1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56 return kvm_arch_vcpu_runnable(vcpu);
57 }
58
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61 return false;
62 }
63
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66 return 1;
67 }
68
69 /*
70 * Common checks before entering the guest world. Call with interrupts
71 * disabled.
72 *
73 * returns:
74 *
75 * == 1 if we're ready to go into guest state
76 * <= 0 if we need to go back to the host with return value
77 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80 int r;
81
82 WARN_ON(irqs_disabled());
83 hard_irq_disable();
84
85 while (true) {
86 if (need_resched()) {
87 local_irq_enable();
88 cond_resched();
89 hard_irq_disable();
90 continue;
91 }
92
93 if (signal_pending(current)) {
94 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95 vcpu->run->exit_reason = KVM_EXIT_INTR;
96 r = -EINTR;
97 break;
98 }
99
100 vcpu->mode = IN_GUEST_MODE;
101
102 /*
103 * Reading vcpu->requests must happen after setting vcpu->mode,
104 * so we don't miss a request because the requester sees
105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106 * before next entering the guest (and thus doesn't IPI).
107 * This also orders the write to mode from any reads
108 * to the page tables done while the VCPU is running.
109 * Please see the comment in kvm_flush_remote_tlbs.
110 */
111 smp_mb();
112
113 if (kvm_request_pending(vcpu)) {
114 /* Make sure we process requests preemptable */
115 local_irq_enable();
116 trace_kvm_check_requests(vcpu);
117 r = kvmppc_core_check_requests(vcpu);
118 hard_irq_disable();
119 if (r > 0)
120 continue;
121 break;
122 }
123
124 if (kvmppc_core_prepare_to_enter(vcpu)) {
125 /* interrupts got enabled in between, so we
126 are back at square 1 */
127 continue;
128 }
129
130 guest_enter_irqoff();
131 return 1;
132 }
133
134 /* return to host */
135 local_irq_enable();
136 return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144 int i;
145
146 shared->sprg0 = swab64(shared->sprg0);
147 shared->sprg1 = swab64(shared->sprg1);
148 shared->sprg2 = swab64(shared->sprg2);
149 shared->sprg3 = swab64(shared->sprg3);
150 shared->srr0 = swab64(shared->srr0);
151 shared->srr1 = swab64(shared->srr1);
152 shared->dar = swab64(shared->dar);
153 shared->msr = swab64(shared->msr);
154 shared->dsisr = swab32(shared->dsisr);
155 shared->int_pending = swab32(shared->int_pending);
156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163 int nr = kvmppc_get_gpr(vcpu, 11);
164 int r;
165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169 unsigned long r2 = 0;
170
171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172 /* 32 bit mode */
173 param1 &= 0xffffffff;
174 param2 &= 0xffffffff;
175 param3 &= 0xffffffff;
176 param4 &= 0xffffffff;
177 }
178
179 switch (nr) {
180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181 {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183 /* Book3S can be little endian, find it out here */
184 int shared_big_endian = true;
185 if (vcpu->arch.intr_msr & MSR_LE)
186 shared_big_endian = false;
187 if (shared_big_endian != vcpu->arch.shared_big_endian)
188 kvmppc_swab_shared(vcpu);
189 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193 /*
194 * Older versions of the Linux magic page code had
195 * a bug where they would map their trampoline code
196 * NX. If that's the case, remove !PR NX capability.
197 */
198 vcpu->arch.disable_kernel_nx = true;
199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200 }
201
202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206 /*
207 * Make sure our 4k magic page is in the same window of a 64k
208 * page within the guest and within the host's page.
209 */
210 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211 ((ulong)vcpu->arch.shared & 0xf000)) {
212 void *old_shared = vcpu->arch.shared;
213 ulong shared = (ulong)vcpu->arch.shared;
214 void *new_shared;
215
216 shared &= PAGE_MASK;
217 shared |= vcpu->arch.magic_page_pa & 0xf000;
218 new_shared = (void*)shared;
219 memcpy(new_shared, old_shared, 0x1000);
220 vcpu->arch.shared = new_shared;
221 }
222 #endif
223
224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226 r = EV_SUCCESS;
227 break;
228 }
229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235 /* Second return value is in r4 */
236 break;
237 case EV_HCALL_TOKEN(EV_IDLE):
238 r = EV_SUCCESS;
239 kvm_vcpu_block(vcpu);
240 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
kvmppc_sanity_check(struct kvm_vcpu * vcpu)253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272 #endif
273
274 r = true;
275
276 out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
kvmppc_emulate_mmio(struct kvm_vcpu * vcpu)282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 u32 last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 /* XXX Deliver Program interrupt to guest. */
311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312 r = RESUME_HOST;
313 break;
314 }
315 default:
316 WARN_ON(1);
317 r = RESUME_GUEST;
318 }
319
320 return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325 bool data)
326 {
327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328 struct kvmppc_pte pte;
329 int r = -EINVAL;
330
331 vcpu->stat.st++;
332
333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335 size);
336
337 if ((!r) || (r == -EAGAIN))
338 return r;
339
340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341 XLATE_WRITE, &pte);
342 if (r < 0)
343 return r;
344
345 *eaddr = pte.raddr;
346
347 if (!pte.may_write)
348 return -EPERM;
349
350 /* Magic page override */
351 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354 void *magic = vcpu->arch.shared;
355 magic += pte.eaddr & 0xfff;
356 memcpy(magic, ptr, size);
357 return EMULATE_DONE;
358 }
359
360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361 return EMULATE_DO_MMIO;
362
363 return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368 bool data)
369 {
370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371 struct kvmppc_pte pte;
372 int rc = -EINVAL;
373
374 vcpu->stat.ld++;
375
376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378 size);
379
380 if ((!rc) || (rc == -EAGAIN))
381 return rc;
382
383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384 XLATE_READ, &pte);
385 if (rc)
386 return rc;
387
388 *eaddr = pte.raddr;
389
390 if (!pte.may_read)
391 return -EPERM;
392
393 if (!data && !pte.may_execute)
394 return -ENOEXEC;
395
396 /* Magic page override */
397 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400 void *magic = vcpu->arch.shared;
401 magic += pte.eaddr & 0xfff;
402 memcpy(ptr, magic, size);
403 return EMULATE_DONE;
404 }
405
406 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
407 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
408 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
409 if (rc)
410 return EMULATE_DO_MMIO;
411
412 return EMULATE_DONE;
413 }
414 EXPORT_SYMBOL_GPL(kvmppc_ld);
415
kvm_arch_hardware_enable(void)416 int kvm_arch_hardware_enable(void)
417 {
418 return 0;
419 }
420
kvm_arch_hardware_setup(void * opaque)421 int kvm_arch_hardware_setup(void *opaque)
422 {
423 return 0;
424 }
425
kvm_arch_check_processor_compat(void * opaque)426 int kvm_arch_check_processor_compat(void *opaque)
427 {
428 return kvmppc_core_check_processor_compat();
429 }
430
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
432 {
433 struct kvmppc_ops *kvm_ops = NULL;
434 /*
435 * if we have both HV and PR enabled, default is HV
436 */
437 if (type == 0) {
438 if (kvmppc_hv_ops)
439 kvm_ops = kvmppc_hv_ops;
440 else
441 kvm_ops = kvmppc_pr_ops;
442 if (!kvm_ops)
443 goto err_out;
444 } else if (type == KVM_VM_PPC_HV) {
445 if (!kvmppc_hv_ops)
446 goto err_out;
447 kvm_ops = kvmppc_hv_ops;
448 } else if (type == KVM_VM_PPC_PR) {
449 if (!kvmppc_pr_ops)
450 goto err_out;
451 kvm_ops = kvmppc_pr_ops;
452 } else
453 goto err_out;
454
455 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
456 return -ENOENT;
457
458 kvm->arch.kvm_ops = kvm_ops;
459 return kvmppc_core_init_vm(kvm);
460 err_out:
461 return -EINVAL;
462 }
463
kvm_arch_destroy_vm(struct kvm * kvm)464 void kvm_arch_destroy_vm(struct kvm *kvm)
465 {
466 unsigned int i;
467 struct kvm_vcpu *vcpu;
468
469 #ifdef CONFIG_KVM_XICS
470 /*
471 * We call kick_all_cpus_sync() to ensure that all
472 * CPUs have executed any pending IPIs before we
473 * continue and free VCPUs structures below.
474 */
475 if (is_kvmppc_hv_enabled(kvm))
476 kick_all_cpus_sync();
477 #endif
478
479 kvm_for_each_vcpu(i, vcpu, kvm)
480 kvm_vcpu_destroy(vcpu);
481
482 mutex_lock(&kvm->lock);
483 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
484 kvm->vcpus[i] = NULL;
485
486 atomic_set(&kvm->online_vcpus, 0);
487
488 kvmppc_core_destroy_vm(kvm);
489
490 mutex_unlock(&kvm->lock);
491
492 /* drop the module reference */
493 module_put(kvm->arch.kvm_ops->owner);
494 }
495
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
497 {
498 int r;
499 /* Assume we're using HV mode when the HV module is loaded */
500 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
501
502 if (kvm) {
503 /*
504 * Hooray - we know which VM type we're running on. Depend on
505 * that rather than the guess above.
506 */
507 hv_enabled = is_kvmppc_hv_enabled(kvm);
508 }
509
510 switch (ext) {
511 #ifdef CONFIG_BOOKE
512 case KVM_CAP_PPC_BOOKE_SREGS:
513 case KVM_CAP_PPC_BOOKE_WATCHDOG:
514 case KVM_CAP_PPC_EPR:
515 #else
516 case KVM_CAP_PPC_SEGSTATE:
517 case KVM_CAP_PPC_HIOR:
518 case KVM_CAP_PPC_PAPR:
519 #endif
520 case KVM_CAP_PPC_UNSET_IRQ:
521 case KVM_CAP_PPC_IRQ_LEVEL:
522 case KVM_CAP_ENABLE_CAP:
523 case KVM_CAP_ONE_REG:
524 case KVM_CAP_IOEVENTFD:
525 case KVM_CAP_DEVICE_CTRL:
526 case KVM_CAP_IMMEDIATE_EXIT:
527 case KVM_CAP_SET_GUEST_DEBUG:
528 r = 1;
529 break;
530 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
531 case KVM_CAP_PPC_PAIRED_SINGLES:
532 case KVM_CAP_PPC_OSI:
533 case KVM_CAP_PPC_GET_PVINFO:
534 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
535 case KVM_CAP_SW_TLB:
536 #endif
537 /* We support this only for PR */
538 r = !hv_enabled;
539 break;
540 #ifdef CONFIG_KVM_MPIC
541 case KVM_CAP_IRQ_MPIC:
542 r = 1;
543 break;
544 #endif
545
546 #ifdef CONFIG_PPC_BOOK3S_64
547 case KVM_CAP_SPAPR_TCE:
548 case KVM_CAP_SPAPR_TCE_64:
549 r = 1;
550 break;
551 case KVM_CAP_SPAPR_TCE_VFIO:
552 r = !!cpu_has_feature(CPU_FTR_HVMODE);
553 break;
554 case KVM_CAP_PPC_RTAS:
555 case KVM_CAP_PPC_FIXUP_HCALL:
556 case KVM_CAP_PPC_ENABLE_HCALL:
557 #ifdef CONFIG_KVM_XICS
558 case KVM_CAP_IRQ_XICS:
559 #endif
560 case KVM_CAP_PPC_GET_CPU_CHAR:
561 r = 1;
562 break;
563 #ifdef CONFIG_KVM_XIVE
564 case KVM_CAP_PPC_IRQ_XIVE:
565 /*
566 * We need XIVE to be enabled on the platform (implies
567 * a POWER9 processor) and the PowerNV platform, as
568 * nested is not yet supported.
569 */
570 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
571 kvmppc_xive_native_supported();
572 break;
573 #endif
574
575 case KVM_CAP_PPC_ALLOC_HTAB:
576 r = hv_enabled;
577 break;
578 #endif /* CONFIG_PPC_BOOK3S_64 */
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580 case KVM_CAP_PPC_SMT:
581 r = 0;
582 if (kvm) {
583 if (kvm->arch.emul_smt_mode > 1)
584 r = kvm->arch.emul_smt_mode;
585 else
586 r = kvm->arch.smt_mode;
587 } else if (hv_enabled) {
588 if (cpu_has_feature(CPU_FTR_ARCH_300))
589 r = 1;
590 else
591 r = threads_per_subcore;
592 }
593 break;
594 case KVM_CAP_PPC_SMT_POSSIBLE:
595 r = 1;
596 if (hv_enabled) {
597 if (!cpu_has_feature(CPU_FTR_ARCH_300))
598 r = ((threads_per_subcore << 1) - 1);
599 else
600 /* P9 can emulate dbells, so allow any mode */
601 r = 8 | 4 | 2 | 1;
602 }
603 break;
604 case KVM_CAP_PPC_RMA:
605 r = 0;
606 break;
607 case KVM_CAP_PPC_HWRNG:
608 r = kvmppc_hwrng_present();
609 break;
610 case KVM_CAP_PPC_MMU_RADIX:
611 r = !!(hv_enabled && radix_enabled());
612 break;
613 case KVM_CAP_PPC_MMU_HASH_V3:
614 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
615 cpu_has_feature(CPU_FTR_HVMODE));
616 break;
617 case KVM_CAP_PPC_NESTED_HV:
618 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
619 !kvmppc_hv_ops->enable_nested(NULL));
620 break;
621 #endif
622 case KVM_CAP_SYNC_MMU:
623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
624 r = hv_enabled;
625 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
626 r = 1;
627 #else
628 r = 0;
629 #endif
630 break;
631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
632 case KVM_CAP_PPC_HTAB_FD:
633 r = hv_enabled;
634 break;
635 #endif
636 case KVM_CAP_NR_VCPUS:
637 /*
638 * Recommending a number of CPUs is somewhat arbitrary; we
639 * return the number of present CPUs for -HV (since a host
640 * will have secondary threads "offline"), and for other KVM
641 * implementations just count online CPUs.
642 */
643 if (hv_enabled)
644 r = num_present_cpus();
645 else
646 r = num_online_cpus();
647 break;
648 case KVM_CAP_MAX_VCPUS:
649 r = KVM_MAX_VCPUS;
650 break;
651 case KVM_CAP_MAX_VCPU_ID:
652 r = KVM_MAX_VCPU_ID;
653 break;
654 #ifdef CONFIG_PPC_BOOK3S_64
655 case KVM_CAP_PPC_GET_SMMU_INFO:
656 r = 1;
657 break;
658 case KVM_CAP_SPAPR_MULTITCE:
659 r = 1;
660 break;
661 case KVM_CAP_SPAPR_RESIZE_HPT:
662 r = !!hv_enabled;
663 break;
664 #endif
665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
666 case KVM_CAP_PPC_FWNMI:
667 r = hv_enabled;
668 break;
669 #endif
670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
671 case KVM_CAP_PPC_HTM:
672 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
673 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
674 break;
675 #endif
676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
677 case KVM_CAP_PPC_SECURE_GUEST:
678 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
679 !kvmppc_hv_ops->enable_svm(NULL);
680 break;
681 #endif
682 default:
683 r = 0;
684 break;
685 }
686 return r;
687
688 }
689
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)690 long kvm_arch_dev_ioctl(struct file *filp,
691 unsigned int ioctl, unsigned long arg)
692 {
693 return -EINVAL;
694 }
695
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)696 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
697 {
698 kvmppc_core_free_memslot(kvm, slot);
699 }
700
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)701 int kvm_arch_prepare_memory_region(struct kvm *kvm,
702 struct kvm_memory_slot *memslot,
703 const struct kvm_userspace_memory_region *mem,
704 enum kvm_mr_change change)
705 {
706 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
707 }
708
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)709 void kvm_arch_commit_memory_region(struct kvm *kvm,
710 const struct kvm_userspace_memory_region *mem,
711 struct kvm_memory_slot *old,
712 const struct kvm_memory_slot *new,
713 enum kvm_mr_change change)
714 {
715 kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
716 }
717
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
719 struct kvm_memory_slot *slot)
720 {
721 kvmppc_core_flush_memslot(kvm, slot);
722 }
723
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)724 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
725 {
726 return 0;
727 }
728
kvmppc_decrementer_wakeup(struct hrtimer * timer)729 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
730 {
731 struct kvm_vcpu *vcpu;
732
733 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
734 kvmppc_decrementer_func(vcpu);
735
736 return HRTIMER_NORESTART;
737 }
738
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)739 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
740 {
741 int err;
742
743 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
744 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
745 vcpu->arch.dec_expires = get_tb();
746
747 #ifdef CONFIG_KVM_EXIT_TIMING
748 mutex_init(&vcpu->arch.exit_timing_lock);
749 #endif
750 err = kvmppc_subarch_vcpu_init(vcpu);
751 if (err)
752 return err;
753
754 err = kvmppc_core_vcpu_create(vcpu);
755 if (err)
756 goto out_vcpu_uninit;
757
758 vcpu->arch.waitp = &vcpu->wait;
759 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
760 return 0;
761
762 out_vcpu_uninit:
763 kvmppc_subarch_vcpu_uninit(vcpu);
764 return err;
765 }
766
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)767 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
768 {
769 }
770
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)771 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
772 {
773 /* Make sure we're not using the vcpu anymore */
774 hrtimer_cancel(&vcpu->arch.dec_timer);
775
776 kvmppc_remove_vcpu_debugfs(vcpu);
777
778 switch (vcpu->arch.irq_type) {
779 case KVMPPC_IRQ_MPIC:
780 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
781 break;
782 case KVMPPC_IRQ_XICS:
783 if (xics_on_xive())
784 kvmppc_xive_cleanup_vcpu(vcpu);
785 else
786 kvmppc_xics_free_icp(vcpu);
787 break;
788 case KVMPPC_IRQ_XIVE:
789 kvmppc_xive_native_cleanup_vcpu(vcpu);
790 break;
791 }
792
793 kvmppc_core_vcpu_free(vcpu);
794
795 kvmppc_subarch_vcpu_uninit(vcpu);
796 }
797
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)798 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
799 {
800 return kvmppc_core_pending_dec(vcpu);
801 }
802
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)803 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
804 {
805 #ifdef CONFIG_BOOKE
806 /*
807 * vrsave (formerly usprg0) isn't used by Linux, but may
808 * be used by the guest.
809 *
810 * On non-booke this is associated with Altivec and
811 * is handled by code in book3s.c.
812 */
813 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
814 #endif
815 kvmppc_core_vcpu_load(vcpu, cpu);
816 }
817
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)818 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
819 {
820 kvmppc_core_vcpu_put(vcpu);
821 #ifdef CONFIG_BOOKE
822 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
823 #endif
824 }
825
826 /*
827 * irq_bypass_add_producer and irq_bypass_del_producer are only
828 * useful if the architecture supports PCI passthrough.
829 * irq_bypass_stop and irq_bypass_start are not needed and so
830 * kvm_ops are not defined for them.
831 */
kvm_arch_has_irq_bypass(void)832 bool kvm_arch_has_irq_bypass(void)
833 {
834 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
835 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
836 }
837
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)838 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
839 struct irq_bypass_producer *prod)
840 {
841 struct kvm_kernel_irqfd *irqfd =
842 container_of(cons, struct kvm_kernel_irqfd, consumer);
843 struct kvm *kvm = irqfd->kvm;
844
845 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
846 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
847
848 return 0;
849 }
850
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)851 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
852 struct irq_bypass_producer *prod)
853 {
854 struct kvm_kernel_irqfd *irqfd =
855 container_of(cons, struct kvm_kernel_irqfd, consumer);
856 struct kvm *kvm = irqfd->kvm;
857
858 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
859 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
860 }
861
862 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)863 static inline int kvmppc_get_vsr_dword_offset(int index)
864 {
865 int offset;
866
867 if ((index != 0) && (index != 1))
868 return -1;
869
870 #ifdef __BIG_ENDIAN
871 offset = index;
872 #else
873 offset = 1 - index;
874 #endif
875
876 return offset;
877 }
878
kvmppc_get_vsr_word_offset(int index)879 static inline int kvmppc_get_vsr_word_offset(int index)
880 {
881 int offset;
882
883 if ((index > 3) || (index < 0))
884 return -1;
885
886 #ifdef __BIG_ENDIAN
887 offset = index;
888 #else
889 offset = 3 - index;
890 #endif
891 return offset;
892 }
893
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)894 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
895 u64 gpr)
896 {
897 union kvmppc_one_reg val;
898 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
899 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
900
901 if (offset == -1)
902 return;
903
904 if (index >= 32) {
905 val.vval = VCPU_VSX_VR(vcpu, index - 32);
906 val.vsxval[offset] = gpr;
907 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
908 } else {
909 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
910 }
911 }
912
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)913 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
914 u64 gpr)
915 {
916 union kvmppc_one_reg val;
917 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
918
919 if (index >= 32) {
920 val.vval = VCPU_VSX_VR(vcpu, index - 32);
921 val.vsxval[0] = gpr;
922 val.vsxval[1] = gpr;
923 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
924 } else {
925 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
926 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
927 }
928 }
929
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)930 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
931 u32 gpr)
932 {
933 union kvmppc_one_reg val;
934 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
935
936 if (index >= 32) {
937 val.vsx32val[0] = gpr;
938 val.vsx32val[1] = gpr;
939 val.vsx32val[2] = gpr;
940 val.vsx32val[3] = gpr;
941 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
942 } else {
943 val.vsx32val[0] = gpr;
944 val.vsx32val[1] = gpr;
945 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
946 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
947 }
948 }
949
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)950 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
951 u32 gpr32)
952 {
953 union kvmppc_one_reg val;
954 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
955 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
956 int dword_offset, word_offset;
957
958 if (offset == -1)
959 return;
960
961 if (index >= 32) {
962 val.vval = VCPU_VSX_VR(vcpu, index - 32);
963 val.vsx32val[offset] = gpr32;
964 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
965 } else {
966 dword_offset = offset / 2;
967 word_offset = offset % 2;
968 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
969 val.vsx32val[word_offset] = gpr32;
970 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
971 }
972 }
973 #endif /* CONFIG_VSX */
974
975 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)976 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
977 int index, int element_size)
978 {
979 int offset;
980 int elts = sizeof(vector128)/element_size;
981
982 if ((index < 0) || (index >= elts))
983 return -1;
984
985 if (kvmppc_need_byteswap(vcpu))
986 offset = elts - index - 1;
987 else
988 offset = index;
989
990 return offset;
991 }
992
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)993 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
994 int index)
995 {
996 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
997 }
998
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)999 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1000 int index)
1001 {
1002 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1003 }
1004
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)1005 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1006 int index)
1007 {
1008 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1009 }
1010
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1011 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1012 int index)
1013 {
1014 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1015 }
1016
1017
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1018 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1019 u64 gpr)
1020 {
1021 union kvmppc_one_reg val;
1022 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1023 vcpu->arch.mmio_vmx_offset);
1024 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1025
1026 if (offset == -1)
1027 return;
1028
1029 val.vval = VCPU_VSX_VR(vcpu, index);
1030 val.vsxval[offset] = gpr;
1031 VCPU_VSX_VR(vcpu, index) = val.vval;
1032 }
1033
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1034 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1035 u32 gpr32)
1036 {
1037 union kvmppc_one_reg val;
1038 int offset = kvmppc_get_vmx_word_offset(vcpu,
1039 vcpu->arch.mmio_vmx_offset);
1040 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1041
1042 if (offset == -1)
1043 return;
1044
1045 val.vval = VCPU_VSX_VR(vcpu, index);
1046 val.vsx32val[offset] = gpr32;
1047 VCPU_VSX_VR(vcpu, index) = val.vval;
1048 }
1049
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1050 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1051 u16 gpr16)
1052 {
1053 union kvmppc_one_reg val;
1054 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1055 vcpu->arch.mmio_vmx_offset);
1056 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1057
1058 if (offset == -1)
1059 return;
1060
1061 val.vval = VCPU_VSX_VR(vcpu, index);
1062 val.vsx16val[offset] = gpr16;
1063 VCPU_VSX_VR(vcpu, index) = val.vval;
1064 }
1065
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1066 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1067 u8 gpr8)
1068 {
1069 union kvmppc_one_reg val;
1070 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1071 vcpu->arch.mmio_vmx_offset);
1072 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1073
1074 if (offset == -1)
1075 return;
1076
1077 val.vval = VCPU_VSX_VR(vcpu, index);
1078 val.vsx8val[offset] = gpr8;
1079 VCPU_VSX_VR(vcpu, index) = val.vval;
1080 }
1081 #endif /* CONFIG_ALTIVEC */
1082
1083 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1084 static inline u64 sp_to_dp(u32 fprs)
1085 {
1086 u64 fprd;
1087
1088 preempt_disable();
1089 enable_kernel_fp();
1090 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1091 : "fr0");
1092 preempt_enable();
1093 return fprd;
1094 }
1095
dp_to_sp(u64 fprd)1096 static inline u32 dp_to_sp(u64 fprd)
1097 {
1098 u32 fprs;
1099
1100 preempt_disable();
1101 enable_kernel_fp();
1102 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1103 : "fr0");
1104 preempt_enable();
1105 return fprs;
1106 }
1107
1108 #else
1109 #define sp_to_dp(x) (x)
1110 #define dp_to_sp(x) (x)
1111 #endif /* CONFIG_PPC_FPU */
1112
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu)1113 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1114 {
1115 struct kvm_run *run = vcpu->run;
1116 u64 gpr;
1117
1118 if (run->mmio.len > sizeof(gpr)) {
1119 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1120 return;
1121 }
1122
1123 if (!vcpu->arch.mmio_host_swabbed) {
1124 switch (run->mmio.len) {
1125 case 8: gpr = *(u64 *)run->mmio.data; break;
1126 case 4: gpr = *(u32 *)run->mmio.data; break;
1127 case 2: gpr = *(u16 *)run->mmio.data; break;
1128 case 1: gpr = *(u8 *)run->mmio.data; break;
1129 }
1130 } else {
1131 switch (run->mmio.len) {
1132 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1133 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1134 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1135 case 1: gpr = *(u8 *)run->mmio.data; break;
1136 }
1137 }
1138
1139 /* conversion between single and double precision */
1140 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1141 gpr = sp_to_dp(gpr);
1142
1143 if (vcpu->arch.mmio_sign_extend) {
1144 switch (run->mmio.len) {
1145 #ifdef CONFIG_PPC64
1146 case 4:
1147 gpr = (s64)(s32)gpr;
1148 break;
1149 #endif
1150 case 2:
1151 gpr = (s64)(s16)gpr;
1152 break;
1153 case 1:
1154 gpr = (s64)(s8)gpr;
1155 break;
1156 }
1157 }
1158
1159 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1160 case KVM_MMIO_REG_GPR:
1161 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1162 break;
1163 case KVM_MMIO_REG_FPR:
1164 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1165 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1166
1167 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1168 break;
1169 #ifdef CONFIG_PPC_BOOK3S
1170 case KVM_MMIO_REG_QPR:
1171 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1172 break;
1173 case KVM_MMIO_REG_FQPR:
1174 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1175 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1176 break;
1177 #endif
1178 #ifdef CONFIG_VSX
1179 case KVM_MMIO_REG_VSX:
1180 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1181 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1182
1183 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1184 kvmppc_set_vsr_dword(vcpu, gpr);
1185 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1186 kvmppc_set_vsr_word(vcpu, gpr);
1187 else if (vcpu->arch.mmio_copy_type ==
1188 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1189 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1190 else if (vcpu->arch.mmio_copy_type ==
1191 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1192 kvmppc_set_vsr_word_dump(vcpu, gpr);
1193 break;
1194 #endif
1195 #ifdef CONFIG_ALTIVEC
1196 case KVM_MMIO_REG_VMX:
1197 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1198 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1199
1200 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1201 kvmppc_set_vmx_dword(vcpu, gpr);
1202 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1203 kvmppc_set_vmx_word(vcpu, gpr);
1204 else if (vcpu->arch.mmio_copy_type ==
1205 KVMPPC_VMX_COPY_HWORD)
1206 kvmppc_set_vmx_hword(vcpu, gpr);
1207 else if (vcpu->arch.mmio_copy_type ==
1208 KVMPPC_VMX_COPY_BYTE)
1209 kvmppc_set_vmx_byte(vcpu, gpr);
1210 break;
1211 #endif
1212 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1213 case KVM_MMIO_REG_NESTED_GPR:
1214 if (kvmppc_need_byteswap(vcpu))
1215 gpr = swab64(gpr);
1216 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1217 sizeof(gpr));
1218 break;
1219 #endif
1220 default:
1221 BUG();
1222 }
1223 }
1224
__kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1225 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1226 unsigned int rt, unsigned int bytes,
1227 int is_default_endian, int sign_extend)
1228 {
1229 struct kvm_run *run = vcpu->run;
1230 int idx, ret;
1231 bool host_swabbed;
1232
1233 /* Pity C doesn't have a logical XOR operator */
1234 if (kvmppc_need_byteswap(vcpu)) {
1235 host_swabbed = is_default_endian;
1236 } else {
1237 host_swabbed = !is_default_endian;
1238 }
1239
1240 if (bytes > sizeof(run->mmio.data)) {
1241 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1242 run->mmio.len);
1243 }
1244
1245 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1246 run->mmio.len = bytes;
1247 run->mmio.is_write = 0;
1248
1249 vcpu->arch.io_gpr = rt;
1250 vcpu->arch.mmio_host_swabbed = host_swabbed;
1251 vcpu->mmio_needed = 1;
1252 vcpu->mmio_is_write = 0;
1253 vcpu->arch.mmio_sign_extend = sign_extend;
1254
1255 idx = srcu_read_lock(&vcpu->kvm->srcu);
1256
1257 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1258 bytes, &run->mmio.data);
1259
1260 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1261
1262 if (!ret) {
1263 kvmppc_complete_mmio_load(vcpu);
1264 vcpu->mmio_needed = 0;
1265 return EMULATE_DONE;
1266 }
1267
1268 return EMULATE_DO_MMIO;
1269 }
1270
kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1271 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1272 unsigned int rt, unsigned int bytes,
1273 int is_default_endian)
1274 {
1275 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1276 }
1277 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1278
1279 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1280 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1281 unsigned int rt, unsigned int bytes,
1282 int is_default_endian)
1283 {
1284 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1285 }
1286
1287 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1288 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1289 unsigned int rt, unsigned int bytes,
1290 int is_default_endian, int mmio_sign_extend)
1291 {
1292 enum emulation_result emulated = EMULATE_DONE;
1293
1294 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1295 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1296 return EMULATE_FAIL;
1297
1298 while (vcpu->arch.mmio_vsx_copy_nums) {
1299 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1300 is_default_endian, mmio_sign_extend);
1301
1302 if (emulated != EMULATE_DONE)
1303 break;
1304
1305 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1306
1307 vcpu->arch.mmio_vsx_copy_nums--;
1308 vcpu->arch.mmio_vsx_offset++;
1309 }
1310 return emulated;
1311 }
1312 #endif /* CONFIG_VSX */
1313
kvmppc_handle_store(struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1314 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1315 u64 val, unsigned int bytes, int is_default_endian)
1316 {
1317 struct kvm_run *run = vcpu->run;
1318 void *data = run->mmio.data;
1319 int idx, ret;
1320 bool host_swabbed;
1321
1322 /* Pity C doesn't have a logical XOR operator */
1323 if (kvmppc_need_byteswap(vcpu)) {
1324 host_swabbed = is_default_endian;
1325 } else {
1326 host_swabbed = !is_default_endian;
1327 }
1328
1329 if (bytes > sizeof(run->mmio.data)) {
1330 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1331 run->mmio.len);
1332 }
1333
1334 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1335 run->mmio.len = bytes;
1336 run->mmio.is_write = 1;
1337 vcpu->mmio_needed = 1;
1338 vcpu->mmio_is_write = 1;
1339
1340 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1341 val = dp_to_sp(val);
1342
1343 /* Store the value at the lowest bytes in 'data'. */
1344 if (!host_swabbed) {
1345 switch (bytes) {
1346 case 8: *(u64 *)data = val; break;
1347 case 4: *(u32 *)data = val; break;
1348 case 2: *(u16 *)data = val; break;
1349 case 1: *(u8 *)data = val; break;
1350 }
1351 } else {
1352 switch (bytes) {
1353 case 8: *(u64 *)data = swab64(val); break;
1354 case 4: *(u32 *)data = swab32(val); break;
1355 case 2: *(u16 *)data = swab16(val); break;
1356 case 1: *(u8 *)data = val; break;
1357 }
1358 }
1359
1360 idx = srcu_read_lock(&vcpu->kvm->srcu);
1361
1362 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1363 bytes, &run->mmio.data);
1364
1365 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1366
1367 if (!ret) {
1368 vcpu->mmio_needed = 0;
1369 return EMULATE_DONE;
1370 }
1371
1372 return EMULATE_DO_MMIO;
1373 }
1374 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1375
1376 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1377 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1378 {
1379 u32 dword_offset, word_offset;
1380 union kvmppc_one_reg reg;
1381 int vsx_offset = 0;
1382 int copy_type = vcpu->arch.mmio_copy_type;
1383 int result = 0;
1384
1385 switch (copy_type) {
1386 case KVMPPC_VSX_COPY_DWORD:
1387 vsx_offset =
1388 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1389
1390 if (vsx_offset == -1) {
1391 result = -1;
1392 break;
1393 }
1394
1395 if (rs < 32) {
1396 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1397 } else {
1398 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1399 *val = reg.vsxval[vsx_offset];
1400 }
1401 break;
1402
1403 case KVMPPC_VSX_COPY_WORD:
1404 vsx_offset =
1405 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1406
1407 if (vsx_offset == -1) {
1408 result = -1;
1409 break;
1410 }
1411
1412 if (rs < 32) {
1413 dword_offset = vsx_offset / 2;
1414 word_offset = vsx_offset % 2;
1415 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1416 *val = reg.vsx32val[word_offset];
1417 } else {
1418 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1419 *val = reg.vsx32val[vsx_offset];
1420 }
1421 break;
1422
1423 default:
1424 result = -1;
1425 break;
1426 }
1427
1428 return result;
1429 }
1430
kvmppc_handle_vsx_store(struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1431 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1432 int rs, unsigned int bytes, int is_default_endian)
1433 {
1434 u64 val;
1435 enum emulation_result emulated = EMULATE_DONE;
1436
1437 vcpu->arch.io_gpr = rs;
1438
1439 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1440 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1441 return EMULATE_FAIL;
1442
1443 while (vcpu->arch.mmio_vsx_copy_nums) {
1444 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1445 return EMULATE_FAIL;
1446
1447 emulated = kvmppc_handle_store(vcpu,
1448 val, bytes, is_default_endian);
1449
1450 if (emulated != EMULATE_DONE)
1451 break;
1452
1453 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1454
1455 vcpu->arch.mmio_vsx_copy_nums--;
1456 vcpu->arch.mmio_vsx_offset++;
1457 }
1458
1459 return emulated;
1460 }
1461
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu)1462 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1463 {
1464 struct kvm_run *run = vcpu->run;
1465 enum emulation_result emulated = EMULATE_FAIL;
1466 int r;
1467
1468 vcpu->arch.paddr_accessed += run->mmio.len;
1469
1470 if (!vcpu->mmio_is_write) {
1471 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1472 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1473 } else {
1474 emulated = kvmppc_handle_vsx_store(vcpu,
1475 vcpu->arch.io_gpr, run->mmio.len, 1);
1476 }
1477
1478 switch (emulated) {
1479 case EMULATE_DO_MMIO:
1480 run->exit_reason = KVM_EXIT_MMIO;
1481 r = RESUME_HOST;
1482 break;
1483 case EMULATE_FAIL:
1484 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1485 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1486 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1487 r = RESUME_HOST;
1488 break;
1489 default:
1490 r = RESUME_GUEST;
1491 break;
1492 }
1493 return r;
1494 }
1495 #endif /* CONFIG_VSX */
1496
1497 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1498 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1499 unsigned int rt, unsigned int bytes, int is_default_endian)
1500 {
1501 enum emulation_result emulated = EMULATE_DONE;
1502
1503 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1504 return EMULATE_FAIL;
1505
1506 while (vcpu->arch.mmio_vmx_copy_nums) {
1507 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1508 is_default_endian, 0);
1509
1510 if (emulated != EMULATE_DONE)
1511 break;
1512
1513 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1514 vcpu->arch.mmio_vmx_copy_nums--;
1515 vcpu->arch.mmio_vmx_offset++;
1516 }
1517
1518 return emulated;
1519 }
1520
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1521 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1522 {
1523 union kvmppc_one_reg reg;
1524 int vmx_offset = 0;
1525 int result = 0;
1526
1527 vmx_offset =
1528 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1529
1530 if (vmx_offset == -1)
1531 return -1;
1532
1533 reg.vval = VCPU_VSX_VR(vcpu, index);
1534 *val = reg.vsxval[vmx_offset];
1535
1536 return result;
1537 }
1538
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1539 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1540 {
1541 union kvmppc_one_reg reg;
1542 int vmx_offset = 0;
1543 int result = 0;
1544
1545 vmx_offset =
1546 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1547
1548 if (vmx_offset == -1)
1549 return -1;
1550
1551 reg.vval = VCPU_VSX_VR(vcpu, index);
1552 *val = reg.vsx32val[vmx_offset];
1553
1554 return result;
1555 }
1556
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1557 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1558 {
1559 union kvmppc_one_reg reg;
1560 int vmx_offset = 0;
1561 int result = 0;
1562
1563 vmx_offset =
1564 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1565
1566 if (vmx_offset == -1)
1567 return -1;
1568
1569 reg.vval = VCPU_VSX_VR(vcpu, index);
1570 *val = reg.vsx16val[vmx_offset];
1571
1572 return result;
1573 }
1574
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1575 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1576 {
1577 union kvmppc_one_reg reg;
1578 int vmx_offset = 0;
1579 int result = 0;
1580
1581 vmx_offset =
1582 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1583
1584 if (vmx_offset == -1)
1585 return -1;
1586
1587 reg.vval = VCPU_VSX_VR(vcpu, index);
1588 *val = reg.vsx8val[vmx_offset];
1589
1590 return result;
1591 }
1592
kvmppc_handle_vmx_store(struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1593 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1594 unsigned int rs, unsigned int bytes, int is_default_endian)
1595 {
1596 u64 val = 0;
1597 unsigned int index = rs & KVM_MMIO_REG_MASK;
1598 enum emulation_result emulated = EMULATE_DONE;
1599
1600 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1601 return EMULATE_FAIL;
1602
1603 vcpu->arch.io_gpr = rs;
1604
1605 while (vcpu->arch.mmio_vmx_copy_nums) {
1606 switch (vcpu->arch.mmio_copy_type) {
1607 case KVMPPC_VMX_COPY_DWORD:
1608 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1609 return EMULATE_FAIL;
1610
1611 break;
1612 case KVMPPC_VMX_COPY_WORD:
1613 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1614 return EMULATE_FAIL;
1615 break;
1616 case KVMPPC_VMX_COPY_HWORD:
1617 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1618 return EMULATE_FAIL;
1619 break;
1620 case KVMPPC_VMX_COPY_BYTE:
1621 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1622 return EMULATE_FAIL;
1623 break;
1624 default:
1625 return EMULATE_FAIL;
1626 }
1627
1628 emulated = kvmppc_handle_store(vcpu, val, bytes,
1629 is_default_endian);
1630 if (emulated != EMULATE_DONE)
1631 break;
1632
1633 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1634 vcpu->arch.mmio_vmx_copy_nums--;
1635 vcpu->arch.mmio_vmx_offset++;
1636 }
1637
1638 return emulated;
1639 }
1640
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu)1641 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1642 {
1643 struct kvm_run *run = vcpu->run;
1644 enum emulation_result emulated = EMULATE_FAIL;
1645 int r;
1646
1647 vcpu->arch.paddr_accessed += run->mmio.len;
1648
1649 if (!vcpu->mmio_is_write) {
1650 emulated = kvmppc_handle_vmx_load(vcpu,
1651 vcpu->arch.io_gpr, run->mmio.len, 1);
1652 } else {
1653 emulated = kvmppc_handle_vmx_store(vcpu,
1654 vcpu->arch.io_gpr, run->mmio.len, 1);
1655 }
1656
1657 switch (emulated) {
1658 case EMULATE_DO_MMIO:
1659 run->exit_reason = KVM_EXIT_MMIO;
1660 r = RESUME_HOST;
1661 break;
1662 case EMULATE_FAIL:
1663 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1664 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1665 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1666 r = RESUME_HOST;
1667 break;
1668 default:
1669 r = RESUME_GUEST;
1670 break;
1671 }
1672 return r;
1673 }
1674 #endif /* CONFIG_ALTIVEC */
1675
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1676 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1677 {
1678 int r = 0;
1679 union kvmppc_one_reg val;
1680 int size;
1681
1682 size = one_reg_size(reg->id);
1683 if (size > sizeof(val))
1684 return -EINVAL;
1685
1686 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1687 if (r == -EINVAL) {
1688 r = 0;
1689 switch (reg->id) {
1690 #ifdef CONFIG_ALTIVEC
1691 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1692 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1693 r = -ENXIO;
1694 break;
1695 }
1696 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1697 break;
1698 case KVM_REG_PPC_VSCR:
1699 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1700 r = -ENXIO;
1701 break;
1702 }
1703 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1704 break;
1705 case KVM_REG_PPC_VRSAVE:
1706 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1707 break;
1708 #endif /* CONFIG_ALTIVEC */
1709 default:
1710 r = -EINVAL;
1711 break;
1712 }
1713 }
1714
1715 if (r)
1716 return r;
1717
1718 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1719 r = -EFAULT;
1720
1721 return r;
1722 }
1723
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1724 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1725 {
1726 int r;
1727 union kvmppc_one_reg val;
1728 int size;
1729
1730 size = one_reg_size(reg->id);
1731 if (size > sizeof(val))
1732 return -EINVAL;
1733
1734 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1735 return -EFAULT;
1736
1737 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1738 if (r == -EINVAL) {
1739 r = 0;
1740 switch (reg->id) {
1741 #ifdef CONFIG_ALTIVEC
1742 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1743 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1744 r = -ENXIO;
1745 break;
1746 }
1747 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1748 break;
1749 case KVM_REG_PPC_VSCR:
1750 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1751 r = -ENXIO;
1752 break;
1753 }
1754 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1755 break;
1756 case KVM_REG_PPC_VRSAVE:
1757 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1758 r = -ENXIO;
1759 break;
1760 }
1761 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1762 break;
1763 #endif /* CONFIG_ALTIVEC */
1764 default:
1765 r = -EINVAL;
1766 break;
1767 }
1768 }
1769
1770 return r;
1771 }
1772
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1773 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1774 {
1775 struct kvm_run *run = vcpu->run;
1776 int r;
1777
1778 vcpu_load(vcpu);
1779
1780 if (vcpu->mmio_needed) {
1781 vcpu->mmio_needed = 0;
1782 if (!vcpu->mmio_is_write)
1783 kvmppc_complete_mmio_load(vcpu);
1784 #ifdef CONFIG_VSX
1785 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1786 vcpu->arch.mmio_vsx_copy_nums--;
1787 vcpu->arch.mmio_vsx_offset++;
1788 }
1789
1790 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1791 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1792 if (r == RESUME_HOST) {
1793 vcpu->mmio_needed = 1;
1794 goto out;
1795 }
1796 }
1797 #endif
1798 #ifdef CONFIG_ALTIVEC
1799 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1800 vcpu->arch.mmio_vmx_copy_nums--;
1801 vcpu->arch.mmio_vmx_offset++;
1802 }
1803
1804 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1805 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1806 if (r == RESUME_HOST) {
1807 vcpu->mmio_needed = 1;
1808 goto out;
1809 }
1810 }
1811 #endif
1812 } else if (vcpu->arch.osi_needed) {
1813 u64 *gprs = run->osi.gprs;
1814 int i;
1815
1816 for (i = 0; i < 32; i++)
1817 kvmppc_set_gpr(vcpu, i, gprs[i]);
1818 vcpu->arch.osi_needed = 0;
1819 } else if (vcpu->arch.hcall_needed) {
1820 int i;
1821
1822 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1823 for (i = 0; i < 9; ++i)
1824 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1825 vcpu->arch.hcall_needed = 0;
1826 #ifdef CONFIG_BOOKE
1827 } else if (vcpu->arch.epr_needed) {
1828 kvmppc_set_epr(vcpu, run->epr.epr);
1829 vcpu->arch.epr_needed = 0;
1830 #endif
1831 }
1832
1833 kvm_sigset_activate(vcpu);
1834
1835 if (run->immediate_exit)
1836 r = -EINTR;
1837 else
1838 r = kvmppc_vcpu_run(vcpu);
1839
1840 kvm_sigset_deactivate(vcpu);
1841
1842 #ifdef CONFIG_ALTIVEC
1843 out:
1844 #endif
1845 vcpu_put(vcpu);
1846 return r;
1847 }
1848
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1849 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1850 {
1851 if (irq->irq == KVM_INTERRUPT_UNSET) {
1852 kvmppc_core_dequeue_external(vcpu);
1853 return 0;
1854 }
1855
1856 kvmppc_core_queue_external(vcpu, irq);
1857
1858 kvm_vcpu_kick(vcpu);
1859
1860 return 0;
1861 }
1862
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1863 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1864 struct kvm_enable_cap *cap)
1865 {
1866 int r;
1867
1868 if (cap->flags)
1869 return -EINVAL;
1870
1871 switch (cap->cap) {
1872 case KVM_CAP_PPC_OSI:
1873 r = 0;
1874 vcpu->arch.osi_enabled = true;
1875 break;
1876 case KVM_CAP_PPC_PAPR:
1877 r = 0;
1878 vcpu->arch.papr_enabled = true;
1879 break;
1880 case KVM_CAP_PPC_EPR:
1881 r = 0;
1882 if (cap->args[0])
1883 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1884 else
1885 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1886 break;
1887 #ifdef CONFIG_BOOKE
1888 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1889 r = 0;
1890 vcpu->arch.watchdog_enabled = true;
1891 break;
1892 #endif
1893 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1894 case KVM_CAP_SW_TLB: {
1895 struct kvm_config_tlb cfg;
1896 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1897
1898 r = -EFAULT;
1899 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1900 break;
1901
1902 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1903 break;
1904 }
1905 #endif
1906 #ifdef CONFIG_KVM_MPIC
1907 case KVM_CAP_IRQ_MPIC: {
1908 struct fd f;
1909 struct kvm_device *dev;
1910
1911 r = -EBADF;
1912 f = fdget(cap->args[0]);
1913 if (!f.file)
1914 break;
1915
1916 r = -EPERM;
1917 dev = kvm_device_from_filp(f.file);
1918 if (dev)
1919 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1920
1921 fdput(f);
1922 break;
1923 }
1924 #endif
1925 #ifdef CONFIG_KVM_XICS
1926 case KVM_CAP_IRQ_XICS: {
1927 struct fd f;
1928 struct kvm_device *dev;
1929
1930 r = -EBADF;
1931 f = fdget(cap->args[0]);
1932 if (!f.file)
1933 break;
1934
1935 r = -EPERM;
1936 dev = kvm_device_from_filp(f.file);
1937 if (dev) {
1938 if (xics_on_xive())
1939 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1940 else
1941 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1942 }
1943
1944 fdput(f);
1945 break;
1946 }
1947 #endif /* CONFIG_KVM_XICS */
1948 #ifdef CONFIG_KVM_XIVE
1949 case KVM_CAP_PPC_IRQ_XIVE: {
1950 struct fd f;
1951 struct kvm_device *dev;
1952
1953 r = -EBADF;
1954 f = fdget(cap->args[0]);
1955 if (!f.file)
1956 break;
1957
1958 r = -ENXIO;
1959 if (!xive_enabled())
1960 break;
1961
1962 r = -EPERM;
1963 dev = kvm_device_from_filp(f.file);
1964 if (dev)
1965 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1966 cap->args[1]);
1967
1968 fdput(f);
1969 break;
1970 }
1971 #endif /* CONFIG_KVM_XIVE */
1972 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1973 case KVM_CAP_PPC_FWNMI:
1974 r = -EINVAL;
1975 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1976 break;
1977 r = 0;
1978 vcpu->kvm->arch.fwnmi_enabled = true;
1979 break;
1980 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1981 default:
1982 r = -EINVAL;
1983 break;
1984 }
1985
1986 if (!r)
1987 r = kvmppc_sanity_check(vcpu);
1988
1989 return r;
1990 }
1991
kvm_arch_intc_initialized(struct kvm * kvm)1992 bool kvm_arch_intc_initialized(struct kvm *kvm)
1993 {
1994 #ifdef CONFIG_KVM_MPIC
1995 if (kvm->arch.mpic)
1996 return true;
1997 #endif
1998 #ifdef CONFIG_KVM_XICS
1999 if (kvm->arch.xics || kvm->arch.xive)
2000 return true;
2001 #endif
2002 return false;
2003 }
2004
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2005 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2006 struct kvm_mp_state *mp_state)
2007 {
2008 return -EINVAL;
2009 }
2010
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2011 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2012 struct kvm_mp_state *mp_state)
2013 {
2014 return -EINVAL;
2015 }
2016
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2017 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2018 unsigned int ioctl, unsigned long arg)
2019 {
2020 struct kvm_vcpu *vcpu = filp->private_data;
2021 void __user *argp = (void __user *)arg;
2022
2023 if (ioctl == KVM_INTERRUPT) {
2024 struct kvm_interrupt irq;
2025 if (copy_from_user(&irq, argp, sizeof(irq)))
2026 return -EFAULT;
2027 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2028 }
2029 return -ENOIOCTLCMD;
2030 }
2031
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2032 long kvm_arch_vcpu_ioctl(struct file *filp,
2033 unsigned int ioctl, unsigned long arg)
2034 {
2035 struct kvm_vcpu *vcpu = filp->private_data;
2036 void __user *argp = (void __user *)arg;
2037 long r;
2038
2039 switch (ioctl) {
2040 case KVM_ENABLE_CAP:
2041 {
2042 struct kvm_enable_cap cap;
2043 r = -EFAULT;
2044 vcpu_load(vcpu);
2045 if (copy_from_user(&cap, argp, sizeof(cap)))
2046 goto out;
2047 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2048 vcpu_put(vcpu);
2049 break;
2050 }
2051
2052 case KVM_SET_ONE_REG:
2053 case KVM_GET_ONE_REG:
2054 {
2055 struct kvm_one_reg reg;
2056 r = -EFAULT;
2057 if (copy_from_user(®, argp, sizeof(reg)))
2058 goto out;
2059 if (ioctl == KVM_SET_ONE_REG)
2060 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2061 else
2062 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2063 break;
2064 }
2065
2066 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2067 case KVM_DIRTY_TLB: {
2068 struct kvm_dirty_tlb dirty;
2069 r = -EFAULT;
2070 vcpu_load(vcpu);
2071 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2072 goto out;
2073 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2074 vcpu_put(vcpu);
2075 break;
2076 }
2077 #endif
2078 default:
2079 r = -EINVAL;
2080 }
2081
2082 out:
2083 return r;
2084 }
2085
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2086 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2087 {
2088 return VM_FAULT_SIGBUS;
2089 }
2090
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2091 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2092 {
2093 u32 inst_nop = 0x60000000;
2094 #ifdef CONFIG_KVM_BOOKE_HV
2095 u32 inst_sc1 = 0x44000022;
2096 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2097 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2098 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2099 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2100 #else
2101 u32 inst_lis = 0x3c000000;
2102 u32 inst_ori = 0x60000000;
2103 u32 inst_sc = 0x44000002;
2104 u32 inst_imm_mask = 0xffff;
2105
2106 /*
2107 * The hypercall to get into KVM from within guest context is as
2108 * follows:
2109 *
2110 * lis r0, r0, KVM_SC_MAGIC_R0@h
2111 * ori r0, KVM_SC_MAGIC_R0@l
2112 * sc
2113 * nop
2114 */
2115 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2116 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2117 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2118 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2119 #endif
2120
2121 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2122
2123 return 0;
2124 }
2125
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2126 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2127 bool line_status)
2128 {
2129 if (!irqchip_in_kernel(kvm))
2130 return -ENXIO;
2131
2132 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2133 irq_event->irq, irq_event->level,
2134 line_status);
2135 return 0;
2136 }
2137
2138
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2139 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2140 struct kvm_enable_cap *cap)
2141 {
2142 int r;
2143
2144 if (cap->flags)
2145 return -EINVAL;
2146
2147 switch (cap->cap) {
2148 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2149 case KVM_CAP_PPC_ENABLE_HCALL: {
2150 unsigned long hcall = cap->args[0];
2151
2152 r = -EINVAL;
2153 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2154 cap->args[1] > 1)
2155 break;
2156 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2157 break;
2158 if (cap->args[1])
2159 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2160 else
2161 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2162 r = 0;
2163 break;
2164 }
2165 case KVM_CAP_PPC_SMT: {
2166 unsigned long mode = cap->args[0];
2167 unsigned long flags = cap->args[1];
2168
2169 r = -EINVAL;
2170 if (kvm->arch.kvm_ops->set_smt_mode)
2171 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2172 break;
2173 }
2174
2175 case KVM_CAP_PPC_NESTED_HV:
2176 r = -EINVAL;
2177 if (!is_kvmppc_hv_enabled(kvm) ||
2178 !kvm->arch.kvm_ops->enable_nested)
2179 break;
2180 r = kvm->arch.kvm_ops->enable_nested(kvm);
2181 break;
2182 #endif
2183 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2184 case KVM_CAP_PPC_SECURE_GUEST:
2185 r = -EINVAL;
2186 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2187 break;
2188 r = kvm->arch.kvm_ops->enable_svm(kvm);
2189 break;
2190 #endif
2191 default:
2192 r = -EINVAL;
2193 break;
2194 }
2195
2196 return r;
2197 }
2198
2199 #ifdef CONFIG_PPC_BOOK3S_64
2200 /*
2201 * These functions check whether the underlying hardware is safe
2202 * against attacks based on observing the effects of speculatively
2203 * executed instructions, and whether it supplies instructions for
2204 * use in workarounds. The information comes from firmware, either
2205 * via the device tree on powernv platforms or from an hcall on
2206 * pseries platforms.
2207 */
2208 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2209 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2210 {
2211 struct h_cpu_char_result c;
2212 unsigned long rc;
2213
2214 if (!machine_is(pseries))
2215 return -ENOTTY;
2216
2217 rc = plpar_get_cpu_characteristics(&c);
2218 if (rc == H_SUCCESS) {
2219 cp->character = c.character;
2220 cp->behaviour = c.behaviour;
2221 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2222 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2223 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2224 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2225 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2226 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2227 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2228 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2229 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2230 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2231 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2232 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2233 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2234 }
2235 return 0;
2236 }
2237 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2238 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2239 {
2240 return -ENOTTY;
2241 }
2242 #endif
2243
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2244 static inline bool have_fw_feat(struct device_node *fw_features,
2245 const char *state, const char *name)
2246 {
2247 struct device_node *np;
2248 bool r = false;
2249
2250 np = of_get_child_by_name(fw_features, name);
2251 if (np) {
2252 r = of_property_read_bool(np, state);
2253 of_node_put(np);
2254 }
2255 return r;
2256 }
2257
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2258 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2259 {
2260 struct device_node *np, *fw_features;
2261 int r;
2262
2263 memset(cp, 0, sizeof(*cp));
2264 r = pseries_get_cpu_char(cp);
2265 if (r != -ENOTTY)
2266 return r;
2267
2268 np = of_find_node_by_name(NULL, "ibm,opal");
2269 if (np) {
2270 fw_features = of_get_child_by_name(np, "fw-features");
2271 of_node_put(np);
2272 if (!fw_features)
2273 return 0;
2274 if (have_fw_feat(fw_features, "enabled",
2275 "inst-spec-barrier-ori31,31,0"))
2276 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2277 if (have_fw_feat(fw_features, "enabled",
2278 "fw-bcctrl-serialized"))
2279 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2280 if (have_fw_feat(fw_features, "enabled",
2281 "inst-l1d-flush-ori30,30,0"))
2282 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2283 if (have_fw_feat(fw_features, "enabled",
2284 "inst-l1d-flush-trig2"))
2285 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2286 if (have_fw_feat(fw_features, "enabled",
2287 "fw-l1d-thread-split"))
2288 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2289 if (have_fw_feat(fw_features, "enabled",
2290 "fw-count-cache-disabled"))
2291 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2292 if (have_fw_feat(fw_features, "enabled",
2293 "fw-count-cache-flush-bcctr2,0,0"))
2294 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2295 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2296 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2297 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2298 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2299 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2300 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2301 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2302
2303 if (have_fw_feat(fw_features, "enabled",
2304 "speculation-policy-favor-security"))
2305 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2306 if (!have_fw_feat(fw_features, "disabled",
2307 "needs-l1d-flush-msr-pr-0-to-1"))
2308 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2309 if (!have_fw_feat(fw_features, "disabled",
2310 "needs-spec-barrier-for-bound-checks"))
2311 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2312 if (have_fw_feat(fw_features, "enabled",
2313 "needs-count-cache-flush-on-context-switch"))
2314 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2315 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2316 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2317 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2318 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2319
2320 of_node_put(fw_features);
2321 }
2322
2323 return 0;
2324 }
2325 #endif
2326
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2327 long kvm_arch_vm_ioctl(struct file *filp,
2328 unsigned int ioctl, unsigned long arg)
2329 {
2330 struct kvm *kvm __maybe_unused = filp->private_data;
2331 void __user *argp = (void __user *)arg;
2332 long r;
2333
2334 switch (ioctl) {
2335 case KVM_PPC_GET_PVINFO: {
2336 struct kvm_ppc_pvinfo pvinfo;
2337 memset(&pvinfo, 0, sizeof(pvinfo));
2338 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2339 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2340 r = -EFAULT;
2341 goto out;
2342 }
2343
2344 break;
2345 }
2346 #ifdef CONFIG_SPAPR_TCE_IOMMU
2347 case KVM_CREATE_SPAPR_TCE_64: {
2348 struct kvm_create_spapr_tce_64 create_tce_64;
2349
2350 r = -EFAULT;
2351 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2352 goto out;
2353 if (create_tce_64.flags) {
2354 r = -EINVAL;
2355 goto out;
2356 }
2357 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2358 goto out;
2359 }
2360 case KVM_CREATE_SPAPR_TCE: {
2361 struct kvm_create_spapr_tce create_tce;
2362 struct kvm_create_spapr_tce_64 create_tce_64;
2363
2364 r = -EFAULT;
2365 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2366 goto out;
2367
2368 create_tce_64.liobn = create_tce.liobn;
2369 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2370 create_tce_64.offset = 0;
2371 create_tce_64.size = create_tce.window_size >>
2372 IOMMU_PAGE_SHIFT_4K;
2373 create_tce_64.flags = 0;
2374 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2375 goto out;
2376 }
2377 #endif
2378 #ifdef CONFIG_PPC_BOOK3S_64
2379 case KVM_PPC_GET_SMMU_INFO: {
2380 struct kvm_ppc_smmu_info info;
2381 struct kvm *kvm = filp->private_data;
2382
2383 memset(&info, 0, sizeof(info));
2384 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2385 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2386 r = -EFAULT;
2387 break;
2388 }
2389 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2390 struct kvm *kvm = filp->private_data;
2391
2392 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2393 break;
2394 }
2395 case KVM_PPC_CONFIGURE_V3_MMU: {
2396 struct kvm *kvm = filp->private_data;
2397 struct kvm_ppc_mmuv3_cfg cfg;
2398
2399 r = -EINVAL;
2400 if (!kvm->arch.kvm_ops->configure_mmu)
2401 goto out;
2402 r = -EFAULT;
2403 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2404 goto out;
2405 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2406 break;
2407 }
2408 case KVM_PPC_GET_RMMU_INFO: {
2409 struct kvm *kvm = filp->private_data;
2410 struct kvm_ppc_rmmu_info info;
2411
2412 r = -EINVAL;
2413 if (!kvm->arch.kvm_ops->get_rmmu_info)
2414 goto out;
2415 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2416 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2417 r = -EFAULT;
2418 break;
2419 }
2420 case KVM_PPC_GET_CPU_CHAR: {
2421 struct kvm_ppc_cpu_char cpuchar;
2422
2423 r = kvmppc_get_cpu_char(&cpuchar);
2424 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2425 r = -EFAULT;
2426 break;
2427 }
2428 case KVM_PPC_SVM_OFF: {
2429 struct kvm *kvm = filp->private_data;
2430
2431 r = 0;
2432 if (!kvm->arch.kvm_ops->svm_off)
2433 goto out;
2434
2435 r = kvm->arch.kvm_ops->svm_off(kvm);
2436 break;
2437 }
2438 default: {
2439 struct kvm *kvm = filp->private_data;
2440 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2441 }
2442 #else /* CONFIG_PPC_BOOK3S_64 */
2443 default:
2444 r = -ENOTTY;
2445 #endif
2446 }
2447 out:
2448 return r;
2449 }
2450
2451 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2452 static unsigned long nr_lpids;
2453
kvmppc_alloc_lpid(void)2454 long kvmppc_alloc_lpid(void)
2455 {
2456 long lpid;
2457
2458 do {
2459 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2460 if (lpid >= nr_lpids) {
2461 pr_err("%s: No LPIDs free\n", __func__);
2462 return -ENOMEM;
2463 }
2464 } while (test_and_set_bit(lpid, lpid_inuse));
2465
2466 return lpid;
2467 }
2468 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2469
kvmppc_claim_lpid(long lpid)2470 void kvmppc_claim_lpid(long lpid)
2471 {
2472 set_bit(lpid, lpid_inuse);
2473 }
2474 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2475
kvmppc_free_lpid(long lpid)2476 void kvmppc_free_lpid(long lpid)
2477 {
2478 clear_bit(lpid, lpid_inuse);
2479 }
2480 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2481
kvmppc_init_lpid(unsigned long nr_lpids_param)2482 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2483 {
2484 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2485 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2486 }
2487 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2488
kvm_arch_init(void * opaque)2489 int kvm_arch_init(void *opaque)
2490 {
2491 return 0;
2492 }
2493
2494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2495