wq;
526 #endif /* #else #ifdef CONFIG_TINY_RCU */
527 
528 #ifdef CONFIG_RCU_NOCB_CPU
529 bool rcu_is_nocb_cpu(int cpu);
530 void rcu_bind_current_to_nocb(void);
531 #else
rcu_is_nocb_cpu(int cpu)532 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
rcu_bind_current_to_nocb(void)533 static inline void rcu_bind_current_to_nocb(void) { }
534 #endif
535 
536 #endif /* __LINUX_RCU_H */
537