1 /*
2 * Battery driver for CPCAP PMIC
3 *
4 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
5 *
6 * Some parts of the code based on earlie Motorola mapphone Linux kernel
7 * drivers:
8 *
9 * Copyright (C) 2009-2010 Motorola, Inc.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14
15 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
16 * kind, whether express or implied; without even the implied warranty
17 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 */
20
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/power_supply.h>
29 #include <linux/reboot.h>
30 #include <linux/regmap.h>
31
32 #include <linux/iio/consumer.h>
33 #include <linux/iio/types.h>
34 #include <linux/mfd/motorola-cpcap.h>
35
36 /*
37 * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
38 * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
39 * to enable BATTDETEN, LOBAT and EOL features. We currently use
40 * LOBAT interrupts instead of EOL.
41 */
42 #define CPCAP_REG_BPEOL_BIT_EOL9 BIT(9) /* Set for EOL irq */
43 #define CPCAP_REG_BPEOL_BIT_EOL8 BIT(8) /* Set for EOL irq */
44 #define CPCAP_REG_BPEOL_BIT_UNKNOWN7 BIT(7)
45 #define CPCAP_REG_BPEOL_BIT_UNKNOWN6 BIT(6)
46 #define CPCAP_REG_BPEOL_BIT_UNKNOWN5 BIT(5)
47 #define CPCAP_REG_BPEOL_BIT_EOL_MULTI BIT(4) /* Set for multiple EOL irqs */
48 #define CPCAP_REG_BPEOL_BIT_UNKNOWN3 BIT(3)
49 #define CPCAP_REG_BPEOL_BIT_UNKNOWN2 BIT(2)
50 #define CPCAP_REG_BPEOL_BIT_BATTDETEN BIT(1) /* Enable battery detect */
51 #define CPCAP_REG_BPEOL_BIT_EOLSEL BIT(0) /* BPDET = 0, EOL = 1 */
52
53 /*
54 * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
55 * coulomb counter registers rather than the mc13892 registers. Both twl6030
56 * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
57 * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
58 * the coulomb counter like cpcap does. So for now, we use the twl6030 style
59 * naming for the registers.
60 */
61 #define CPCAP_REG_CCC1_ACTIVE_MODE1 BIT(4) /* Update rate */
62 #define CPCAP_REG_CCC1_ACTIVE_MODE0 BIT(3) /* Update rate */
63 #define CPCAP_REG_CCC1_AUTOCLEAR BIT(2) /* Resets sample registers */
64 #define CPCAP_REG_CCC1_CAL_EN BIT(1) /* Clears after write in 1s */
65 #define CPCAP_REG_CCC1_PAUSE BIT(0) /* Stop counters, allow write */
66 #define CPCAP_REG_CCC1_RESET_MASK (CPCAP_REG_CCC1_AUTOCLEAR | \
67 CPCAP_REG_CCC1_CAL_EN)
68
69 #define CPCAP_REG_CCCC2_RATE1 BIT(5)
70 #define CPCAP_REG_CCCC2_RATE0 BIT(4)
71 #define CPCAP_REG_CCCC2_ENABLE BIT(3)
72
73 #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS 250
74
75 enum {
76 CPCAP_BATTERY_IIO_BATTDET,
77 CPCAP_BATTERY_IIO_VOLTAGE,
78 CPCAP_BATTERY_IIO_CHRG_CURRENT,
79 CPCAP_BATTERY_IIO_BATT_CURRENT,
80 CPCAP_BATTERY_IIO_NR,
81 };
82
83 enum cpcap_battery_irq_action {
84 CPCAP_BATTERY_IRQ_ACTION_NONE,
85 CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
86 CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
87 CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
88 };
89
90 struct cpcap_interrupt_desc {
91 const char *name;
92 struct list_head node;
93 int irq;
94 enum cpcap_battery_irq_action action;
95 };
96
97 struct cpcap_battery_config {
98 int cd_factor;
99 struct power_supply_info info;
100 struct power_supply_battery_info bat;
101 };
102
103 struct cpcap_coulomb_counter_data {
104 s32 sample; /* 24 or 32 bits */
105 s32 accumulator;
106 s16 offset; /* 9 bits */
107 s16 integrator; /* 13 or 16 bits */
108 };
109
110 enum cpcap_battery_state {
111 CPCAP_BATTERY_STATE_PREVIOUS,
112 CPCAP_BATTERY_STATE_LATEST,
113 CPCAP_BATTERY_STATE_NR,
114 };
115
116 struct cpcap_battery_state_data {
117 int voltage;
118 int current_ua;
119 int counter_uah;
120 int temperature;
121 ktime_t time;
122 struct cpcap_coulomb_counter_data cc;
123 };
124
125 struct cpcap_battery_ddata {
126 struct device *dev;
127 struct regmap *reg;
128 struct list_head irq_list;
129 struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
130 struct power_supply *psy;
131 struct cpcap_battery_config config;
132 struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
133 u32 cc_lsb; /* μAms per LSB */
134 atomic_t active;
135 int status;
136 u16 vendor;
137 };
138
139 #define CPCAP_NO_BATTERY -400
140
141 static struct cpcap_battery_state_data *
cpcap_battery_get_state(struct cpcap_battery_ddata * ddata,enum cpcap_battery_state state)142 cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
143 enum cpcap_battery_state state)
144 {
145 if (state >= CPCAP_BATTERY_STATE_NR)
146 return NULL;
147
148 return &ddata->state[state];
149 }
150
151 static struct cpcap_battery_state_data *
cpcap_battery_latest(struct cpcap_battery_ddata * ddata)152 cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
153 {
154 return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
155 }
156
157 static struct cpcap_battery_state_data *
cpcap_battery_previous(struct cpcap_battery_ddata * ddata)158 cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
159 {
160 return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
161 }
162
cpcap_charger_battery_temperature(struct cpcap_battery_ddata * ddata,int * value)163 static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
164 int *value)
165 {
166 struct iio_channel *channel;
167 int error;
168
169 channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
170 error = iio_read_channel_processed(channel, value);
171 if (error < 0) {
172 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
173 *value = CPCAP_NO_BATTERY;
174
175 return error;
176 }
177
178 *value /= 100;
179
180 return 0;
181 }
182
cpcap_battery_get_voltage(struct cpcap_battery_ddata * ddata)183 static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
184 {
185 struct iio_channel *channel;
186 int error, value = 0;
187
188 channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
189 error = iio_read_channel_processed(channel, &value);
190 if (error < 0) {
191 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
192
193 return 0;
194 }
195
196 return value * 1000;
197 }
198
cpcap_battery_get_current(struct cpcap_battery_ddata * ddata)199 static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
200 {
201 struct iio_channel *channel;
202 int error, value = 0;
203
204 channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
205 error = iio_read_channel_processed(channel, &value);
206 if (error < 0) {
207 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
208
209 return 0;
210 }
211
212 return value * 1000;
213 }
214
215 /**
216 * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
217 * @ddata: device driver data
218 * @sample: coulomb counter sample value
219 * @accumulator: coulomb counter integrator value
220 * @offset: coulomb counter offset value
221 * @divider: conversion divider
222 *
223 * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
224 * function data_get_avg_curr_ua() and seem to be based on measured test
225 * results. It also has the following comment:
226 *
227 * Adjustment factors are applied here as a temp solution per the test
228 * results. Need to work out a formal solution for this adjustment.
229 *
230 * A coulomb counter for similar hardware seems to be documented in
231 * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
232 * "10 Calculating Accumulated Current". We however follow what the
233 * Motorola mapphone Linux kernel is doing as there may be either a
234 * TI or ST coulomb counter in the PMIC.
235 */
cpcap_battery_cc_raw_div(struct cpcap_battery_ddata * ddata,s32 sample,s32 accumulator,s16 offset,u32 divider)236 static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
237 s32 sample, s32 accumulator,
238 s16 offset, u32 divider)
239 {
240 s64 acc;
241
242 if (!divider)
243 return 0;
244
245 acc = accumulator;
246 acc -= (s64)sample * offset;
247 acc *= ddata->cc_lsb;
248 acc *= -1;
249 acc = div_s64(acc, divider);
250
251 return acc;
252 }
253
254 /* 3600000μAms = 1μAh */
cpcap_battery_cc_to_uah(struct cpcap_battery_ddata * ddata,s32 sample,s32 accumulator,s16 offset)255 static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
256 s32 sample, s32 accumulator,
257 s16 offset)
258 {
259 return cpcap_battery_cc_raw_div(ddata, sample,
260 accumulator, offset,
261 3600000);
262 }
263
cpcap_battery_cc_to_ua(struct cpcap_battery_ddata * ddata,s32 sample,s32 accumulator,s16 offset)264 static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
265 s32 sample, s32 accumulator,
266 s16 offset)
267 {
268 return cpcap_battery_cc_raw_div(ddata, sample,
269 accumulator, offset,
270 sample *
271 CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
272 }
273
274 /**
275 * cpcap_battery_read_accumulated - reads cpcap coulomb counter
276 * @ddata: device driver data
277 * @ccd: coulomb counter values
278 *
279 * Based on Motorola mapphone kernel function data_read_regs().
280 * Looking at the registers, the coulomb counter seems similar to
281 * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
282 * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
283 *
284 * Note that swca095a.pdf instructs to stop the coulomb counter
285 * before reading to avoid values changing. Motorola mapphone
286 * Linux kernel does not do it, so let's assume they've verified
287 * the data produced is correct.
288 */
289 static int
cpcap_battery_read_accumulated(struct cpcap_battery_ddata * ddata,struct cpcap_coulomb_counter_data * ccd)290 cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
291 struct cpcap_coulomb_counter_data *ccd)
292 {
293 u16 buf[7]; /* CPCAP_REG_CCS1 to CCI */
294 int error;
295
296 ccd->sample = 0;
297 ccd->accumulator = 0;
298 ccd->offset = 0;
299 ccd->integrator = 0;
300
301 /* Read coulomb counter register range */
302 error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
303 buf, ARRAY_SIZE(buf));
304 if (error)
305 return 0;
306
307 /* Sample value CPCAP_REG_CCS1 & 2 */
308 ccd->sample = (buf[1] & 0x0fff) << 16;
309 ccd->sample |= buf[0];
310 if (ddata->vendor == CPCAP_VENDOR_TI)
311 ccd->sample = sign_extend32(24, ccd->sample);
312
313 /* Accumulator value CPCAP_REG_CCA1 & 2 */
314 ccd->accumulator = ((s16)buf[3]) << 16;
315 ccd->accumulator |= buf[2];
316
317 /*
318 * Coulomb counter calibration offset is CPCAP_REG_CCM,
319 * REG_CCO seems unused
320 */
321 ccd->offset = buf[4];
322 ccd->offset = sign_extend32(ccd->offset, 9);
323
324 /* Integrator register CPCAP_REG_CCI */
325 if (ddata->vendor == CPCAP_VENDOR_TI)
326 ccd->integrator = sign_extend32(buf[6], 13);
327 else
328 ccd->integrator = (s16)buf[6];
329
330 return cpcap_battery_cc_to_uah(ddata,
331 ccd->sample,
332 ccd->accumulator,
333 ccd->offset);
334 }
335
336 /**
337 * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
338 * @ddata: cpcap battery driver device data
339 */
cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata * ddata)340 static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
341 {
342 int value, acc, error;
343 s32 sample;
344 s16 offset;
345
346 /* Coulomb counter integrator */
347 error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
348 if (error)
349 return error;
350
351 if (ddata->vendor == CPCAP_VENDOR_TI) {
352 acc = sign_extend32(value, 13);
353 sample = 1;
354 } else {
355 acc = (s16)value;
356 sample = 4;
357 }
358
359 /* Coulomb counter calibration offset */
360 error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
361 if (error)
362 return error;
363
364 offset = sign_extend32(value, 9);
365
366 return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
367 }
368
cpcap_battery_full(struct cpcap_battery_ddata * ddata)369 static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
370 {
371 struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
372
373 if (state->voltage >=
374 (ddata->config.bat.constant_charge_voltage_max_uv - 18000))
375 return true;
376
377 return false;
378 }
379
cpcap_battery_update_status(struct cpcap_battery_ddata * ddata)380 static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
381 {
382 struct cpcap_battery_state_data state, *latest, *previous;
383 ktime_t now;
384 int error;
385
386 memset(&state, 0, sizeof(state));
387 now = ktime_get();
388
389 latest = cpcap_battery_latest(ddata);
390 if (latest) {
391 s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
392
393 if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
394 return delta_ms;
395 }
396
397 state.time = now;
398 state.voltage = cpcap_battery_get_voltage(ddata);
399 state.current_ua = cpcap_battery_get_current(ddata);
400 state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
401
402 error = cpcap_charger_battery_temperature(ddata,
403 &state.temperature);
404 if (error)
405 return error;
406
407 previous = cpcap_battery_previous(ddata);
408 memcpy(previous, latest, sizeof(*previous));
409 memcpy(latest, &state, sizeof(*latest));
410
411 return 0;
412 }
413
414 static enum power_supply_property cpcap_battery_props[] = {
415 POWER_SUPPLY_PROP_STATUS,
416 POWER_SUPPLY_PROP_PRESENT,
417 POWER_SUPPLY_PROP_TECHNOLOGY,
418 POWER_SUPPLY_PROP_VOLTAGE_NOW,
419 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
420 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
421 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
422 POWER_SUPPLY_PROP_CURRENT_AVG,
423 POWER_SUPPLY_PROP_CURRENT_NOW,
424 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
425 POWER_SUPPLY_PROP_CHARGE_COUNTER,
426 POWER_SUPPLY_PROP_POWER_NOW,
427 POWER_SUPPLY_PROP_POWER_AVG,
428 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
429 POWER_SUPPLY_PROP_SCOPE,
430 POWER_SUPPLY_PROP_TEMP,
431 };
432
cpcap_battery_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)433 static int cpcap_battery_get_property(struct power_supply *psy,
434 enum power_supply_property psp,
435 union power_supply_propval *val)
436 {
437 struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
438 struct cpcap_battery_state_data *latest, *previous;
439 u32 sample;
440 s32 accumulator;
441 int cached;
442 s64 tmp;
443
444 cached = cpcap_battery_update_status(ddata);
445 if (cached < 0)
446 return cached;
447
448 latest = cpcap_battery_latest(ddata);
449 previous = cpcap_battery_previous(ddata);
450
451 switch (psp) {
452 case POWER_SUPPLY_PROP_PRESENT:
453 if (latest->temperature > CPCAP_NO_BATTERY)
454 val->intval = 1;
455 else
456 val->intval = 0;
457 break;
458 case POWER_SUPPLY_PROP_STATUS:
459 if (cpcap_battery_full(ddata)) {
460 val->intval = POWER_SUPPLY_STATUS_FULL;
461 break;
462 }
463 if (cpcap_battery_cc_get_avg_current(ddata) < 0)
464 val->intval = POWER_SUPPLY_STATUS_CHARGING;
465 else
466 val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
467 break;
468 case POWER_SUPPLY_PROP_TECHNOLOGY:
469 val->intval = ddata->config.info.technology;
470 break;
471 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
472 val->intval = cpcap_battery_get_voltage(ddata);
473 break;
474 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
475 val->intval = ddata->config.info.voltage_max_design;
476 break;
477 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
478 val->intval = ddata->config.info.voltage_min_design;
479 break;
480 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
481 val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
482 break;
483 case POWER_SUPPLY_PROP_CURRENT_AVG:
484 sample = latest->cc.sample - previous->cc.sample;
485 if (!sample) {
486 val->intval = cpcap_battery_cc_get_avg_current(ddata);
487 break;
488 }
489 accumulator = latest->cc.accumulator - previous->cc.accumulator;
490 val->intval = cpcap_battery_cc_to_ua(ddata, sample,
491 accumulator,
492 latest->cc.offset);
493 break;
494 case POWER_SUPPLY_PROP_CURRENT_NOW:
495 val->intval = latest->current_ua;
496 break;
497 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
498 val->intval = latest->counter_uah;
499 break;
500 case POWER_SUPPLY_PROP_POWER_NOW:
501 tmp = (latest->voltage / 10000) * latest->current_ua;
502 val->intval = div64_s64(tmp, 100);
503 break;
504 case POWER_SUPPLY_PROP_POWER_AVG:
505 sample = latest->cc.sample - previous->cc.sample;
506 if (!sample) {
507 tmp = cpcap_battery_cc_get_avg_current(ddata);
508 tmp *= (latest->voltage / 10000);
509 val->intval = div64_s64(tmp, 100);
510 break;
511 }
512 accumulator = latest->cc.accumulator - previous->cc.accumulator;
513 tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
514 latest->cc.offset);
515 tmp *= ((latest->voltage + previous->voltage) / 20000);
516 val->intval = div64_s64(tmp, 100);
517 break;
518 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
519 if (cpcap_battery_full(ddata))
520 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
521 else if (latest->voltage >= 3750000)
522 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
523 else if (latest->voltage >= 3300000)
524 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
525 else if (latest->voltage > 3100000)
526 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
527 else if (latest->voltage <= 3100000)
528 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
529 else
530 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
531 break;
532 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
533 val->intval = ddata->config.info.charge_full_design;
534 break;
535 case POWER_SUPPLY_PROP_SCOPE:
536 val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
537 break;
538 case POWER_SUPPLY_PROP_TEMP:
539 val->intval = latest->temperature;
540 break;
541 default:
542 return -EINVAL;
543 }
544
545 return 0;
546 }
547
cpcap_battery_update_charger(struct cpcap_battery_ddata * ddata,int const_charge_voltage)548 static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
549 int const_charge_voltage)
550 {
551 union power_supply_propval prop;
552 union power_supply_propval val;
553 struct power_supply *charger;
554 int error;
555
556 charger = power_supply_get_by_name("usb");
557 if (!charger)
558 return -ENODEV;
559
560 error = power_supply_get_property(charger,
561 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
562 &prop);
563 if (error)
564 return error;
565
566 /* Allow charger const voltage lower than battery const voltage */
567 if (const_charge_voltage > prop.intval)
568 return 0;
569
570 val.intval = const_charge_voltage;
571
572 return power_supply_set_property(charger,
573 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
574 &val);
575 }
576
cpcap_battery_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)577 static int cpcap_battery_set_property(struct power_supply *psy,
578 enum power_supply_property psp,
579 const union power_supply_propval *val)
580 {
581 struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
582
583 switch (psp) {
584 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
585 if (val->intval < ddata->config.info.voltage_min_design)
586 return -EINVAL;
587 if (val->intval > ddata->config.info.voltage_max_design)
588 return -EINVAL;
589
590 ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
591
592 return cpcap_battery_update_charger(ddata, val->intval);
593 default:
594 return -EINVAL;
595 }
596
597 return 0;
598 }
599
cpcap_battery_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)600 static int cpcap_battery_property_is_writeable(struct power_supply *psy,
601 enum power_supply_property psp)
602 {
603 switch (psp) {
604 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
605 return 1;
606 default:
607 return 0;
608 }
609 }
610
cpcap_battery_irq_thread(int irq,void * data)611 static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
612 {
613 struct cpcap_battery_ddata *ddata = data;
614 struct cpcap_battery_state_data *latest;
615 struct cpcap_interrupt_desc *d;
616
617 if (!atomic_read(&ddata->active))
618 return IRQ_NONE;
619
620 list_for_each_entry(d, &ddata->irq_list, node) {
621 if (irq == d->irq)
622 break;
623 }
624
625 if (!d)
626 return IRQ_NONE;
627
628 latest = cpcap_battery_latest(ddata);
629
630 switch (d->action) {
631 case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
632 dev_info(ddata->dev, "Coulomb counter calibration done\n");
633 break;
634 case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
635 if (latest->current_ua >= 0)
636 dev_warn(ddata->dev, "Battery low at %imV!\n",
637 latest->voltage / 1000);
638 break;
639 case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
640 if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
641 dev_emerg(ddata->dev,
642 "Battery empty at %imV, powering off\n",
643 latest->voltage / 1000);
644 orderly_poweroff(true);
645 }
646 break;
647 default:
648 break;
649 }
650
651 power_supply_changed(ddata->psy);
652
653 return IRQ_HANDLED;
654 }
655
cpcap_battery_init_irq(struct platform_device * pdev,struct cpcap_battery_ddata * ddata,const char * name)656 static int cpcap_battery_init_irq(struct platform_device *pdev,
657 struct cpcap_battery_ddata *ddata,
658 const char *name)
659 {
660 struct cpcap_interrupt_desc *d;
661 int irq, error;
662
663 irq = platform_get_irq_byname(pdev, name);
664 if (irq < 0)
665 return irq;
666
667 error = devm_request_threaded_irq(ddata->dev, irq, NULL,
668 cpcap_battery_irq_thread,
669 IRQF_SHARED,
670 name, ddata);
671 if (error) {
672 dev_err(ddata->dev, "could not get irq %s: %i\n",
673 name, error);
674
675 return error;
676 }
677
678 d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
679 if (!d)
680 return -ENOMEM;
681
682 d->name = name;
683 d->irq = irq;
684
685 if (!strncmp(name, "cccal", 5))
686 d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
687 else if (!strncmp(name, "lowbph", 6))
688 d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
689 else if (!strncmp(name, "lowbpl", 6))
690 d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
691
692 list_add(&d->node, &ddata->irq_list);
693
694 return 0;
695 }
696
cpcap_battery_init_interrupts(struct platform_device * pdev,struct cpcap_battery_ddata * ddata)697 static int cpcap_battery_init_interrupts(struct platform_device *pdev,
698 struct cpcap_battery_ddata *ddata)
699 {
700 static const char * const cpcap_battery_irqs[] = {
701 "eol", "lowbph", "lowbpl",
702 "chrgcurr1", "battdetb"
703 };
704 int i, error;
705
706 for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
707 error = cpcap_battery_init_irq(pdev, ddata,
708 cpcap_battery_irqs[i]);
709 if (error)
710 return error;
711 }
712
713 /* Enable calibration interrupt if already available in dts */
714 cpcap_battery_init_irq(pdev, ddata, "cccal");
715
716 /* Enable low battery interrupts for 3.3V high and 3.1V low */
717 error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
718 0xffff,
719 CPCAP_REG_BPEOL_BIT_BATTDETEN);
720 if (error)
721 return error;
722
723 return 0;
724 }
725
cpcap_battery_init_iio(struct cpcap_battery_ddata * ddata)726 static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
727 {
728 const char * const names[CPCAP_BATTERY_IIO_NR] = {
729 "battdetb", "battp", "chg_isense", "batti",
730 };
731 int error, i;
732
733 for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
734 ddata->channels[i] = devm_iio_channel_get(ddata->dev,
735 names[i]);
736 if (IS_ERR(ddata->channels[i])) {
737 error = PTR_ERR(ddata->channels[i]);
738 goto out_err;
739 }
740
741 if (!ddata->channels[i]->indio_dev) {
742 error = -ENXIO;
743 goto out_err;
744 }
745 }
746
747 return 0;
748
749 out_err:
750 return dev_err_probe(ddata->dev, error,
751 "could not initialize VBUS or ID IIO\n");
752 }
753
754 /* Calibrate coulomb counter */
cpcap_battery_calibrate(struct cpcap_battery_ddata * ddata)755 static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
756 {
757 int error, ccc1, value;
758 unsigned long timeout;
759
760 error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
761 if (error)
762 return error;
763
764 timeout = jiffies + msecs_to_jiffies(6000);
765
766 /* Start calibration */
767 error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
768 0xffff,
769 CPCAP_REG_CCC1_CAL_EN);
770 if (error)
771 goto restore;
772
773 while (time_before(jiffies, timeout)) {
774 error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
775 if (error)
776 goto restore;
777
778 if (!(value & CPCAP_REG_CCC1_CAL_EN))
779 break;
780
781 error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
782 if (error)
783 goto restore;
784
785 msleep(300);
786 }
787
788 /* Read calibration offset from CCM */
789 error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
790 if (error)
791 goto restore;
792
793 dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
794
795 restore:
796 if (error)
797 dev_err(ddata->dev, "%s: error %i\n", __func__, error);
798
799 error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
800 0xffff, ccc1);
801 if (error)
802 dev_err(ddata->dev, "%s: restore error %i\n",
803 __func__, error);
804
805 return error;
806 }
807
808 /*
809 * Based on the values from Motorola mapphone Linux kernel. In the
810 * the Motorola mapphone Linux kernel tree the value for pm_cd_factor
811 * is passed to the kernel via device tree. If it turns out to be
812 * something device specific we can consider that too later.
813 *
814 * And looking at the battery full and shutdown values for the stock
815 * kernel on droid 4, full is 4351000 and software initiates shutdown
816 * at 3078000. The device will die around 2743000.
817 */
818 static const struct cpcap_battery_config cpcap_battery_default_data = {
819 .cd_factor = 0x3cc,
820 .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
821 .info.voltage_max_design = 4351000,
822 .info.voltage_min_design = 3100000,
823 .info.charge_full_design = 1740000,
824 .bat.constant_charge_voltage_max_uv = 4200000,
825 };
826
827 #ifdef CONFIG_OF
828 static const struct of_device_id cpcap_battery_id_table[] = {
829 {
830 .compatible = "motorola,cpcap-battery",
831 .data = &cpcap_battery_default_data,
832 },
833 {},
834 };
835 MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
836 #endif
837
cpcap_battery_probe(struct platform_device * pdev)838 static int cpcap_battery_probe(struct platform_device *pdev)
839 {
840 struct power_supply_desc *psy_desc;
841 struct cpcap_battery_ddata *ddata;
842 const struct of_device_id *match;
843 struct power_supply_config psy_cfg = {};
844 int error;
845
846 match = of_match_device(of_match_ptr(cpcap_battery_id_table),
847 &pdev->dev);
848 if (!match)
849 return -EINVAL;
850
851 if (!match->data) {
852 dev_err(&pdev->dev, "no configuration data found\n");
853
854 return -ENODEV;
855 }
856
857 ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
858 if (!ddata)
859 return -ENOMEM;
860
861 INIT_LIST_HEAD(&ddata->irq_list);
862 ddata->dev = &pdev->dev;
863 memcpy(&ddata->config, match->data, sizeof(ddata->config));
864
865 ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
866 if (!ddata->reg)
867 return -ENODEV;
868
869 error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
870 if (error)
871 return error;
872
873 switch (ddata->vendor) {
874 case CPCAP_VENDOR_ST:
875 ddata->cc_lsb = 95374; /* μAms per LSB */
876 break;
877 case CPCAP_VENDOR_TI:
878 ddata->cc_lsb = 91501; /* μAms per LSB */
879 break;
880 default:
881 return -EINVAL;
882 }
883 ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
884
885 platform_set_drvdata(pdev, ddata);
886
887 error = cpcap_battery_init_interrupts(pdev, ddata);
888 if (error)
889 return error;
890
891 error = cpcap_battery_init_iio(ddata);
892 if (error)
893 return error;
894
895 psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
896 if (!psy_desc)
897 return -ENOMEM;
898
899 psy_desc->name = "battery";
900 psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
901 psy_desc->properties = cpcap_battery_props;
902 psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props);
903 psy_desc->get_property = cpcap_battery_get_property;
904 psy_desc->set_property = cpcap_battery_set_property;
905 psy_desc->property_is_writeable = cpcap_battery_property_is_writeable;
906
907 psy_cfg.of_node = pdev->dev.of_node;
908 psy_cfg.drv_data = ddata;
909
910 ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
911 &psy_cfg);
912 error = PTR_ERR_OR_ZERO(ddata->psy);
913 if (error) {
914 dev_err(ddata->dev, "failed to register power supply\n");
915 return error;
916 }
917
918 atomic_set(&ddata->active, 1);
919
920 error = cpcap_battery_calibrate(ddata);
921 if (error)
922 return error;
923
924 return 0;
925 }
926
cpcap_battery_remove(struct platform_device * pdev)927 static int cpcap_battery_remove(struct platform_device *pdev)
928 {
929 struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
930 int error;
931
932 atomic_set(&ddata->active, 0);
933 error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
934 0xffff, 0);
935 if (error)
936 dev_err(&pdev->dev, "could not disable: %i\n", error);
937
938 return 0;
939 }
940
941 static struct platform_driver cpcap_battery_driver = {
942 .driver = {
943 .name = "cpcap_battery",
944 .of_match_table = of_match_ptr(cpcap_battery_id_table),
945 },
946 .probe = cpcap_battery_probe,
947 .remove = cpcap_battery_remove,
948 };
949 module_platform_driver(cpcap_battery_driver);
950
951 MODULE_LICENSE("GPL v2");
952 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
953 MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
954