1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct file_ra_state;
39 struct user_struct;
40 struct writeback_control;
41 struct bdi_writeback;
42 struct pt_regs;
43 
44 extern int sysctl_page_lock_unfairness;
45 
46 void init_mm_internals(void);
47 
48 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
50 
set_max_mapnr(unsigned long limit)51 static inline void set_max_mapnr(unsigned long limit)
52 {
53 	max_mapnr = limit;
54 }
55 #else
set_max_mapnr(unsigned long limit)56 static inline void set_max_mapnr(unsigned long limit) { }
57 #endif
58 
59 extern atomic_long_t _totalram_pages;
totalram_pages(void)60 static inline unsigned long totalram_pages(void)
61 {
62 	return (unsigned long)atomic_long_read(&_totalram_pages);
63 }
64 
totalram_pages_inc(void)65 static inline void totalram_pages_inc(void)
66 {
67 	atomic_long_inc(&_totalram_pages);
68 }
69 
totalram_pages_dec(void)70 static inline void totalram_pages_dec(void)
71 {
72 	atomic_long_dec(&_totalram_pages);
73 }
74 
totalram_pages_add(long count)75 static inline void totalram_pages_add(long count)
76 {
77 	atomic_long_add(count, &_totalram_pages);
78 }
79 
80 extern void * high_memory;
81 extern int page_cluster;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern const int mmap_rnd_bits_max;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 /*
104  * Architectures that support memory tagging (assigning tags to memory regions,
105  * embedding these tags into addresses that point to these memory regions, and
106  * checking that the memory and the pointer tags match on memory accesses)
107  * redefine this macro to strip tags from pointers.
108  * It's defined as noop for arcitectures that don't support memory tagging.
109  */
110 #ifndef untagged_addr
111 #define untagged_addr(addr) (addr)
112 #endif
113 
114 #ifndef __pa_symbol
115 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
116 #endif
117 
118 #ifndef page_to_virt
119 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
120 #endif
121 
122 #ifndef lm_alias
123 #define lm_alias(x)	__va(__pa_symbol(x))
124 #endif
125 
126 /*
127  * To prevent common memory management code establishing
128  * a zero page mapping on a read fault.
129  * This macro should be defined within <asm/pgtable.h>.
130  * s390 does this to prevent multiplexing of hardware bits
131  * related to the physical page in case of virtualization.
132  */
133 #ifndef mm_forbids_zeropage
134 #define mm_forbids_zeropage(X)	(0)
135 #endif
136 
137 /*
138  * On some architectures it is expensive to call memset() for small sizes.
139  * If an architecture decides to implement their own version of
140  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141  * define their own version of this macro in <asm/pgtable.h>
142  */
143 #if BITS_PER_LONG == 64
144 /* This function must be updated when the size of struct page grows above 80
145  * or reduces below 56. The idea that compiler optimizes out switch()
146  * statement, and only leaves move/store instructions. Also the compiler can
147  * combine write statments if they are both assignments and can be reordered,
148  * this can result in several of the writes here being dropped.
149  */
150 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)151 static inline void __mm_zero_struct_page(struct page *page)
152 {
153 	unsigned long *_pp = (void *)page;
154 
155 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 	BUILD_BUG_ON(sizeof(struct page) & 7);
157 	BUILD_BUG_ON(sizeof(struct page) < 56);
158 	BUILD_BUG_ON(sizeof(struct page) > 80);
159 
160 	switch (sizeof(struct page)) {
161 	case 80:
162 		_pp[9] = 0;
163 		fallthrough;
164 	case 72:
165 		_pp[8] = 0;
166 		fallthrough;
167 	case 64:
168 		_pp[7] = 0;
169 		fallthrough;
170 	case 56:
171 		_pp[6] = 0;
172 		_pp[5] = 0;
173 		_pp[4] = 0;
174 		_pp[3] = 0;
175 		_pp[2] = 0;
176 		_pp[1] = 0;
177 		_pp[0] = 0;
178 	}
179 }
180 #else
181 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
182 #endif
183 
184 /*
185  * Default maximum number of active map areas, this limits the number of vmas
186  * per mm struct. Users can overwrite this number by sysctl but there is a
187  * problem.
188  *
189  * When a program's coredump is generated as ELF format, a section is created
190  * per a vma. In ELF, the number of sections is represented in unsigned short.
191  * This means the number of sections should be smaller than 65535 at coredump.
192  * Because the kernel adds some informative sections to a image of program at
193  * generating coredump, we need some margin. The number of extra sections is
194  * 1-3 now and depends on arch. We use "5" as safe margin, here.
195  *
196  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197  * not a hard limit any more. Although some userspace tools can be surprised by
198  * that.
199  */
200 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
201 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202 
203 extern int sysctl_max_map_count;
204 
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
207 
208 extern int sysctl_overcommit_memory;
209 extern int sysctl_overcommit_ratio;
210 extern unsigned long sysctl_overcommit_kbytes;
211 
212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
213 		loff_t *);
214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
215 		loff_t *);
216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 		loff_t *);
218 
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226 
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228 
229 /*
230  * Linux kernel virtual memory manager primitives.
231  * The idea being to have a "virtual" mm in the same way
232  * we have a virtual fs - giving a cleaner interface to the
233  * mm details, and allowing different kinds of memory mappings
234  * (from shared memory to executable loading to arbitrary
235  * mmap() functions).
236  */
237 
238 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240 void vm_area_free(struct vm_area_struct *);
241 
242 #ifndef CONFIG_MMU
243 extern struct rb_root nommu_region_tree;
244 extern struct rw_semaphore nommu_region_sem;
245 
246 extern unsigned int kobjsize(const void *objp);
247 #endif
248 
249 /*
250  * vm_flags in vm_area_struct, see mm_types.h.
251  * When changing, update also include/trace/events/mmflags.h
252  */
253 #define VM_NONE		0x00000000
254 
255 #define VM_READ		0x00000001	/* currently active flags */
256 #define VM_WRITE	0x00000002
257 #define VM_EXEC		0x00000004
258 #define VM_SHARED	0x00000008
259 
260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
261 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
262 #define VM_MAYWRITE	0x00000020
263 #define VM_MAYEXEC	0x00000040
264 #define VM_MAYSHARE	0x00000080
265 
266 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
267 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
268 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
270 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
271 
272 #define VM_LOCKED	0x00002000
273 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
274 
275 					/* Used by sys_madvise() */
276 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
277 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
278 
279 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
283 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
284 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
285 #define VM_SYNC		0x00800000	/* Synchronous page faults */
286 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
287 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
288 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY	0
294 #endif
295 
296 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
300 
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
308 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
309 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
310 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
311 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
313 
314 #ifdef CONFIG_ARCH_HAS_PKEYS
315 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
316 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
317 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
318 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
319 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
320 #ifdef CONFIG_PPC
321 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
322 #else
323 # define VM_PKEY_BIT4  0
324 #endif
325 #endif /* CONFIG_ARCH_HAS_PKEYS */
326 
327 #if defined(CONFIG_X86)
328 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
329 #elif defined(CONFIG_PPC)
330 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
331 #elif defined(CONFIG_PARISC)
332 # define VM_GROWSUP	VM_ARCH_1
333 #elif defined(CONFIG_IA64)
334 # define VM_GROWSUP	VM_ARCH_1
335 #elif defined(CONFIG_SPARC64)
336 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
337 # define VM_ARCH_CLEAR	VM_SPARC_ADI
338 #elif defined(CONFIG_ARM64)
339 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
340 # define VM_ARCH_CLEAR	VM_ARM64_BTI
341 #elif !defined(CONFIG_MMU)
342 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
343 #endif
344 
345 #if defined(CONFIG_ARM64_MTE)
346 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
347 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
348 #else
349 # define VM_MTE		VM_NONE
350 # define VM_MTE_ALLOWED	VM_NONE
351 #endif
352 
353 #ifndef VM_GROWSUP
354 # define VM_GROWSUP	VM_NONE
355 #endif
356 
357 /* Bits set in the VMA until the stack is in its final location */
358 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
359 
360 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
361 
362 /* Common data flag combinations */
363 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
364 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
366 				 VM_MAYWRITE | VM_MAYEXEC)
367 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
368 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
369 
370 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
371 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
372 #endif
373 
374 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
375 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
376 #endif
377 
378 #ifdef CONFIG_STACK_GROWSUP
379 #define VM_STACK	VM_GROWSUP
380 #else
381 #define VM_STACK	VM_GROWSDOWN
382 #endif
383 
384 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
385 
386 /* VMA basic access permission flags */
387 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
388 
389 
390 /*
391  * Special vmas that are non-mergable, non-mlock()able.
392  */
393 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
394 
395 /* This mask prevents VMA from being scanned with khugepaged */
396 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
397 
398 /* This mask defines which mm->def_flags a process can inherit its parent */
399 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
400 
401 /* This mask is used to clear all the VMA flags used by mlock */
402 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
403 
404 /* Arch-specific flags to clear when updating VM flags on protection change */
405 #ifndef VM_ARCH_CLEAR
406 # define VM_ARCH_CLEAR	VM_NONE
407 #endif
408 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
409 
410 /*
411  * mapping from the currently active vm_flags protection bits (the
412  * low four bits) to a page protection mask..
413  */
414 extern pgprot_t protection_map[16];
415 
416 /**
417  * Fault flag definitions.
418  *
419  * @FAULT_FLAG_WRITE: Fault was a write fault.
420  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
422  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
423  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424  * @FAULT_FLAG_TRIED: The fault has been tried once.
425  * @FAULT_FLAG_USER: The fault originated in userspace.
426  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
429  *
430  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431  * whether we would allow page faults to retry by specifying these two
432  * fault flags correctly.  Currently there can be three legal combinations:
433  *
434  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
435  *                              this is the first try
436  *
437  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
438  *                              we've already tried at least once
439  *
440  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
441  *
442  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443  * be used.  Note that page faults can be allowed to retry for multiple times,
444  * in which case we'll have an initial fault with flags (a) then later on
445  * continuous faults with flags (b).  We should always try to detect pending
446  * signals before a retry to make sure the continuous page faults can still be
447  * interrupted if necessary.
448  */
449 #define FAULT_FLAG_WRITE			0x01
450 #define FAULT_FLAG_MKWRITE			0x02
451 #define FAULT_FLAG_ALLOW_RETRY			0x04
452 #define FAULT_FLAG_RETRY_NOWAIT			0x08
453 #define FAULT_FLAG_KILLABLE			0x10
454 #define FAULT_FLAG_TRIED			0x20
455 #define FAULT_FLAG_USER				0x40
456 #define FAULT_FLAG_REMOTE			0x80
457 #define FAULT_FLAG_INSTRUCTION  		0x100
458 #define FAULT_FLAG_INTERRUPTIBLE		0x200
459 
460 /*
461  * The default fault flags that should be used by most of the
462  * arch-specific page fault handlers.
463  */
464 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
465 			     FAULT_FLAG_KILLABLE | \
466 			     FAULT_FLAG_INTERRUPTIBLE)
467 
468 /**
469  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
470  *
471  * This is mostly used for places where we want to try to avoid taking
472  * the mmap_lock for too long a time when waiting for another condition
473  * to change, in which case we can try to be polite to release the
474  * mmap_lock in the first round to avoid potential starvation of other
475  * processes that would also want the mmap_lock.
476  *
477  * Return: true if the page fault allows retry and this is the first
478  * attempt of the fault handling; false otherwise.
479  */
fault_flag_allow_retry_first(unsigned int flags)480 static inline bool fault_flag_allow_retry_first(unsigned int flags)
481 {
482 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 	    (!(flags & FAULT_FLAG_TRIED));
484 }
485 
486 #define FAULT_FLAG_TRACE \
487 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
488 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
489 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
490 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
491 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
492 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
493 	{ FAULT_FLAG_USER,		"USER" }, \
494 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
495 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
496 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
497 
498 /*
499  * vm_fault is filled by the pagefault handler and passed to the vma's
500  * ->fault function. The vma's ->fault is responsible for returning a bitmask
501  * of VM_FAULT_xxx flags that give details about how the fault was handled.
502  *
503  * MM layer fills up gfp_mask for page allocations but fault handler might
504  * alter it if its implementation requires a different allocation context.
505  *
506  * pgoff should be used in favour of virtual_address, if possible.
507  */
508 struct vm_fault {
509 	struct vm_area_struct *vma;	/* Target VMA */
510 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
511 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
512 	pgoff_t pgoff;			/* Logical page offset based on vma */
513 	unsigned long address;		/* Faulting virtual address */
514 	pmd_t *pmd;			/* Pointer to pmd entry matching
515 					 * the 'address' */
516 	pud_t *pud;			/* Pointer to pud entry matching
517 					 * the 'address'
518 					 */
519 	pte_t orig_pte;			/* Value of PTE at the time of fault */
520 
521 	struct page *cow_page;		/* Page handler may use for COW fault */
522 	struct page *page;		/* ->fault handlers should return a
523 					 * page here, unless VM_FAULT_NOPAGE
524 					 * is set (which is also implied by
525 					 * VM_FAULT_ERROR).
526 					 */
527 	/* These three entries are valid only while holding ptl lock */
528 	pte_t *pte;			/* Pointer to pte entry matching
529 					 * the 'address'. NULL if the page
530 					 * table hasn't been allocated.
531 					 */
532 	spinlock_t *ptl;		/* Page table lock.
533 					 * Protects pte page table if 'pte'
534 					 * is not NULL, otherwise pmd.
535 					 */
536 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
537 					 * vm_ops->map_pages() calls
538 					 * alloc_set_pte() from atomic context.
539 					 * do_fault_around() pre-allocates
540 					 * page table to avoid allocation from
541 					 * atomic context.
542 					 */
543 };
544 
545 /* page entry size for vm->huge_fault() */
546 enum page_entry_size {
547 	PE_SIZE_PTE = 0,
548 	PE_SIZE_PMD,
549 	PE_SIZE_PUD,
550 };
551 
552 /*
553  * These are the virtual MM functions - opening of an area, closing and
554  * unmapping it (needed to keep files on disk up-to-date etc), pointer
555  * to the functions called when a no-page or a wp-page exception occurs.
556  */
557 struct vm_operations_struct {
558 	void (*open)(struct vm_area_struct * area);
559 	void (*close)(struct vm_area_struct * area);
560 	int (*split)(struct vm_area_struct * area, unsigned long addr);
561 	int (*mremap)(struct vm_area_struct * area);
562 	vm_fault_t (*fault)(struct vm_fault *vmf);
563 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 			enum page_entry_size pe_size);
565 	void (*map_pages)(struct vm_fault *vmf,
566 			pgoff_t start_pgoff, pgoff_t end_pgoff);
567 	unsigned long (*pagesize)(struct vm_area_struct * area);
568 
569 	/* notification that a previously read-only page is about to become
570 	 * writable, if an error is returned it will cause a SIGBUS */
571 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
572 
573 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
575 
576 	/* called by access_process_vm when get_user_pages() fails, typically
577 	 * for use by special VMAs that can switch between memory and hardware
578 	 */
579 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
580 		      void *buf, int len, int write);
581 
582 	/* Called by the /proc/PID/maps code to ask the vma whether it
583 	 * has a special name.  Returning non-NULL will also cause this
584 	 * vma to be dumped unconditionally. */
585 	const char *(*name)(struct vm_area_struct *vma);
586 
587 #ifdef CONFIG_NUMA
588 	/*
589 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
590 	 * to hold the policy upon return.  Caller should pass NULL @new to
591 	 * remove a policy and fall back to surrounding context--i.e. do not
592 	 * install a MPOL_DEFAULT policy, nor the task or system default
593 	 * mempolicy.
594 	 */
595 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
596 
597 	/*
598 	 * get_policy() op must add reference [mpol_get()] to any policy at
599 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
600 	 * in mm/mempolicy.c will do this automatically.
601 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
602 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
603 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
604 	 * must return NULL--i.e., do not "fallback" to task or system default
605 	 * policy.
606 	 */
607 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
608 					unsigned long addr);
609 #endif
610 	/*
611 	 * Called by vm_normal_page() for special PTEs to find the
612 	 * page for @addr.  This is useful if the default behavior
613 	 * (using pte_page()) would not find the correct page.
614 	 */
615 	struct page *(*find_special_page)(struct vm_area_struct *vma,
616 					  unsigned long addr);
617 };
618 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)619 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
620 {
621 	static const struct vm_operations_struct dummy_vm_ops = {};
622 
623 	memset(vma, 0, sizeof(*vma));
624 	vma->vm_mm = mm;
625 	vma->vm_ops = &dummy_vm_ops;
626 	INIT_LIST_HEAD(&vma->anon_vma_chain);
627 }
628 
vma_set_anonymous(struct vm_area_struct * vma)629 static inline void vma_set_anonymous(struct vm_area_struct *vma)
630 {
631 	vma->vm_ops = NULL;
632 }
633 
vma_is_anonymous(struct vm_area_struct * vma)634 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
635 {
636 	return !vma->vm_ops;
637 }
638 
vma_is_temporary_stack(struct vm_area_struct * vma)639 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
640 {
641 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
642 
643 	if (!maybe_stack)
644 		return false;
645 
646 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
647 						VM_STACK_INCOMPLETE_SETUP)
648 		return true;
649 
650 	return false;
651 }
652 
vma_is_foreign(struct vm_area_struct * vma)653 static inline bool vma_is_foreign(struct vm_area_struct *vma)
654 {
655 	if (!current->mm)
656 		return true;
657 
658 	if (current->mm != vma->vm_mm)
659 		return true;
660 
661 	return false;
662 }
663 
vma_is_accessible(struct vm_area_struct * vma)664 static inline bool vma_is_accessible(struct vm_area_struct *vma)
665 {
666 	return vma->vm_flags & VM_ACCESS_FLAGS;
667 }
668 
669 #ifdef CONFIG_SHMEM
670 /*
671  * The vma_is_shmem is not inline because it is used only by slow
672  * paths in userfault.
673  */
674 bool vma_is_shmem(struct vm_area_struct *vma);
675 #else
vma_is_shmem(struct vm_area_struct * vma)676 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
677 #endif
678 
679 int vma_is_stack_for_current(struct vm_area_struct *vma);
680 
681 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
682 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
683 
684 struct mmu_gather;
685 struct inode;
686 
687 #include <linux/huge_mm.h>
688 
689 /*
690  * Methods to modify the page usage count.
691  *
692  * What counts for a page usage:
693  * - cache mapping   (page->mapping)
694  * - private data    (page->private)
695  * - page mapped in a task's page tables, each mapping
696  *   is counted separately
697  *
698  * Also, many kernel routines increase the page count before a critical
699  * routine so they can be sure the page doesn't go away from under them.
700  */
701 
702 /*
703  * Drop a ref, return true if the refcount fell to zero (the page has no users)
704  */
put_page_testzero(struct page * page)705 static inline int put_page_testzero(struct page *page)
706 {
707 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
708 	return page_ref_dec_and_test(page);
709 }
710 
711 /*
712  * Try to grab a ref unless the page has a refcount of zero, return false if
713  * that is the case.
714  * This can be called when MMU is off so it must not access
715  * any of the virtual mappings.
716  */
get_page_unless_zero(struct page * page)717 static inline int get_page_unless_zero(struct page *page)
718 {
719 	return page_ref_add_unless(page, 1, 0);
720 }
721 
722 extern int page_is_ram(unsigned long pfn);
723 
724 enum {
725 	REGION_INTERSECTS,
726 	REGION_DISJOINT,
727 	REGION_MIXED,
728 };
729 
730 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
731 		      unsigned long desc);
732 
733 /* Support for virtually mapped pages */
734 struct page *vmalloc_to_page(const void *addr);
735 unsigned long vmalloc_to_pfn(const void *addr);
736 
737 /*
738  * Determine if an address is within the vmalloc range
739  *
740  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
741  * is no special casing required.
742  */
743 
744 #ifndef is_ioremap_addr
745 #define is_ioremap_addr(x) is_vmalloc_addr(x)
746 #endif
747 
748 #ifdef CONFIG_MMU
749 extern bool is_vmalloc_addr(const void *x);
750 extern int is_vmalloc_or_module_addr(const void *x);
751 #else
is_vmalloc_addr(const void * x)752 static inline bool is_vmalloc_addr(const void *x)
753 {
754 	return false;
755 }
is_vmalloc_or_module_addr(const void * x)756 static inline int is_vmalloc_or_module_addr(const void *x)
757 {
758 	return 0;
759 }
760 #endif
761 
762 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)763 static inline void *kvmalloc(size_t size, gfp_t flags)
764 {
765 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
766 }
kvzalloc_node(size_t size,gfp_t flags,int node)767 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
768 {
769 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
770 }
kvzalloc(size_t size,gfp_t flags)771 static inline void *kvzalloc(size_t size, gfp_t flags)
772 {
773 	return kvmalloc(size, flags | __GFP_ZERO);
774 }
775 
kvmalloc_array(size_t n,size_t size,gfp_t flags)776 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
777 {
778 	size_t bytes;
779 
780 	if (unlikely(check_mul_overflow(n, size, &bytes)))
781 		return NULL;
782 
783 	return kvmalloc(bytes, flags);
784 }
785 
kvcalloc(size_t n,size_t size,gfp_t flags)786 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
787 {
788 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
789 }
790 
791 extern void kvfree(const void *addr);
792 extern void kvfree_sensitive(const void *addr, size_t len);
793 
head_compound_mapcount(struct page * head)794 static inline int head_compound_mapcount(struct page *head)
795 {
796 	return atomic_read(compound_mapcount_ptr(head)) + 1;
797 }
798 
799 /*
800  * Mapcount of compound page as a whole, does not include mapped sub-pages.
801  *
802  * Must be called only for compound pages or any their tail sub-pages.
803  */
compound_mapcount(struct page * page)804 static inline int compound_mapcount(struct page *page)
805 {
806 	VM_BUG_ON_PAGE(!PageCompound(page), page);
807 	page = compound_head(page);
808 	return head_compound_mapcount(page);
809 }
810 
811 /*
812  * The atomic page->_mapcount, starts from -1: so that transitions
813  * both from it and to it can be tracked, using atomic_inc_and_test
814  * and atomic_add_negative(-1).
815  */
page_mapcount_reset(struct page * page)816 static inline void page_mapcount_reset(struct page *page)
817 {
818 	atomic_set(&(page)->_mapcount, -1);
819 }
820 
821 int __page_mapcount(struct page *page);
822 
823 /*
824  * Mapcount of 0-order page; when compound sub-page, includes
825  * compound_mapcount().
826  *
827  * Result is undefined for pages which cannot be mapped into userspace.
828  * For example SLAB or special types of pages. See function page_has_type().
829  * They use this place in struct page differently.
830  */
page_mapcount(struct page * page)831 static inline int page_mapcount(struct page *page)
832 {
833 	if (unlikely(PageCompound(page)))
834 		return __page_mapcount(page);
835 	return atomic_read(&page->_mapcount) + 1;
836 }
837 
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 int total_mapcount(struct page *page);
840 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
841 #else
total_mapcount(struct page * page)842 static inline int total_mapcount(struct page *page)
843 {
844 	return page_mapcount(page);
845 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)846 static inline int page_trans_huge_mapcount(struct page *page,
847 					   int *total_mapcount)
848 {
849 	int mapcount = page_mapcount(page);
850 	if (total_mapcount)
851 		*total_mapcount = mapcount;
852 	return mapcount;
853 }
854 #endif
855 
virt_to_head_page(const void * x)856 static inline struct page *virt_to_head_page(const void *x)
857 {
858 	struct page *page = virt_to_page(x);
859 
860 	return compound_head(page);
861 }
862 
863 void __put_page(struct page *page);
864 
865 void put_pages_list(struct list_head *pages);
866 
867 void split_page(struct page *page, unsigned int order);
868 
869 /*
870  * Compound pages have a destructor function.  Provide a
871  * prototype for that function and accessor functions.
872  * These are _only_ valid on the head of a compound page.
873  */
874 typedef void compound_page_dtor(struct page *);
875 
876 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
877 enum compound_dtor_id {
878 	NULL_COMPOUND_DTOR,
879 	COMPOUND_PAGE_DTOR,
880 #ifdef CONFIG_HUGETLB_PAGE
881 	HUGETLB_PAGE_DTOR,
882 #endif
883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
884 	TRANSHUGE_PAGE_DTOR,
885 #endif
886 	NR_COMPOUND_DTORS,
887 };
888 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
889 
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)890 static inline void set_compound_page_dtor(struct page *page,
891 		enum compound_dtor_id compound_dtor)
892 {
893 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
894 	page[1].compound_dtor = compound_dtor;
895 }
896 
destroy_compound_page(struct page * page)897 static inline void destroy_compound_page(struct page *page)
898 {
899 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
900 	compound_page_dtors[page[1].compound_dtor](page);
901 }
902 
compound_order(struct page * page)903 static inline unsigned int compound_order(struct page *page)
904 {
905 	if (!PageHead(page))
906 		return 0;
907 	return page[1].compound_order;
908 }
909 
hpage_pincount_available(struct page * page)910 static inline bool hpage_pincount_available(struct page *page)
911 {
912 	/*
913 	 * Can the page->hpage_pinned_refcount field be used? That field is in
914 	 * the 3rd page of the compound page, so the smallest (2-page) compound
915 	 * pages cannot support it.
916 	 */
917 	page = compound_head(page);
918 	return PageCompound(page) && compound_order(page) > 1;
919 }
920 
head_compound_pincount(struct page * head)921 static inline int head_compound_pincount(struct page *head)
922 {
923 	return atomic_read(compound_pincount_ptr(head));
924 }
925 
compound_pincount(struct page * page)926 static inline int compound_pincount(struct page *page)
927 {
928 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
929 	page = compound_head(page);
930 	return head_compound_pincount(page);
931 }
932 
set_compound_order(struct page * page,unsigned int order)933 static inline void set_compound_order(struct page *page, unsigned int order)
934 {
935 	page[1].compound_order = order;
936 	page[1].compound_nr = 1U << order;
937 }
938 
939 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)940 static inline unsigned long compound_nr(struct page *page)
941 {
942 	if (!PageHead(page))
943 		return 1;
944 	return page[1].compound_nr;
945 }
946 
947 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)948 static inline unsigned long page_size(struct page *page)
949 {
950 	return PAGE_SIZE << compound_order(page);
951 }
952 
953 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)954 static inline unsigned int page_shift(struct page *page)
955 {
956 	return PAGE_SHIFT + compound_order(page);
957 }
958 
959 void free_compound_page(struct page *page);
960 
961 #ifdef CONFIG_MMU
962 /*
963  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
964  * servicing faults for write access.  In the normal case, do always want
965  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
966  * that do not have writing enabled, when used by access_process_vm.
967  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)968 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
969 {
970 	if (likely(vma->vm_flags & VM_WRITE))
971 		pte = pte_mkwrite(pte);
972 	return pte;
973 }
974 
975 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
976 vm_fault_t finish_fault(struct vm_fault *vmf);
977 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
978 #endif
979 
980 /*
981  * Multiple processes may "see" the same page. E.g. for untouched
982  * mappings of /dev/null, all processes see the same page full of
983  * zeroes, and text pages of executables and shared libraries have
984  * only one copy in memory, at most, normally.
985  *
986  * For the non-reserved pages, page_count(page) denotes a reference count.
987  *   page_count() == 0 means the page is free. page->lru is then used for
988  *   freelist management in the buddy allocator.
989  *   page_count() > 0  means the page has been allocated.
990  *
991  * Pages are allocated by the slab allocator in order to provide memory
992  * to kmalloc and kmem_cache_alloc. In this case, the management of the
993  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
994  * unless a particular usage is carefully commented. (the responsibility of
995  * freeing the kmalloc memory is the caller's, of course).
996  *
997  * A page may be used by anyone else who does a __get_free_page().
998  * In this case, page_count still tracks the references, and should only
999  * be used through the normal accessor functions. The top bits of page->flags
1000  * and page->virtual store page management information, but all other fields
1001  * are unused and could be used privately, carefully. The management of this
1002  * page is the responsibility of the one who allocated it, and those who have
1003  * subsequently been given references to it.
1004  *
1005  * The other pages (we may call them "pagecache pages") are completely
1006  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1007  * The following discussion applies only to them.
1008  *
1009  * A pagecache page contains an opaque `private' member, which belongs to the
1010  * page's address_space. Usually, this is the address of a circular list of
1011  * the page's disk buffers. PG_private must be set to tell the VM to call
1012  * into the filesystem to release these pages.
1013  *
1014  * A page may belong to an inode's memory mapping. In this case, page->mapping
1015  * is the pointer to the inode, and page->index is the file offset of the page,
1016  * in units of PAGE_SIZE.
1017  *
1018  * If pagecache pages are not associated with an inode, they are said to be
1019  * anonymous pages. These may become associated with the swapcache, and in that
1020  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1021  *
1022  * In either case (swapcache or inode backed), the pagecache itself holds one
1023  * reference to the page. Setting PG_private should also increment the
1024  * refcount. The each user mapping also has a reference to the page.
1025  *
1026  * The pagecache pages are stored in a per-mapping radix tree, which is
1027  * rooted at mapping->i_pages, and indexed by offset.
1028  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1029  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1030  *
1031  * All pagecache pages may be subject to I/O:
1032  * - inode pages may need to be read from disk,
1033  * - inode pages which have been modified and are MAP_SHARED may need
1034  *   to be written back to the inode on disk,
1035  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1036  *   modified may need to be swapped out to swap space and (later) to be read
1037  *   back into memory.
1038  */
1039 
1040 /*
1041  * The zone field is never updated after free_area_init_core()
1042  * sets it, so none of the operations on it need to be atomic.
1043  */
1044 
1045 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1046 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1047 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1048 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1049 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1050 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1051 
1052 /*
1053  * Define the bit shifts to access each section.  For non-existent
1054  * sections we define the shift as 0; that plus a 0 mask ensures
1055  * the compiler will optimise away reference to them.
1056  */
1057 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1058 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1059 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1060 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1061 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1062 
1063 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1064 #ifdef NODE_NOT_IN_PAGE_FLAGS
1065 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1066 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1067 						SECTIONS_PGOFF : ZONES_PGOFF)
1068 #else
1069 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1070 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1071 						NODES_PGOFF : ZONES_PGOFF)
1072 #endif
1073 
1074 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1075 
1076 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1077 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1078 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1079 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1080 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1081 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1082 
page_zonenum(const struct page * page)1083 static inline enum zone_type page_zonenum(const struct page *page)
1084 {
1085 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1086 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1087 }
1088 
1089 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1090 static inline bool is_zone_device_page(const struct page *page)
1091 {
1092 	return page_zonenum(page) == ZONE_DEVICE;
1093 }
1094 extern void memmap_init_zone_device(struct zone *, unsigned long,
1095 				    unsigned long, struct dev_pagemap *);
1096 #else
is_zone_device_page(const struct page * page)1097 static inline bool is_zone_device_page(const struct page *page)
1098 {
1099 	return false;
1100 }
1101 #endif
1102 
1103 #ifdef CONFIG_DEV_PAGEMAP_OPS
1104 void free_devmap_managed_page(struct page *page);
1105 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1106 
page_is_devmap_managed(struct page * page)1107 static inline bool page_is_devmap_managed(struct page *page)
1108 {
1109 	if (!static_branch_unlikely(&devmap_managed_key))
1110 		return false;
1111 	if (!is_zone_device_page(page))
1112 		return false;
1113 	switch (page->pgmap->type) {
1114 	case MEMORY_DEVICE_PRIVATE:
1115 	case MEMORY_DEVICE_FS_DAX:
1116 		return true;
1117 	default:
1118 		break;
1119 	}
1120 	return false;
1121 }
1122 
1123 void put_devmap_managed_page(struct page *page);
1124 
1125 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1126 static inline bool page_is_devmap_managed(struct page *page)
1127 {
1128 	return false;
1129 }
1130 
put_devmap_managed_page(struct page * page)1131 static inline void put_devmap_managed_page(struct page *page)
1132 {
1133 }
1134 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1135 
is_device_private_page(const struct page * page)1136 static inline bool is_device_private_page(const struct page *page)
1137 {
1138 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1140 		is_zone_device_page(page) &&
1141 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1142 }
1143 
is_pci_p2pdma_page(const struct page * page)1144 static inline bool is_pci_p2pdma_page(const struct page *page)
1145 {
1146 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1148 		is_zone_device_page(page) &&
1149 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1150 }
1151 
1152 /* 127: arbitrary random number, small enough to assemble well */
1153 #define page_ref_zero_or_close_to_overflow(page) \
1154 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1155 
get_page(struct page * page)1156 static inline void get_page(struct page *page)
1157 {
1158 	page = compound_head(page);
1159 	/*
1160 	 * Getting a normal page or the head of a compound page
1161 	 * requires to already have an elevated page->_refcount.
1162 	 */
1163 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1164 	page_ref_inc(page);
1165 }
1166 
1167 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1168 
try_get_page(struct page * page)1169 static inline __must_check bool try_get_page(struct page *page)
1170 {
1171 	page = compound_head(page);
1172 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1173 		return false;
1174 	page_ref_inc(page);
1175 	return true;
1176 }
1177 
put_page(struct page * page)1178 static inline void put_page(struct page *page)
1179 {
1180 	page = compound_head(page);
1181 
1182 	/*
1183 	 * For devmap managed pages we need to catch refcount transition from
1184 	 * 2 to 1, when refcount reach one it means the page is free and we
1185 	 * need to inform the device driver through callback. See
1186 	 * include/linux/memremap.h and HMM for details.
1187 	 */
1188 	if (page_is_devmap_managed(page)) {
1189 		put_devmap_managed_page(page);
1190 		return;
1191 	}
1192 
1193 	if (put_page_testzero(page))
1194 		__put_page(page);
1195 }
1196 
1197 /*
1198  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1199  * the page's refcount so that two separate items are tracked: the original page
1200  * reference count, and also a new count of how many pin_user_pages() calls were
1201  * made against the page. ("gup-pinned" is another term for the latter).
1202  *
1203  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1204  * distinct from normal pages. As such, the unpin_user_page() call (and its
1205  * variants) must be used in order to release gup-pinned pages.
1206  *
1207  * Choice of value:
1208  *
1209  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1210  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1211  * simpler, due to the fact that adding an even power of two to the page
1212  * refcount has the effect of using only the upper N bits, for the code that
1213  * counts up using the bias value. This means that the lower bits are left for
1214  * the exclusive use of the original code that increments and decrements by one
1215  * (or at least, by much smaller values than the bias value).
1216  *
1217  * Of course, once the lower bits overflow into the upper bits (and this is
1218  * OK, because subtraction recovers the original values), then visual inspection
1219  * no longer suffices to directly view the separate counts. However, for normal
1220  * applications that don't have huge page reference counts, this won't be an
1221  * issue.
1222  *
1223  * Locking: the lockless algorithm described in page_cache_get_speculative()
1224  * and page_cache_gup_pin_speculative() provides safe operation for
1225  * get_user_pages and page_mkclean and other calls that race to set up page
1226  * table entries.
1227  */
1228 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1229 
1230 void unpin_user_page(struct page *page);
1231 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1232 				 bool make_dirty);
1233 void unpin_user_pages(struct page **pages, unsigned long npages);
1234 
1235 /**
1236  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1237  *
1238  * This function checks if a page has been pinned via a call to
1239  * pin_user_pages*().
1240  *
1241  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1242  * because it means "definitely not pinned for DMA", but true means "probably
1243  * pinned for DMA, but possibly a false positive due to having at least
1244  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1245  *
1246  * False positives are OK, because: a) it's unlikely for a page to get that many
1247  * refcounts, and b) all the callers of this routine are expected to be able to
1248  * deal gracefully with a false positive.
1249  *
1250  * For huge pages, the result will be exactly correct. That's because we have
1251  * more tracking data available: the 3rd struct page in the compound page is
1252  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1253  * scheme).
1254  *
1255  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1256  *
1257  * @page:	pointer to page to be queried.
1258  * @Return:	True, if it is likely that the page has been "dma-pinned".
1259  *		False, if the page is definitely not dma-pinned.
1260  */
page_maybe_dma_pinned(struct page * page)1261 static inline bool page_maybe_dma_pinned(struct page *page)
1262 {
1263 	if (hpage_pincount_available(page))
1264 		return compound_pincount(page) > 0;
1265 
1266 	/*
1267 	 * page_ref_count() is signed. If that refcount overflows, then
1268 	 * page_ref_count() returns a negative value, and callers will avoid
1269 	 * further incrementing the refcount.
1270 	 *
1271 	 * Here, for that overflow case, use the signed bit to count a little
1272 	 * bit higher via unsigned math, and thus still get an accurate result.
1273 	 */
1274 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1275 		GUP_PIN_COUNTING_BIAS;
1276 }
1277 
1278 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1279 #define SECTION_IN_PAGE_FLAGS
1280 #endif
1281 
1282 /*
1283  * The identification function is mainly used by the buddy allocator for
1284  * determining if two pages could be buddies. We are not really identifying
1285  * the zone since we could be using the section number id if we do not have
1286  * node id available in page flags.
1287  * We only guarantee that it will return the same value for two combinable
1288  * pages in a zone.
1289  */
page_zone_id(struct page * page)1290 static inline int page_zone_id(struct page *page)
1291 {
1292 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1293 }
1294 
1295 #ifdef NODE_NOT_IN_PAGE_FLAGS
1296 extern int page_to_nid(const struct page *page);
1297 #else
page_to_nid(const struct page * page)1298 static inline int page_to_nid(const struct page *page)
1299 {
1300 	struct page *p = (struct page *)page;
1301 
1302 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1303 }
1304 #endif
1305 
1306 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1307 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1308 {
1309 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1310 }
1311 
cpupid_to_pid(int cpupid)1312 static inline int cpupid_to_pid(int cpupid)
1313 {
1314 	return cpupid & LAST__PID_MASK;
1315 }
1316 
cpupid_to_cpu(int cpupid)1317 static inline int cpupid_to_cpu(int cpupid)
1318 {
1319 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1320 }
1321 
cpupid_to_nid(int cpupid)1322 static inline int cpupid_to_nid(int cpupid)
1323 {
1324 	return cpu_to_node(cpupid_to_cpu(cpupid));
1325 }
1326 
cpupid_pid_unset(int cpupid)1327 static inline bool cpupid_pid_unset(int cpupid)
1328 {
1329 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1330 }
1331 
cpupid_cpu_unset(int cpupid)1332 static inline bool cpupid_cpu_unset(int cpupid)
1333 {
1334 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1335 }
1336 
__cpupid_match_pid(pid_t task_pid,int cpupid)1337 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1338 {
1339 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1340 }
1341 
1342 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1343 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1344 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1345 {
1346 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1347 }
1348 
page_cpupid_last(struct page * page)1349 static inline int page_cpupid_last(struct page *page)
1350 {
1351 	return page->_last_cpupid;
1352 }
page_cpupid_reset_last(struct page * page)1353 static inline void page_cpupid_reset_last(struct page *page)
1354 {
1355 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1356 }
1357 #else
page_cpupid_last(struct page * page)1358 static inline int page_cpupid_last(struct page *page)
1359 {
1360 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1361 }
1362 
1363 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1364 
page_cpupid_reset_last(struct page * page)1365 static inline void page_cpupid_reset_last(struct page *page)
1366 {
1367 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1368 }
1369 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1370 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1371 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1372 {
1373 	return page_to_nid(page); /* XXX */
1374 }
1375 
page_cpupid_last(struct page * page)1376 static inline int page_cpupid_last(struct page *page)
1377 {
1378 	return page_to_nid(page); /* XXX */
1379 }
1380 
cpupid_to_nid(int cpupid)1381 static inline int cpupid_to_nid(int cpupid)
1382 {
1383 	return -1;
1384 }
1385 
cpupid_to_pid(int cpupid)1386 static inline int cpupid_to_pid(int cpupid)
1387 {
1388 	return -1;
1389 }
1390 
cpupid_to_cpu(int cpupid)1391 static inline int cpupid_to_cpu(int cpupid)
1392 {
1393 	return -1;
1394 }
1395 
cpu_pid_to_cpupid(int nid,int pid)1396 static inline int cpu_pid_to_cpupid(int nid, int pid)
1397 {
1398 	return -1;
1399 }
1400 
cpupid_pid_unset(int cpupid)1401 static inline bool cpupid_pid_unset(int cpupid)
1402 {
1403 	return true;
1404 }
1405 
page_cpupid_reset_last(struct page * page)1406 static inline void page_cpupid_reset_last(struct page *page)
1407 {
1408 }
1409 
cpupid_match_pid(struct task_struct * task,int cpupid)1410 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1411 {
1412 	return false;
1413 }
1414 #endif /* CONFIG_NUMA_BALANCING */
1415 
1416 #ifdef CONFIG_KASAN_SW_TAGS
page_kasan_tag(const struct page * page)1417 static inline u8 page_kasan_tag(const struct page *page)
1418 {
1419 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1420 }
1421 
page_kasan_tag_set(struct page * page,u8 tag)1422 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1423 {
1424 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1425 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1426 }
1427 
page_kasan_tag_reset(struct page * page)1428 static inline void page_kasan_tag_reset(struct page *page)
1429 {
1430 	page_kasan_tag_set(page, 0xff);
1431 }
1432 #else
page_kasan_tag(const struct page * page)1433 static inline u8 page_kasan_tag(const struct page *page)
1434 {
1435 	return 0xff;
1436 }
1437 
page_kasan_tag_set(struct page * page,u8 tag)1438 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1439 static inline void page_kasan_tag_reset(struct page *page) { }
1440 #endif
1441 
page_zone(const struct page * page)1442 static inline struct zone *page_zone(const struct page *page)
1443 {
1444 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1445 }
1446 
page_pgdat(const struct page * page)1447 static inline pg_data_t *page_pgdat(const struct page *page)
1448 {
1449 	return NODE_DATA(page_to_nid(page));
1450 }
1451 
1452 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1453 static inline void set_page_section(struct page *page, unsigned long section)
1454 {
1455 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1456 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1457 }
1458 
page_to_section(const struct page * page)1459 static inline unsigned long page_to_section(const struct page *page)
1460 {
1461 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1462 }
1463 #endif
1464 
set_page_zone(struct page * page,enum zone_type zone)1465 static inline void set_page_zone(struct page *page, enum zone_type zone)
1466 {
1467 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1468 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1469 }
1470 
set_page_node(struct page * page,unsigned long node)1471 static inline void set_page_node(struct page *page, unsigned long node)
1472 {
1473 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1474 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1475 }
1476 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1477 static inline void set_page_links(struct page *page, enum zone_type zone,
1478 	unsigned long node, unsigned long pfn)
1479 {
1480 	set_page_zone(page, zone);
1481 	set_page_node(page, node);
1482 #ifdef SECTION_IN_PAGE_FLAGS
1483 	set_page_section(page, pfn_to_section_nr(pfn));
1484 #endif
1485 }
1486 
1487 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1488 static inline struct mem_cgroup *page_memcg(struct page *page)
1489 {
1490 	return page->mem_cgroup;
1491 }
page_memcg_rcu(struct page * page)1492 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1493 {
1494 	WARN_ON_ONCE(!rcu_read_lock_held());
1495 	return READ_ONCE(page->mem_cgroup);
1496 }
1497 #else
page_memcg(struct page * page)1498 static inline struct mem_cgroup *page_memcg(struct page *page)
1499 {
1500 	return NULL;
1501 }
page_memcg_rcu(struct page * page)1502 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1503 {
1504 	WARN_ON_ONCE(!rcu_read_lock_held());
1505 	return NULL;
1506 }
1507 #endif
1508 
1509 /*
1510  * Some inline functions in vmstat.h depend on page_zone()
1511  */
1512 #include <linux/vmstat.h>
1513 
lowmem_page_address(const struct page * page)1514 static __always_inline void *lowmem_page_address(const struct page *page)
1515 {
1516 	return page_to_virt(page);
1517 }
1518 
1519 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1520 #define HASHED_PAGE_VIRTUAL
1521 #endif
1522 
1523 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1524 static inline void *page_address(const struct page *page)
1525 {
1526 	return page->virtual;
1527 }
set_page_address(struct page * page,void * address)1528 static inline void set_page_address(struct page *page, void *address)
1529 {
1530 	page->virtual = address;
1531 }
1532 #define page_address_init()  do { } while(0)
1533 #endif
1534 
1535 #if defined(HASHED_PAGE_VIRTUAL)
1536 void *page_address(const struct page *page);
1537 void set_page_address(struct page *page, void *virtual);
1538 void page_address_init(void);
1539 #endif
1540 
1541 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1542 #define page_address(page) lowmem_page_address(page)
1543 #define set_page_address(page, address)  do { } while(0)
1544 #define page_address_init()  do { } while(0)
1545 #endif
1546 
1547 extern void *page_rmapping(struct page *page);
1548 extern struct anon_vma *page_anon_vma(struct page *page);
1549 extern struct address_space *page_mapping(struct page *page);
1550 
1551 extern struct address_space *__page_file_mapping(struct page *);
1552 
1553 static inline
page_file_mapping(struct page * page)1554 struct address_space *page_file_mapping(struct page *page)
1555 {
1556 	if (unlikely(PageSwapCache(page)))
1557 		return __page_file_mapping(page);
1558 
1559 	return page->mapping;
1560 }
1561 
1562 extern pgoff_t __page_file_index(struct page *page);
1563 
1564 /*
1565  * Return the pagecache index of the passed page.  Regular pagecache pages
1566  * use ->index whereas swapcache pages use swp_offset(->private)
1567  */
page_index(struct page * page)1568 static inline pgoff_t page_index(struct page *page)
1569 {
1570 	if (unlikely(PageSwapCache(page)))
1571 		return __page_file_index(page);
1572 	return page->index;
1573 }
1574 
1575 bool page_mapped(struct page *page);
1576 struct address_space *page_mapping(struct page *page);
1577 struct address_space *page_mapping_file(struct page *page);
1578 
1579 /*
1580  * Return true only if the page has been allocated with
1581  * ALLOC_NO_WATERMARKS and the low watermark was not
1582  * met implying that the system is under some pressure.
1583  */
page_is_pfmemalloc(struct page * page)1584 static inline bool page_is_pfmemalloc(struct page *page)
1585 {
1586 	/*
1587 	 * Page index cannot be this large so this must be
1588 	 * a pfmemalloc page.
1589 	 */
1590 	return page->index == -1UL;
1591 }
1592 
1593 /*
1594  * Only to be called by the page allocator on a freshly allocated
1595  * page.
1596  */
set_page_pfmemalloc(struct page * page)1597 static inline void set_page_pfmemalloc(struct page *page)
1598 {
1599 	page->index = -1UL;
1600 }
1601 
clear_page_pfmemalloc(struct page * page)1602 static inline void clear_page_pfmemalloc(struct page *page)
1603 {
1604 	page->index = 0;
1605 }
1606 
1607 /*
1608  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1609  */
1610 extern void pagefault_out_of_memory(void);
1611 
1612 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1613 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1614 
1615 /*
1616  * Flags passed to show_mem() and show_free_areas() to suppress output in
1617  * various contexts.
1618  */
1619 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1620 
1621 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1622 
1623 #ifdef CONFIG_MMU
1624 extern bool can_do_mlock(void);
1625 #else
can_do_mlock(void)1626 static inline bool can_do_mlock(void) { return false; }
1627 #endif
1628 extern int user_shm_lock(size_t, struct user_struct *);
1629 extern void user_shm_unlock(size_t, struct user_struct *);
1630 
1631 /*
1632  * Parameter block passed down to zap_pte_range in exceptional cases.
1633  */
1634 struct zap_details {
1635 	struct address_space *check_mapping;	/* Check page->mapping if set */
1636 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1637 	pgoff_t last_index;			/* Highest page->index to unmap */
1638 };
1639 
1640 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1641 			     pte_t pte);
1642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1643 				pmd_t pmd);
1644 
1645 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1646 		  unsigned long size);
1647 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1648 		    unsigned long size);
1649 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1650 		unsigned long start, unsigned long end);
1651 
1652 struct mmu_notifier_range;
1653 
1654 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1655 		unsigned long end, unsigned long floor, unsigned long ceiling);
1656 int
1657 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1658 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1659 		   struct mmu_notifier_range *range,
1660 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1661 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1662 	unsigned long *pfn);
1663 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1664 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1665 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1666 			void *buf, int len, int write);
1667 
1668 extern void truncate_pagecache(struct inode *inode, loff_t new);
1669 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1670 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1671 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1672 int truncate_inode_page(struct address_space *mapping, struct page *page);
1673 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1674 int invalidate_inode_page(struct page *page);
1675 
1676 #ifdef CONFIG_MMU
1677 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1678 				  unsigned long address, unsigned int flags,
1679 				  struct pt_regs *regs);
1680 extern int fixup_user_fault(struct mm_struct *mm,
1681 			    unsigned long address, unsigned int fault_flags,
1682 			    bool *unlocked);
1683 void unmap_mapping_pages(struct address_space *mapping,
1684 		pgoff_t start, pgoff_t nr, bool even_cows);
1685 void unmap_mapping_range(struct address_space *mapping,
1686 		loff_t const holebegin, loff_t const holelen, int even_cows);
1687 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1688 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1689 					 unsigned long address, unsigned int flags,
1690 					 struct pt_regs *regs)
1691 {
1692 	/* should never happen if there's no MMU */
1693 	BUG();
1694 	return VM_FAULT_SIGBUS;
1695 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1696 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1697 		unsigned int fault_flags, bool *unlocked)
1698 {
1699 	/* should never happen if there's no MMU */
1700 	BUG();
1701 	return -EFAULT;
1702 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1703 static inline void unmap_mapping_pages(struct address_space *mapping,
1704 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1705 static inline void unmap_mapping_range(struct address_space *mapping,
1706 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1707 #endif
1708 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1709 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1710 		loff_t const holebegin, loff_t const holelen)
1711 {
1712 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1713 }
1714 
1715 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1716 		void *buf, int len, unsigned int gup_flags);
1717 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1718 		void *buf, int len, unsigned int gup_flags);
1719 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1720 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1721 
1722 long get_user_pages_remote(struct mm_struct *mm,
1723 			    unsigned long start, unsigned long nr_pages,
1724 			    unsigned int gup_flags, struct page **pages,
1725 			    struct vm_area_struct **vmas, int *locked);
1726 long pin_user_pages_remote(struct mm_struct *mm,
1727 			   unsigned long start, unsigned long nr_pages,
1728 			   unsigned int gup_flags, struct page **pages,
1729 			   struct vm_area_struct **vmas, int *locked);
1730 long get_user_pages(unsigned long start, unsigned long nr_pages,
1731 			    unsigned int gup_flags, struct page **pages,
1732 			    struct vm_area_struct **vmas);
1733 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1734 		    unsigned int gup_flags, struct page **pages,
1735 		    struct vm_area_struct **vmas);
1736 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1737 		    unsigned int gup_flags, struct page **pages, int *locked);
1738 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1739 		    unsigned int gup_flags, struct page **pages, int *locked);
1740 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1741 		    struct page **pages, unsigned int gup_flags);
1742 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1743 		    struct page **pages, unsigned int gup_flags);
1744 
1745 int get_user_pages_fast(unsigned long start, int nr_pages,
1746 			unsigned int gup_flags, struct page **pages);
1747 int pin_user_pages_fast(unsigned long start, int nr_pages,
1748 			unsigned int gup_flags, struct page **pages);
1749 
1750 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1751 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1752 			struct task_struct *task, bool bypass_rlim);
1753 
1754 /* Container for pinned pfns / pages */
1755 struct frame_vector {
1756 	unsigned int nr_allocated;	/* Number of frames we have space for */
1757 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1758 	bool got_ref;		/* Did we pin pages by getting page ref? */
1759 	bool is_pfns;		/* Does array contain pages or pfns? */
1760 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1761 				 * pfns_vector_pages() or pfns_vector_pfns()
1762 				 * for access */
1763 };
1764 
1765 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1766 void frame_vector_destroy(struct frame_vector *vec);
1767 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1768 		     unsigned int gup_flags, struct frame_vector *vec);
1769 void put_vaddr_frames(struct frame_vector *vec);
1770 int frame_vector_to_pages(struct frame_vector *vec);
1771 void frame_vector_to_pfns(struct frame_vector *vec);
1772 
frame_vector_count(struct frame_vector * vec)1773 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1774 {
1775 	return vec->nr_frames;
1776 }
1777 
frame_vector_pages(struct frame_vector * vec)1778 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1779 {
1780 	if (vec->is_pfns) {
1781 		int err = frame_vector_to_pages(vec);
1782 
1783 		if (err)
1784 			return ERR_PTR(err);
1785 	}
1786 	return (struct page **)(vec->ptrs);
1787 }
1788 
frame_vector_pfns(struct frame_vector * vec)1789 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1790 {
1791 	if (!vec->is_pfns)
1792 		frame_vector_to_pfns(vec);
1793 	return (unsigned long *)(vec->ptrs);
1794 }
1795 
1796 struct kvec;
1797 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1798 			struct page **pages);
1799 int get_kernel_page(unsigned long start, int write, struct page **pages);
1800 struct page *get_dump_page(unsigned long addr);
1801 
1802 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1803 extern void do_invalidatepage(struct page *page, unsigned int offset,
1804 			      unsigned int length);
1805 
1806 void __set_page_dirty(struct page *, struct address_space *, int warn);
1807 int __set_page_dirty_nobuffers(struct page *page);
1808 int __set_page_dirty_no_writeback(struct page *page);
1809 int redirty_page_for_writepage(struct writeback_control *wbc,
1810 				struct page *page);
1811 void account_page_dirtied(struct page *page, struct address_space *mapping);
1812 void account_page_cleaned(struct page *page, struct address_space *mapping,
1813 			  struct bdi_writeback *wb);
1814 int set_page_dirty(struct page *page);
1815 int set_page_dirty_lock(struct page *page);
1816 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1817 static inline void cancel_dirty_page(struct page *page)
1818 {
1819 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1820 	if (PageDirty(page))
1821 		__cancel_dirty_page(page);
1822 }
1823 int clear_page_dirty_for_io(struct page *page);
1824 
1825 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1826 
1827 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1828 		unsigned long old_addr, struct vm_area_struct *new_vma,
1829 		unsigned long new_addr, unsigned long len,
1830 		bool need_rmap_locks);
1831 
1832 /*
1833  * Flags used by change_protection().  For now we make it a bitmap so
1834  * that we can pass in multiple flags just like parameters.  However
1835  * for now all the callers are only use one of the flags at the same
1836  * time.
1837  */
1838 /* Whether we should allow dirty bit accounting */
1839 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1840 /* Whether this protection change is for NUMA hints */
1841 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1842 /* Whether this change is for write protecting */
1843 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1844 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1845 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1846 					    MM_CP_UFFD_WP_RESOLVE)
1847 
1848 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1849 			      unsigned long end, pgprot_t newprot,
1850 			      unsigned long cp_flags);
1851 extern int mprotect_fixup(struct vm_area_struct *vma,
1852 			  struct vm_area_struct **pprev, unsigned long start,
1853 			  unsigned long end, unsigned long newflags);
1854 
1855 /*
1856  * doesn't attempt to fault and will return short.
1857  */
1858 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1859 			     unsigned int gup_flags, struct page **pages);
1860 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1861 			     unsigned int gup_flags, struct page **pages);
1862 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1863 static inline bool get_user_page_fast_only(unsigned long addr,
1864 			unsigned int gup_flags, struct page **pagep)
1865 {
1866 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1867 }
1868 /*
1869  * per-process(per-mm_struct) statistics.
1870  */
get_mm_counter(struct mm_struct * mm,int member)1871 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1872 {
1873 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1874 
1875 #ifdef SPLIT_RSS_COUNTING
1876 	/*
1877 	 * counter is updated in asynchronous manner and may go to minus.
1878 	 * But it's never be expected number for users.
1879 	 */
1880 	if (val < 0)
1881 		val = 0;
1882 #endif
1883 	return (unsigned long)val;
1884 }
1885 
1886 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1887 
add_mm_counter(struct mm_struct * mm,int member,long value)1888 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1889 {
1890 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1891 
1892 	mm_trace_rss_stat(mm, member, count);
1893 }
1894 
inc_mm_counter(struct mm_struct * mm,int member)1895 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1896 {
1897 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1898 
1899 	mm_trace_rss_stat(mm, member, count);
1900 }
1901 
dec_mm_counter(struct mm_struct * mm,int member)1902 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1903 {
1904 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1905 
1906 	mm_trace_rss_stat(mm, member, count);
1907 }
1908 
1909 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1910 static inline int mm_counter_file(struct page *page)
1911 {
1912 	if (PageSwapBacked(page))
1913 		return MM_SHMEMPAGES;
1914 	return MM_FILEPAGES;
1915 }
1916 
mm_counter(struct page * page)1917 static inline int mm_counter(struct page *page)
1918 {
1919 	if (PageAnon(page))
1920 		return MM_ANONPAGES;
1921 	return mm_counter_file(page);
1922 }
1923 
get_mm_rss(struct mm_struct * mm)1924 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1925 {
1926 	return get_mm_counter(mm, MM_FILEPAGES) +
1927 		get_mm_counter(mm, MM_ANONPAGES) +
1928 		get_mm_counter(mm, MM_SHMEMPAGES);
1929 }
1930 
get_mm_hiwater_rss(struct mm_struct * mm)1931 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1932 {
1933 	return max(mm->hiwater_rss, get_mm_rss(mm));
1934 }
1935 
get_mm_hiwater_vm(struct mm_struct * mm)1936 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1937 {
1938 	return max(mm->hiwater_vm, mm->total_vm);
1939 }
1940 
update_hiwater_rss(struct mm_struct * mm)1941 static inline void update_hiwater_rss(struct mm_struct *mm)
1942 {
1943 	unsigned long _rss = get_mm_rss(mm);
1944 
1945 	if ((mm)->hiwater_rss < _rss)
1946 		(mm)->hiwater_rss = _rss;
1947 }
1948 
update_hiwater_vm(struct mm_struct * mm)1949 static inline void update_hiwater_vm(struct mm_struct *mm)
1950 {
1951 	if (mm->hiwater_vm < mm->total_vm)
1952 		mm->hiwater_vm = mm->total_vm;
1953 }
1954 
reset_mm_hiwater_rss(struct mm_struct * mm)1955 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1956 {
1957 	mm->hiwater_rss = get_mm_rss(mm);
1958 }
1959 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1960 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1961 					 struct mm_struct *mm)
1962 {
1963 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1964 
1965 	if (*maxrss < hiwater_rss)
1966 		*maxrss = hiwater_rss;
1967 }
1968 
1969 #if defined(SPLIT_RSS_COUNTING)
1970 void sync_mm_rss(struct mm_struct *mm);
1971 #else
sync_mm_rss(struct mm_struct * mm)1972 static inline void sync_mm_rss(struct mm_struct *mm)
1973 {
1974 }
1975 #endif
1976 
1977 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)1978 static inline int pte_special(pte_t pte)
1979 {
1980 	return 0;
1981 }
1982 
pte_mkspecial(pte_t pte)1983 static inline pte_t pte_mkspecial(pte_t pte)
1984 {
1985 	return pte;
1986 }
1987 #endif
1988 
1989 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)1990 static inline int pte_devmap(pte_t pte)
1991 {
1992 	return 0;
1993 }
1994 #endif
1995 
1996 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1997 
1998 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1999 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2000 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2001 				    spinlock_t **ptl)
2002 {
2003 	pte_t *ptep;
2004 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2005 	return ptep;
2006 }
2007 
2008 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2009 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2010 						unsigned long address)
2011 {
2012 	return 0;
2013 }
2014 #else
2015 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2016 #endif
2017 
2018 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2019 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2020 						unsigned long address)
2021 {
2022 	return 0;
2023 }
mm_inc_nr_puds(struct mm_struct * mm)2024 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2025 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2026 
2027 #else
2028 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2029 
mm_inc_nr_puds(struct mm_struct * mm)2030 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2031 {
2032 	if (mm_pud_folded(mm))
2033 		return;
2034 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2035 }
2036 
mm_dec_nr_puds(struct mm_struct * mm)2037 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2038 {
2039 	if (mm_pud_folded(mm))
2040 		return;
2041 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2042 }
2043 #endif
2044 
2045 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2046 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2047 						unsigned long address)
2048 {
2049 	return 0;
2050 }
2051 
mm_inc_nr_pmds(struct mm_struct * mm)2052 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2053 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2054 
2055 #else
2056 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2057 
mm_inc_nr_pmds(struct mm_struct * mm)2058 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2059 {
2060 	if (mm_pmd_folded(mm))
2061 		return;
2062 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2063 }
2064 
mm_dec_nr_pmds(struct mm_struct * mm)2065 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2066 {
2067 	if (mm_pmd_folded(mm))
2068 		return;
2069 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2070 }
2071 #endif
2072 
2073 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2074 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2075 {
2076 	atomic_long_set(&mm->pgtables_bytes, 0);
2077 }
2078 
mm_pgtables_bytes(const struct mm_struct * mm)2079 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2080 {
2081 	return atomic_long_read(&mm->pgtables_bytes);
2082 }
2083 
mm_inc_nr_ptes(struct mm_struct * mm)2084 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2085 {
2086 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2087 }
2088 
mm_dec_nr_ptes(struct mm_struct * mm)2089 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2090 {
2091 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2092 }
2093 #else
2094 
mm_pgtables_bytes_init(struct mm_struct * mm)2095 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2096 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2097 {
2098 	return 0;
2099 }
2100 
mm_inc_nr_ptes(struct mm_struct * mm)2101 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2102 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2103 #endif
2104 
2105 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2106 int __pte_alloc_kernel(pmd_t *pmd);
2107 
2108 #if defined(CONFIG_MMU)
2109 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2110 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2111 		unsigned long address)
2112 {
2113 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2114 		NULL : p4d_offset(pgd, address);
2115 }
2116 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2117 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2118 		unsigned long address)
2119 {
2120 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2121 		NULL : pud_offset(p4d, address);
2122 }
2123 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2124 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2125 {
2126 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2127 		NULL: pmd_offset(pud, address);
2128 }
2129 #endif /* CONFIG_MMU */
2130 
2131 #if USE_SPLIT_PTE_PTLOCKS
2132 #if ALLOC_SPLIT_PTLOCKS
2133 void __init ptlock_cache_init(void);
2134 extern bool ptlock_alloc(struct page *page);
2135 extern void ptlock_free(struct page *page);
2136 
ptlock_ptr(struct page * page)2137 static inline spinlock_t *ptlock_ptr(struct page *page)
2138 {
2139 	return page->ptl;
2140 }
2141 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2142 static inline void ptlock_cache_init(void)
2143 {
2144 }
2145 
ptlock_alloc(struct page * page)2146 static inline bool ptlock_alloc(struct page *page)
2147 {
2148 	return true;
2149 }
2150 
ptlock_free(struct page * page)2151 static inline void ptlock_free(struct page *page)
2152 {
2153 }
2154 
ptlock_ptr(struct page * page)2155 static inline spinlock_t *ptlock_ptr(struct page *page)
2156 {
2157 	return &page->ptl;
2158 }
2159 #endif /* ALLOC_SPLIT_PTLOCKS */
2160 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2161 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2162 {
2163 	return ptlock_ptr(pmd_page(*pmd));
2164 }
2165 
ptlock_init(struct page * page)2166 static inline bool ptlock_init(struct page *page)
2167 {
2168 	/*
2169 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2170 	 * with 0. Make sure nobody took it in use in between.
2171 	 *
2172 	 * It can happen if arch try to use slab for page table allocation:
2173 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2174 	 */
2175 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2176 	if (!ptlock_alloc(page))
2177 		return false;
2178 	spin_lock_init(ptlock_ptr(page));
2179 	return true;
2180 }
2181 
2182 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2183 /*
2184  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2185  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2186 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2187 {
2188 	return &mm->page_table_lock;
2189 }
ptlock_cache_init(void)2190 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2191 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2192 static inline void ptlock_free(struct page *page) {}
2193 #endif /* USE_SPLIT_PTE_PTLOCKS */
2194 
pgtable_init(void)2195 static inline void pgtable_init(void)
2196 {
2197 	ptlock_cache_init();
2198 	pgtable_cache_init();
2199 }
2200 
pgtable_pte_page_ctor(struct page * page)2201 static inline bool pgtable_pte_page_ctor(struct page *page)
2202 {
2203 	if (!ptlock_init(page))
2204 		return false;
2205 	__SetPageTable(page);
2206 	inc_zone_page_state(page, NR_PAGETABLE);
2207 	return true;
2208 }
2209 
pgtable_pte_page_dtor(struct page * page)2210 static inline void pgtable_pte_page_dtor(struct page *page)
2211 {
2212 	ptlock_free(page);
2213 	__ClearPageTable(page);
2214 	dec_zone_page_state(page, NR_PAGETABLE);
2215 }
2216 
2217 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2218 ({							\
2219 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2220 	pte_t *__pte = pte_offset_map(pmd, address);	\
2221 	*(ptlp) = __ptl;				\
2222 	spin_lock(__ptl);				\
2223 	__pte;						\
2224 })
2225 
2226 #define pte_unmap_unlock(pte, ptl)	do {		\
2227 	spin_unlock(ptl);				\
2228 	pte_unmap(pte);					\
2229 } while (0)
2230 
2231 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2232 
2233 #define pte_alloc_map(mm, pmd, address)			\
2234 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2235 
2236 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2237 	(pte_alloc(mm, pmd) ?			\
2238 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2239 
2240 #define pte_alloc_kernel(pmd, address)			\
2241 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2242 		NULL: pte_offset_kernel(pmd, address))
2243 
2244 #if USE_SPLIT_PMD_PTLOCKS
2245 
pmd_to_page(pmd_t * pmd)2246 static struct page *pmd_to_page(pmd_t *pmd)
2247 {
2248 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2249 	return virt_to_page((void *)((unsigned long) pmd & mask));
2250 }
2251 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2252 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2253 {
2254 	return ptlock_ptr(pmd_to_page(pmd));
2255 }
2256 
pmd_ptlock_init(struct page * page)2257 static inline bool pmd_ptlock_init(struct page *page)
2258 {
2259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2260 	page->pmd_huge_pte = NULL;
2261 #endif
2262 	return ptlock_init(page);
2263 }
2264 
pmd_ptlock_free(struct page * page)2265 static inline void pmd_ptlock_free(struct page *page)
2266 {
2267 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2268 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2269 #endif
2270 	ptlock_free(page);
2271 }
2272 
2273 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2274 
2275 #else
2276 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2277 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2278 {
2279 	return &mm->page_table_lock;
2280 }
2281 
pmd_ptlock_init(struct page * page)2282 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2283 static inline void pmd_ptlock_free(struct page *page) {}
2284 
2285 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2286 
2287 #endif
2288 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2289 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2290 {
2291 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2292 	spin_lock(ptl);
2293 	return ptl;
2294 }
2295 
pgtable_pmd_page_ctor(struct page * page)2296 static inline bool pgtable_pmd_page_ctor(struct page *page)
2297 {
2298 	if (!pmd_ptlock_init(page))
2299 		return false;
2300 	__SetPageTable(page);
2301 	inc_zone_page_state(page, NR_PAGETABLE);
2302 	return true;
2303 }
2304 
pgtable_pmd_page_dtor(struct page * page)2305 static inline void pgtable_pmd_page_dtor(struct page *page)
2306 {
2307 	pmd_ptlock_free(page);
2308 	__ClearPageTable(page);
2309 	dec_zone_page_state(page, NR_PAGETABLE);
2310 }
2311 
2312 /*
2313  * No scalability reason to split PUD locks yet, but follow the same pattern
2314  * as the PMD locks to make it easier if we decide to.  The VM should not be
2315  * considered ready to switch to split PUD locks yet; there may be places
2316  * which need to be converted from page_table_lock.
2317  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2318 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2319 {
2320 	return &mm->page_table_lock;
2321 }
2322 
pud_lock(struct mm_struct * mm,pud_t * pud)2323 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2324 {
2325 	spinlock_t *ptl = pud_lockptr(mm, pud);
2326 
2327 	spin_lock(ptl);
2328 	return ptl;
2329 }
2330 
2331 extern void __init pagecache_init(void);
2332 extern void __init free_area_init_memoryless_node(int nid);
2333 extern void free_initmem(void);
2334 
2335 /*
2336  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2337  * into the buddy system. The freed pages will be poisoned with pattern
2338  * "poison" if it's within range [0, UCHAR_MAX].
2339  * Return pages freed into the buddy system.
2340  */
2341 extern unsigned long free_reserved_area(void *start, void *end,
2342 					int poison, const char *s);
2343 
2344 #ifdef	CONFIG_HIGHMEM
2345 /*
2346  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2347  * and totalram_pages.
2348  */
2349 extern void free_highmem_page(struct page *page);
2350 #endif
2351 
2352 extern void adjust_managed_page_count(struct page *page, long count);
2353 extern void mem_init_print_info(const char *str);
2354 
2355 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2356 
2357 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2358 static inline void __free_reserved_page(struct page *page)
2359 {
2360 	ClearPageReserved(page);
2361 	init_page_count(page);
2362 	__free_page(page);
2363 }
2364 
free_reserved_page(struct page * page)2365 static inline void free_reserved_page(struct page *page)
2366 {
2367 	__free_reserved_page(page);
2368 	adjust_managed_page_count(page, 1);
2369 }
2370 
mark_page_reserved(struct page * page)2371 static inline void mark_page_reserved(struct page *page)
2372 {
2373 	SetPageReserved(page);
2374 	adjust_managed_page_count(page, -1);
2375 }
2376 
2377 /*
2378  * Default method to free all the __init memory into the buddy system.
2379  * The freed pages will be poisoned with pattern "poison" if it's within
2380  * range [0, UCHAR_MAX].
2381  * Return pages freed into the buddy system.
2382  */
free_initmem_default(int poison)2383 static inline unsigned long free_initmem_default(int poison)
2384 {
2385 	extern char __init_begin[], __init_end[];
2386 
2387 	return free_reserved_area(&__init_begin, &__init_end,
2388 				  poison, "unused kernel");
2389 }
2390 
get_num_physpages(void)2391 static inline unsigned long get_num_physpages(void)
2392 {
2393 	int nid;
2394 	unsigned long phys_pages = 0;
2395 
2396 	for_each_online_node(nid)
2397 		phys_pages += node_present_pages(nid);
2398 
2399 	return phys_pages;
2400 }
2401 
2402 /*
2403  * Using memblock node mappings, an architecture may initialise its
2404  * zones, allocate the backing mem_map and account for memory holes in an
2405  * architecture independent manner.
2406  *
2407  * An architecture is expected to register range of page frames backed by
2408  * physical memory with memblock_add[_node]() before calling
2409  * free_area_init() passing in the PFN each zone ends at. At a basic
2410  * usage, an architecture is expected to do something like
2411  *
2412  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2413  * 							 max_highmem_pfn};
2414  * for_each_valid_physical_page_range()
2415  * 	memblock_add_node(base, size, nid)
2416  * free_area_init(max_zone_pfns);
2417  */
2418 void free_area_init(unsigned long *max_zone_pfn);
2419 unsigned long node_map_pfn_alignment(void);
2420 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2421 						unsigned long end_pfn);
2422 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2423 						unsigned long end_pfn);
2424 extern void get_pfn_range_for_nid(unsigned int nid,
2425 			unsigned long *start_pfn, unsigned long *end_pfn);
2426 extern unsigned long find_min_pfn_with_active_regions(void);
2427 
2428 #ifndef CONFIG_NEED_MULTIPLE_NODES
early_pfn_to_nid(unsigned long pfn)2429 static inline int early_pfn_to_nid(unsigned long pfn)
2430 {
2431 	return 0;
2432 }
2433 #else
2434 /* please see mm/page_alloc.c */
2435 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2436 /* there is a per-arch backend function. */
2437 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2438 					struct mminit_pfnnid_cache *state);
2439 #endif
2440 
2441 extern void set_dma_reserve(unsigned long new_dma_reserve);
2442 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2443 		enum meminit_context, struct vmem_altmap *, int migratetype);
2444 extern void setup_per_zone_wmarks(void);
2445 extern int __meminit init_per_zone_wmark_min(void);
2446 extern void mem_init(void);
2447 extern void __init mmap_init(void);
2448 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2449 extern long si_mem_available(void);
2450 extern void si_meminfo(struct sysinfo * val);
2451 extern void si_meminfo_node(struct sysinfo *val, int nid);
2452 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2453 extern unsigned long arch_reserved_kernel_pages(void);
2454 #endif
2455 
2456 extern __printf(3, 4)
2457 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2458 
2459 extern void setup_per_cpu_pageset(void);
2460 
2461 /* page_alloc.c */
2462 extern int min_free_kbytes;
2463 extern int watermark_boost_factor;
2464 extern int watermark_scale_factor;
2465 extern bool arch_has_descending_max_zone_pfns(void);
2466 
2467 /* nommu.c */
2468 extern atomic_long_t mmap_pages_allocated;
2469 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2470 
2471 /* interval_tree.c */
2472 void vma_interval_tree_insert(struct vm_area_struct *node,
2473 			      struct rb_root_cached *root);
2474 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2475 				    struct vm_area_struct *prev,
2476 				    struct rb_root_cached *root);
2477 void vma_interval_tree_remove(struct vm_area_struct *node,
2478 			      struct rb_root_cached *root);
2479 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2480 				unsigned long start, unsigned long last);
2481 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2482 				unsigned long start, unsigned long last);
2483 
2484 #define vma_interval_tree_foreach(vma, root, start, last)		\
2485 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2486 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2487 
2488 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2489 				   struct rb_root_cached *root);
2490 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2491 				   struct rb_root_cached *root);
2492 struct anon_vma_chain *
2493 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2494 				  unsigned long start, unsigned long last);
2495 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2496 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2497 #ifdef CONFIG_DEBUG_VM_RB
2498 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2499 #endif
2500 
2501 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2502 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2503 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2504 
2505 /* mmap.c */
2506 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2507 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2508 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2509 	struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2510 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2511 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2512 {
2513 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2514 }
2515 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2516 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2517 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2518 	struct mempolicy *, struct vm_userfaultfd_ctx);
2519 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2520 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2521 	unsigned long addr, int new_below);
2522 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2523 	unsigned long addr, int new_below);
2524 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2525 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2526 	struct rb_node **, struct rb_node *);
2527 extern void unlink_file_vma(struct vm_area_struct *);
2528 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2529 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2530 	bool *need_rmap_locks);
2531 extern void exit_mmap(struct mm_struct *);
2532 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2533 static inline int check_data_rlimit(unsigned long rlim,
2534 				    unsigned long new,
2535 				    unsigned long start,
2536 				    unsigned long end_data,
2537 				    unsigned long start_data)
2538 {
2539 	if (rlim < RLIM_INFINITY) {
2540 		if (((new - start) + (end_data - start_data)) > rlim)
2541 			return -ENOSPC;
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 extern int mm_take_all_locks(struct mm_struct *mm);
2548 extern void mm_drop_all_locks(struct mm_struct *mm);
2549 
2550 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2551 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2552 extern struct file *get_task_exe_file(struct task_struct *task);
2553 
2554 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2555 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2556 
2557 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2558 				   const struct vm_special_mapping *sm);
2559 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2560 				   unsigned long addr, unsigned long len,
2561 				   unsigned long flags,
2562 				   const struct vm_special_mapping *spec);
2563 /* This is an obsolete alternative to _install_special_mapping. */
2564 extern int install_special_mapping(struct mm_struct *mm,
2565 				   unsigned long addr, unsigned long len,
2566 				   unsigned long flags, struct page **pages);
2567 
2568 unsigned long randomize_stack_top(unsigned long stack_top);
2569 
2570 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2571 
2572 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2573 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2574 	struct list_head *uf);
2575 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2576 	unsigned long len, unsigned long prot, unsigned long flags,
2577 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2578 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2579 		       struct list_head *uf, bool downgrade);
2580 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2581 		     struct list_head *uf);
2582 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2583 
2584 #ifdef CONFIG_MMU
2585 extern int __mm_populate(unsigned long addr, unsigned long len,
2586 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2587 static inline void mm_populate(unsigned long addr, unsigned long len)
2588 {
2589 	/* Ignore errors */
2590 	(void) __mm_populate(addr, len, 1);
2591 }
2592 #else
mm_populate(unsigned long addr,unsigned long len)2593 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2594 #endif
2595 
2596 /* These take the mm semaphore themselves */
2597 extern int __must_check vm_brk(unsigned long, unsigned long);
2598 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2599 extern int vm_munmap(unsigned long, size_t);
2600 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2601         unsigned long, unsigned long,
2602         unsigned long, unsigned long);
2603 
2604 struct vm_unmapped_area_info {
2605 #define VM_UNMAPPED_AREA_TOPDOWN 1
2606 	unsigned long flags;
2607 	unsigned long length;
2608 	unsigned long low_limit;
2609 	unsigned long high_limit;
2610 	unsigned long align_mask;
2611 	unsigned long align_offset;
2612 };
2613 
2614 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2615 
2616 /* truncate.c */
2617 extern void truncate_inode_pages(struct address_space *, loff_t);
2618 extern void truncate_inode_pages_range(struct address_space *,
2619 				       loff_t lstart, loff_t lend);
2620 extern void truncate_inode_pages_final(struct address_space *);
2621 
2622 /* generic vm_area_ops exported for stackable file systems */
2623 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2624 extern void filemap_map_pages(struct vm_fault *vmf,
2625 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2626 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2627 
2628 /* mm/page-writeback.c */
2629 int __must_check write_one_page(struct page *page);
2630 void task_dirty_inc(struct task_struct *tsk);
2631 
2632 extern unsigned long stack_guard_gap;
2633 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2634 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2635 
2636 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2637 extern int expand_downwards(struct vm_area_struct *vma,
2638 		unsigned long address);
2639 #if VM_GROWSUP
2640 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2641 #else
2642   #define expand_upwards(vma, address) (0)
2643 #endif
2644 
2645 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2646 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2647 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2648 					     struct vm_area_struct **pprev);
2649 
2650 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2651    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2652 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2653 {
2654 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2655 
2656 	if (vma && end_addr <= vma->vm_start)
2657 		vma = NULL;
2658 	return vma;
2659 }
2660 
vm_start_gap(struct vm_area_struct * vma)2661 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2662 {
2663 	unsigned long vm_start = vma->vm_start;
2664 
2665 	if (vma->vm_flags & VM_GROWSDOWN) {
2666 		vm_start -= stack_guard_gap;
2667 		if (vm_start > vma->vm_start)
2668 			vm_start = 0;
2669 	}
2670 	return vm_start;
2671 }
2672 
vm_end_gap(struct vm_area_struct * vma)2673 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2674 {
2675 	unsigned long vm_end = vma->vm_end;
2676 
2677 	if (vma->vm_flags & VM_GROWSUP) {
2678 		vm_end += stack_guard_gap;
2679 		if (vm_end < vma->vm_end)
2680 			vm_end = -PAGE_SIZE;
2681 	}
2682 	return vm_end;
2683 }
2684 
vma_pages(struct vm_area_struct * vma)2685 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2686 {
2687 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2688 }
2689 
2690 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2691 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2692 				unsigned long vm_start, unsigned long vm_end)
2693 {
2694 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2695 
2696 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2697 		vma = NULL;
2698 
2699 	return vma;
2700 }
2701 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2702 static inline bool range_in_vma(struct vm_area_struct *vma,
2703 				unsigned long start, unsigned long end)
2704 {
2705 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2706 }
2707 
2708 #ifdef CONFIG_MMU
2709 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2710 void vma_set_page_prot(struct vm_area_struct *vma);
2711 #else
vm_get_page_prot(unsigned long vm_flags)2712 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2713 {
2714 	return __pgprot(0);
2715 }
vma_set_page_prot(struct vm_area_struct * vma)2716 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2717 {
2718 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2719 }
2720 #endif
2721 
2722 #ifdef CONFIG_NUMA_BALANCING
2723 unsigned long change_prot_numa(struct vm_area_struct *vma,
2724 			unsigned long start, unsigned long end);
2725 #endif
2726 
2727 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2728 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2729 			unsigned long pfn, unsigned long size, pgprot_t);
2730 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2731 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2732 			struct page **pages, unsigned long *num);
2733 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2734 				unsigned long num);
2735 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2736 				unsigned long num);
2737 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2738 			unsigned long pfn);
2739 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2740 			unsigned long pfn, pgprot_t pgprot);
2741 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2742 			pfn_t pfn);
2743 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2744 			pfn_t pfn, pgprot_t pgprot);
2745 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2746 		unsigned long addr, pfn_t pfn);
2747 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2748 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2749 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2750 				unsigned long addr, struct page *page)
2751 {
2752 	int err = vm_insert_page(vma, addr, page);
2753 
2754 	if (err == -ENOMEM)
2755 		return VM_FAULT_OOM;
2756 	if (err < 0 && err != -EBUSY)
2757 		return VM_FAULT_SIGBUS;
2758 
2759 	return VM_FAULT_NOPAGE;
2760 }
2761 
2762 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2763 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2764 				     unsigned long addr, unsigned long pfn,
2765 				     unsigned long size, pgprot_t prot)
2766 {
2767 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2768 }
2769 #endif
2770 
vmf_error(int err)2771 static inline vm_fault_t vmf_error(int err)
2772 {
2773 	if (err == -ENOMEM)
2774 		return VM_FAULT_OOM;
2775 	return VM_FAULT_SIGBUS;
2776 }
2777 
2778 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2779 			 unsigned int foll_flags);
2780 
2781 #define FOLL_WRITE	0x01	/* check pte is writable */
2782 #define FOLL_TOUCH	0x02	/* mark page accessed */
2783 #define FOLL_GET	0x04	/* do get_page on page */
2784 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2785 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2786 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2787 				 * and return without waiting upon it */
2788 #define FOLL_POPULATE	0x40	/* fault in page */
2789 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2790 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2791 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2792 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2793 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2794 #define FOLL_MLOCK	0x1000	/* lock present pages */
2795 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2796 #define FOLL_COW	0x4000	/* internal GUP flag */
2797 #define FOLL_ANON	0x8000	/* don't do file mappings */
2798 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2799 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2800 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2801 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2802 
2803 /*
2804  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2805  * other. Here is what they mean, and how to use them:
2806  *
2807  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2808  * period _often_ under userspace control.  This is in contrast to
2809  * iov_iter_get_pages(), whose usages are transient.
2810  *
2811  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2812  * lifetime enforced by the filesystem and we need guarantees that longterm
2813  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2814  * the filesystem.  Ideas for this coordination include revoking the longterm
2815  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2816  * added after the problem with filesystems was found FS DAX VMAs are
2817  * specifically failed.  Filesystem pages are still subject to bugs and use of
2818  * FOLL_LONGTERM should be avoided on those pages.
2819  *
2820  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2821  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2822  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2823  * is due to an incompatibility with the FS DAX check and
2824  * FAULT_FLAG_ALLOW_RETRY.
2825  *
2826  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2827  * that region.  And so, CMA attempts to migrate the page before pinning, when
2828  * FOLL_LONGTERM is specified.
2829  *
2830  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2831  * but an additional pin counting system) will be invoked. This is intended for
2832  * anything that gets a page reference and then touches page data (for example,
2833  * Direct IO). This lets the filesystem know that some non-file-system entity is
2834  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2835  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2836  * a call to unpin_user_page().
2837  *
2838  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2839  * and separate refcounting mechanisms, however, and that means that each has
2840  * its own acquire and release mechanisms:
2841  *
2842  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2843  *
2844  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2845  *
2846  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2847  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2848  * calls applied to them, and that's perfectly OK. This is a constraint on the
2849  * callers, not on the pages.)
2850  *
2851  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2852  * directly by the caller. That's in order to help avoid mismatches when
2853  * releasing pages: get_user_pages*() pages must be released via put_page(),
2854  * while pin_user_pages*() pages must be released via unpin_user_page().
2855  *
2856  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2857  */
2858 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2859 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2860 {
2861 	if (vm_fault & VM_FAULT_OOM)
2862 		return -ENOMEM;
2863 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2864 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2865 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2866 		return -EFAULT;
2867 	return 0;
2868 }
2869 
2870 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2871 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2872 			       unsigned long size, pte_fn_t fn, void *data);
2873 extern int apply_to_existing_page_range(struct mm_struct *mm,
2874 				   unsigned long address, unsigned long size,
2875 				   pte_fn_t fn, void *data);
2876 
2877 #ifdef CONFIG_PAGE_POISONING
2878 extern bool page_poisoning_enabled(void);
2879 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2880 #else
page_poisoning_enabled(void)2881 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2882 static inline void kernel_poison_pages(struct page *page, int numpages,
2883 					int enable) { }
2884 #endif
2885 
2886 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2887 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2888 #else
2889 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2890 #endif
want_init_on_alloc(gfp_t flags)2891 static inline bool want_init_on_alloc(gfp_t flags)
2892 {
2893 	if (static_branch_unlikely(&init_on_alloc) &&
2894 	    !page_poisoning_enabled())
2895 		return true;
2896 	return flags & __GFP_ZERO;
2897 }
2898 
2899 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2900 DECLARE_STATIC_KEY_TRUE(init_on_free);
2901 #else
2902 DECLARE_STATIC_KEY_FALSE(init_on_free);
2903 #endif
want_init_on_free(void)2904 static inline bool want_init_on_free(void)
2905 {
2906 	return static_branch_unlikely(&init_on_free) &&
2907 	       !page_poisoning_enabled();
2908 }
2909 
2910 #ifdef CONFIG_DEBUG_PAGEALLOC
2911 extern void init_debug_pagealloc(void);
2912 #else
init_debug_pagealloc(void)2913 static inline void init_debug_pagealloc(void) {}
2914 #endif
2915 extern bool _debug_pagealloc_enabled_early;
2916 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2917 
debug_pagealloc_enabled(void)2918 static inline bool debug_pagealloc_enabled(void)
2919 {
2920 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2921 		_debug_pagealloc_enabled_early;
2922 }
2923 
2924 /*
2925  * For use in fast paths after init_debug_pagealloc() has run, or when a
2926  * false negative result is not harmful when called too early.
2927  */
debug_pagealloc_enabled_static(void)2928 static inline bool debug_pagealloc_enabled_static(void)
2929 {
2930 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2931 		return false;
2932 
2933 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2934 }
2935 
2936 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2937 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2938 
2939 /*
2940  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2941  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2942  */
2943 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2944 kernel_map_pages(struct page *page, int numpages, int enable)
2945 {
2946 	__kernel_map_pages(page, numpages, enable);
2947 }
2948 #ifdef CONFIG_HIBERNATION
2949 extern bool kernel_page_present(struct page *page);
2950 #endif	/* CONFIG_HIBERNATION */
2951 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2952 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2953 kernel_map_pages(struct page *page, int numpages, int enable) {}
2954 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2955 static inline bool kernel_page_present(struct page *page) { return true; }
2956 #endif	/* CONFIG_HIBERNATION */
2957 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2958 
2959 #ifdef __HAVE_ARCH_GATE_AREA
2960 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2961 extern int in_gate_area_no_mm(unsigned long addr);
2962 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2963 #else
get_gate_vma(struct mm_struct * mm)2964 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2965 {
2966 	return NULL;
2967 }
in_gate_area_no_mm(unsigned long addr)2968 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2969 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2970 {
2971 	return 0;
2972 }
2973 #endif	/* __HAVE_ARCH_GATE_AREA */
2974 
2975 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2976 
2977 #ifdef CONFIG_SYSCTL
2978 extern int sysctl_drop_caches;
2979 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2980 		loff_t *);
2981 #endif
2982 
2983 void drop_slab(void);
2984 void drop_slab_node(int nid);
2985 
2986 #ifndef CONFIG_MMU
2987 #define randomize_va_space 0
2988 #else
2989 extern int randomize_va_space;
2990 #endif
2991 
2992 const char * arch_vma_name(struct vm_area_struct *vma);
2993 #ifdef CONFIG_MMU
2994 void print_vma_addr(char *prefix, unsigned long rip);
2995 #else
print_vma_addr(char * prefix,unsigned long rip)2996 static inline void print_vma_addr(char *prefix, unsigned long rip)
2997 {
2998 }
2999 #endif
3000 
3001 void *sparse_buffer_alloc(unsigned long size);
3002 struct page * __populate_section_memmap(unsigned long pfn,
3003 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3004 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3005 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3006 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3007 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3008 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3009 			    struct vmem_altmap *altmap);
3010 void *vmemmap_alloc_block(unsigned long size, int node);
3011 struct vmem_altmap;
3012 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3013 			      struct vmem_altmap *altmap);
3014 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3015 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3016 			       int node, struct vmem_altmap *altmap);
3017 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3018 		struct vmem_altmap *altmap);
3019 void vmemmap_populate_print_last(void);
3020 #ifdef CONFIG_MEMORY_HOTPLUG
3021 void vmemmap_free(unsigned long start, unsigned long end,
3022 		struct vmem_altmap *altmap);
3023 #endif
3024 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3025 				  unsigned long nr_pages);
3026 
3027 enum mf_flags {
3028 	MF_COUNT_INCREASED = 1 << 0,
3029 	MF_ACTION_REQUIRED = 1 << 1,
3030 	MF_MUST_KILL = 1 << 2,
3031 	MF_SOFT_OFFLINE = 1 << 3,
3032 };
3033 extern int memory_failure(unsigned long pfn, int flags);
3034 extern void memory_failure_queue(unsigned long pfn, int flags);
3035 extern void memory_failure_queue_kick(int cpu);
3036 extern int unpoison_memory(unsigned long pfn);
3037 extern int sysctl_memory_failure_early_kill;
3038 extern int sysctl_memory_failure_recovery;
3039 extern void shake_page(struct page *p, int access);
3040 extern atomic_long_t num_poisoned_pages __read_mostly;
3041 extern int soft_offline_page(unsigned long pfn, int flags);
3042 
3043 
3044 /*
3045  * Error handlers for various types of pages.
3046  */
3047 enum mf_result {
3048 	MF_IGNORED,	/* Error: cannot be handled */
3049 	MF_FAILED,	/* Error: handling failed */
3050 	MF_DELAYED,	/* Will be handled later */
3051 	MF_RECOVERED,	/* Successfully recovered */
3052 };
3053 
3054 enum mf_action_page_type {
3055 	MF_MSG_KERNEL,
3056 	MF_MSG_KERNEL_HIGH_ORDER,
3057 	MF_MSG_SLAB,
3058 	MF_MSG_DIFFERENT_COMPOUND,
3059 	MF_MSG_POISONED_HUGE,
3060 	MF_MSG_HUGE,
3061 	MF_MSG_FREE_HUGE,
3062 	MF_MSG_NON_PMD_HUGE,
3063 	MF_MSG_UNMAP_FAILED,
3064 	MF_MSG_DIRTY_SWAPCACHE,
3065 	MF_MSG_CLEAN_SWAPCACHE,
3066 	MF_MSG_DIRTY_MLOCKED_LRU,
3067 	MF_MSG_CLEAN_MLOCKED_LRU,
3068 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3069 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3070 	MF_MSG_DIRTY_LRU,
3071 	MF_MSG_CLEAN_LRU,
3072 	MF_MSG_TRUNCATED_LRU,
3073 	MF_MSG_BUDDY,
3074 	MF_MSG_BUDDY_2ND,
3075 	MF_MSG_DAX,
3076 	MF_MSG_UNSPLIT_THP,
3077 	MF_MSG_UNKNOWN,
3078 };
3079 
3080 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3081 extern void clear_huge_page(struct page *page,
3082 			    unsigned long addr_hint,
3083 			    unsigned int pages_per_huge_page);
3084 extern void copy_user_huge_page(struct page *dst, struct page *src,
3085 				unsigned long addr_hint,
3086 				struct vm_area_struct *vma,
3087 				unsigned int pages_per_huge_page);
3088 extern long copy_huge_page_from_user(struct page *dst_page,
3089 				const void __user *usr_src,
3090 				unsigned int pages_per_huge_page,
3091 				bool allow_pagefault);
3092 
3093 /**
3094  * vma_is_special_huge - Are transhuge page-table entries considered special?
3095  * @vma: Pointer to the struct vm_area_struct to consider
3096  *
3097  * Whether transhuge page-table entries are considered "special" following
3098  * the definition in vm_normal_page().
3099  *
3100  * Return: true if transhuge page-table entries should be considered special,
3101  * false otherwise.
3102  */
vma_is_special_huge(const struct vm_area_struct * vma)3103 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3104 {
3105 	return vma_is_dax(vma) || (vma->vm_file &&
3106 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3107 }
3108 
3109 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3110 
3111 #ifdef CONFIG_DEBUG_PAGEALLOC
3112 extern unsigned int _debug_guardpage_minorder;
3113 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3114 
debug_guardpage_minorder(void)3115 static inline unsigned int debug_guardpage_minorder(void)
3116 {
3117 	return _debug_guardpage_minorder;
3118 }
3119 
debug_guardpage_enabled(void)3120 static inline bool debug_guardpage_enabled(void)
3121 {
3122 	return static_branch_unlikely(&_debug_guardpage_enabled);
3123 }
3124 
page_is_guard(struct page * page)3125 static inline bool page_is_guard(struct page *page)
3126 {
3127 	if (!debug_guardpage_enabled())
3128 		return false;
3129 
3130 	return PageGuard(page);
3131 }
3132 #else
debug_guardpage_minorder(void)3133 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3134 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3135 static inline bool page_is_guard(struct page *page) { return false; }
3136 #endif /* CONFIG_DEBUG_PAGEALLOC */
3137 
3138 #if MAX_NUMNODES > 1
3139 void __init setup_nr_node_ids(void);
3140 #else
setup_nr_node_ids(void)3141 static inline void setup_nr_node_ids(void) {}
3142 #endif
3143 
3144 extern int memcmp_pages(struct page *page1, struct page *page2);
3145 
pages_identical(struct page * page1,struct page * page2)3146 static inline int pages_identical(struct page *page1, struct page *page2)
3147 {
3148 	return !memcmp_pages(page1, page2);
3149 }
3150 
3151 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3152 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3153 						pgoff_t first_index, pgoff_t nr,
3154 						pgoff_t bitmap_pgoff,
3155 						unsigned long *bitmap,
3156 						pgoff_t *start,
3157 						pgoff_t *end);
3158 
3159 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3160 				      pgoff_t first_index, pgoff_t nr);
3161 #endif
3162 
3163 extern int sysctl_nr_trim_pages;
3164 
3165 #endif /* __KERNEL__ */
3166 #endif /* _LINUX_MM_H */
3167