1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright 2003 PathScale, Inc.
7 */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/mmu_context.h>
29 #include <linux/uaccess.h>
30 #include <as-layout.h>
31 #include <kern_util.h>
32 #include <os.h>
33 #include <skas.h>
34 #include <linux/time-internal.h>
35
36 /*
37 * This is a per-cpu array. A processor only modifies its entry and it only
38 * cares about its entry, so it's OK if another processor is modifying its
39 * entry.
40 */
41 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
42
external_pid(void)43 static inline int external_pid(void)
44 {
45 /* FIXME: Need to look up userspace_pid by cpu */
46 return userspace_pid[0];
47 }
48
pid_to_processor_id(int pid)49 int pid_to_processor_id(int pid)
50 {
51 int i;
52
53 for (i = 0; i < ncpus; i++) {
54 if (cpu_tasks[i].pid == pid)
55 return i;
56 }
57 return -1;
58 }
59
free_stack(unsigned long stack,int order)60 void free_stack(unsigned long stack, int order)
61 {
62 free_pages(stack, order);
63 }
64
alloc_stack(int order,int atomic)65 unsigned long alloc_stack(int order, int atomic)
66 {
67 unsigned long page;
68 gfp_t flags = GFP_KERNEL;
69
70 if (atomic)
71 flags = GFP_ATOMIC;
72 page = __get_free_pages(flags, order);
73
74 return page;
75 }
76
set_current(struct task_struct * task)77 static inline void set_current(struct task_struct *task)
78 {
79 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
80 { external_pid(), task });
81 }
82
83 extern void arch_switch_to(struct task_struct *to);
84
__switch_to(struct task_struct * from,struct task_struct * to)85 void *__switch_to(struct task_struct *from, struct task_struct *to)
86 {
87 to->thread.prev_sched = from;
88 set_current(to);
89
90 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
91 arch_switch_to(current);
92
93 return current->thread.prev_sched;
94 }
95
interrupt_end(void)96 void interrupt_end(void)
97 {
98 struct pt_regs *regs = ¤t->thread.regs;
99
100 if (need_resched())
101 schedule();
102 if (test_thread_flag(TIF_SIGPENDING))
103 do_signal(regs);
104 if (test_thread_flag(TIF_NOTIFY_RESUME))
105 tracehook_notify_resume(regs);
106 }
107
get_current_pid(void)108 int get_current_pid(void)
109 {
110 return task_pid_nr(current);
111 }
112
113 /*
114 * This is called magically, by its address being stuffed in a jmp_buf
115 * and being longjmp-d to.
116 */
new_thread_handler(void)117 void new_thread_handler(void)
118 {
119 int (*fn)(void *), n;
120 void *arg;
121
122 if (current->thread.prev_sched != NULL)
123 schedule_tail(current->thread.prev_sched);
124 current->thread.prev_sched = NULL;
125
126 fn = current->thread.request.u.thread.proc;
127 arg = current->thread.request.u.thread.arg;
128
129 /*
130 * callback returns only if the kernel thread execs a process
131 */
132 n = fn(arg);
133 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
134 }
135
136 /* Called magically, see new_thread_handler above */
fork_handler(void)137 void fork_handler(void)
138 {
139 force_flush_all();
140
141 schedule_tail(current->thread.prev_sched);
142
143 /*
144 * XXX: if interrupt_end() calls schedule, this call to
145 * arch_switch_to isn't needed. We could want to apply this to
146 * improve performance. -bb
147 */
148 arch_switch_to(current);
149
150 current->thread.prev_sched = NULL;
151
152 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
153 }
154
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)155 int copy_thread(unsigned long clone_flags, unsigned long sp,
156 unsigned long arg, struct task_struct * p, unsigned long tls)
157 {
158 void (*handler)(void);
159 int kthread = current->flags & PF_KTHREAD;
160 int ret = 0;
161
162 p->thread = (struct thread_struct) INIT_THREAD;
163
164 if (!kthread) {
165 memcpy(&p->thread.regs.regs, current_pt_regs(),
166 sizeof(p->thread.regs.regs));
167 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
168 if (sp != 0)
169 REGS_SP(p->thread.regs.regs.gp) = sp;
170
171 handler = fork_handler;
172
173 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
174 } else {
175 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
176 p->thread.request.u.thread.proc = (int (*)(void *))sp;
177 p->thread.request.u.thread.arg = (void *)arg;
178 handler = new_thread_handler;
179 }
180
181 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
182
183 if (!kthread) {
184 clear_flushed_tls(p);
185
186 /*
187 * Set a new TLS for the child thread?
188 */
189 if (clone_flags & CLONE_SETTLS)
190 ret = arch_set_tls(p, tls);
191 }
192
193 return ret;
194 }
195
initial_thread_cb(void (* proc)(void *),void * arg)196 void initial_thread_cb(void (*proc)(void *), void *arg)
197 {
198 int save_kmalloc_ok = kmalloc_ok;
199
200 kmalloc_ok = 0;
201 initial_thread_cb_skas(proc, arg);
202 kmalloc_ok = save_kmalloc_ok;
203 }
204
um_idle_sleep(void)205 static void um_idle_sleep(void)
206 {
207 unsigned long long duration = UM_NSEC_PER_SEC;
208
209 if (time_travel_mode != TT_MODE_OFF) {
210 time_travel_sleep(duration);
211 } else {
212 os_idle_sleep(duration);
213 }
214 }
215
arch_cpu_idle(void)216 void arch_cpu_idle(void)
217 {
218 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
219 um_idle_sleep();
220 raw_local_irq_enable();
221 }
222
__cant_sleep(void)223 int __cant_sleep(void) {
224 return in_atomic() || irqs_disabled() || in_interrupt();
225 /* Is in_interrupt() really needed? */
226 }
227
user_context(unsigned long sp)228 int user_context(unsigned long sp)
229 {
230 unsigned long stack;
231
232 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
233 return stack != (unsigned long) current_thread_info();
234 }
235
236 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
237
do_uml_exitcalls(void)238 void do_uml_exitcalls(void)
239 {
240 exitcall_t *call;
241
242 call = &__uml_exitcall_end;
243 while (--call >= &__uml_exitcall_begin)
244 (*call)();
245 }
246
uml_strdup(const char * string)247 char *uml_strdup(const char *string)
248 {
249 return kstrdup(string, GFP_KERNEL);
250 }
251 EXPORT_SYMBOL(uml_strdup);
252
copy_to_user_proc(void __user * to,void * from,int size)253 int copy_to_user_proc(void __user *to, void *from, int size)
254 {
255 return copy_to_user(to, from, size);
256 }
257
copy_from_user_proc(void * to,void __user * from,int size)258 int copy_from_user_proc(void *to, void __user *from, int size)
259 {
260 return copy_from_user(to, from, size);
261 }
262
clear_user_proc(void __user * buf,int size)263 int clear_user_proc(void __user *buf, int size)
264 {
265 return clear_user(buf, size);
266 }
267
cpu(void)268 int cpu(void)
269 {
270 return current_thread_info()->cpu;
271 }
272
273 static atomic_t using_sysemu = ATOMIC_INIT(0);
274 int sysemu_supported;
275
set_using_sysemu(int value)276 void set_using_sysemu(int value)
277 {
278 if (value > sysemu_supported)
279 return;
280 atomic_set(&using_sysemu, value);
281 }
282
get_using_sysemu(void)283 int get_using_sysemu(void)
284 {
285 return atomic_read(&using_sysemu);
286 }
287
sysemu_proc_show(struct seq_file * m,void * v)288 static int sysemu_proc_show(struct seq_file *m, void *v)
289 {
290 seq_printf(m, "%d\n", get_using_sysemu());
291 return 0;
292 }
293
sysemu_proc_open(struct inode * inode,struct file * file)294 static int sysemu_proc_open(struct inode *inode, struct file *file)
295 {
296 return single_open(file, sysemu_proc_show, NULL);
297 }
298
sysemu_proc_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)299 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
300 size_t count, loff_t *pos)
301 {
302 char tmp[2];
303
304 if (copy_from_user(tmp, buf, 1))
305 return -EFAULT;
306
307 if (tmp[0] >= '0' && tmp[0] <= '2')
308 set_using_sysemu(tmp[0] - '0');
309 /* We use the first char, but pretend to write everything */
310 return count;
311 }
312
313 static const struct proc_ops sysemu_proc_ops = {
314 .proc_open = sysemu_proc_open,
315 .proc_read = seq_read,
316 .proc_lseek = seq_lseek,
317 .proc_release = single_release,
318 .proc_write = sysemu_proc_write,
319 };
320
make_proc_sysemu(void)321 int __init make_proc_sysemu(void)
322 {
323 struct proc_dir_entry *ent;
324 if (!sysemu_supported)
325 return 0;
326
327 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
328
329 if (ent == NULL)
330 {
331 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
332 return 0;
333 }
334
335 return 0;
336 }
337
338 late_initcall(make_proc_sysemu);
339
singlestepping(void * t)340 int singlestepping(void * t)
341 {
342 struct task_struct *task = t ? t : current;
343
344 if (!(task->ptrace & PT_DTRACE))
345 return 0;
346
347 if (task->thread.singlestep_syscall)
348 return 1;
349
350 return 2;
351 }
352
353 /*
354 * Only x86 and x86_64 have an arch_align_stack().
355 * All other arches have "#define arch_align_stack(x) (x)"
356 * in their asm/exec.h
357 * As this is included in UML from asm-um/system-generic.h,
358 * we can use it to behave as the subarch does.
359 */
360 #ifndef arch_align_stack
arch_align_stack(unsigned long sp)361 unsigned long arch_align_stack(unsigned long sp)
362 {
363 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
364 sp -= get_random_int() % 8192;
365 return sp & ~0xf;
366 }
367 #endif
368
get_wchan(struct task_struct * p)369 unsigned long get_wchan(struct task_struct *p)
370 {
371 unsigned long stack_page, sp, ip;
372 bool seen_sched = 0;
373
374 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
375 return 0;
376
377 stack_page = (unsigned long) task_stack_page(p);
378 /* Bail if the process has no kernel stack for some reason */
379 if (stack_page == 0)
380 return 0;
381
382 sp = p->thread.switch_buf->JB_SP;
383 /*
384 * Bail if the stack pointer is below the bottom of the kernel
385 * stack for some reason
386 */
387 if (sp < stack_page)
388 return 0;
389
390 while (sp < stack_page + THREAD_SIZE) {
391 ip = *((unsigned long *) sp);
392 if (in_sched_functions(ip))
393 /* Ignore everything until we're above the scheduler */
394 seen_sched = 1;
395 else if (kernel_text_address(ip) && seen_sched)
396 return ip;
397
398 sp += sizeof(unsigned long);
399 }
400
401 return 0;
402 }
403
elf_core_copy_fpregs(struct task_struct * t,elf_fpregset_t * fpu)404 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
405 {
406 int cpu = current_thread_info()->cpu;
407
408 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
409 }
410
411