1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/ialloc.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
14 */
15
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26
27 #include <asm/byteorder.h>
28
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 #include <trace/events/ext4.h>
35
36 /*
37 * ialloc.c contains the inodes allocation and deallocation routines
38 */
39
40 /*
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
44 *
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
48 */
49
50 /*
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
54 */
ext4_mark_bitmap_end(int start_bit,int end_bit,char * bitmap)55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 int i;
58
59 if (start_bit >= end_bit)
60 return;
61
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68
ext4_end_bitmap_read(struct buffer_head * bh,int uptodate)69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
74 }
75 unlock_buffer(bh);
76 put_bh(bh);
77 }
78
ext4_validate_inode_bitmap(struct super_block * sb,struct ext4_group_desc * desc,ext4_group_t block_group,struct buffer_head * bh)79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
83 {
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp;
86
87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
88 return 0;
89
90 grp = ext4_get_group_info(sb, block_group);
91
92 if (buffer_verified(bh))
93 return 0;
94 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
95 return -EFSCORRUPTED;
96
97 ext4_lock_group(sb, block_group);
98 if (buffer_verified(bh))
99 goto verified;
100 blk = ext4_inode_bitmap(sb, desc);
101 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
102 EXT4_INODES_PER_GROUP(sb) / 8) ||
103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
104 ext4_unlock_group(sb, block_group);
105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
106 "inode_bitmap = %llu", block_group, blk);
107 ext4_mark_group_bitmap_corrupted(sb, block_group,
108 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
109 return -EFSBADCRC;
110 }
111 set_buffer_verified(bh);
112 verified:
113 ext4_unlock_group(sb, block_group);
114 return 0;
115 }
116
117 /*
118 * Read the inode allocation bitmap for a given block_group, reading
119 * into the specified slot in the superblock's bitmap cache.
120 *
121 * Return buffer_head of bitmap on success, or an ERR_PTR on error.
122 */
123 static struct buffer_head *
ext4_read_inode_bitmap(struct super_block * sb,ext4_group_t block_group)124 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
125 {
126 struct ext4_group_desc *desc;
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 struct buffer_head *bh = NULL;
129 ext4_fsblk_t bitmap_blk;
130 int err;
131
132 desc = ext4_get_group_desc(sb, block_group, NULL);
133 if (!desc)
134 return ERR_PTR(-EFSCORRUPTED);
135
136 bitmap_blk = ext4_inode_bitmap(sb, desc);
137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
139 ext4_error(sb, "Invalid inode bitmap blk %llu in "
140 "block_group %u", bitmap_blk, block_group);
141 ext4_mark_group_bitmap_corrupted(sb, block_group,
142 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
143 return ERR_PTR(-EFSCORRUPTED);
144 }
145 bh = sb_getblk(sb, bitmap_blk);
146 if (unlikely(!bh)) {
147 ext4_warning(sb, "Cannot read inode bitmap - "
148 "block_group = %u, inode_bitmap = %llu",
149 block_group, bitmap_blk);
150 return ERR_PTR(-ENOMEM);
151 }
152 if (bitmap_uptodate(bh))
153 goto verify;
154
155 lock_buffer(bh);
156 if (bitmap_uptodate(bh)) {
157 unlock_buffer(bh);
158 goto verify;
159 }
160
161 ext4_lock_group(sb, block_group);
162 if (ext4_has_group_desc_csum(sb) &&
163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
164 if (block_group == 0) {
165 ext4_unlock_group(sb, block_group);
166 unlock_buffer(bh);
167 ext4_error(sb, "Inode bitmap for bg 0 marked "
168 "uninitialized");
169 err = -EFSCORRUPTED;
170 goto out;
171 }
172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
174 sb->s_blocksize * 8, bh->b_data);
175 set_bitmap_uptodate(bh);
176 set_buffer_uptodate(bh);
177 set_buffer_verified(bh);
178 ext4_unlock_group(sb, block_group);
179 unlock_buffer(bh);
180 return bh;
181 }
182 ext4_unlock_group(sb, block_group);
183
184 if (buffer_uptodate(bh)) {
185 /*
186 * if not uninit if bh is uptodate,
187 * bitmap is also uptodate
188 */
189 set_bitmap_uptodate(bh);
190 unlock_buffer(bh);
191 goto verify;
192 }
193 /*
194 * submit the buffer_head for reading
195 */
196 trace_ext4_load_inode_bitmap(sb, block_group);
197 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read);
198 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
199 if (!buffer_uptodate(bh)) {
200 put_bh(bh);
201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
202 "block_group = %u, inode_bitmap = %llu",
203 block_group, bitmap_blk);
204 ext4_mark_group_bitmap_corrupted(sb, block_group,
205 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
206 return ERR_PTR(-EIO);
207 }
208
209 verify:
210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
211 if (err)
212 goto out;
213 return bh;
214 out:
215 put_bh(bh);
216 return ERR_PTR(err);
217 }
218
219 /*
220 * NOTE! When we get the inode, we're the only people
221 * that have access to it, and as such there are no
222 * race conditions we have to worry about. The inode
223 * is not on the hash-lists, and it cannot be reached
224 * through the filesystem because the directory entry
225 * has been deleted earlier.
226 *
227 * HOWEVER: we must make sure that we get no aliases,
228 * which means that we have to call "clear_inode()"
229 * _before_ we mark the inode not in use in the inode
230 * bitmaps. Otherwise a newly created file might use
231 * the same inode number (not actually the same pointer
232 * though), and then we'd have two inodes sharing the
233 * same inode number and space on the harddisk.
234 */
ext4_free_inode(handle_t * handle,struct inode * inode)235 void ext4_free_inode(handle_t *handle, struct inode *inode)
236 {
237 struct super_block *sb = inode->i_sb;
238 int is_directory;
239 unsigned long ino;
240 struct buffer_head *bitmap_bh = NULL;
241 struct buffer_head *bh2;
242 ext4_group_t block_group;
243 unsigned long bit;
244 struct ext4_group_desc *gdp;
245 struct ext4_super_block *es;
246 struct ext4_sb_info *sbi;
247 int fatal = 0, err, count, cleared;
248 struct ext4_group_info *grp;
249
250 if (!sb) {
251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
252 "nonexistent device\n", __func__, __LINE__);
253 return;
254 }
255 if (atomic_read(&inode->i_count) > 1) {
256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
257 __func__, __LINE__, inode->i_ino,
258 atomic_read(&inode->i_count));
259 return;
260 }
261 if (inode->i_nlink) {
262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
263 __func__, __LINE__, inode->i_ino, inode->i_nlink);
264 return;
265 }
266 sbi = EXT4_SB(sb);
267
268 ino = inode->i_ino;
269 ext4_debug("freeing inode %lu\n", ino);
270 trace_ext4_free_inode(inode);
271
272 dquot_initialize(inode);
273 dquot_free_inode(inode);
274
275 is_directory = S_ISDIR(inode->i_mode);
276
277 /* Do this BEFORE marking the inode not in use or returning an error */
278 ext4_clear_inode(inode);
279
280 es = sbi->s_es;
281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
282 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
283 goto error_return;
284 }
285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
288 /* Don't bother if the inode bitmap is corrupt. */
289 if (IS_ERR(bitmap_bh)) {
290 fatal = PTR_ERR(bitmap_bh);
291 bitmap_bh = NULL;
292 goto error_return;
293 }
294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
295 grp = ext4_get_group_info(sb, block_group);
296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
297 fatal = -EFSCORRUPTED;
298 goto error_return;
299 }
300 }
301
302 BUFFER_TRACE(bitmap_bh, "get_write_access");
303 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
304 if (fatal)
305 goto error_return;
306
307 fatal = -ESRCH;
308 gdp = ext4_get_group_desc(sb, block_group, &bh2);
309 if (gdp) {
310 BUFFER_TRACE(bh2, "get_write_access");
311 fatal = ext4_journal_get_write_access(handle, bh2);
312 }
313 ext4_lock_group(sb, block_group);
314 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
315 if (fatal || !cleared) {
316 ext4_unlock_group(sb, block_group);
317 goto out;
318 }
319
320 count = ext4_free_inodes_count(sb, gdp) + 1;
321 ext4_free_inodes_set(sb, gdp, count);
322 if (is_directory) {
323 count = ext4_used_dirs_count(sb, gdp) - 1;
324 ext4_used_dirs_set(sb, gdp, count);
325 percpu_counter_dec(&sbi->s_dirs_counter);
326 }
327 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
328 EXT4_INODES_PER_GROUP(sb) / 8);
329 ext4_group_desc_csum_set(sb, block_group, gdp);
330 ext4_unlock_group(sb, block_group);
331
332 percpu_counter_inc(&sbi->s_freeinodes_counter);
333 if (sbi->s_log_groups_per_flex) {
334 struct flex_groups *fg;
335
336 fg = sbi_array_rcu_deref(sbi, s_flex_groups,
337 ext4_flex_group(sbi, block_group));
338 atomic_inc(&fg->free_inodes);
339 if (is_directory)
340 atomic_dec(&fg->used_dirs);
341 }
342 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
343 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
344 out:
345 if (cleared) {
346 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
347 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
348 if (!fatal)
349 fatal = err;
350 } else {
351 ext4_error(sb, "bit already cleared for inode %lu", ino);
352 ext4_mark_group_bitmap_corrupted(sb, block_group,
353 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
354 }
355
356 error_return:
357 brelse(bitmap_bh);
358 ext4_std_error(sb, fatal);
359 }
360
361 struct orlov_stats {
362 __u64 free_clusters;
363 __u32 free_inodes;
364 __u32 used_dirs;
365 };
366
367 /*
368 * Helper function for Orlov's allocator; returns critical information
369 * for a particular block group or flex_bg. If flex_size is 1, then g
370 * is a block group number; otherwise it is flex_bg number.
371 */
get_orlov_stats(struct super_block * sb,ext4_group_t g,int flex_size,struct orlov_stats * stats)372 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
373 int flex_size, struct orlov_stats *stats)
374 {
375 struct ext4_group_desc *desc;
376
377 if (flex_size > 1) {
378 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
379 s_flex_groups, g);
380 stats->free_inodes = atomic_read(&fg->free_inodes);
381 stats->free_clusters = atomic64_read(&fg->free_clusters);
382 stats->used_dirs = atomic_read(&fg->used_dirs);
383 return;
384 }
385
386 desc = ext4_get_group_desc(sb, g, NULL);
387 if (desc) {
388 stats->free_inodes = ext4_free_inodes_count(sb, desc);
389 stats->free_clusters = ext4_free_group_clusters(sb, desc);
390 stats->used_dirs = ext4_used_dirs_count(sb, desc);
391 } else {
392 stats->free_inodes = 0;
393 stats->free_clusters = 0;
394 stats->used_dirs = 0;
395 }
396 }
397
398 /*
399 * Orlov's allocator for directories.
400 *
401 * We always try to spread first-level directories.
402 *
403 * If there are blockgroups with both free inodes and free blocks counts
404 * not worse than average we return one with smallest directory count.
405 * Otherwise we simply return a random group.
406 *
407 * For the rest rules look so:
408 *
409 * It's OK to put directory into a group unless
410 * it has too many directories already (max_dirs) or
411 * it has too few free inodes left (min_inodes) or
412 * it has too few free blocks left (min_blocks) or
413 * Parent's group is preferred, if it doesn't satisfy these
414 * conditions we search cyclically through the rest. If none
415 * of the groups look good we just look for a group with more
416 * free inodes than average (starting at parent's group).
417 */
418
find_group_orlov(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode,const struct qstr * qstr)419 static int find_group_orlov(struct super_block *sb, struct inode *parent,
420 ext4_group_t *group, umode_t mode,
421 const struct qstr *qstr)
422 {
423 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
424 struct ext4_sb_info *sbi = EXT4_SB(sb);
425 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
426 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
427 unsigned int freei, avefreei, grp_free;
428 ext4_fsblk_t freeb, avefreec;
429 unsigned int ndirs;
430 int max_dirs, min_inodes;
431 ext4_grpblk_t min_clusters;
432 ext4_group_t i, grp, g, ngroups;
433 struct ext4_group_desc *desc;
434 struct orlov_stats stats;
435 int flex_size = ext4_flex_bg_size(sbi);
436 struct dx_hash_info hinfo;
437
438 ngroups = real_ngroups;
439 if (flex_size > 1) {
440 ngroups = (real_ngroups + flex_size - 1) >>
441 sbi->s_log_groups_per_flex;
442 parent_group >>= sbi->s_log_groups_per_flex;
443 }
444
445 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
446 avefreei = freei / ngroups;
447 freeb = EXT4_C2B(sbi,
448 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
449 avefreec = freeb;
450 do_div(avefreec, ngroups);
451 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
452
453 if (S_ISDIR(mode) &&
454 ((parent == d_inode(sb->s_root)) ||
455 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
456 int best_ndir = inodes_per_group;
457 int ret = -1;
458
459 if (qstr) {
460 hinfo.hash_version = DX_HASH_HALF_MD4;
461 hinfo.seed = sbi->s_hash_seed;
462 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
463 grp = hinfo.hash;
464 } else
465 grp = prandom_u32();
466 parent_group = (unsigned)grp % ngroups;
467 for (i = 0; i < ngroups; i++) {
468 g = (parent_group + i) % ngroups;
469 get_orlov_stats(sb, g, flex_size, &stats);
470 if (!stats.free_inodes)
471 continue;
472 if (stats.used_dirs >= best_ndir)
473 continue;
474 if (stats.free_inodes < avefreei)
475 continue;
476 if (stats.free_clusters < avefreec)
477 continue;
478 grp = g;
479 ret = 0;
480 best_ndir = stats.used_dirs;
481 }
482 if (ret)
483 goto fallback;
484 found_flex_bg:
485 if (flex_size == 1) {
486 *group = grp;
487 return 0;
488 }
489
490 /*
491 * We pack inodes at the beginning of the flexgroup's
492 * inode tables. Block allocation decisions will do
493 * something similar, although regular files will
494 * start at 2nd block group of the flexgroup. See
495 * ext4_ext_find_goal() and ext4_find_near().
496 */
497 grp *= flex_size;
498 for (i = 0; i < flex_size; i++) {
499 if (grp+i >= real_ngroups)
500 break;
501 desc = ext4_get_group_desc(sb, grp+i, NULL);
502 if (desc && ext4_free_inodes_count(sb, desc)) {
503 *group = grp+i;
504 return 0;
505 }
506 }
507 goto fallback;
508 }
509
510 max_dirs = ndirs / ngroups + inodes_per_group / 16;
511 min_inodes = avefreei - inodes_per_group*flex_size / 4;
512 if (min_inodes < 1)
513 min_inodes = 1;
514 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
515
516 /*
517 * Start looking in the flex group where we last allocated an
518 * inode for this parent directory
519 */
520 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
521 parent_group = EXT4_I(parent)->i_last_alloc_group;
522 if (flex_size > 1)
523 parent_group >>= sbi->s_log_groups_per_flex;
524 }
525
526 for (i = 0; i < ngroups; i++) {
527 grp = (parent_group + i) % ngroups;
528 get_orlov_stats(sb, grp, flex_size, &stats);
529 if (stats.used_dirs >= max_dirs)
530 continue;
531 if (stats.free_inodes < min_inodes)
532 continue;
533 if (stats.free_clusters < min_clusters)
534 continue;
535 goto found_flex_bg;
536 }
537
538 fallback:
539 ngroups = real_ngroups;
540 avefreei = freei / ngroups;
541 fallback_retry:
542 parent_group = EXT4_I(parent)->i_block_group;
543 for (i = 0; i < ngroups; i++) {
544 grp = (parent_group + i) % ngroups;
545 desc = ext4_get_group_desc(sb, grp, NULL);
546 if (desc) {
547 grp_free = ext4_free_inodes_count(sb, desc);
548 if (grp_free && grp_free >= avefreei) {
549 *group = grp;
550 return 0;
551 }
552 }
553 }
554
555 if (avefreei) {
556 /*
557 * The free-inodes counter is approximate, and for really small
558 * filesystems the above test can fail to find any blockgroups
559 */
560 avefreei = 0;
561 goto fallback_retry;
562 }
563
564 return -1;
565 }
566
find_group_other(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode)567 static int find_group_other(struct super_block *sb, struct inode *parent,
568 ext4_group_t *group, umode_t mode)
569 {
570 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
571 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
572 struct ext4_group_desc *desc;
573 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
574
575 /*
576 * Try to place the inode is the same flex group as its
577 * parent. If we can't find space, use the Orlov algorithm to
578 * find another flex group, and store that information in the
579 * parent directory's inode information so that use that flex
580 * group for future allocations.
581 */
582 if (flex_size > 1) {
583 int retry = 0;
584
585 try_again:
586 parent_group &= ~(flex_size-1);
587 last = parent_group + flex_size;
588 if (last > ngroups)
589 last = ngroups;
590 for (i = parent_group; i < last; i++) {
591 desc = ext4_get_group_desc(sb, i, NULL);
592 if (desc && ext4_free_inodes_count(sb, desc)) {
593 *group = i;
594 return 0;
595 }
596 }
597 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
598 retry = 1;
599 parent_group = EXT4_I(parent)->i_last_alloc_group;
600 goto try_again;
601 }
602 /*
603 * If this didn't work, use the Orlov search algorithm
604 * to find a new flex group; we pass in the mode to
605 * avoid the topdir algorithms.
606 */
607 *group = parent_group + flex_size;
608 if (*group > ngroups)
609 *group = 0;
610 return find_group_orlov(sb, parent, group, mode, NULL);
611 }
612
613 /*
614 * Try to place the inode in its parent directory
615 */
616 *group = parent_group;
617 desc = ext4_get_group_desc(sb, *group, NULL);
618 if (desc && ext4_free_inodes_count(sb, desc) &&
619 ext4_free_group_clusters(sb, desc))
620 return 0;
621
622 /*
623 * We're going to place this inode in a different blockgroup from its
624 * parent. We want to cause files in a common directory to all land in
625 * the same blockgroup. But we want files which are in a different
626 * directory which shares a blockgroup with our parent to land in a
627 * different blockgroup.
628 *
629 * So add our directory's i_ino into the starting point for the hash.
630 */
631 *group = (*group + parent->i_ino) % ngroups;
632
633 /*
634 * Use a quadratic hash to find a group with a free inode and some free
635 * blocks.
636 */
637 for (i = 1; i < ngroups; i <<= 1) {
638 *group += i;
639 if (*group >= ngroups)
640 *group -= ngroups;
641 desc = ext4_get_group_desc(sb, *group, NULL);
642 if (desc && ext4_free_inodes_count(sb, desc) &&
643 ext4_free_group_clusters(sb, desc))
644 return 0;
645 }
646
647 /*
648 * That failed: try linear search for a free inode, even if that group
649 * has no free blocks.
650 */
651 *group = parent_group;
652 for (i = 0; i < ngroups; i++) {
653 if (++*group >= ngroups)
654 *group = 0;
655 desc = ext4_get_group_desc(sb, *group, NULL);
656 if (desc && ext4_free_inodes_count(sb, desc))
657 return 0;
658 }
659
660 return -1;
661 }
662
663 /*
664 * In no journal mode, if an inode has recently been deleted, we want
665 * to avoid reusing it until we're reasonably sure the inode table
666 * block has been written back to disk. (Yes, these values are
667 * somewhat arbitrary...)
668 */
669 #define RECENTCY_MIN 60
670 #define RECENTCY_DIRTY 300
671
recently_deleted(struct super_block * sb,ext4_group_t group,int ino)672 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
673 {
674 struct ext4_group_desc *gdp;
675 struct ext4_inode *raw_inode;
676 struct buffer_head *bh;
677 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
678 int offset, ret = 0;
679 int recentcy = RECENTCY_MIN;
680 u32 dtime, now;
681
682 gdp = ext4_get_group_desc(sb, group, NULL);
683 if (unlikely(!gdp))
684 return 0;
685
686 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
687 (ino / inodes_per_block));
688 if (!bh || !buffer_uptodate(bh))
689 /*
690 * If the block is not in the buffer cache, then it
691 * must have been written out.
692 */
693 goto out;
694
695 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
696 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
697
698 /* i_dtime is only 32 bits on disk, but we only care about relative
699 * times in the range of a few minutes (i.e. long enough to sync a
700 * recently-deleted inode to disk), so using the low 32 bits of the
701 * clock (a 68 year range) is enough, see time_before32() */
702 dtime = le32_to_cpu(raw_inode->i_dtime);
703 now = ktime_get_real_seconds();
704 if (buffer_dirty(bh))
705 recentcy += RECENTCY_DIRTY;
706
707 if (dtime && time_before32(dtime, now) &&
708 time_before32(now, dtime + recentcy))
709 ret = 1;
710 out:
711 brelse(bh);
712 return ret;
713 }
714
find_inode_bit(struct super_block * sb,ext4_group_t group,struct buffer_head * bitmap,unsigned long * ino)715 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
716 struct buffer_head *bitmap, unsigned long *ino)
717 {
718 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
719 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
720
721 next:
722 *ino = ext4_find_next_zero_bit((unsigned long *)
723 bitmap->b_data,
724 EXT4_INODES_PER_GROUP(sb), *ino);
725 if (*ino >= EXT4_INODES_PER_GROUP(sb))
726 goto not_found;
727
728 if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
729 recently_deleted_ino = *ino;
730 *ino = *ino + 1;
731 if (*ino < EXT4_INODES_PER_GROUP(sb))
732 goto next;
733 goto not_found;
734 }
735 return 1;
736 not_found:
737 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
738 return 0;
739 /*
740 * Not reusing recently deleted inodes is mostly a preference. We don't
741 * want to report ENOSPC or skew allocation patterns because of that.
742 * So return even recently deleted inode if we could find better in the
743 * given range.
744 */
745 *ino = recently_deleted_ino;
746 return 1;
747 }
748
ext4_mark_inode_used(struct super_block * sb,int ino)749 int ext4_mark_inode_used(struct super_block *sb, int ino)
750 {
751 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
752 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL;
753 struct ext4_group_desc *gdp;
754 ext4_group_t group;
755 int bit;
756 int err = -EFSCORRUPTED;
757
758 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
759 goto out;
760
761 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
762 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
763 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
764 if (IS_ERR(inode_bitmap_bh))
765 return PTR_ERR(inode_bitmap_bh);
766
767 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) {
768 err = 0;
769 goto out;
770 }
771
772 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
773 if (!gdp || !group_desc_bh) {
774 err = -EINVAL;
775 goto out;
776 }
777
778 ext4_set_bit(bit, inode_bitmap_bh->b_data);
779
780 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
781 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh);
782 if (err) {
783 ext4_std_error(sb, err);
784 goto out;
785 }
786 err = sync_dirty_buffer(inode_bitmap_bh);
787 if (err) {
788 ext4_std_error(sb, err);
789 goto out;
790 }
791
792 /* We may have to initialize the block bitmap if it isn't already */
793 if (ext4_has_group_desc_csum(sb) &&
794 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
795 struct buffer_head *block_bitmap_bh;
796
797 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
798 if (IS_ERR(block_bitmap_bh)) {
799 err = PTR_ERR(block_bitmap_bh);
800 goto out;
801 }
802
803 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
804 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh);
805 sync_dirty_buffer(block_bitmap_bh);
806
807 /* recheck and clear flag under lock if we still need to */
808 ext4_lock_group(sb, group);
809 if (ext4_has_group_desc_csum(sb) &&
810 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
811 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
812 ext4_free_group_clusters_set(sb, gdp,
813 ext4_free_clusters_after_init(sb, group, gdp));
814 ext4_block_bitmap_csum_set(sb, group, gdp,
815 block_bitmap_bh);
816 ext4_group_desc_csum_set(sb, group, gdp);
817 }
818 ext4_unlock_group(sb, group);
819 brelse(block_bitmap_bh);
820
821 if (err) {
822 ext4_std_error(sb, err);
823 goto out;
824 }
825 }
826
827 /* Update the relevant bg descriptor fields */
828 if (ext4_has_group_desc_csum(sb)) {
829 int free;
830
831 ext4_lock_group(sb, group); /* while we modify the bg desc */
832 free = EXT4_INODES_PER_GROUP(sb) -
833 ext4_itable_unused_count(sb, gdp);
834 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
835 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
836 free = 0;
837 }
838
839 /*
840 * Check the relative inode number against the last used
841 * relative inode number in this group. if it is greater
842 * we need to update the bg_itable_unused count
843 */
844 if (bit >= free)
845 ext4_itable_unused_set(sb, gdp,
846 (EXT4_INODES_PER_GROUP(sb) - bit - 1));
847 } else {
848 ext4_lock_group(sb, group);
849 }
850
851 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
852 if (ext4_has_group_desc_csum(sb)) {
853 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
854 EXT4_INODES_PER_GROUP(sb) / 8);
855 ext4_group_desc_csum_set(sb, group, gdp);
856 }
857
858 ext4_unlock_group(sb, group);
859 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh);
860 sync_dirty_buffer(group_desc_bh);
861 out:
862 return err;
863 }
864
ext4_xattr_credits_for_new_inode(struct inode * dir,mode_t mode,bool encrypt)865 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode,
866 bool encrypt)
867 {
868 struct super_block *sb = dir->i_sb;
869 int nblocks = 0;
870 #ifdef CONFIG_EXT4_FS_POSIX_ACL
871 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
872
873 if (IS_ERR(p))
874 return PTR_ERR(p);
875 if (p) {
876 int acl_size = p->a_count * sizeof(ext4_acl_entry);
877
878 nblocks += (S_ISDIR(mode) ? 2 : 1) *
879 __ext4_xattr_set_credits(sb, NULL /* inode */,
880 NULL /* block_bh */, acl_size,
881 true /* is_create */);
882 posix_acl_release(p);
883 }
884 #endif
885
886 #ifdef CONFIG_SECURITY
887 {
888 int num_security_xattrs = 1;
889
890 #ifdef CONFIG_INTEGRITY
891 num_security_xattrs++;
892 #endif
893 /*
894 * We assume that security xattrs are never more than 1k.
895 * In practice they are under 128 bytes.
896 */
897 nblocks += num_security_xattrs *
898 __ext4_xattr_set_credits(sb, NULL /* inode */,
899 NULL /* block_bh */, 1024,
900 true /* is_create */);
901 }
902 #endif
903 if (encrypt)
904 nblocks += __ext4_xattr_set_credits(sb,
905 NULL /* inode */,
906 NULL /* block_bh */,
907 FSCRYPT_SET_CONTEXT_MAX_SIZE,
908 true /* is_create */);
909 return nblocks;
910 }
911
912 /*
913 * There are two policies for allocating an inode. If the new inode is
914 * a directory, then a forward search is made for a block group with both
915 * free space and a low directory-to-inode ratio; if that fails, then of
916 * the groups with above-average free space, that group with the fewest
917 * directories already is chosen.
918 *
919 * For other inodes, search forward from the parent directory's block
920 * group to find a free inode.
921 */
__ext4_new_inode(handle_t * handle,struct inode * dir,umode_t mode,const struct qstr * qstr,__u32 goal,uid_t * owner,__u32 i_flags,int handle_type,unsigned int line_no,int nblocks)922 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
923 umode_t mode, const struct qstr *qstr,
924 __u32 goal, uid_t *owner, __u32 i_flags,
925 int handle_type, unsigned int line_no,
926 int nblocks)
927 {
928 struct super_block *sb;
929 struct buffer_head *inode_bitmap_bh = NULL;
930 struct buffer_head *group_desc_bh;
931 ext4_group_t ngroups, group = 0;
932 unsigned long ino = 0;
933 struct inode *inode;
934 struct ext4_group_desc *gdp = NULL;
935 struct ext4_inode_info *ei;
936 struct ext4_sb_info *sbi;
937 int ret2, err;
938 struct inode *ret;
939 ext4_group_t i;
940 ext4_group_t flex_group;
941 struct ext4_group_info *grp = NULL;
942 bool encrypt = false;
943
944 /* Cannot create files in a deleted directory */
945 if (!dir || !dir->i_nlink)
946 return ERR_PTR(-EPERM);
947
948 sb = dir->i_sb;
949 sbi = EXT4_SB(sb);
950
951 if (unlikely(ext4_forced_shutdown(sbi)))
952 return ERR_PTR(-EIO);
953
954 ngroups = ext4_get_groups_count(sb);
955 trace_ext4_request_inode(dir, mode);
956 inode = new_inode(sb);
957 if (!inode)
958 return ERR_PTR(-ENOMEM);
959 ei = EXT4_I(inode);
960
961 /*
962 * Initialize owners and quota early so that we don't have to account
963 * for quota initialization worst case in standard inode creating
964 * transaction
965 */
966 if (owner) {
967 inode->i_mode = mode;
968 i_uid_write(inode, owner[0]);
969 i_gid_write(inode, owner[1]);
970 } else if (test_opt(sb, GRPID)) {
971 inode->i_mode = mode;
972 inode->i_uid = current_fsuid();
973 inode->i_gid = dir->i_gid;
974 } else
975 inode_init_owner(inode, dir, mode);
976
977 if (ext4_has_feature_project(sb) &&
978 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
979 ei->i_projid = EXT4_I(dir)->i_projid;
980 else
981 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
982
983 if (!(i_flags & EXT4_EA_INODE_FL)) {
984 err = fscrypt_prepare_new_inode(dir, inode, &encrypt);
985 if (err)
986 goto out;
987 }
988
989 err = dquot_initialize(inode);
990 if (err)
991 goto out;
992
993 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
994 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt);
995 if (ret2 < 0) {
996 err = ret2;
997 goto out;
998 }
999 nblocks += ret2;
1000 }
1001
1002 if (!goal)
1003 goal = sbi->s_inode_goal;
1004
1005 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
1006 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
1007 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
1008 ret2 = 0;
1009 goto got_group;
1010 }
1011
1012 if (S_ISDIR(mode))
1013 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
1014 else
1015 ret2 = find_group_other(sb, dir, &group, mode);
1016
1017 got_group:
1018 EXT4_I(dir)->i_last_alloc_group = group;
1019 err = -ENOSPC;
1020 if (ret2 == -1)
1021 goto out;
1022
1023 /*
1024 * Normally we will only go through one pass of this loop,
1025 * unless we get unlucky and it turns out the group we selected
1026 * had its last inode grabbed by someone else.
1027 */
1028 for (i = 0; i < ngroups; i++, ino = 0) {
1029 err = -EIO;
1030
1031 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1032 if (!gdp)
1033 goto out;
1034
1035 /*
1036 * Check free inodes count before loading bitmap.
1037 */
1038 if (ext4_free_inodes_count(sb, gdp) == 0)
1039 goto next_group;
1040
1041 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1042 grp = ext4_get_group_info(sb, group);
1043 /*
1044 * Skip groups with already-known suspicious inode
1045 * tables
1046 */
1047 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
1048 goto next_group;
1049 }
1050
1051 brelse(inode_bitmap_bh);
1052 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
1053 /* Skip groups with suspicious inode tables */
1054 if (((!(sbi->s_mount_state & EXT4_FC_REPLAY))
1055 && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) ||
1056 IS_ERR(inode_bitmap_bh)) {
1057 inode_bitmap_bh = NULL;
1058 goto next_group;
1059 }
1060
1061 repeat_in_this_group:
1062 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1063 if (!ret2)
1064 goto next_group;
1065
1066 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
1067 ext4_error(sb, "reserved inode found cleared - "
1068 "inode=%lu", ino + 1);
1069 ext4_mark_group_bitmap_corrupted(sb, group,
1070 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1071 goto next_group;
1072 }
1073
1074 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) {
1075 BUG_ON(nblocks <= 0);
1076 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
1077 handle_type, nblocks, 0,
1078 ext4_trans_default_revoke_credits(sb));
1079 if (IS_ERR(handle)) {
1080 err = PTR_ERR(handle);
1081 ext4_std_error(sb, err);
1082 goto out;
1083 }
1084 }
1085 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
1086 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
1087 if (err) {
1088 ext4_std_error(sb, err);
1089 goto out;
1090 }
1091 ext4_lock_group(sb, group);
1092 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
1093 if (ret2) {
1094 /* Someone already took the bit. Repeat the search
1095 * with lock held.
1096 */
1097 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1098 if (ret2) {
1099 ext4_set_bit(ino, inode_bitmap_bh->b_data);
1100 ret2 = 0;
1101 } else {
1102 ret2 = 1; /* we didn't grab the inode */
1103 }
1104 }
1105 ext4_unlock_group(sb, group);
1106 ino++; /* the inode bitmap is zero-based */
1107 if (!ret2)
1108 goto got; /* we grabbed the inode! */
1109
1110 if (ino < EXT4_INODES_PER_GROUP(sb))
1111 goto repeat_in_this_group;
1112 next_group:
1113 if (++group == ngroups)
1114 group = 0;
1115 }
1116 err = -ENOSPC;
1117 goto out;
1118
1119 got:
1120 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
1121 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
1122 if (err) {
1123 ext4_std_error(sb, err);
1124 goto out;
1125 }
1126
1127 BUFFER_TRACE(group_desc_bh, "get_write_access");
1128 err = ext4_journal_get_write_access(handle, group_desc_bh);
1129 if (err) {
1130 ext4_std_error(sb, err);
1131 goto out;
1132 }
1133
1134 /* We may have to initialize the block bitmap if it isn't already */
1135 if (ext4_has_group_desc_csum(sb) &&
1136 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1137 struct buffer_head *block_bitmap_bh;
1138
1139 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1140 if (IS_ERR(block_bitmap_bh)) {
1141 err = PTR_ERR(block_bitmap_bh);
1142 goto out;
1143 }
1144 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1145 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1146 if (err) {
1147 brelse(block_bitmap_bh);
1148 ext4_std_error(sb, err);
1149 goto out;
1150 }
1151
1152 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1153 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1154
1155 /* recheck and clear flag under lock if we still need to */
1156 ext4_lock_group(sb, group);
1157 if (ext4_has_group_desc_csum(sb) &&
1158 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1159 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1160 ext4_free_group_clusters_set(sb, gdp,
1161 ext4_free_clusters_after_init(sb, group, gdp));
1162 ext4_block_bitmap_csum_set(sb, group, gdp,
1163 block_bitmap_bh);
1164 ext4_group_desc_csum_set(sb, group, gdp);
1165 }
1166 ext4_unlock_group(sb, group);
1167 brelse(block_bitmap_bh);
1168
1169 if (err) {
1170 ext4_std_error(sb, err);
1171 goto out;
1172 }
1173 }
1174
1175 /* Update the relevant bg descriptor fields */
1176 if (ext4_has_group_desc_csum(sb)) {
1177 int free;
1178 struct ext4_group_info *grp = NULL;
1179
1180 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1181 grp = ext4_get_group_info(sb, group);
1182 down_read(&grp->alloc_sem); /*
1183 * protect vs itable
1184 * lazyinit
1185 */
1186 }
1187 ext4_lock_group(sb, group); /* while we modify the bg desc */
1188 free = EXT4_INODES_PER_GROUP(sb) -
1189 ext4_itable_unused_count(sb, gdp);
1190 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1191 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1192 free = 0;
1193 }
1194 /*
1195 * Check the relative inode number against the last used
1196 * relative inode number in this group. if it is greater
1197 * we need to update the bg_itable_unused count
1198 */
1199 if (ino > free)
1200 ext4_itable_unused_set(sb, gdp,
1201 (EXT4_INODES_PER_GROUP(sb) - ino));
1202 if (!(sbi->s_mount_state & EXT4_FC_REPLAY))
1203 up_read(&grp->alloc_sem);
1204 } else {
1205 ext4_lock_group(sb, group);
1206 }
1207
1208 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1209 if (S_ISDIR(mode)) {
1210 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1211 if (sbi->s_log_groups_per_flex) {
1212 ext4_group_t f = ext4_flex_group(sbi, group);
1213
1214 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1215 f)->used_dirs);
1216 }
1217 }
1218 if (ext4_has_group_desc_csum(sb)) {
1219 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1220 EXT4_INODES_PER_GROUP(sb) / 8);
1221 ext4_group_desc_csum_set(sb, group, gdp);
1222 }
1223 ext4_unlock_group(sb, group);
1224
1225 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1226 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1227 if (err) {
1228 ext4_std_error(sb, err);
1229 goto out;
1230 }
1231
1232 percpu_counter_dec(&sbi->s_freeinodes_counter);
1233 if (S_ISDIR(mode))
1234 percpu_counter_inc(&sbi->s_dirs_counter);
1235
1236 if (sbi->s_log_groups_per_flex) {
1237 flex_group = ext4_flex_group(sbi, group);
1238 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1239 flex_group)->free_inodes);
1240 }
1241
1242 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1243 /* This is the optimal IO size (for stat), not the fs block size */
1244 inode->i_blocks = 0;
1245 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1246 ei->i_crtime = inode->i_mtime;
1247
1248 memset(ei->i_data, 0, sizeof(ei->i_data));
1249 ei->i_dir_start_lookup = 0;
1250 ei->i_disksize = 0;
1251
1252 /* Don't inherit extent flag from directory, amongst others. */
1253 ei->i_flags =
1254 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1255 ei->i_flags |= i_flags;
1256 ei->i_file_acl = 0;
1257 ei->i_dtime = 0;
1258 ei->i_block_group = group;
1259 ei->i_last_alloc_group = ~0;
1260
1261 ext4_set_inode_flags(inode, true);
1262 if (IS_DIRSYNC(inode))
1263 ext4_handle_sync(handle);
1264 if (insert_inode_locked(inode) < 0) {
1265 /*
1266 * Likely a bitmap corruption causing inode to be allocated
1267 * twice.
1268 */
1269 err = -EIO;
1270 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1271 inode->i_ino);
1272 ext4_mark_group_bitmap_corrupted(sb, group,
1273 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1274 goto out;
1275 }
1276 inode->i_generation = prandom_u32();
1277
1278 /* Precompute checksum seed for inode metadata */
1279 if (ext4_has_metadata_csum(sb)) {
1280 __u32 csum;
1281 __le32 inum = cpu_to_le32(inode->i_ino);
1282 __le32 gen = cpu_to_le32(inode->i_generation);
1283 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1284 sizeof(inum));
1285 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1286 sizeof(gen));
1287 }
1288
1289 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1290 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1291
1292 ei->i_extra_isize = sbi->s_want_extra_isize;
1293 ei->i_inline_off = 0;
1294 if (ext4_has_feature_inline_data(sb))
1295 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1296 ret = inode;
1297 err = dquot_alloc_inode(inode);
1298 if (err)
1299 goto fail_drop;
1300
1301 /*
1302 * Since the encryption xattr will always be unique, create it first so
1303 * that it's less likely to end up in an external xattr block and
1304 * prevent its deduplication.
1305 */
1306 if (encrypt) {
1307 err = fscrypt_set_context(inode, handle);
1308 if (err)
1309 goto fail_free_drop;
1310 }
1311
1312 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1313 err = ext4_init_acl(handle, inode, dir);
1314 if (err)
1315 goto fail_free_drop;
1316
1317 err = ext4_init_security(handle, inode, dir, qstr);
1318 if (err)
1319 goto fail_free_drop;
1320 }
1321
1322 if (ext4_has_feature_extents(sb)) {
1323 /* set extent flag only for directory, file and normal symlink*/
1324 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1325 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1326 ext4_ext_tree_init(handle, inode);
1327 }
1328 }
1329
1330 if (ext4_handle_valid(handle)) {
1331 ei->i_sync_tid = handle->h_transaction->t_tid;
1332 ei->i_datasync_tid = handle->h_transaction->t_tid;
1333 }
1334
1335 err = ext4_mark_inode_dirty(handle, inode);
1336 if (err) {
1337 ext4_std_error(sb, err);
1338 goto fail_free_drop;
1339 }
1340
1341 ext4_debug("allocating inode %lu\n", inode->i_ino);
1342 trace_ext4_allocate_inode(inode, dir, mode);
1343 brelse(inode_bitmap_bh);
1344 return ret;
1345
1346 fail_free_drop:
1347 dquot_free_inode(inode);
1348 fail_drop:
1349 clear_nlink(inode);
1350 unlock_new_inode(inode);
1351 out:
1352 dquot_drop(inode);
1353 inode->i_flags |= S_NOQUOTA;
1354 iput(inode);
1355 brelse(inode_bitmap_bh);
1356 return ERR_PTR(err);
1357 }
1358
1359 /* Verify that we are loading a valid orphan from disk */
ext4_orphan_get(struct super_block * sb,unsigned long ino)1360 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1361 {
1362 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1363 ext4_group_t block_group;
1364 int bit;
1365 struct buffer_head *bitmap_bh = NULL;
1366 struct inode *inode = NULL;
1367 int err = -EFSCORRUPTED;
1368
1369 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1370 goto bad_orphan;
1371
1372 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1373 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1374 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1375 if (IS_ERR(bitmap_bh))
1376 return ERR_CAST(bitmap_bh);
1377
1378 /* Having the inode bit set should be a 100% indicator that this
1379 * is a valid orphan (no e2fsck run on fs). Orphans also include
1380 * inodes that were being truncated, so we can't check i_nlink==0.
1381 */
1382 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1383 goto bad_orphan;
1384
1385 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1386 if (IS_ERR(inode)) {
1387 err = PTR_ERR(inode);
1388 ext4_error_err(sb, -err,
1389 "couldn't read orphan inode %lu (err %d)",
1390 ino, err);
1391 brelse(bitmap_bh);
1392 return inode;
1393 }
1394
1395 /*
1396 * If the orphans has i_nlinks > 0 then it should be able to
1397 * be truncated, otherwise it won't be removed from the orphan
1398 * list during processing and an infinite loop will result.
1399 * Similarly, it must not be a bad inode.
1400 */
1401 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1402 is_bad_inode(inode))
1403 goto bad_orphan;
1404
1405 if (NEXT_ORPHAN(inode) > max_ino)
1406 goto bad_orphan;
1407 brelse(bitmap_bh);
1408 return inode;
1409
1410 bad_orphan:
1411 ext4_error(sb, "bad orphan inode %lu", ino);
1412 if (bitmap_bh)
1413 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1414 bit, (unsigned long long)bitmap_bh->b_blocknr,
1415 ext4_test_bit(bit, bitmap_bh->b_data));
1416 if (inode) {
1417 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1418 is_bad_inode(inode));
1419 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1420 NEXT_ORPHAN(inode));
1421 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1422 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1423 /* Avoid freeing blocks if we got a bad deleted inode */
1424 if (inode->i_nlink == 0)
1425 inode->i_blocks = 0;
1426 iput(inode);
1427 }
1428 brelse(bitmap_bh);
1429 return ERR_PTR(err);
1430 }
1431
ext4_count_free_inodes(struct super_block * sb)1432 unsigned long ext4_count_free_inodes(struct super_block *sb)
1433 {
1434 unsigned long desc_count;
1435 struct ext4_group_desc *gdp;
1436 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1437 #ifdef EXT4FS_DEBUG
1438 struct ext4_super_block *es;
1439 unsigned long bitmap_count, x;
1440 struct buffer_head *bitmap_bh = NULL;
1441
1442 es = EXT4_SB(sb)->s_es;
1443 desc_count = 0;
1444 bitmap_count = 0;
1445 gdp = NULL;
1446 for (i = 0; i < ngroups; i++) {
1447 gdp = ext4_get_group_desc(sb, i, NULL);
1448 if (!gdp)
1449 continue;
1450 desc_count += ext4_free_inodes_count(sb, gdp);
1451 brelse(bitmap_bh);
1452 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1453 if (IS_ERR(bitmap_bh)) {
1454 bitmap_bh = NULL;
1455 continue;
1456 }
1457
1458 x = ext4_count_free(bitmap_bh->b_data,
1459 EXT4_INODES_PER_GROUP(sb) / 8);
1460 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1461 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1462 bitmap_count += x;
1463 }
1464 brelse(bitmap_bh);
1465 printk(KERN_DEBUG "ext4_count_free_inodes: "
1466 "stored = %u, computed = %lu, %lu\n",
1467 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1468 return desc_count;
1469 #else
1470 desc_count = 0;
1471 for (i = 0; i < ngroups; i++) {
1472 gdp = ext4_get_group_desc(sb, i, NULL);
1473 if (!gdp)
1474 continue;
1475 desc_count += ext4_free_inodes_count(sb, gdp);
1476 cond_resched();
1477 }
1478 return desc_count;
1479 #endif
1480 }
1481
1482 /* Called at mount-time, super-block is locked */
ext4_count_dirs(struct super_block * sb)1483 unsigned long ext4_count_dirs(struct super_block * sb)
1484 {
1485 unsigned long count = 0;
1486 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1487
1488 for (i = 0; i < ngroups; i++) {
1489 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1490 if (!gdp)
1491 continue;
1492 count += ext4_used_dirs_count(sb, gdp);
1493 }
1494 return count;
1495 }
1496
1497 /*
1498 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1499 * inode table. Must be called without any spinlock held. The only place
1500 * where it is called from on active part of filesystem is ext4lazyinit
1501 * thread, so we do not need any special locks, however we have to prevent
1502 * inode allocation from the current group, so we take alloc_sem lock, to
1503 * block ext4_new_inode() until we are finished.
1504 */
ext4_init_inode_table(struct super_block * sb,ext4_group_t group,int barrier)1505 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1506 int barrier)
1507 {
1508 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1509 struct ext4_sb_info *sbi = EXT4_SB(sb);
1510 struct ext4_group_desc *gdp = NULL;
1511 struct buffer_head *group_desc_bh;
1512 handle_t *handle;
1513 ext4_fsblk_t blk;
1514 int num, ret = 0, used_blks = 0;
1515
1516 /* This should not happen, but just to be sure check this */
1517 if (sb_rdonly(sb)) {
1518 ret = 1;
1519 goto out;
1520 }
1521
1522 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1523 if (!gdp)
1524 goto out;
1525
1526 /*
1527 * We do not need to lock this, because we are the only one
1528 * handling this flag.
1529 */
1530 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1531 goto out;
1532
1533 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1534 if (IS_ERR(handle)) {
1535 ret = PTR_ERR(handle);
1536 goto out;
1537 }
1538
1539 down_write(&grp->alloc_sem);
1540 /*
1541 * If inode bitmap was already initialized there may be some
1542 * used inodes so we need to skip blocks with used inodes in
1543 * inode table.
1544 */
1545 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1546 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1547 ext4_itable_unused_count(sb, gdp)),
1548 sbi->s_inodes_per_block);
1549
1550 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1551 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1552 ext4_itable_unused_count(sb, gdp)) <
1553 EXT4_FIRST_INO(sb)))) {
1554 ext4_error(sb, "Something is wrong with group %u: "
1555 "used itable blocks: %d; "
1556 "itable unused count: %u",
1557 group, used_blks,
1558 ext4_itable_unused_count(sb, gdp));
1559 ret = 1;
1560 goto err_out;
1561 }
1562
1563 blk = ext4_inode_table(sb, gdp) + used_blks;
1564 num = sbi->s_itb_per_group - used_blks;
1565
1566 BUFFER_TRACE(group_desc_bh, "get_write_access");
1567 ret = ext4_journal_get_write_access(handle,
1568 group_desc_bh);
1569 if (ret)
1570 goto err_out;
1571
1572 /*
1573 * Skip zeroout if the inode table is full. But we set the ZEROED
1574 * flag anyway, because obviously, when it is full it does not need
1575 * further zeroing.
1576 */
1577 if (unlikely(num == 0))
1578 goto skip_zeroout;
1579
1580 ext4_debug("going to zero out inode table in group %d\n",
1581 group);
1582 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1583 if (ret < 0)
1584 goto err_out;
1585 if (barrier)
1586 blkdev_issue_flush(sb->s_bdev, GFP_NOFS);
1587
1588 skip_zeroout:
1589 ext4_lock_group(sb, group);
1590 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1591 ext4_group_desc_csum_set(sb, group, gdp);
1592 ext4_unlock_group(sb, group);
1593
1594 BUFFER_TRACE(group_desc_bh,
1595 "call ext4_handle_dirty_metadata");
1596 ret = ext4_handle_dirty_metadata(handle, NULL,
1597 group_desc_bh);
1598
1599 err_out:
1600 up_write(&grp->alloc_sem);
1601 ext4_journal_stop(handle);
1602 out:
1603 return ret;
1604 }
1605