1 #ifndef _HFI1_KERNEL_H
2 #define _HFI1_KERNEL_H
3 /*
4 * Copyright(c) 2020 Cornelis Networks, Inc.
5 * Copyright(c) 2015-2020 Intel Corporation.
6 *
7 * This file is provided under a dual BSD/GPLv2 license. When using or
8 * redistributing this file, you may do so under either license.
9 *
10 * GPL LICENSE SUMMARY
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of version 2 of the GNU General Public License as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * BSD LICENSE
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51 #include <linux/interrupt.h>
52 #include <linux/pci.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/mutex.h>
55 #include <linux/list.h>
56 #include <linux/scatterlist.h>
57 #include <linux/slab.h>
58 #include <linux/io.h>
59 #include <linux/fs.h>
60 #include <linux/completion.h>
61 #include <linux/kref.h>
62 #include <linux/sched.h>
63 #include <linux/cdev.h>
64 #include <linux/delay.h>
65 #include <linux/kthread.h>
66 #include <linux/i2c.h>
67 #include <linux/i2c-algo-bit.h>
68 #include <linux/xarray.h>
69 #include <rdma/ib_hdrs.h>
70 #include <rdma/opa_addr.h>
71 #include <linux/rhashtable.h>
72 #include <linux/netdevice.h>
73 #include <rdma/rdma_vt.h>
74
75 #include "chip_registers.h"
76 #include "common.h"
77 #include "opfn.h"
78 #include "verbs.h"
79 #include "pio.h"
80 #include "chip.h"
81 #include "mad.h"
82 #include "qsfp.h"
83 #include "platform.h"
84 #include "affinity.h"
85 #include "msix.h"
86
87 /* bumped 1 from s/w major version of TrueScale */
88 #define HFI1_CHIP_VERS_MAJ 3U
89
90 /* don't care about this except printing */
91 #define HFI1_CHIP_VERS_MIN 0U
92
93 /* The Organization Unique Identifier (Mfg code), and its position in GUID */
94 #define HFI1_OUI 0x001175
95 #define HFI1_OUI_LSB 40
96
97 #define DROP_PACKET_OFF 0
98 #define DROP_PACKET_ON 1
99
100 #define NEIGHBOR_TYPE_HFI 0
101 #define NEIGHBOR_TYPE_SWITCH 1
102
103 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
104
105 extern unsigned long hfi1_cap_mask;
106 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
107 #define HFI1_CAP_UGET_MASK(mask, cap) \
108 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
109 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
110 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
111 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
112 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
113 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
114 HFI1_CAP_MISC_MASK)
115 /* Offline Disabled Reason is 4-bits */
116 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
117
118 /*
119 * Control context is always 0 and handles the error packets.
120 * It also handles the VL15 and multicast packets.
121 */
122 #define HFI1_CTRL_CTXT 0
123
124 /*
125 * Driver context will store software counters for each of the events
126 * associated with these status registers
127 */
128 #define NUM_CCE_ERR_STATUS_COUNTERS 41
129 #define NUM_RCV_ERR_STATUS_COUNTERS 64
130 #define NUM_MISC_ERR_STATUS_COUNTERS 13
131 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
132 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
133 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
134 #define NUM_SEND_ERR_STATUS_COUNTERS 3
135 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
136 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
137
138 /*
139 * per driver stats, either not device nor port-specific, or
140 * summed over all of the devices and ports.
141 * They are described by name via ipathfs filesystem, so layout
142 * and number of elements can change without breaking compatibility.
143 * If members are added or deleted hfi1_statnames[] in debugfs.c must
144 * change to match.
145 */
146 struct hfi1_ib_stats {
147 __u64 sps_ints; /* number of interrupts handled */
148 __u64 sps_errints; /* number of error interrupts */
149 __u64 sps_txerrs; /* tx-related packet errors */
150 __u64 sps_rcverrs; /* non-crc rcv packet errors */
151 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
152 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */
153 __u64 sps_ctxts; /* number of contexts currently open */
154 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
155 __u64 sps_buffull;
156 __u64 sps_hdrfull;
157 };
158
159 extern struct hfi1_ib_stats hfi1_stats;
160 extern const struct pci_error_handlers hfi1_pci_err_handler;
161
162 extern int num_driver_cntrs;
163
164 /*
165 * First-cut criterion for "device is active" is
166 * two thousand dwords combined Tx, Rx traffic per
167 * 5-second interval. SMA packets are 64 dwords,
168 * and occur "a few per second", presumably each way.
169 */
170 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
171
172 /*
173 * Below contains all data related to a single context (formerly called port).
174 */
175
176 struct hfi1_opcode_stats_perctx;
177
178 struct ctxt_eager_bufs {
179 struct eager_buffer {
180 void *addr;
181 dma_addr_t dma;
182 ssize_t len;
183 } *buffers;
184 struct {
185 void *addr;
186 dma_addr_t dma;
187 } *rcvtids;
188 u32 size; /* total size of eager buffers */
189 u32 rcvtid_size; /* size of each eager rcv tid */
190 u16 count; /* size of buffers array */
191 u16 numbufs; /* number of buffers allocated */
192 u16 alloced; /* number of rcvarray entries used */
193 u16 threshold; /* head update threshold */
194 };
195
196 struct exp_tid_set {
197 struct list_head list;
198 u32 count;
199 };
200
201 struct hfi1_ctxtdata;
202 typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data);
203 typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
204
205 struct tid_queue {
206 struct list_head queue_head;
207 /* queue head for QP TID resource waiters */
208 u32 enqueue; /* count of tid enqueues */
209 u32 dequeue; /* count of tid dequeues */
210 };
211
212 struct hfi1_ctxtdata {
213 /* rcvhdrq base, needs mmap before useful */
214 void *rcvhdrq;
215 /* kernel virtual address where hdrqtail is updated */
216 volatile __le64 *rcvhdrtail_kvaddr;
217 /* so functions that need physical port can get it easily */
218 struct hfi1_pportdata *ppd;
219 /* so file ops can get at unit */
220 struct hfi1_devdata *dd;
221 /* this receive context's assigned PIO ACK send context */
222 struct send_context *sc;
223 /* per context recv functions */
224 const rhf_rcv_function_ptr *rhf_rcv_function_map;
225 /*
226 * The interrupt handler for a particular receive context can vary
227 * throughout it's lifetime. This is not a lock protected data member so
228 * it must be updated atomically and the prev and new value must always
229 * be valid. Worst case is we process an extra interrupt and up to 64
230 * packets with the wrong interrupt handler.
231 */
232 intr_handler do_interrupt;
233 /** fast handler after autoactive */
234 intr_handler fast_handler;
235 /** slow handler */
236 intr_handler slow_handler;
237 /* napi pointer assiociated with netdev */
238 struct napi_struct *napi;
239 /* verbs rx_stats per rcd */
240 struct hfi1_opcode_stats_perctx *opstats;
241 /* clear interrupt mask */
242 u64 imask;
243 /* ctxt rcvhdrq head offset */
244 u32 head;
245 /* number of rcvhdrq entries */
246 u16 rcvhdrq_cnt;
247 u8 ireg; /* clear interrupt register */
248 /* receive packet sequence counter */
249 u8 seq_cnt;
250 /* size of each of the rcvhdrq entries */
251 u8 rcvhdrqentsize;
252 /* offset of RHF within receive header entry */
253 u8 rhf_offset;
254 /* dynamic receive available interrupt timeout */
255 u8 rcvavail_timeout;
256 /* Indicates that this is vnic context */
257 bool is_vnic;
258 /* vnic queue index this context is mapped to */
259 u8 vnic_q_idx;
260 /* Is ASPM interrupt supported for this context */
261 bool aspm_intr_supported;
262 /* ASPM state (enabled/disabled) for this context */
263 bool aspm_enabled;
264 /* Is ASPM processing enabled for this context (in intr context) */
265 bool aspm_intr_enable;
266 struct ctxt_eager_bufs egrbufs;
267 /* QPs waiting for context processing */
268 struct list_head qp_wait_list;
269 /* tid allocation lists */
270 struct exp_tid_set tid_group_list;
271 struct exp_tid_set tid_used_list;
272 struct exp_tid_set tid_full_list;
273
274 /* Timer for re-enabling ASPM if interrupt activity quiets down */
275 struct timer_list aspm_timer;
276 /* per-context configuration flags */
277 unsigned long flags;
278 /* array of tid_groups */
279 struct tid_group *groups;
280 /* mmap of hdrq, must fit in 44 bits */
281 dma_addr_t rcvhdrq_dma;
282 dma_addr_t rcvhdrqtailaddr_dma;
283 /* Last interrupt timestamp */
284 ktime_t aspm_ts_last_intr;
285 /* Last timestamp at which we scheduled a timer for this context */
286 ktime_t aspm_ts_timer_sched;
287 /* Lock to serialize between intr, timer intr and user threads */
288 spinlock_t aspm_lock;
289 /* Reference count the base context usage */
290 struct kref kref;
291 /* numa node of this context */
292 int numa_id;
293 /* associated msix interrupt. */
294 s16 msix_intr;
295 /* job key */
296 u16 jkey;
297 /* number of RcvArray groups for this context. */
298 u16 rcv_array_groups;
299 /* index of first eager TID entry. */
300 u16 eager_base;
301 /* number of expected TID entries */
302 u16 expected_count;
303 /* index of first expected TID entry. */
304 u16 expected_base;
305 /* Device context index */
306 u8 ctxt;
307
308 /* PSM Specific fields */
309 /* lock protecting all Expected TID data */
310 struct mutex exp_mutex;
311 /* lock protecting all Expected TID data of kernel contexts */
312 spinlock_t exp_lock;
313 /* Queue for QP's waiting for HW TID flows */
314 struct tid_queue flow_queue;
315 /* Queue for QP's waiting for HW receive array entries */
316 struct tid_queue rarr_queue;
317 /* when waiting for rcv or pioavail */
318 wait_queue_head_t wait;
319 /* uuid from PSM */
320 u8 uuid[16];
321 /* same size as task_struct .comm[], command that opened context */
322 char comm[TASK_COMM_LEN];
323 /* Bitmask of in use context(s) */
324 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
325 /* per-context event flags for fileops/intr communication */
326 unsigned long event_flags;
327 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
328 void *subctxt_uregbase;
329 /* An array of pages for the eager receive buffers * N */
330 void *subctxt_rcvegrbuf;
331 /* An array of pages for the eager header queue entries * N */
332 void *subctxt_rcvhdr_base;
333 /* total number of polled urgent packets */
334 u32 urgent;
335 /* saved total number of polled urgent packets for poll edge trigger */
336 u32 urgent_poll;
337 /* Type of packets or conditions we want to poll for */
338 u16 poll_type;
339 /* non-zero if ctxt is being shared. */
340 u16 subctxt_id;
341 /* The version of the library which opened this ctxt */
342 u32 userversion;
343 /*
344 * non-zero if ctxt can be shared, and defines the maximum number of
345 * sub-contexts for this device context.
346 */
347 u8 subctxt_cnt;
348
349 /* Bit mask to track free TID RDMA HW flows */
350 unsigned long flow_mask;
351 struct tid_flow_state flows[RXE_NUM_TID_FLOWS];
352 };
353
354 /**
355 * rcvhdrq_size - return total size in bytes for header queue
356 * @rcd: the receive context
357 *
358 * rcvhdrqentsize is in DWs, so we have to convert to bytes
359 *
360 */
rcvhdrq_size(struct hfi1_ctxtdata * rcd)361 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd)
362 {
363 return PAGE_ALIGN(rcd->rcvhdrq_cnt *
364 rcd->rcvhdrqentsize * sizeof(u32));
365 }
366
367 /*
368 * Represents a single packet at a high level. Put commonly computed things in
369 * here so we do not have to keep doing them over and over. The rule of thumb is
370 * if something is used one time to derive some value, store that something in
371 * here. If it is used multiple times, then store the result of that derivation
372 * in here.
373 */
374 struct hfi1_packet {
375 void *ebuf;
376 void *hdr;
377 void *payload;
378 struct hfi1_ctxtdata *rcd;
379 __le32 *rhf_addr;
380 struct rvt_qp *qp;
381 struct ib_other_headers *ohdr;
382 struct ib_grh *grh;
383 struct opa_16b_mgmt *mgmt;
384 u64 rhf;
385 u32 maxcnt;
386 u32 rhqoff;
387 u32 dlid;
388 u32 slid;
389 int numpkt;
390 u16 tlen;
391 s16 etail;
392 u16 pkey;
393 u8 hlen;
394 u8 rsize;
395 u8 updegr;
396 u8 etype;
397 u8 extra_byte;
398 u8 pad;
399 u8 sc;
400 u8 sl;
401 u8 opcode;
402 bool migrated;
403 };
404
405 /* Packet types */
406 #define HFI1_PKT_TYPE_9B 0
407 #define HFI1_PKT_TYPE_16B 1
408
409 /*
410 * OPA 16B Header
411 */
412 #define OPA_16B_L4_MASK 0xFFull
413 #define OPA_16B_SC_MASK 0x1F00000ull
414 #define OPA_16B_SC_SHIFT 20
415 #define OPA_16B_LID_MASK 0xFFFFFull
416 #define OPA_16B_DLID_MASK 0xF000ull
417 #define OPA_16B_DLID_SHIFT 20
418 #define OPA_16B_DLID_HIGH_SHIFT 12
419 #define OPA_16B_SLID_MASK 0xF00ull
420 #define OPA_16B_SLID_SHIFT 20
421 #define OPA_16B_SLID_HIGH_SHIFT 8
422 #define OPA_16B_BECN_MASK 0x80000000ull
423 #define OPA_16B_BECN_SHIFT 31
424 #define OPA_16B_FECN_MASK 0x10000000ull
425 #define OPA_16B_FECN_SHIFT 28
426 #define OPA_16B_L2_MASK 0x60000000ull
427 #define OPA_16B_L2_SHIFT 29
428 #define OPA_16B_PKEY_MASK 0xFFFF0000ull
429 #define OPA_16B_PKEY_SHIFT 16
430 #define OPA_16B_LEN_MASK 0x7FF00000ull
431 #define OPA_16B_LEN_SHIFT 20
432 #define OPA_16B_RC_MASK 0xE000000ull
433 #define OPA_16B_RC_SHIFT 25
434 #define OPA_16B_AGE_MASK 0xFF0000ull
435 #define OPA_16B_AGE_SHIFT 16
436 #define OPA_16B_ENTROPY_MASK 0xFFFFull
437
438 /*
439 * OPA 16B L2/L4 Encodings
440 */
441 #define OPA_16B_L4_9B 0x00
442 #define OPA_16B_L2_TYPE 0x02
443 #define OPA_16B_L4_FM 0x08
444 #define OPA_16B_L4_IB_LOCAL 0x09
445 #define OPA_16B_L4_IB_GLOBAL 0x0A
446 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR
447
448 /*
449 * OPA 16B Management
450 */
451 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */
452 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */
453
hfi1_16B_get_l4(struct hfi1_16b_header * hdr)454 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
455 {
456 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
457 }
458
hfi1_16B_get_sc(struct hfi1_16b_header * hdr)459 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
460 {
461 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
462 }
463
hfi1_16B_get_dlid(struct hfi1_16b_header * hdr)464 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
465 {
466 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
467 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
468 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
469 }
470
hfi1_16B_get_slid(struct hfi1_16b_header * hdr)471 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
472 {
473 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
474 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
475 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
476 }
477
hfi1_16B_get_becn(struct hfi1_16b_header * hdr)478 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
479 {
480 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
481 }
482
hfi1_16B_get_fecn(struct hfi1_16b_header * hdr)483 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
484 {
485 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
486 }
487
hfi1_16B_get_l2(struct hfi1_16b_header * hdr)488 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
489 {
490 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
491 }
492
hfi1_16B_get_pkey(struct hfi1_16b_header * hdr)493 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
494 {
495 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
496 }
497
hfi1_16B_get_rc(struct hfi1_16b_header * hdr)498 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
499 {
500 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
501 }
502
hfi1_16B_get_age(struct hfi1_16b_header * hdr)503 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
504 {
505 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
506 }
507
hfi1_16B_get_len(struct hfi1_16b_header * hdr)508 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
509 {
510 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
511 }
512
hfi1_16B_get_entropy(struct hfi1_16b_header * hdr)513 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
514 {
515 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
516 }
517
518 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
519
520 /*
521 * BTH
522 */
523 #define OPA_16B_BTH_PAD_MASK 7
hfi1_16B_bth_get_pad(struct ib_other_headers * ohdr)524 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
525 {
526 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
527 OPA_16B_BTH_PAD_MASK);
528 }
529
530 /*
531 * 16B Management
532 */
533 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF
hfi1_16B_get_dest_qpn(struct opa_16b_mgmt * mgmt)534 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt)
535 {
536 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK;
537 }
538
hfi1_16B_get_src_qpn(struct opa_16b_mgmt * mgmt)539 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt)
540 {
541 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK;
542 }
543
hfi1_16B_set_qpn(struct opa_16b_mgmt * mgmt,u32 dest_qp,u32 src_qp)544 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt,
545 u32 dest_qp, u32 src_qp)
546 {
547 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK);
548 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK);
549 }
550
551 /**
552 * hfi1_get_rc_ohdr - get extended header
553 * @opah - the opaheader
554 */
555 static inline struct ib_other_headers *
hfi1_get_rc_ohdr(struct hfi1_opa_header * opah)556 hfi1_get_rc_ohdr(struct hfi1_opa_header *opah)
557 {
558 struct ib_other_headers *ohdr;
559 struct ib_header *hdr = NULL;
560 struct hfi1_16b_header *hdr_16b = NULL;
561
562 /* Find out where the BTH is */
563 if (opah->hdr_type == HFI1_PKT_TYPE_9B) {
564 hdr = &opah->ibh;
565 if (ib_get_lnh(hdr) == HFI1_LRH_BTH)
566 ohdr = &hdr->u.oth;
567 else
568 ohdr = &hdr->u.l.oth;
569 } else {
570 u8 l4;
571
572 hdr_16b = &opah->opah;
573 l4 = hfi1_16B_get_l4(hdr_16b);
574 if (l4 == OPA_16B_L4_IB_LOCAL)
575 ohdr = &hdr_16b->u.oth;
576 else
577 ohdr = &hdr_16b->u.l.oth;
578 }
579 return ohdr;
580 }
581
582 struct rvt_sge_state;
583
584 /*
585 * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
586 * Mostly for MADs that set or query link parameters, also ipath
587 * config interfaces
588 */
589 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
590 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
591 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
592 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
593 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
594 #define HFI1_IB_CFG_SPD 5 /* current Link spd */
595 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
596 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
597 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
598 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
599 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
600 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
601 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
602 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
603 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
604 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
605 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
606 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
607 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19
608 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
609 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
610
611 /*
612 * HFI or Host Link States
613 *
614 * These describe the states the driver thinks the logical and physical
615 * states are in. Used as an argument to set_link_state(). Implemented
616 * as bits for easy multi-state checking. The actual state can only be
617 * one.
618 */
619 #define __HLS_UP_INIT_BP 0
620 #define __HLS_UP_ARMED_BP 1
621 #define __HLS_UP_ACTIVE_BP 2
622 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */
623 #define __HLS_DN_POLL_BP 4
624 #define __HLS_DN_DISABLE_BP 5
625 #define __HLS_DN_OFFLINE_BP 6
626 #define __HLS_VERIFY_CAP_BP 7
627 #define __HLS_GOING_UP_BP 8
628 #define __HLS_GOING_OFFLINE_BP 9
629 #define __HLS_LINK_COOLDOWN_BP 10
630
631 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP)
632 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP)
633 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP)
634 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
635 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP)
636 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP)
637 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP)
638 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP)
639 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP)
640 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
641 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
642
643 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
644 #define HLS_DOWN ~(HLS_UP)
645
646 #define HLS_DEFAULT HLS_DN_POLL
647
648 /* use this MTU size if none other is given */
649 #define HFI1_DEFAULT_ACTIVE_MTU 10240
650 /* use this MTU size as the default maximum */
651 #define HFI1_DEFAULT_MAX_MTU 10240
652 /* default partition key */
653 #define DEFAULT_PKEY 0xffff
654
655 /*
656 * Possible fabric manager config parameters for fm_{get,set}_table()
657 */
658 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */
659 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */
660 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */
661 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */
662 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */
663 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */
664
665 /*
666 * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
667 * these are bits so they can be combined, e.g.
668 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
669 */
670 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01
671 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02
672 #define HFI1_RCVCTRL_CTXT_ENB 0x04
673 #define HFI1_RCVCTRL_CTXT_DIS 0x08
674 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
675 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
676 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */
677 #define HFI1_RCVCTRL_PKEY_DIS 0x80
678 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
679 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
680 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
681 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
682 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
683 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
684 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
685 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
686 #define HFI1_RCVCTRL_URGENT_ENB 0x40000
687 #define HFI1_RCVCTRL_URGENT_DIS 0x80000
688
689 /* partition enforcement flags */
690 #define HFI1_PART_ENFORCE_IN 0x1
691 #define HFI1_PART_ENFORCE_OUT 0x2
692
693 /* how often we check for synthetic counter wrap around */
694 #define SYNTH_CNT_TIME 3
695
696 /* Counter flags */
697 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */
698 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */
699 #define CNTR_DISABLED 0x2 /* Disable this counter */
700 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */
701 #define CNTR_VL 0x8 /* Per VL counter */
702 #define CNTR_SDMA 0x10
703 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */
704 #define CNTR_MODE_W 0x0
705 #define CNTR_MODE_R 0x1
706
707 /* VLs Supported/Operational */
708 #define HFI1_MIN_VLS_SUPPORTED 1
709 #define HFI1_MAX_VLS_SUPPORTED 8
710
711 #define HFI1_GUIDS_PER_PORT 5
712 #define HFI1_PORT_GUID_INDEX 0
713
incr_cntr64(u64 * cntr)714 static inline void incr_cntr64(u64 *cntr)
715 {
716 if (*cntr < (u64)-1LL)
717 (*cntr)++;
718 }
719
incr_cntr32(u32 * cntr)720 static inline void incr_cntr32(u32 *cntr)
721 {
722 if (*cntr < (u32)-1LL)
723 (*cntr)++;
724 }
725
726 #define MAX_NAME_SIZE 64
727 struct hfi1_msix_entry {
728 enum irq_type type;
729 int irq;
730 void *arg;
731 cpumask_t mask;
732 struct irq_affinity_notify notify;
733 };
734
735 struct hfi1_msix_info {
736 /* lock to synchronize in_use_msix access */
737 spinlock_t msix_lock;
738 DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS);
739 struct hfi1_msix_entry *msix_entries;
740 u16 max_requested;
741 };
742
743 /* per-SL CCA information */
744 struct cca_timer {
745 struct hrtimer hrtimer;
746 struct hfi1_pportdata *ppd; /* read-only */
747 int sl; /* read-only */
748 u16 ccti; /* read/write - current value of CCTI */
749 };
750
751 struct link_down_reason {
752 /*
753 * SMA-facing value. Should be set from .latest when
754 * HLS_UP_* -> HLS_DN_* transition actually occurs.
755 */
756 u8 sma;
757 u8 latest;
758 };
759
760 enum {
761 LO_PRIO_TABLE,
762 HI_PRIO_TABLE,
763 MAX_PRIO_TABLE
764 };
765
766 struct vl_arb_cache {
767 /* protect vl arb cache */
768 spinlock_t lock;
769 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
770 };
771
772 /*
773 * The structure below encapsulates data relevant to a physical IB Port.
774 * Current chips support only one such port, but the separation
775 * clarifies things a bit. Note that to conform to IB conventions,
776 * port-numbers are one-based. The first or only port is port1.
777 */
778 struct hfi1_pportdata {
779 struct hfi1_ibport ibport_data;
780
781 struct hfi1_devdata *dd;
782 struct kobject pport_cc_kobj;
783 struct kobject sc2vl_kobj;
784 struct kobject sl2sc_kobj;
785 struct kobject vl2mtu_kobj;
786
787 /* PHY support */
788 struct qsfp_data qsfp_info;
789 /* Values for SI tuning of SerDes */
790 u32 port_type;
791 u32 tx_preset_eq;
792 u32 tx_preset_noeq;
793 u32 rx_preset;
794 u8 local_atten;
795 u8 remote_atten;
796 u8 default_atten;
797 u8 max_power_class;
798
799 /* did we read platform config from scratch registers? */
800 bool config_from_scratch;
801
802 /* GUIDs for this interface, in host order, guids[0] is a port guid */
803 u64 guids[HFI1_GUIDS_PER_PORT];
804
805 /* GUID for peer interface, in host order */
806 u64 neighbor_guid;
807
808 /* up or down physical link state */
809 u32 linkup;
810
811 /*
812 * this address is mapped read-only into user processes so they can
813 * get status cheaply, whenever they want. One qword of status per port
814 */
815 u64 *statusp;
816
817 /* SendDMA related entries */
818
819 struct workqueue_struct *hfi1_wq;
820 struct workqueue_struct *link_wq;
821
822 /* move out of interrupt context */
823 struct work_struct link_vc_work;
824 struct work_struct link_up_work;
825 struct work_struct link_down_work;
826 struct work_struct sma_message_work;
827 struct work_struct freeze_work;
828 struct work_struct link_downgrade_work;
829 struct work_struct link_bounce_work;
830 struct delayed_work start_link_work;
831 /* host link state variables */
832 struct mutex hls_lock;
833 u32 host_link_state;
834
835 /* these are the "32 bit" regs */
836
837 u32 ibmtu; /* The MTU programmed for this unit */
838 /*
839 * Current max size IB packet (in bytes) including IB headers, that
840 * we can send. Changes when ibmtu changes.
841 */
842 u32 ibmaxlen;
843 u32 current_egress_rate; /* units [10^6 bits/sec] */
844 /* LID programmed for this instance */
845 u32 lid;
846 /* list of pkeys programmed; 0 if not set */
847 u16 pkeys[MAX_PKEY_VALUES];
848 u16 link_width_supported;
849 u16 link_width_downgrade_supported;
850 u16 link_speed_supported;
851 u16 link_width_enabled;
852 u16 link_width_downgrade_enabled;
853 u16 link_speed_enabled;
854 u16 link_width_active;
855 u16 link_width_downgrade_tx_active;
856 u16 link_width_downgrade_rx_active;
857 u16 link_speed_active;
858 u8 vls_supported;
859 u8 vls_operational;
860 u8 actual_vls_operational;
861 /* LID mask control */
862 u8 lmc;
863 /* Rx Polarity inversion (compensate for ~tx on partner) */
864 u8 rx_pol_inv;
865
866 u8 hw_pidx; /* physical port index */
867 u8 port; /* IB port number and index into dd->pports - 1 */
868 /* type of neighbor node */
869 u8 neighbor_type;
870 u8 neighbor_normal;
871 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
872 u8 neighbor_port_number;
873 u8 is_sm_config_started;
874 u8 offline_disabled_reason;
875 u8 is_active_optimize_enabled;
876 u8 driver_link_ready; /* driver ready for active link */
877 u8 link_enabled; /* link enabled? */
878 u8 linkinit_reason;
879 u8 local_tx_rate; /* rate given to 8051 firmware */
880 u8 qsfp_retry_count;
881
882 /* placeholders for IB MAD packet settings */
883 u8 overrun_threshold;
884 u8 phy_error_threshold;
885 unsigned int is_link_down_queued;
886
887 /* Used to override LED behavior for things like maintenance beaconing*/
888 /*
889 * Alternates per phase of blink
890 * [0] holds LED off duration, [1] holds LED on duration
891 */
892 unsigned long led_override_vals[2];
893 u8 led_override_phase; /* LSB picks from vals[] */
894 atomic_t led_override_timer_active;
895 /* Used to flash LEDs in override mode */
896 struct timer_list led_override_timer;
897
898 u32 sm_trap_qp;
899 u32 sa_qp;
900
901 /*
902 * cca_timer_lock protects access to the per-SL cca_timer
903 * structures (specifically the ccti member).
904 */
905 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
906 struct cca_timer cca_timer[OPA_MAX_SLS];
907
908 /* List of congestion control table entries */
909 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
910
911 /* congestion entries, each entry corresponding to a SL */
912 struct opa_congestion_setting_entry_shadow
913 congestion_entries[OPA_MAX_SLS];
914
915 /*
916 * cc_state_lock protects (write) access to the per-port
917 * struct cc_state.
918 */
919 spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
920
921 struct cc_state __rcu *cc_state;
922
923 /* Total number of congestion control table entries */
924 u16 total_cct_entry;
925
926 /* Bit map identifying service level */
927 u32 cc_sl_control_map;
928
929 /* CA's max number of 64 entry units in the congestion control table */
930 u8 cc_max_table_entries;
931
932 /*
933 * begin congestion log related entries
934 * cc_log_lock protects all congestion log related data
935 */
936 spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
937 u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
938 u16 threshold_event_counter;
939 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
940 int cc_log_idx; /* index for logging events */
941 int cc_mad_idx; /* index for reporting events */
942 /* end congestion log related entries */
943
944 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
945
946 /* port relative counter buffer */
947 u64 *cntrs;
948 /* port relative synthetic counter buffer */
949 u64 *scntrs;
950 /* port_xmit_discards are synthesized from different egress errors */
951 u64 port_xmit_discards;
952 u64 port_xmit_discards_vl[C_VL_COUNT];
953 u64 port_xmit_constraint_errors;
954 u64 port_rcv_constraint_errors;
955 /* count of 'link_err' interrupts from DC */
956 u64 link_downed;
957 /* number of times link retrained successfully */
958 u64 link_up;
959 /* number of times a link unknown frame was reported */
960 u64 unknown_frame_count;
961 /* port_ltp_crc_mode is returned in 'portinfo' MADs */
962 u16 port_ltp_crc_mode;
963 /* port_crc_mode_enabled is the crc we support */
964 u8 port_crc_mode_enabled;
965 /* mgmt_allowed is also returned in 'portinfo' MADs */
966 u8 mgmt_allowed;
967 u8 part_enforce; /* partition enforcement flags */
968 struct link_down_reason local_link_down_reason;
969 struct link_down_reason neigh_link_down_reason;
970 /* Value to be sent to link peer on LinkDown .*/
971 u8 remote_link_down_reason;
972 /* Error events that will cause a port bounce. */
973 u32 port_error_action;
974 struct work_struct linkstate_active_work;
975 /* Does this port need to prescan for FECNs */
976 bool cc_prescan;
977 /*
978 * Sample sendWaitCnt & sendWaitVlCnt during link transition
979 * and counter request.
980 */
981 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1];
982 u16 prev_link_width;
983 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1];
984 };
985
986 typedef void (*opcode_handler)(struct hfi1_packet *packet);
987 typedef void (*hfi1_make_req)(struct rvt_qp *qp,
988 struct hfi1_pkt_state *ps,
989 struct rvt_swqe *wqe);
990 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[];
991 extern const rhf_rcv_function_ptr netdev_rhf_rcv_functions[];
992
993 /* return values for the RHF receive functions */
994 #define RHF_RCV_CONTINUE 0 /* keep going */
995 #define RHF_RCV_DONE 1 /* stop, this packet processed */
996 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */
997
998 struct rcv_array_data {
999 u16 ngroups;
1000 u16 nctxt_extra;
1001 u8 group_size;
1002 };
1003
1004 struct per_vl_data {
1005 u16 mtu;
1006 struct send_context *sc;
1007 };
1008
1009 /* 16 to directly index */
1010 #define PER_VL_SEND_CONTEXTS 16
1011
1012 struct err_info_rcvport {
1013 u8 status_and_code;
1014 u64 packet_flit1;
1015 u64 packet_flit2;
1016 };
1017
1018 struct err_info_constraint {
1019 u8 status;
1020 u16 pkey;
1021 u32 slid;
1022 };
1023
1024 struct hfi1_temp {
1025 unsigned int curr; /* current temperature */
1026 unsigned int lo_lim; /* low temperature limit */
1027 unsigned int hi_lim; /* high temperature limit */
1028 unsigned int crit_lim; /* critical temperature limit */
1029 u8 triggers; /* temperature triggers */
1030 };
1031
1032 struct hfi1_i2c_bus {
1033 struct hfi1_devdata *controlling_dd; /* current controlling device */
1034 struct i2c_adapter adapter; /* bus details */
1035 struct i2c_algo_bit_data algo; /* bus algorithm details */
1036 int num; /* bus number, 0 or 1 */
1037 };
1038
1039 /* common data between shared ASIC HFIs */
1040 struct hfi1_asic_data {
1041 struct hfi1_devdata *dds[2]; /* back pointers */
1042 struct mutex asic_resource_mutex;
1043 struct hfi1_i2c_bus *i2c_bus0;
1044 struct hfi1_i2c_bus *i2c_bus1;
1045 };
1046
1047 /* sizes for both the QP and RSM map tables */
1048 #define NUM_MAP_ENTRIES 256
1049 #define NUM_MAP_REGS 32
1050
1051 /* Virtual NIC information */
1052 struct hfi1_vnic_data {
1053 struct kmem_cache *txreq_cache;
1054 u8 num_vports;
1055 };
1056
1057 struct hfi1_vnic_vport_info;
1058
1059 /* device data struct now contains only "general per-device" info.
1060 * fields related to a physical IB port are in a hfi1_pportdata struct.
1061 */
1062 struct sdma_engine;
1063 struct sdma_vl_map;
1064
1065 #define BOARD_VERS_MAX 96 /* how long the version string can be */
1066 #define SERIAL_MAX 16 /* length of the serial number */
1067
1068 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
1069 struct hfi1_devdata {
1070 struct hfi1_ibdev verbs_dev; /* must be first */
1071 /* pointers to related structs for this device */
1072 /* pci access data structure */
1073 struct pci_dev *pcidev;
1074 struct cdev user_cdev;
1075 struct cdev diag_cdev;
1076 struct cdev ui_cdev;
1077 struct device *user_device;
1078 struct device *diag_device;
1079 struct device *ui_device;
1080
1081 /* first mapping up to RcvArray */
1082 u8 __iomem *kregbase1;
1083 resource_size_t physaddr;
1084
1085 /* second uncached mapping from RcvArray to pio send buffers */
1086 u8 __iomem *kregbase2;
1087 /* for detecting offset above kregbase2 address */
1088 u32 base2_start;
1089
1090 /* Per VL data. Enough for all VLs but not all elements are set/used. */
1091 struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
1092 /* send context data */
1093 struct send_context_info *send_contexts;
1094 /* map hardware send contexts to software index */
1095 u8 *hw_to_sw;
1096 /* spinlock for allocating and releasing send context resources */
1097 spinlock_t sc_lock;
1098 /* lock for pio_map */
1099 spinlock_t pio_map_lock;
1100 /* Send Context initialization lock. */
1101 spinlock_t sc_init_lock;
1102 /* lock for sdma_map */
1103 spinlock_t sde_map_lock;
1104 /* array of kernel send contexts */
1105 struct send_context **kernel_send_context;
1106 /* array of vl maps */
1107 struct pio_vl_map __rcu *pio_map;
1108 /* default flags to last descriptor */
1109 u64 default_desc1;
1110
1111 /* fields common to all SDMA engines */
1112
1113 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */
1114 dma_addr_t sdma_heads_phys;
1115 void *sdma_pad_dma; /* DMA'ed by chip */
1116 dma_addr_t sdma_pad_phys;
1117 /* for deallocation */
1118 size_t sdma_heads_size;
1119 /* num used */
1120 u32 num_sdma;
1121 /* array of engines sized by num_sdma */
1122 struct sdma_engine *per_sdma;
1123 /* array of vl maps */
1124 struct sdma_vl_map __rcu *sdma_map;
1125 /* SPC freeze waitqueue and variable */
1126 wait_queue_head_t sdma_unfreeze_wq;
1127 atomic_t sdma_unfreeze_count;
1128
1129 u32 lcb_access_count; /* count of LCB users */
1130
1131 /* common data between shared ASIC HFIs in this OS */
1132 struct hfi1_asic_data *asic_data;
1133
1134 /* mem-mapped pointer to base of PIO buffers */
1135 void __iomem *piobase;
1136 /*
1137 * write-combining mem-mapped pointer to base of RcvArray
1138 * memory.
1139 */
1140 void __iomem *rcvarray_wc;
1141 /*
1142 * credit return base - a per-NUMA range of DMA address that
1143 * the chip will use to update the per-context free counter
1144 */
1145 struct credit_return_base *cr_base;
1146
1147 /* send context numbers and sizes for each type */
1148 struct sc_config_sizes sc_sizes[SC_MAX];
1149
1150 char *boardname; /* human readable board info */
1151
1152 u64 ctx0_seq_drop;
1153
1154 /* reset value */
1155 u64 z_int_counter;
1156 u64 z_rcv_limit;
1157 u64 z_send_schedule;
1158
1159 u64 __percpu *send_schedule;
1160 /* number of reserved contexts for netdev usage */
1161 u16 num_netdev_contexts;
1162 /* number of receive contexts in use by the driver */
1163 u32 num_rcv_contexts;
1164 /* number of pio send contexts in use by the driver */
1165 u32 num_send_contexts;
1166 /*
1167 * number of ctxts available for PSM open
1168 */
1169 u32 freectxts;
1170 /* total number of available user/PSM contexts */
1171 u32 num_user_contexts;
1172 /* base receive interrupt timeout, in CSR units */
1173 u32 rcv_intr_timeout_csr;
1174
1175 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1176 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1177 spinlock_t uctxt_lock; /* protect rcd changes */
1178 struct mutex dc8051_lock; /* exclusive access to 8051 */
1179 struct workqueue_struct *update_cntr_wq;
1180 struct work_struct update_cntr_work;
1181 /* exclusive access to 8051 memory */
1182 spinlock_t dc8051_memlock;
1183 int dc8051_timed_out; /* remember if the 8051 timed out */
1184 /*
1185 * A page that will hold event notification bitmaps for all
1186 * contexts. This page will be mapped into all processes.
1187 */
1188 unsigned long *events;
1189 /*
1190 * per unit status, see also portdata statusp
1191 * mapped read-only into user processes so they can get unit and
1192 * IB link status cheaply
1193 */
1194 struct hfi1_status *status;
1195
1196 /* revision register shadow */
1197 u64 revision;
1198 /* Base GUID for device (network order) */
1199 u64 base_guid;
1200
1201 /* both sides of the PCIe link are gen3 capable */
1202 u8 link_gen3_capable;
1203 u8 dc_shutdown;
1204 /* localbus width (1, 2,4,8,16,32) from config space */
1205 u32 lbus_width;
1206 /* localbus speed in MHz */
1207 u32 lbus_speed;
1208 int unit; /* unit # of this chip */
1209 int node; /* home node of this chip */
1210
1211 /* save these PCI fields to restore after a reset */
1212 u32 pcibar0;
1213 u32 pcibar1;
1214 u32 pci_rom;
1215 u16 pci_command;
1216 u16 pcie_devctl;
1217 u16 pcie_lnkctl;
1218 u16 pcie_devctl2;
1219 u32 pci_msix0;
1220 u32 pci_tph2;
1221
1222 /*
1223 * ASCII serial number, from flash, large enough for original
1224 * all digit strings, and longer serial number format
1225 */
1226 u8 serial[SERIAL_MAX];
1227 /* human readable board version */
1228 u8 boardversion[BOARD_VERS_MAX];
1229 u8 lbus_info[32]; /* human readable localbus info */
1230 /* chip major rev, from CceRevision */
1231 u8 majrev;
1232 /* chip minor rev, from CceRevision */
1233 u8 minrev;
1234 /* hardware ID */
1235 u8 hfi1_id;
1236 /* implementation code */
1237 u8 icode;
1238 /* vAU of this device */
1239 u8 vau;
1240 /* vCU of this device */
1241 u8 vcu;
1242 /* link credits of this device */
1243 u16 link_credits;
1244 /* initial vl15 credits to use */
1245 u16 vl15_init;
1246
1247 /*
1248 * Cached value for vl15buf, read during verify cap interrupt. VL15
1249 * credits are to be kept at 0 and set when handling the link-up
1250 * interrupt. This removes the possibility of receiving VL15 MAD
1251 * packets before this HFI is ready.
1252 */
1253 u16 vl15buf_cached;
1254
1255 /* Misc small ints */
1256 u8 n_krcv_queues;
1257 u8 qos_shift;
1258
1259 u16 irev; /* implementation revision */
1260 u32 dc8051_ver; /* 8051 firmware version */
1261
1262 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1263 struct platform_config platform_config;
1264 struct platform_config_cache pcfg_cache;
1265
1266 struct diag_client *diag_client;
1267
1268 /* general interrupt: mask of handled interrupts */
1269 u64 gi_mask[CCE_NUM_INT_CSRS];
1270
1271 struct rcv_array_data rcv_entries;
1272
1273 /* cycle length of PS* counters in HW (in picoseconds) */
1274 u16 psxmitwait_check_rate;
1275
1276 /*
1277 * 64 bit synthetic counters
1278 */
1279 struct timer_list synth_stats_timer;
1280
1281 /* MSI-X information */
1282 struct hfi1_msix_info msix_info;
1283
1284 /*
1285 * device counters
1286 */
1287 char *cntrnames;
1288 size_t cntrnameslen;
1289 size_t ndevcntrs;
1290 u64 *cntrs;
1291 u64 *scntrs;
1292
1293 /*
1294 * remembered values for synthetic counters
1295 */
1296 u64 last_tx;
1297 u64 last_rx;
1298
1299 /*
1300 * per-port counters
1301 */
1302 size_t nportcntrs;
1303 char *portcntrnames;
1304 size_t portcntrnameslen;
1305
1306 struct err_info_rcvport err_info_rcvport;
1307 struct err_info_constraint err_info_rcv_constraint;
1308 struct err_info_constraint err_info_xmit_constraint;
1309
1310 atomic_t drop_packet;
1311 bool do_drop;
1312 u8 err_info_uncorrectable;
1313 u8 err_info_fmconfig;
1314
1315 /*
1316 * Software counters for the status bits defined by the
1317 * associated error status registers
1318 */
1319 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1320 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1321 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1322 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1323 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1324 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1325 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1326
1327 /* Software counter that spans all contexts */
1328 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1329 /* Software counter that spans all DMA engines */
1330 u64 sw_send_dma_eng_err_status_cnt[
1331 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1332 /* Software counter that aggregates all cce_err_status errors */
1333 u64 sw_cce_err_status_aggregate;
1334 /* Software counter that aggregates all bypass packet rcv errors */
1335 u64 sw_rcv_bypass_packet_errors;
1336
1337 /* Save the enabled LCB error bits */
1338 u64 lcb_err_en;
1339 struct cpu_mask_set *comp_vect;
1340 int *comp_vect_mappings;
1341 u32 comp_vect_possible_cpus;
1342
1343 /*
1344 * Capability to have different send engines simply by changing a
1345 * pointer value.
1346 */
1347 send_routine process_pio_send ____cacheline_aligned_in_smp;
1348 send_routine process_dma_send;
1349 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1350 u64 pbc, const void *from, size_t count);
1351 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1352 struct hfi1_vnic_vport_info *vinfo,
1353 struct sk_buff *skb, u64 pbc, u8 plen);
1354 /* hfi1_pportdata, points to array of (physical) port-specific
1355 * data structs, indexed by pidx (0..n-1)
1356 */
1357 struct hfi1_pportdata *pport;
1358 /* receive context data */
1359 struct hfi1_ctxtdata **rcd;
1360 u64 __percpu *int_counter;
1361 /* verbs tx opcode stats */
1362 struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1363 /* device (not port) flags, basically device capabilities */
1364 u16 flags;
1365 /* Number of physical ports available */
1366 u8 num_pports;
1367 /* Lowest context number which can be used by user processes or VNIC */
1368 u8 first_dyn_alloc_ctxt;
1369 /* adding a new field here would make it part of this cacheline */
1370
1371 /* seqlock for sc2vl */
1372 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1373 u64 sc2vl[4];
1374 u64 __percpu *rcv_limit;
1375 /* adding a new field here would make it part of this cacheline */
1376
1377 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1378 u8 oui1;
1379 u8 oui2;
1380 u8 oui3;
1381
1382 /* Timer and counter used to detect RcvBufOvflCnt changes */
1383 struct timer_list rcverr_timer;
1384
1385 wait_queue_head_t event_queue;
1386
1387 /* receive context tail dummy address */
1388 __le64 *rcvhdrtail_dummy_kvaddr;
1389 dma_addr_t rcvhdrtail_dummy_dma;
1390
1391 u32 rcv_ovfl_cnt;
1392 /* Serialize ASPM enable/disable between multiple verbs contexts */
1393 spinlock_t aspm_lock;
1394 /* Number of verbs contexts which have disabled ASPM */
1395 atomic_t aspm_disabled_cnt;
1396 /* Keeps track of user space clients */
1397 atomic_t user_refcount;
1398 /* Used to wait for outstanding user space clients before dev removal */
1399 struct completion user_comp;
1400
1401 bool eprom_available; /* true if EPROM is available for this device */
1402 bool aspm_supported; /* Does HW support ASPM */
1403 bool aspm_enabled; /* ASPM state: enabled/disabled */
1404 struct rhashtable *sdma_rht;
1405
1406 /* vnic data */
1407 struct hfi1_vnic_data vnic;
1408 /* Lock to protect IRQ SRC register access */
1409 spinlock_t irq_src_lock;
1410 int vnic_num_vports;
1411 struct net_device *dummy_netdev;
1412
1413 /* Keeps track of IPoIB RSM rule users */
1414 atomic_t ipoib_rsm_usr_num;
1415 };
1416
1417 /* 8051 firmware version helper */
1418 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1419 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1420 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1421 #define dc8051_ver_patch(a) ((a) & 0x0000ff)
1422
1423 /* f_put_tid types */
1424 #define PT_EXPECTED 0
1425 #define PT_EAGER 1
1426 #define PT_INVALID_FLUSH 2
1427 #define PT_INVALID 3
1428
1429 struct tid_rb_node;
1430 struct mmu_rb_node;
1431 struct mmu_rb_handler;
1432
1433 /* Private data for file operations */
1434 struct hfi1_filedata {
1435 struct srcu_struct pq_srcu;
1436 struct hfi1_devdata *dd;
1437 struct hfi1_ctxtdata *uctxt;
1438 struct hfi1_user_sdma_comp_q *cq;
1439 /* update side lock for SRCU */
1440 spinlock_t pq_rcu_lock;
1441 struct hfi1_user_sdma_pkt_q __rcu *pq;
1442 u16 subctxt;
1443 /* for cpu affinity; -1 if none */
1444 int rec_cpu_num;
1445 u32 tid_n_pinned;
1446 bool use_mn;
1447 struct tid_rb_node **entry_to_rb;
1448 spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1449 u32 tid_limit;
1450 u32 tid_used;
1451 u32 *invalid_tids;
1452 u32 invalid_tid_idx;
1453 /* protect invalid_tids array and invalid_tid_idx */
1454 spinlock_t invalid_lock;
1455 };
1456
1457 extern struct xarray hfi1_dev_table;
1458 struct hfi1_devdata *hfi1_lookup(int unit);
1459
uctxt_offset(struct hfi1_ctxtdata * uctxt)1460 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1461 {
1462 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1463 HFI1_MAX_SHARED_CTXTS;
1464 }
1465
1466 int hfi1_init(struct hfi1_devdata *dd, int reinit);
1467 int hfi1_count_active_units(void);
1468
1469 int hfi1_diag_add(struct hfi1_devdata *dd);
1470 void hfi1_diag_remove(struct hfi1_devdata *dd);
1471 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1472
1473 void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1474
1475 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1476 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1477 int hfi1_create_kctxts(struct hfi1_devdata *dd);
1478 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1479 struct hfi1_ctxtdata **rcd);
1480 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1481 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1482 struct hfi1_devdata *dd, u8 hw_pidx, u8 port);
1483 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1484 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1485 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1486 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1487 u16 ctxt);
1488 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1489 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1490 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1491 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1492 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget);
1493 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget);
1494 void set_all_slowpath(struct hfi1_devdata *dd);
1495
1496 extern const struct pci_device_id hfi1_pci_tbl[];
1497 void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1498 struct hfi1_pkt_state *ps,
1499 struct rvt_swqe *wqe);
1500
1501 void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1502 struct hfi1_pkt_state *ps,
1503 struct rvt_swqe *wqe);
1504
1505 /* receive packet handler dispositions */
1506 #define RCV_PKT_OK 0x0 /* keep going */
1507 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */
1508 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */
1509
1510 /**
1511 * hfi1_rcd_head - add accessor for rcd head
1512 * @rcd: the context
1513 */
hfi1_rcd_head(struct hfi1_ctxtdata * rcd)1514 static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd)
1515 {
1516 return rcd->head;
1517 }
1518
1519 /**
1520 * hfi1_set_rcd_head - add accessor for rcd head
1521 * @rcd: the context
1522 * @head: the new head
1523 */
hfi1_set_rcd_head(struct hfi1_ctxtdata * rcd,u32 head)1524 static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head)
1525 {
1526 rcd->head = head;
1527 }
1528
1529 /* calculate the current RHF address */
get_rhf_addr(struct hfi1_ctxtdata * rcd)1530 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1531 {
1532 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset;
1533 }
1534
1535 /* return DMA_RTAIL configuration */
get_dma_rtail_setting(struct hfi1_ctxtdata * rcd)1536 static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd)
1537 {
1538 return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL);
1539 }
1540
1541 /**
1542 * hfi1_seq_incr_wrap - wrapping increment for sequence
1543 * @seq: the current sequence number
1544 *
1545 * Returns: the incremented seq
1546 */
hfi1_seq_incr_wrap(u8 seq)1547 static inline u8 hfi1_seq_incr_wrap(u8 seq)
1548 {
1549 if (++seq > RHF_MAX_SEQ)
1550 seq = 1;
1551 return seq;
1552 }
1553
1554 /**
1555 * hfi1_seq_cnt - return seq_cnt member
1556 * @rcd: the receive context
1557 *
1558 * Return seq_cnt member
1559 */
hfi1_seq_cnt(struct hfi1_ctxtdata * rcd)1560 static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd)
1561 {
1562 return rcd->seq_cnt;
1563 }
1564
1565 /**
1566 * hfi1_set_seq_cnt - return seq_cnt member
1567 * @rcd: the receive context
1568 *
1569 * Return seq_cnt member
1570 */
hfi1_set_seq_cnt(struct hfi1_ctxtdata * rcd,u8 cnt)1571 static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt)
1572 {
1573 rcd->seq_cnt = cnt;
1574 }
1575
1576 /**
1577 * last_rcv_seq - is last
1578 * @rcd: the receive context
1579 * @seq: sequence
1580 *
1581 * return true if last packet
1582 */
last_rcv_seq(struct hfi1_ctxtdata * rcd,u32 seq)1583 static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq)
1584 {
1585 return seq != rcd->seq_cnt;
1586 }
1587
1588 /**
1589 * rcd_seq_incr - increment context sequence number
1590 * @rcd: the receive context
1591 * @seq: the current sequence number
1592 *
1593 * Returns: true if the this was the last packet
1594 */
hfi1_seq_incr(struct hfi1_ctxtdata * rcd,u32 seq)1595 static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq)
1596 {
1597 rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt);
1598 return last_rcv_seq(rcd, seq);
1599 }
1600
1601 /**
1602 * get_hdrqentsize - return hdrq entry size
1603 * @rcd: the receive context
1604 */
get_hdrqentsize(struct hfi1_ctxtdata * rcd)1605 static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd)
1606 {
1607 return rcd->rcvhdrqentsize;
1608 }
1609
1610 /**
1611 * get_hdrq_cnt - return hdrq count
1612 * @rcd: the receive context
1613 */
get_hdrq_cnt(struct hfi1_ctxtdata * rcd)1614 static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd)
1615 {
1616 return rcd->rcvhdrq_cnt;
1617 }
1618
1619 /**
1620 * hfi1_is_slowpath - check if this context is slow path
1621 * @rcd: the receive context
1622 */
hfi1_is_slowpath(struct hfi1_ctxtdata * rcd)1623 static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd)
1624 {
1625 return rcd->do_interrupt == rcd->slow_handler;
1626 }
1627
1628 /**
1629 * hfi1_is_fastpath - check if this context is fast path
1630 * @rcd: the receive context
1631 */
hfi1_is_fastpath(struct hfi1_ctxtdata * rcd)1632 static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd)
1633 {
1634 if (rcd->ctxt == HFI1_CTRL_CTXT)
1635 return false;
1636
1637 return rcd->do_interrupt == rcd->fast_handler;
1638 }
1639
1640 /**
1641 * hfi1_set_fast - change to the fast handler
1642 * @rcd: the receive context
1643 */
hfi1_set_fast(struct hfi1_ctxtdata * rcd)1644 static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd)
1645 {
1646 if (unlikely(!rcd))
1647 return;
1648 if (unlikely(!hfi1_is_fastpath(rcd)))
1649 rcd->do_interrupt = rcd->fast_handler;
1650 }
1651
1652 int hfi1_reset_device(int);
1653
1654 void receive_interrupt_work(struct work_struct *work);
1655
1656 /* extract service channel from header and rhf */
hfi1_9B_get_sc5(struct ib_header * hdr,u64 rhf)1657 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1658 {
1659 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1660 }
1661
1662 #define HFI1_JKEY_WIDTH 16
1663 #define HFI1_JKEY_MASK (BIT(16) - 1)
1664 #define HFI1_ADMIN_JKEY_RANGE 32
1665
1666 /*
1667 * J_KEYs are split and allocated in the following groups:
1668 * 0 - 31 - users with administrator privileges
1669 * 32 - 63 - kernel protocols using KDETH packets
1670 * 64 - 65535 - all other users using KDETH packets
1671 */
generate_jkey(kuid_t uid)1672 static inline u16 generate_jkey(kuid_t uid)
1673 {
1674 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1675
1676 if (capable(CAP_SYS_ADMIN))
1677 jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1678 else if (jkey < 64)
1679 jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1680
1681 return jkey;
1682 }
1683
1684 /*
1685 * active_egress_rate
1686 *
1687 * returns the active egress rate in units of [10^6 bits/sec]
1688 */
active_egress_rate(struct hfi1_pportdata * ppd)1689 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1690 {
1691 u16 link_speed = ppd->link_speed_active;
1692 u16 link_width = ppd->link_width_active;
1693 u32 egress_rate;
1694
1695 if (link_speed == OPA_LINK_SPEED_25G)
1696 egress_rate = 25000;
1697 else /* assume OPA_LINK_SPEED_12_5G */
1698 egress_rate = 12500;
1699
1700 switch (link_width) {
1701 case OPA_LINK_WIDTH_4X:
1702 egress_rate *= 4;
1703 break;
1704 case OPA_LINK_WIDTH_3X:
1705 egress_rate *= 3;
1706 break;
1707 case OPA_LINK_WIDTH_2X:
1708 egress_rate *= 2;
1709 break;
1710 default:
1711 /* assume IB_WIDTH_1X */
1712 break;
1713 }
1714
1715 return egress_rate;
1716 }
1717
1718 /*
1719 * egress_cycles
1720 *
1721 * Returns the number of 'fabric clock cycles' to egress a packet
1722 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1723 * rate is (approximately) 805 MHz, the units of the returned value
1724 * are (1/805 MHz).
1725 */
egress_cycles(u32 len,u32 rate)1726 static inline u32 egress_cycles(u32 len, u32 rate)
1727 {
1728 u32 cycles;
1729
1730 /*
1731 * cycles is:
1732 *
1733 * (length) [bits] / (rate) [bits/sec]
1734 * ---------------------------------------------------
1735 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1736 */
1737
1738 cycles = len * 8; /* bits */
1739 cycles *= 805;
1740 cycles /= rate;
1741
1742 return cycles;
1743 }
1744
1745 void set_link_ipg(struct hfi1_pportdata *ppd);
1746 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1747 u32 rqpn, u8 svc_type);
1748 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1749 u16 pkey, u32 slid, u32 dlid, u8 sc5,
1750 const struct ib_grh *old_grh);
1751 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1752 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1753 u8 sc5, const struct ib_grh *old_grh);
1754 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1755 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1756 u8 sc5, const struct ib_grh *old_grh);
1757
1758 #define PKEY_CHECK_INVALID -1
1759 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1760 u8 sc5, int8_t s_pkey_index);
1761
1762 #define PACKET_EGRESS_TIMEOUT 350
pause_for_credit_return(struct hfi1_devdata * dd)1763 static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1764 {
1765 /* Pause at least 1us, to ensure chip returns all credits */
1766 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1767
1768 udelay(usec ? usec : 1);
1769 }
1770
1771 /**
1772 * sc_to_vlt() reverse lookup sc to vl
1773 * @dd - devdata
1774 * @sc5 - 5 bit sc
1775 */
sc_to_vlt(struct hfi1_devdata * dd,u8 sc5)1776 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1777 {
1778 unsigned seq;
1779 u8 rval;
1780
1781 if (sc5 >= OPA_MAX_SCS)
1782 return (u8)(0xff);
1783
1784 do {
1785 seq = read_seqbegin(&dd->sc2vl_lock);
1786 rval = *(((u8 *)dd->sc2vl) + sc5);
1787 } while (read_seqretry(&dd->sc2vl_lock, seq));
1788
1789 return rval;
1790 }
1791
1792 #define PKEY_MEMBER_MASK 0x8000
1793 #define PKEY_LOW_15_MASK 0x7fff
1794
1795 /*
1796 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1797 * being an entry from the ingress partition key table), return 0
1798 * otherwise. Use the matching criteria for ingress partition keys
1799 * specified in the OPAv1 spec., section 9.10.14.
1800 */
ingress_pkey_matches_entry(u16 pkey,u16 ent)1801 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1802 {
1803 u16 mkey = pkey & PKEY_LOW_15_MASK;
1804 u16 ment = ent & PKEY_LOW_15_MASK;
1805
1806 if (mkey == ment) {
1807 /*
1808 * If pkey[15] is clear (limited partition member),
1809 * is bit 15 in the corresponding table element
1810 * clear (limited member)?
1811 */
1812 if (!(pkey & PKEY_MEMBER_MASK))
1813 return !!(ent & PKEY_MEMBER_MASK);
1814 return 1;
1815 }
1816 return 0;
1817 }
1818
1819 /*
1820 * ingress_pkey_table_search - search the entire pkey table for
1821 * an entry which matches 'pkey'. return 0 if a match is found,
1822 * and 1 otherwise.
1823 */
ingress_pkey_table_search(struct hfi1_pportdata * ppd,u16 pkey)1824 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1825 {
1826 int i;
1827
1828 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1829 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1830 return 0;
1831 }
1832 return 1;
1833 }
1834
1835 /*
1836 * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1837 * i.e., increment port_rcv_constraint_errors for the port, and record
1838 * the 'error info' for this failure.
1839 */
ingress_pkey_table_fail(struct hfi1_pportdata * ppd,u16 pkey,u32 slid)1840 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1841 u32 slid)
1842 {
1843 struct hfi1_devdata *dd = ppd->dd;
1844
1845 incr_cntr64(&ppd->port_rcv_constraint_errors);
1846 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1847 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1848 dd->err_info_rcv_constraint.slid = slid;
1849 dd->err_info_rcv_constraint.pkey = pkey;
1850 }
1851 }
1852
1853 /*
1854 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1855 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1856 * is a hint as to the best place in the partition key table to begin
1857 * searching. This function should not be called on the data path because
1858 * of performance reasons. On datapath pkey check is expected to be done
1859 * by HW and rcv_pkey_check function should be called instead.
1860 */
ingress_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u8 idx,u32 slid,bool force)1861 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1862 u8 sc5, u8 idx, u32 slid, bool force)
1863 {
1864 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1865 return 0;
1866
1867 /* If SC15, pkey[0:14] must be 0x7fff */
1868 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1869 goto bad;
1870
1871 /* Is the pkey = 0x0, or 0x8000? */
1872 if ((pkey & PKEY_LOW_15_MASK) == 0)
1873 goto bad;
1874
1875 /* The most likely matching pkey has index 'idx' */
1876 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1877 return 0;
1878
1879 /* no match - try the whole table */
1880 if (!ingress_pkey_table_search(ppd, pkey))
1881 return 0;
1882
1883 bad:
1884 ingress_pkey_table_fail(ppd, pkey, slid);
1885 return 1;
1886 }
1887
1888 /*
1889 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1890 * otherwise. It only ensures pkey is vlid for QP0. This function
1891 * should be called on the data path instead of ingress_pkey_check
1892 * as on data path, pkey check is done by HW (except for QP0).
1893 */
rcv_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u16 slid)1894 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1895 u8 sc5, u16 slid)
1896 {
1897 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1898 return 0;
1899
1900 /* If SC15, pkey[0:14] must be 0x7fff */
1901 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1902 goto bad;
1903
1904 return 0;
1905 bad:
1906 ingress_pkey_table_fail(ppd, pkey, slid);
1907 return 1;
1908 }
1909
1910 /* MTU handling */
1911
1912 /* MTU enumeration, 256-4k match IB */
1913 #define OPA_MTU_0 0
1914 #define OPA_MTU_256 1
1915 #define OPA_MTU_512 2
1916 #define OPA_MTU_1024 3
1917 #define OPA_MTU_2048 4
1918 #define OPA_MTU_4096 5
1919
1920 u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1921 int mtu_to_enum(u32 mtu, int default_if_bad);
1922 u16 enum_to_mtu(int mtu);
valid_ib_mtu(unsigned int mtu)1923 static inline int valid_ib_mtu(unsigned int mtu)
1924 {
1925 return mtu == 256 || mtu == 512 ||
1926 mtu == 1024 || mtu == 2048 ||
1927 mtu == 4096;
1928 }
1929
valid_opa_max_mtu(unsigned int mtu)1930 static inline int valid_opa_max_mtu(unsigned int mtu)
1931 {
1932 return mtu >= 2048 &&
1933 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1934 }
1935
1936 int set_mtu(struct hfi1_pportdata *ppd);
1937
1938 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1939 void hfi1_disable_after_error(struct hfi1_devdata *dd);
1940 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1941 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1942
1943 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1944 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1945
1946 void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1947 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1948 void reset_link_credits(struct hfi1_devdata *dd);
1949 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1950
1951 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1952
dd_from_ppd(struct hfi1_pportdata * ppd)1953 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1954 {
1955 return ppd->dd;
1956 }
1957
dd_from_dev(struct hfi1_ibdev * dev)1958 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1959 {
1960 return container_of(dev, struct hfi1_devdata, verbs_dev);
1961 }
1962
dd_from_ibdev(struct ib_device * ibdev)1963 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1964 {
1965 return dd_from_dev(to_idev(ibdev));
1966 }
1967
ppd_from_ibp(struct hfi1_ibport * ibp)1968 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1969 {
1970 return container_of(ibp, struct hfi1_pportdata, ibport_data);
1971 }
1972
dev_from_rdi(struct rvt_dev_info * rdi)1973 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1974 {
1975 return container_of(rdi, struct hfi1_ibdev, rdi);
1976 }
1977
to_iport(struct ib_device * ibdev,u8 port)1978 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
1979 {
1980 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1981 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
1982
1983 WARN_ON(pidx >= dd->num_pports);
1984 return &dd->pport[pidx].ibport_data;
1985 }
1986
rcd_to_iport(struct hfi1_ctxtdata * rcd)1987 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1988 {
1989 return &rcd->ppd->ibport_data;
1990 }
1991
1992 /**
1993 * hfi1_may_ecn - Check whether FECN or BECN processing should be done
1994 * @pkt: the packet to be evaluated
1995 *
1996 * Check whether the FECN or BECN bits in the packet's header are
1997 * enabled, depending on packet type.
1998 *
1999 * This function only checks for FECN and BECN bits. Additional checks
2000 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to
2001 * ensure correct handling.
2002 */
hfi1_may_ecn(struct hfi1_packet * pkt)2003 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt)
2004 {
2005 bool fecn, becn;
2006
2007 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
2008 fecn = hfi1_16B_get_fecn(pkt->hdr);
2009 becn = hfi1_16B_get_becn(pkt->hdr);
2010 } else {
2011 fecn = ib_bth_get_fecn(pkt->ohdr);
2012 becn = ib_bth_get_becn(pkt->ohdr);
2013 }
2014 return fecn || becn;
2015 }
2016
2017 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
2018 bool prescan);
process_ecn(struct rvt_qp * qp,struct hfi1_packet * pkt)2019 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt)
2020 {
2021 bool do_work;
2022
2023 do_work = hfi1_may_ecn(pkt);
2024 if (unlikely(do_work))
2025 return hfi1_process_ecn_slowpath(qp, pkt, false);
2026 return false;
2027 }
2028
2029 /*
2030 * Return the indexed PKEY from the port PKEY table.
2031 */
hfi1_get_pkey(struct hfi1_ibport * ibp,unsigned index)2032 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
2033 {
2034 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2035 u16 ret;
2036
2037 if (index >= ARRAY_SIZE(ppd->pkeys))
2038 ret = 0;
2039 else
2040 ret = ppd->pkeys[index];
2041
2042 return ret;
2043 }
2044
2045 /*
2046 * Return the indexed GUID from the port GUIDs table.
2047 */
get_sguid(struct hfi1_ibport * ibp,unsigned int index)2048 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
2049 {
2050 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2051
2052 WARN_ON(index >= HFI1_GUIDS_PER_PORT);
2053 return cpu_to_be64(ppd->guids[index]);
2054 }
2055
2056 /*
2057 * Called by readers of cc_state only, must call under rcu_read_lock().
2058 */
get_cc_state(struct hfi1_pportdata * ppd)2059 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
2060 {
2061 return rcu_dereference(ppd->cc_state);
2062 }
2063
2064 /*
2065 * Called by writers of cc_state only, must call under cc_state_lock.
2066 */
2067 static inline
get_cc_state_protected(struct hfi1_pportdata * ppd)2068 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
2069 {
2070 return rcu_dereference_protected(ppd->cc_state,
2071 lockdep_is_held(&ppd->cc_state_lock));
2072 }
2073
2074 /*
2075 * values for dd->flags (_device_ related flags)
2076 */
2077 #define HFI1_INITTED 0x1 /* chip and driver up and initted */
2078 #define HFI1_PRESENT 0x2 /* chip accesses can be done */
2079 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */
2080 #define HFI1_HAS_SDMA_TIMEOUT 0x8
2081 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */
2082 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */
2083 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */
2084
2085 /* IB dword length mask in PBC (lower 11 bits); same for all chips */
2086 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1)
2087
2088 /* ctxt_flag bit offsets */
2089 /* base context has not finished initializing */
2090 #define HFI1_CTXT_BASE_UNINIT 1
2091 /* base context initaliation failed */
2092 #define HFI1_CTXT_BASE_FAILED 2
2093 /* waiting for a packet to arrive */
2094 #define HFI1_CTXT_WAITING_RCV 3
2095 /* waiting for an urgent packet to arrive */
2096 #define HFI1_CTXT_WAITING_URG 4
2097
2098 /* free up any allocated data at closes */
2099 int hfi1_init_dd(struct hfi1_devdata *dd);
2100 void hfi1_free_devdata(struct hfi1_devdata *dd);
2101
2102 /* LED beaconing functions */
2103 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
2104 unsigned int timeoff);
2105 void shutdown_led_override(struct hfi1_pportdata *ppd);
2106
2107 #define HFI1_CREDIT_RETURN_RATE (100)
2108
2109 /*
2110 * The number of words for the KDETH protocol field. If this is
2111 * larger then the actual field used, then part of the payload
2112 * will be in the header.
2113 *
2114 * Optimally, we want this sized so that a typical case will
2115 * use full cache lines. The typical local KDETH header would
2116 * be:
2117 *
2118 * Bytes Field
2119 * 8 LRH
2120 * 12 BHT
2121 * ?? KDETH
2122 * 8 RHF
2123 * ---
2124 * 28 + KDETH
2125 *
2126 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
2127 */
2128 #define DEFAULT_RCVHDRSIZE 9
2129
2130 /*
2131 * Maximal header byte count:
2132 *
2133 * Bytes Field
2134 * 8 LRH
2135 * 40 GRH (optional)
2136 * 12 BTH
2137 * ?? KDETH
2138 * 8 RHF
2139 * ---
2140 * 68 + KDETH
2141 *
2142 * We also want to maintain a cache line alignment to assist DMA'ing
2143 * of the header bytes. Round up to a good size.
2144 */
2145 #define DEFAULT_RCVHDR_ENTSIZE 32
2146
2147 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
2148 u32 nlocked, u32 npages);
2149 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
2150 size_t npages, bool writable, struct page **pages);
2151 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
2152 size_t npages, bool dirty);
2153
2154 /**
2155 * hfi1_rcvhdrtail_kvaddr - return tail kvaddr
2156 * @rcd - the receive context
2157 */
hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata * rcd)2158 static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd)
2159 {
2160 return (__le64 *)rcd->rcvhdrtail_kvaddr;
2161 }
2162
clear_rcvhdrtail(const struct hfi1_ctxtdata * rcd)2163 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2164 {
2165 u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd);
2166
2167 if (kv)
2168 *kv = 0ULL;
2169 }
2170
get_rcvhdrtail(const struct hfi1_ctxtdata * rcd)2171 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2172 {
2173 /*
2174 * volatile because it's a DMA target from the chip, routine is
2175 * inlined, and don't want register caching or reordering.
2176 */
2177 return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd));
2178 }
2179
hfi1_packet_present(struct hfi1_ctxtdata * rcd)2180 static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd)
2181 {
2182 if (likely(!rcd->rcvhdrtail_kvaddr)) {
2183 u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)));
2184
2185 return !last_rcv_seq(rcd, seq);
2186 }
2187 return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd);
2188 }
2189
2190 /*
2191 * sysfs interface.
2192 */
2193
2194 extern const char ib_hfi1_version[];
2195 extern const struct attribute_group ib_hfi1_attr_group;
2196
2197 int hfi1_device_create(struct hfi1_devdata *dd);
2198 void hfi1_device_remove(struct hfi1_devdata *dd);
2199
2200 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
2201 struct kobject *kobj);
2202 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
2203 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
2204 /* Hook for sysfs read of QSFP */
2205 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
2206
2207 int hfi1_pcie_init(struct hfi1_devdata *dd);
2208 void hfi1_pcie_cleanup(struct pci_dev *pdev);
2209 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
2210 void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
2211 int pcie_speeds(struct hfi1_devdata *dd);
2212 int restore_pci_variables(struct hfi1_devdata *dd);
2213 int save_pci_variables(struct hfi1_devdata *dd);
2214 int do_pcie_gen3_transition(struct hfi1_devdata *dd);
2215 void tune_pcie_caps(struct hfi1_devdata *dd);
2216 int parse_platform_config(struct hfi1_devdata *dd);
2217 int get_platform_config_field(struct hfi1_devdata *dd,
2218 enum platform_config_table_type_encoding
2219 table_type, int table_index, int field_index,
2220 u32 *data, u32 len);
2221
2222 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
2223
2224 /*
2225 * Flush write combining store buffers (if present) and perform a write
2226 * barrier.
2227 */
flush_wc(void)2228 static inline void flush_wc(void)
2229 {
2230 asm volatile("sfence" : : : "memory");
2231 }
2232
2233 void handle_eflags(struct hfi1_packet *packet);
2234 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
2235
2236 /* global module parameter variables */
2237 extern unsigned int hfi1_max_mtu;
2238 extern unsigned int hfi1_cu;
2239 extern unsigned int user_credit_return_threshold;
2240 extern int num_user_contexts;
2241 extern unsigned long n_krcvqs;
2242 extern uint krcvqs[];
2243 extern int krcvqsset;
2244 extern uint loopback;
2245 extern uint quick_linkup;
2246 extern uint rcv_intr_timeout;
2247 extern uint rcv_intr_count;
2248 extern uint rcv_intr_dynamic;
2249 extern ushort link_crc_mask;
2250
2251 extern struct mutex hfi1_mutex;
2252
2253 /* Number of seconds before our card status check... */
2254 #define STATUS_TIMEOUT 60
2255
2256 #define DRIVER_NAME "hfi1"
2257 #define HFI1_USER_MINOR_BASE 0
2258 #define HFI1_TRACE_MINOR 127
2259 #define HFI1_NMINORS 255
2260
2261 #define PCI_VENDOR_ID_INTEL 0x8086
2262 #define PCI_DEVICE_ID_INTEL0 0x24f0
2263 #define PCI_DEVICE_ID_INTEL1 0x24f1
2264
2265 #define HFI1_PKT_USER_SC_INTEGRITY \
2266 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \
2267 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \
2268 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \
2269 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2270
2271 #define HFI1_PKT_KERNEL_SC_INTEGRITY \
2272 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2273
hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata * dd,u16 ctxt_type)2274 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2275 u16 ctxt_type)
2276 {
2277 u64 base_sc_integrity;
2278
2279 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2280 if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2281 return 0;
2282
2283 base_sc_integrity =
2284 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2285 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2286 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2287 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2288 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2289 #ifndef CONFIG_FAULT_INJECTION
2290 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2291 #endif
2292 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2293 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2294 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2295 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2296 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2297 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2298 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2299 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2300 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2301 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2302
2303 if (ctxt_type == SC_USER)
2304 base_sc_integrity |=
2305 #ifndef CONFIG_FAULT_INJECTION
2306 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK |
2307 #endif
2308 HFI1_PKT_USER_SC_INTEGRITY;
2309 else if (ctxt_type != SC_KERNEL)
2310 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2311
2312 /* turn on send-side job key checks if !A0 */
2313 if (!is_ax(dd))
2314 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2315
2316 return base_sc_integrity;
2317 }
2318
hfi1_pkt_base_sdma_integrity(struct hfi1_devdata * dd)2319 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2320 {
2321 u64 base_sdma_integrity;
2322
2323 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2324 if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2325 return 0;
2326
2327 base_sdma_integrity =
2328 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2329 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2330 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2331 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2332 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2333 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2334 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2335 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2336 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2337 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2338 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2339 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2340 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2341 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2342
2343 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2344 base_sdma_integrity |=
2345 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2346
2347 /* turn on send-side job key checks if !A0 */
2348 if (!is_ax(dd))
2349 base_sdma_integrity |=
2350 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2351
2352 return base_sdma_integrity;
2353 }
2354
2355 #define dd_dev_emerg(dd, fmt, ...) \
2356 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2357 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2358
2359 #define dd_dev_err(dd, fmt, ...) \
2360 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2361 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2362
2363 #define dd_dev_err_ratelimited(dd, fmt, ...) \
2364 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2365 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2366 ##__VA_ARGS__)
2367
2368 #define dd_dev_warn(dd, fmt, ...) \
2369 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2370 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2371
2372 #define dd_dev_warn_ratelimited(dd, fmt, ...) \
2373 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2374 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2375 ##__VA_ARGS__)
2376
2377 #define dd_dev_info(dd, fmt, ...) \
2378 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2379 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2380
2381 #define dd_dev_info_ratelimited(dd, fmt, ...) \
2382 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2383 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2384 ##__VA_ARGS__)
2385
2386 #define dd_dev_dbg(dd, fmt, ...) \
2387 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2388 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2389
2390 #define hfi1_dev_porterr(dd, port, fmt, ...) \
2391 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2392 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__)
2393
2394 /*
2395 * this is used for formatting hw error messages...
2396 */
2397 struct hfi1_hwerror_msgs {
2398 u64 mask;
2399 const char *msg;
2400 size_t sz;
2401 };
2402
2403 /* in intr.c... */
2404 void hfi1_format_hwerrors(u64 hwerrs,
2405 const struct hfi1_hwerror_msgs *hwerrmsgs,
2406 size_t nhwerrmsgs, char *msg, size_t lmsg);
2407
2408 #define USER_OPCODE_CHECK_VAL 0xC0
2409 #define USER_OPCODE_CHECK_MASK 0xC0
2410 #define OPCODE_CHECK_VAL_DISABLED 0x0
2411 #define OPCODE_CHECK_MASK_DISABLED 0x0
2412
hfi1_reset_cpu_counters(struct hfi1_devdata * dd)2413 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2414 {
2415 struct hfi1_pportdata *ppd;
2416 int i;
2417
2418 dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2419 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2420 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2421
2422 ppd = (struct hfi1_pportdata *)(dd + 1);
2423 for (i = 0; i < dd->num_pports; i++, ppd++) {
2424 ppd->ibport_data.rvp.z_rc_acks =
2425 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2426 ppd->ibport_data.rvp.z_rc_qacks =
2427 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2428 }
2429 }
2430
2431 /* Control LED state */
setextled(struct hfi1_devdata * dd,u32 on)2432 static inline void setextled(struct hfi1_devdata *dd, u32 on)
2433 {
2434 if (on)
2435 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2436 else
2437 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2438 }
2439
2440 /* return the i2c resource given the target */
i2c_target(u32 target)2441 static inline u32 i2c_target(u32 target)
2442 {
2443 return target ? CR_I2C2 : CR_I2C1;
2444 }
2445
2446 /* return the i2c chain chip resource that this HFI uses for QSFP */
qsfp_resource(struct hfi1_devdata * dd)2447 static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2448 {
2449 return i2c_target(dd->hfi1_id);
2450 }
2451
2452 /* Is this device integrated or discrete? */
is_integrated(struct hfi1_devdata * dd)2453 static inline bool is_integrated(struct hfi1_devdata *dd)
2454 {
2455 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2456 }
2457
2458 /**
2459 * hfi1_need_drop - detect need for drop
2460 * @dd: - the device
2461 *
2462 * In some cases, the first packet needs to be dropped.
2463 *
2464 * Return true is the current packet needs to be dropped and false otherwise.
2465 */
hfi1_need_drop(struct hfi1_devdata * dd)2466 static inline bool hfi1_need_drop(struct hfi1_devdata *dd)
2467 {
2468 if (unlikely(dd->do_drop &&
2469 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
2470 DROP_PACKET_ON)) {
2471 dd->do_drop = false;
2472 return true;
2473 }
2474 return false;
2475 }
2476
2477 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2478
2479 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev))
2480 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2481
hfi1_update_ah_attr(struct ib_device * ibdev,struct rdma_ah_attr * attr)2482 static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2483 struct rdma_ah_attr *attr)
2484 {
2485 struct hfi1_pportdata *ppd;
2486 struct hfi1_ibport *ibp;
2487 u32 dlid = rdma_ah_get_dlid(attr);
2488
2489 /*
2490 * Kernel clients may not have setup GRH information
2491 * Set that here.
2492 */
2493 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2494 ppd = ppd_from_ibp(ibp);
2495 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2496 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2497 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2498 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2499 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2500 (rdma_ah_get_make_grd(attr))) {
2501 rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2502 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2503 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2504 }
2505 }
2506
2507 /*
2508 * hfi1_check_mcast- Check if the given lid is
2509 * in the OPA multicast range.
2510 *
2511 * The LID might either reside in ah.dlid or might be
2512 * in the GRH of the address handle as DGID if extended
2513 * addresses are in use.
2514 */
hfi1_check_mcast(u32 lid)2515 static inline bool hfi1_check_mcast(u32 lid)
2516 {
2517 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2518 (lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2519 }
2520
2521 #define opa_get_lid(lid, format) \
2522 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2523
2524 /* Convert a lid to a specific lid space */
__opa_get_lid(u32 lid,u8 format)2525 static inline u32 __opa_get_lid(u32 lid, u8 format)
2526 {
2527 bool is_mcast = hfi1_check_mcast(lid);
2528
2529 switch (format) {
2530 case OPA_PORT_PACKET_FORMAT_8B:
2531 case OPA_PORT_PACKET_FORMAT_10B:
2532 if (is_mcast)
2533 return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2534 0xF0000);
2535 return lid & 0xFFFFF;
2536 case OPA_PORT_PACKET_FORMAT_16B:
2537 if (is_mcast)
2538 return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2539 0xF00000);
2540 return lid & 0xFFFFFF;
2541 case OPA_PORT_PACKET_FORMAT_9B:
2542 if (is_mcast)
2543 return (lid -
2544 opa_get_mcast_base(OPA_MCAST_NR) +
2545 be16_to_cpu(IB_MULTICAST_LID_BASE));
2546 else
2547 return lid & 0xFFFF;
2548 default:
2549 return lid;
2550 }
2551 }
2552
2553 /* Return true if the given lid is the OPA 16B multicast range */
hfi1_is_16B_mcast(u32 lid)2554 static inline bool hfi1_is_16B_mcast(u32 lid)
2555 {
2556 return ((lid >=
2557 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2558 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2559 }
2560
hfi1_make_opa_lid(struct rdma_ah_attr * attr)2561 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2562 {
2563 const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2564 u32 dlid = rdma_ah_get_dlid(attr);
2565
2566 /* Modify ah_attr.dlid to be in the 32 bit LID space.
2567 * This is how the address will be laid out:
2568 * Assuming MCAST_NR to be 4,
2569 * 32 bit permissive LID = 0xFFFFFFFF
2570 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2571 * Unicast LID range = 0xEFFFFFFF to 1
2572 * Invalid LID = 0
2573 */
2574 if (ib_is_opa_gid(&grh->dgid))
2575 dlid = opa_get_lid_from_gid(&grh->dgid);
2576 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2577 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2578 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2579 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2580 opa_get_mcast_base(OPA_MCAST_NR);
2581 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2582 dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2583
2584 rdma_ah_set_dlid(attr, dlid);
2585 }
2586
hfi1_get_packet_type(u32 lid)2587 static inline u8 hfi1_get_packet_type(u32 lid)
2588 {
2589 /* 9B if lid > 0xF0000000 */
2590 if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2591 return HFI1_PKT_TYPE_9B;
2592
2593 /* 16B if lid > 0xC000 */
2594 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2595 return HFI1_PKT_TYPE_16B;
2596
2597 return HFI1_PKT_TYPE_9B;
2598 }
2599
hfi1_get_hdr_type(u32 lid,struct rdma_ah_attr * attr)2600 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2601 {
2602 /*
2603 * If there was an incoming 16B packet with permissive
2604 * LIDs, OPA GIDs would have been programmed when those
2605 * packets were received. A 16B packet will have to
2606 * be sent in response to that packet. Return a 16B
2607 * header type if that's the case.
2608 */
2609 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2610 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2611 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2612
2613 /*
2614 * Return a 16B header type if either the the destination
2615 * or source lid is extended.
2616 */
2617 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2618 return HFI1_PKT_TYPE_16B;
2619
2620 return hfi1_get_packet_type(lid);
2621 }
2622
hfi1_make_ext_grh(struct hfi1_packet * packet,struct ib_grh * grh,u32 slid,u32 dlid)2623 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2624 struct ib_grh *grh, u32 slid,
2625 u32 dlid)
2626 {
2627 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2628 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2629
2630 if (!ibp)
2631 return;
2632
2633 grh->hop_limit = 1;
2634 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2635 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2636 grh->sgid.global.interface_id =
2637 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2638 else
2639 grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2640
2641 /*
2642 * Upper layers (like mad) may compare the dgid in the
2643 * wc that is obtained here with the sgid_index in
2644 * the wr. Since sgid_index in wr is always 0 for
2645 * extended lids, set the dgid here to the default
2646 * IB gid.
2647 */
2648 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2649 grh->dgid.global.interface_id =
2650 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2651 }
2652
hfi1_get_16b_padding(u32 hdr_size,u32 payload)2653 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2654 {
2655 return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2656 SIZE_OF_LT) & 0x7;
2657 }
2658
hfi1_make_ib_hdr(struct ib_header * hdr,u16 lrh0,u16 len,u16 dlid,u16 slid)2659 static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2660 u16 lrh0, u16 len,
2661 u16 dlid, u16 slid)
2662 {
2663 hdr->lrh[0] = cpu_to_be16(lrh0);
2664 hdr->lrh[1] = cpu_to_be16(dlid);
2665 hdr->lrh[2] = cpu_to_be16(len);
2666 hdr->lrh[3] = cpu_to_be16(slid);
2667 }
2668
hfi1_make_16b_hdr(struct hfi1_16b_header * hdr,u32 slid,u32 dlid,u16 len,u16 pkey,bool becn,bool fecn,u8 l4,u8 sc)2669 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2670 u32 slid, u32 dlid,
2671 u16 len, u16 pkey,
2672 bool becn, bool fecn, u8 l4,
2673 u8 sc)
2674 {
2675 u32 lrh0 = 0;
2676 u32 lrh1 = 0x40000000;
2677 u32 lrh2 = 0;
2678 u32 lrh3 = 0;
2679
2680 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2681 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2682 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK);
2683 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2684 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2685 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2686 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2687 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2688 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2689 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2690 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
2691 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2692
2693 hdr->lrh[0] = lrh0;
2694 hdr->lrh[1] = lrh1;
2695 hdr->lrh[2] = lrh2;
2696 hdr->lrh[3] = lrh3;
2697 }
2698 #endif /* _HFI1_KERNEL_H */
2699