1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ppc64 code to implement the kexec_file_load syscall
4 *
5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
6 * Copyright (C) 2004 IBM Corp.
7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
10 * Copyright (C) 2020 IBM Corporation
11 *
12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13 * Heavily modified for the kernel by
14 * Hari Bathini, IBM Corporation.
15 */
16
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of_device.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/drmem.h>
25 #include <asm/kexec_ranges.h>
26 #include <asm/crashdump-ppc64.h>
27
28 struct umem_info {
29 u64 *buf; /* data buffer for usable-memory property */
30 u32 size; /* size allocated for the data buffer */
31 u32 max_entries; /* maximum no. of entries */
32 u32 idx; /* index of current entry */
33
34 /* usable memory ranges to look up */
35 unsigned int nr_ranges;
36 const struct crash_mem_range *ranges;
37 };
38
39 const struct kexec_file_ops * const kexec_file_loaders[] = {
40 &kexec_elf64_ops,
41 NULL
42 };
43
44 /**
45 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
46 * regions like opal/rtas, tce-table, initrd,
47 * kernel, htab which should be avoided while
48 * setting up kexec load segments.
49 * @mem_ranges: Range list to add the memory ranges to.
50 *
51 * Returns 0 on success, negative errno on error.
52 */
get_exclude_memory_ranges(struct crash_mem ** mem_ranges)53 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
54 {
55 int ret;
56
57 ret = add_tce_mem_ranges(mem_ranges);
58 if (ret)
59 goto out;
60
61 ret = add_initrd_mem_range(mem_ranges);
62 if (ret)
63 goto out;
64
65 ret = add_htab_mem_range(mem_ranges);
66 if (ret)
67 goto out;
68
69 ret = add_kernel_mem_range(mem_ranges);
70 if (ret)
71 goto out;
72
73 ret = add_rtas_mem_range(mem_ranges);
74 if (ret)
75 goto out;
76
77 ret = add_opal_mem_range(mem_ranges);
78 if (ret)
79 goto out;
80
81 ret = add_reserved_mem_ranges(mem_ranges);
82 if (ret)
83 goto out;
84
85 /* exclude memory ranges should be sorted for easy lookup */
86 sort_memory_ranges(*mem_ranges, true);
87 out:
88 if (ret)
89 pr_err("Failed to setup exclude memory ranges\n");
90 return ret;
91 }
92
93 /**
94 * get_usable_memory_ranges - Get usable memory ranges. This list includes
95 * regions like crashkernel, opal/rtas & tce-table,
96 * that kdump kernel could use.
97 * @mem_ranges: Range list to add the memory ranges to.
98 *
99 * Returns 0 on success, negative errno on error.
100 */
get_usable_memory_ranges(struct crash_mem ** mem_ranges)101 static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
102 {
103 int ret;
104
105 /*
106 * Early boot failure observed on guests when low memory (first memory
107 * block?) is not added to usable memory. So, add [0, crashk_res.end]
108 * instead of [crashk_res.start, crashk_res.end] to workaround it.
109 * Also, crashed kernel's memory must be added to reserve map to
110 * avoid kdump kernel from using it.
111 */
112 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
113 if (ret)
114 goto out;
115
116 ret = add_rtas_mem_range(mem_ranges);
117 if (ret)
118 goto out;
119
120 ret = add_opal_mem_range(mem_ranges);
121 if (ret)
122 goto out;
123
124 ret = add_tce_mem_ranges(mem_ranges);
125 out:
126 if (ret)
127 pr_err("Failed to setup usable memory ranges\n");
128 return ret;
129 }
130
131 /**
132 * get_crash_memory_ranges - Get crash memory ranges. This list includes
133 * first/crashing kernel's memory regions that
134 * would be exported via an elfcore.
135 * @mem_ranges: Range list to add the memory ranges to.
136 *
137 * Returns 0 on success, negative errno on error.
138 */
get_crash_memory_ranges(struct crash_mem ** mem_ranges)139 static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
140 {
141 phys_addr_t base, end;
142 struct crash_mem *tmem;
143 u64 i;
144 int ret;
145
146 for_each_mem_range(i, &base, &end) {
147 u64 size = end - base;
148
149 /* Skip backup memory region, which needs a separate entry */
150 if (base == BACKUP_SRC_START) {
151 if (size > BACKUP_SRC_SIZE) {
152 base = BACKUP_SRC_END + 1;
153 size -= BACKUP_SRC_SIZE;
154 } else
155 continue;
156 }
157
158 ret = add_mem_range(mem_ranges, base, size);
159 if (ret)
160 goto out;
161
162 /* Try merging adjacent ranges before reallocation attempt */
163 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
164 sort_memory_ranges(*mem_ranges, true);
165 }
166
167 /* Reallocate memory ranges if there is no space to split ranges */
168 tmem = *mem_ranges;
169 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
170 tmem = realloc_mem_ranges(mem_ranges);
171 if (!tmem)
172 goto out;
173 }
174
175 /* Exclude crashkernel region */
176 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
177 if (ret)
178 goto out;
179
180 /*
181 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
182 * regions are exported to save their context at the time of
183 * crash, they should actually be backed up just like the
184 * first 64K bytes of memory.
185 */
186 ret = add_rtas_mem_range(mem_ranges);
187 if (ret)
188 goto out;
189
190 ret = add_opal_mem_range(mem_ranges);
191 if (ret)
192 goto out;
193
194 /* create a separate program header for the backup region */
195 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
196 if (ret)
197 goto out;
198
199 sort_memory_ranges(*mem_ranges, false);
200 out:
201 if (ret)
202 pr_err("Failed to setup crash memory ranges\n");
203 return ret;
204 }
205
206 /**
207 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
208 * memory regions that should be added to the
209 * memory reserve map to ensure the region is
210 * protected from any mischief.
211 * @mem_ranges: Range list to add the memory ranges to.
212 *
213 * Returns 0 on success, negative errno on error.
214 */
get_reserved_memory_ranges(struct crash_mem ** mem_ranges)215 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
216 {
217 int ret;
218
219 ret = add_rtas_mem_range(mem_ranges);
220 if (ret)
221 goto out;
222
223 ret = add_tce_mem_ranges(mem_ranges);
224 if (ret)
225 goto out;
226
227 ret = add_reserved_mem_ranges(mem_ranges);
228 out:
229 if (ret)
230 pr_err("Failed to setup reserved memory ranges\n");
231 return ret;
232 }
233
234 /**
235 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
236 * in the memory regions between buf_min & buf_max
237 * for the buffer. If found, sets kbuf->mem.
238 * @kbuf: Buffer contents and memory parameters.
239 * @buf_min: Minimum address for the buffer.
240 * @buf_max: Maximum address for the buffer.
241 *
242 * Returns 0 on success, negative errno on error.
243 */
__locate_mem_hole_top_down(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)244 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
245 u64 buf_min, u64 buf_max)
246 {
247 int ret = -EADDRNOTAVAIL;
248 phys_addr_t start, end;
249 u64 i;
250
251 for_each_mem_range_rev(i, &start, &end) {
252 /*
253 * memblock uses [start, end) convention while it is
254 * [start, end] here. Fix the off-by-one to have the
255 * same convention.
256 */
257 end -= 1;
258
259 if (start > buf_max)
260 continue;
261
262 /* Memory hole not found */
263 if (end < buf_min)
264 break;
265
266 /* Adjust memory region based on the given range */
267 if (start < buf_min)
268 start = buf_min;
269 if (end > buf_max)
270 end = buf_max;
271
272 start = ALIGN(start, kbuf->buf_align);
273 if (start < end && (end - start + 1) >= kbuf->memsz) {
274 /* Suitable memory range found. Set kbuf->mem */
275 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
276 kbuf->buf_align);
277 ret = 0;
278 break;
279 }
280 }
281
282 return ret;
283 }
284
285 /**
286 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
287 * suitable buffer with top down approach.
288 * @kbuf: Buffer contents and memory parameters.
289 * @buf_min: Minimum address for the buffer.
290 * @buf_max: Maximum address for the buffer.
291 * @emem: Exclude memory ranges.
292 *
293 * Returns 0 on success, negative errno on error.
294 */
locate_mem_hole_top_down_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)295 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
296 u64 buf_min, u64 buf_max,
297 const struct crash_mem *emem)
298 {
299 int i, ret = 0, err = -EADDRNOTAVAIL;
300 u64 start, end, tmin, tmax;
301
302 tmax = buf_max;
303 for (i = (emem->nr_ranges - 1); i >= 0; i--) {
304 start = emem->ranges[i].start;
305 end = emem->ranges[i].end;
306
307 if (start > tmax)
308 continue;
309
310 if (end < tmax) {
311 tmin = (end < buf_min ? buf_min : end + 1);
312 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
313 if (!ret)
314 return 0;
315 }
316
317 tmax = start - 1;
318
319 if (tmax < buf_min) {
320 ret = err;
321 break;
322 }
323 ret = 0;
324 }
325
326 if (!ret) {
327 tmin = buf_min;
328 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
329 }
330 return ret;
331 }
332
333 /**
334 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
335 * in the memory regions between buf_min & buf_max
336 * for the buffer. If found, sets kbuf->mem.
337 * @kbuf: Buffer contents and memory parameters.
338 * @buf_min: Minimum address for the buffer.
339 * @buf_max: Maximum address for the buffer.
340 *
341 * Returns 0 on success, negative errno on error.
342 */
__locate_mem_hole_bottom_up(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)343 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
344 u64 buf_min, u64 buf_max)
345 {
346 int ret = -EADDRNOTAVAIL;
347 phys_addr_t start, end;
348 u64 i;
349
350 for_each_mem_range(i, &start, &end) {
351 /*
352 * memblock uses [start, end) convention while it is
353 * [start, end] here. Fix the off-by-one to have the
354 * same convention.
355 */
356 end -= 1;
357
358 if (end < buf_min)
359 continue;
360
361 /* Memory hole not found */
362 if (start > buf_max)
363 break;
364
365 /* Adjust memory region based on the given range */
366 if (start < buf_min)
367 start = buf_min;
368 if (end > buf_max)
369 end = buf_max;
370
371 start = ALIGN(start, kbuf->buf_align);
372 if (start < end && (end - start + 1) >= kbuf->memsz) {
373 /* Suitable memory range found. Set kbuf->mem */
374 kbuf->mem = start;
375 ret = 0;
376 break;
377 }
378 }
379
380 return ret;
381 }
382
383 /**
384 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
385 * suitable buffer with bottom up approach.
386 * @kbuf: Buffer contents and memory parameters.
387 * @buf_min: Minimum address for the buffer.
388 * @buf_max: Maximum address for the buffer.
389 * @emem: Exclude memory ranges.
390 *
391 * Returns 0 on success, negative errno on error.
392 */
locate_mem_hole_bottom_up_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)393 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
394 u64 buf_min, u64 buf_max,
395 const struct crash_mem *emem)
396 {
397 int i, ret = 0, err = -EADDRNOTAVAIL;
398 u64 start, end, tmin, tmax;
399
400 tmin = buf_min;
401 for (i = 0; i < emem->nr_ranges; i++) {
402 start = emem->ranges[i].start;
403 end = emem->ranges[i].end;
404
405 if (end < tmin)
406 continue;
407
408 if (start > tmin) {
409 tmax = (start > buf_max ? buf_max : start - 1);
410 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
411 if (!ret)
412 return 0;
413 }
414
415 tmin = end + 1;
416
417 if (tmin > buf_max) {
418 ret = err;
419 break;
420 }
421 ret = 0;
422 }
423
424 if (!ret) {
425 tmax = buf_max;
426 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
427 }
428 return ret;
429 }
430
431 /**
432 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
433 * @um_info: Usable memory buffer and ranges info.
434 * @cnt: No. of entries to accommodate.
435 *
436 * Frees up the old buffer if memory reallocation fails.
437 *
438 * Returns buffer on success, NULL on error.
439 */
check_realloc_usable_mem(struct umem_info * um_info,int cnt)440 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
441 {
442 u32 new_size;
443 u64 *tbuf;
444
445 if ((um_info->idx + cnt) <= um_info->max_entries)
446 return um_info->buf;
447
448 new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
449 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
450 if (tbuf) {
451 um_info->buf = tbuf;
452 um_info->size = new_size;
453 um_info->max_entries = (um_info->size / sizeof(u64));
454 }
455
456 return tbuf;
457 }
458
459 /**
460 * add_usable_mem - Add the usable memory ranges within the given memory range
461 * to the buffer
462 * @um_info: Usable memory buffer and ranges info.
463 * @base: Base address of memory range to look for.
464 * @end: End address of memory range to look for.
465 *
466 * Returns 0 on success, negative errno on error.
467 */
add_usable_mem(struct umem_info * um_info,u64 base,u64 end)468 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
469 {
470 u64 loc_base, loc_end;
471 bool add;
472 int i;
473
474 for (i = 0; i < um_info->nr_ranges; i++) {
475 add = false;
476 loc_base = um_info->ranges[i].start;
477 loc_end = um_info->ranges[i].end;
478 if (loc_base >= base && loc_end <= end)
479 add = true;
480 else if (base < loc_end && end > loc_base) {
481 if (loc_base < base)
482 loc_base = base;
483 if (loc_end > end)
484 loc_end = end;
485 add = true;
486 }
487
488 if (add) {
489 if (!check_realloc_usable_mem(um_info, 2))
490 return -ENOMEM;
491
492 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
493 um_info->buf[um_info->idx++] =
494 cpu_to_be64(loc_end - loc_base + 1);
495 }
496 }
497
498 return 0;
499 }
500
501 /**
502 * kdump_setup_usable_lmb - This is a callback function that gets called by
503 * walk_drmem_lmbs for every LMB to set its
504 * usable memory ranges.
505 * @lmb: LMB info.
506 * @usm: linux,drconf-usable-memory property value.
507 * @data: Pointer to usable memory buffer and ranges info.
508 *
509 * Returns 0 on success, negative errno on error.
510 */
kdump_setup_usable_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)511 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
512 void *data)
513 {
514 struct umem_info *um_info;
515 int tmp_idx, ret;
516 u64 base, end;
517
518 /*
519 * kdump load isn't supported on kernels already booted with
520 * linux,drconf-usable-memory property.
521 */
522 if (*usm) {
523 pr_err("linux,drconf-usable-memory property already exists!");
524 return -EINVAL;
525 }
526
527 um_info = data;
528 tmp_idx = um_info->idx;
529 if (!check_realloc_usable_mem(um_info, 1))
530 return -ENOMEM;
531
532 um_info->idx++;
533 base = lmb->base_addr;
534 end = base + drmem_lmb_size() - 1;
535 ret = add_usable_mem(um_info, base, end);
536 if (!ret) {
537 /*
538 * Update the no. of ranges added. Two entries (base & size)
539 * for every range added.
540 */
541 um_info->buf[tmp_idx] =
542 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
543 }
544
545 return ret;
546 }
547
548 #define NODE_PATH_LEN 256
549 /**
550 * add_usable_mem_property - Add usable memory property for the given
551 * memory node.
552 * @fdt: Flattened device tree for the kdump kernel.
553 * @dn: Memory node.
554 * @um_info: Usable memory buffer and ranges info.
555 *
556 * Returns 0 on success, negative errno on error.
557 */
add_usable_mem_property(void * fdt,struct device_node * dn,struct umem_info * um_info)558 static int add_usable_mem_property(void *fdt, struct device_node *dn,
559 struct umem_info *um_info)
560 {
561 int n_mem_addr_cells, n_mem_size_cells, node;
562 char path[NODE_PATH_LEN];
563 int i, len, ranges, ret;
564 const __be32 *prop;
565 u64 base, end;
566
567 of_node_get(dn);
568
569 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
570 pr_err("Buffer (%d) too small for memory node: %pOF\n",
571 NODE_PATH_LEN, dn);
572 return -EOVERFLOW;
573 }
574 pr_debug("Memory node path: %s\n", path);
575
576 /* Now that we know the path, find its offset in kdump kernel's fdt */
577 node = fdt_path_offset(fdt, path);
578 if (node < 0) {
579 pr_err("Malformed device tree: error reading %s\n", path);
580 ret = -EINVAL;
581 goto out;
582 }
583
584 /* Get the address & size cells */
585 n_mem_addr_cells = of_n_addr_cells(dn);
586 n_mem_size_cells = of_n_size_cells(dn);
587 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
588 n_mem_size_cells);
589
590 um_info->idx = 0;
591 if (!check_realloc_usable_mem(um_info, 2)) {
592 ret = -ENOMEM;
593 goto out;
594 }
595
596 prop = of_get_property(dn, "reg", &len);
597 if (!prop || len <= 0) {
598 ret = 0;
599 goto out;
600 }
601
602 /*
603 * "reg" property represents sequence of (addr,size) tuples
604 * each representing a memory range.
605 */
606 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
607
608 for (i = 0; i < ranges; i++) {
609 base = of_read_number(prop, n_mem_addr_cells);
610 prop += n_mem_addr_cells;
611 end = base + of_read_number(prop, n_mem_size_cells) - 1;
612 prop += n_mem_size_cells;
613
614 ret = add_usable_mem(um_info, base, end);
615 if (ret)
616 goto out;
617 }
618
619 /*
620 * No kdump kernel usable memory found in this memory node.
621 * Write (0,0) tuple in linux,usable-memory property for
622 * this region to be ignored.
623 */
624 if (um_info->idx == 0) {
625 um_info->buf[0] = 0;
626 um_info->buf[1] = 0;
627 um_info->idx = 2;
628 }
629
630 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
631 (um_info->idx * sizeof(u64)));
632
633 out:
634 of_node_put(dn);
635 return ret;
636 }
637
638
639 /**
640 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
641 * and linux,drconf-usable-memory DT properties as
642 * appropriate to restrict its memory usage.
643 * @fdt: Flattened device tree for the kdump kernel.
644 * @usable_mem: Usable memory ranges for kdump kernel.
645 *
646 * Returns 0 on success, negative errno on error.
647 */
update_usable_mem_fdt(void * fdt,struct crash_mem * usable_mem)648 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
649 {
650 struct umem_info um_info;
651 struct device_node *dn;
652 int node, ret = 0;
653
654 if (!usable_mem) {
655 pr_err("Usable memory ranges for kdump kernel not found\n");
656 return -ENOENT;
657 }
658
659 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
660 if (node == -FDT_ERR_NOTFOUND)
661 pr_debug("No dynamic reconfiguration memory found\n");
662 else if (node < 0) {
663 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
664 return -EINVAL;
665 }
666
667 um_info.buf = NULL;
668 um_info.size = 0;
669 um_info.max_entries = 0;
670 um_info.idx = 0;
671 /* Memory ranges to look up */
672 um_info.ranges = &(usable_mem->ranges[0]);
673 um_info.nr_ranges = usable_mem->nr_ranges;
674
675 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
676 if (dn) {
677 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
678 of_node_put(dn);
679
680 if (ret) {
681 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
682 goto out;
683 }
684
685 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
686 um_info.buf, (um_info.idx * sizeof(u64)));
687 if (ret) {
688 pr_err("Failed to update fdt with linux,drconf-usable-memory property");
689 goto out;
690 }
691 }
692
693 /*
694 * Walk through each memory node and set linux,usable-memory property
695 * for the corresponding node in kdump kernel's fdt.
696 */
697 for_each_node_by_type(dn, "memory") {
698 ret = add_usable_mem_property(fdt, dn, &um_info);
699 if (ret) {
700 pr_err("Failed to set linux,usable-memory property for %s node",
701 dn->full_name);
702 goto out;
703 }
704 }
705
706 out:
707 kfree(um_info.buf);
708 return ret;
709 }
710
711 /**
712 * load_backup_segment - Locate a memory hole to place the backup region.
713 * @image: Kexec image.
714 * @kbuf: Buffer contents and memory parameters.
715 *
716 * Returns 0 on success, negative errno on error.
717 */
load_backup_segment(struct kimage * image,struct kexec_buf * kbuf)718 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
719 {
720 void *buf;
721 int ret;
722
723 /*
724 * Setup a source buffer for backup segment.
725 *
726 * A source buffer has no meaning for backup region as data will
727 * be copied from backup source, after crash, in the purgatory.
728 * But as load segment code doesn't recognize such segments,
729 * setup a dummy source buffer to keep it happy for now.
730 */
731 buf = vzalloc(BACKUP_SRC_SIZE);
732 if (!buf)
733 return -ENOMEM;
734
735 kbuf->buffer = buf;
736 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
737 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
738 kbuf->top_down = false;
739
740 ret = kexec_add_buffer(kbuf);
741 if (ret) {
742 vfree(buf);
743 return ret;
744 }
745
746 image->arch.backup_buf = buf;
747 image->arch.backup_start = kbuf->mem;
748 return 0;
749 }
750
751 /**
752 * update_backup_region_phdr - Update backup region's offset for the core to
753 * export the region appropriately.
754 * @image: Kexec image.
755 * @ehdr: ELF core header.
756 *
757 * Assumes an exclusive program header is setup for the backup region
758 * in the ELF headers
759 *
760 * Returns nothing.
761 */
update_backup_region_phdr(struct kimage * image,Elf64_Ehdr * ehdr)762 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
763 {
764 Elf64_Phdr *phdr;
765 unsigned int i;
766
767 phdr = (Elf64_Phdr *)(ehdr + 1);
768 for (i = 0; i < ehdr->e_phnum; i++) {
769 if (phdr->p_paddr == BACKUP_SRC_START) {
770 phdr->p_offset = image->arch.backup_start;
771 pr_debug("Backup region offset updated to 0x%lx\n",
772 image->arch.backup_start);
773 return;
774 }
775 }
776 }
777
778 /**
779 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
780 * segment needed to load kdump kernel.
781 * @image: Kexec image.
782 * @kbuf: Buffer contents and memory parameters.
783 *
784 * Returns 0 on success, negative errno on error.
785 */
load_elfcorehdr_segment(struct kimage * image,struct kexec_buf * kbuf)786 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
787 {
788 struct crash_mem *cmem = NULL;
789 unsigned long headers_sz;
790 void *headers = NULL;
791 int ret;
792
793 ret = get_crash_memory_ranges(&cmem);
794 if (ret)
795 goto out;
796
797 /* Setup elfcorehdr segment */
798 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
799 if (ret) {
800 pr_err("Failed to prepare elf headers for the core\n");
801 goto out;
802 }
803
804 /* Fix the offset for backup region in the ELF header */
805 update_backup_region_phdr(image, headers);
806
807 kbuf->buffer = headers;
808 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
809 kbuf->bufsz = kbuf->memsz = headers_sz;
810 kbuf->top_down = false;
811
812 ret = kexec_add_buffer(kbuf);
813 if (ret) {
814 vfree(headers);
815 goto out;
816 }
817
818 image->arch.elfcorehdr_addr = kbuf->mem;
819 image->arch.elf_headers_sz = headers_sz;
820 image->arch.elf_headers = headers;
821 out:
822 kfree(cmem);
823 return ret;
824 }
825
826 /**
827 * load_crashdump_segments_ppc64 - Initialize the additional segements needed
828 * to load kdump kernel.
829 * @image: Kexec image.
830 * @kbuf: Buffer contents and memory parameters.
831 *
832 * Returns 0 on success, negative errno on error.
833 */
load_crashdump_segments_ppc64(struct kimage * image,struct kexec_buf * kbuf)834 int load_crashdump_segments_ppc64(struct kimage *image,
835 struct kexec_buf *kbuf)
836 {
837 int ret;
838
839 /* Load backup segment - first 64K bytes of the crashing kernel */
840 ret = load_backup_segment(image, kbuf);
841 if (ret) {
842 pr_err("Failed to load backup segment\n");
843 return ret;
844 }
845 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
846
847 /* Load elfcorehdr segment - to export crashing kernel's vmcore */
848 ret = load_elfcorehdr_segment(image, kbuf);
849 if (ret) {
850 pr_err("Failed to load elfcorehdr segment\n");
851 return ret;
852 }
853 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
854 image->arch.elfcorehdr_addr, kbuf->bufsz, kbuf->memsz);
855
856 return 0;
857 }
858
859 /**
860 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
861 * variables and call setup_purgatory() to initialize
862 * common global variable.
863 * @image: kexec image.
864 * @slave_code: Slave code for the purgatory.
865 * @fdt: Flattened device tree for the next kernel.
866 * @kernel_load_addr: Address where the kernel is loaded.
867 * @fdt_load_addr: Address where the flattened device tree is loaded.
868 *
869 * Returns 0 on success, negative errno on error.
870 */
setup_purgatory_ppc64(struct kimage * image,const void * slave_code,const void * fdt,unsigned long kernel_load_addr,unsigned long fdt_load_addr)871 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
872 const void *fdt, unsigned long kernel_load_addr,
873 unsigned long fdt_load_addr)
874 {
875 struct device_node *dn = NULL;
876 int ret;
877
878 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
879 fdt_load_addr);
880 if (ret)
881 goto out;
882
883 if (image->type == KEXEC_TYPE_CRASH) {
884 u32 my_run_at_load = 1;
885
886 /*
887 * Tell relocatable kernel to run at load address
888 * via the word meant for that at 0x5c.
889 */
890 ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
891 &my_run_at_load,
892 sizeof(my_run_at_load),
893 false);
894 if (ret)
895 goto out;
896 }
897
898 /* Tell purgatory where to look for backup region */
899 ret = kexec_purgatory_get_set_symbol(image, "backup_start",
900 &image->arch.backup_start,
901 sizeof(image->arch.backup_start),
902 false);
903 if (ret)
904 goto out;
905
906 /* Setup OPAL base & entry values */
907 dn = of_find_node_by_path("/ibm,opal");
908 if (dn) {
909 u64 val;
910
911 of_property_read_u64(dn, "opal-base-address", &val);
912 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
913 sizeof(val), false);
914 if (ret)
915 goto out;
916
917 of_property_read_u64(dn, "opal-entry-address", &val);
918 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
919 sizeof(val), false);
920 }
921 out:
922 if (ret)
923 pr_err("Failed to setup purgatory symbols");
924 of_node_put(dn);
925 return ret;
926 }
927
928 /**
929 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
930 * being loaded.
931 * @image: kexec image being loaded.
932 * @fdt: Flattened device tree for the next kernel.
933 * @initrd_load_addr: Address where the next initrd will be loaded.
934 * @initrd_len: Size of the next initrd, or 0 if there will be none.
935 * @cmdline: Command line for the next kernel, or NULL if there will
936 * be none.
937 *
938 * Returns 0 on success, negative errno on error.
939 */
setup_new_fdt_ppc64(const struct kimage * image,void * fdt,unsigned long initrd_load_addr,unsigned long initrd_len,const char * cmdline)940 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
941 unsigned long initrd_load_addr,
942 unsigned long initrd_len, const char *cmdline)
943 {
944 struct crash_mem *umem = NULL, *rmem = NULL;
945 int i, nr_ranges, ret;
946
947 ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline);
948 if (ret)
949 goto out;
950
951 /*
952 * Restrict memory usage for kdump kernel by setting up
953 * usable memory ranges and memory reserve map.
954 */
955 if (image->type == KEXEC_TYPE_CRASH) {
956 ret = get_usable_memory_ranges(&umem);
957 if (ret)
958 goto out;
959
960 ret = update_usable_mem_fdt(fdt, umem);
961 if (ret) {
962 pr_err("Error setting up usable-memory property for kdump kernel\n");
963 goto out;
964 }
965
966 /*
967 * Ensure we don't touch crashed kernel's memory except the
968 * first 64K of RAM, which will be backed up.
969 */
970 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
971 crashk_res.start - BACKUP_SRC_SIZE);
972 if (ret) {
973 pr_err("Error reserving crash memory: %s\n",
974 fdt_strerror(ret));
975 goto out;
976 }
977
978 /* Ensure backup region is not used by kdump/capture kernel */
979 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
980 BACKUP_SRC_SIZE);
981 if (ret) {
982 pr_err("Error reserving memory for backup: %s\n",
983 fdt_strerror(ret));
984 goto out;
985 }
986 }
987
988 /* Update memory reserve map */
989 ret = get_reserved_memory_ranges(&rmem);
990 if (ret)
991 goto out;
992
993 nr_ranges = rmem ? rmem->nr_ranges : 0;
994 for (i = 0; i < nr_ranges; i++) {
995 u64 base, size;
996
997 base = rmem->ranges[i].start;
998 size = rmem->ranges[i].end - base + 1;
999 ret = fdt_add_mem_rsv(fdt, base, size);
1000 if (ret) {
1001 pr_err("Error updating memory reserve map: %s\n",
1002 fdt_strerror(ret));
1003 goto out;
1004 }
1005 }
1006
1007 out:
1008 kfree(rmem);
1009 kfree(umem);
1010 return ret;
1011 }
1012
1013 /**
1014 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1015 * tce-table, reserved-ranges & such (exclude
1016 * memory ranges) as they can't be used for kexec
1017 * segment buffer. Sets kbuf->mem when a suitable
1018 * memory hole is found.
1019 * @kbuf: Buffer contents and memory parameters.
1020 *
1021 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1022 *
1023 * Returns 0 on success, negative errno on error.
1024 */
arch_kexec_locate_mem_hole(struct kexec_buf * kbuf)1025 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1026 {
1027 struct crash_mem **emem;
1028 u64 buf_min, buf_max;
1029 int ret;
1030
1031 /* Look up the exclude ranges list while locating the memory hole */
1032 emem = &(kbuf->image->arch.exclude_ranges);
1033 if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1034 pr_warn("No exclude range list. Using the default locate mem hole method\n");
1035 return kexec_locate_mem_hole(kbuf);
1036 }
1037
1038 buf_min = kbuf->buf_min;
1039 buf_max = kbuf->buf_max;
1040 /* Segments for kdump kernel should be within crashkernel region */
1041 if (kbuf->image->type == KEXEC_TYPE_CRASH) {
1042 buf_min = (buf_min < crashk_res.start ?
1043 crashk_res.start : buf_min);
1044 buf_max = (buf_max > crashk_res.end ?
1045 crashk_res.end : buf_max);
1046 }
1047
1048 if (buf_min > buf_max) {
1049 pr_err("Invalid buffer min and/or max values\n");
1050 return -EINVAL;
1051 }
1052
1053 if (kbuf->top_down)
1054 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1055 *emem);
1056 else
1057 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1058 *emem);
1059
1060 /* Add the buffer allocated to the exclude list for the next lookup */
1061 if (!ret) {
1062 add_mem_range(emem, kbuf->mem, kbuf->memsz);
1063 sort_memory_ranges(*emem, true);
1064 } else {
1065 pr_err("Failed to locate memory buffer of size %lu\n",
1066 kbuf->memsz);
1067 }
1068 return ret;
1069 }
1070
1071 /**
1072 * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1073 * kexec segments.
1074 * @image: kexec image being loaded.
1075 * @buf: Buffer pointing to elf data.
1076 * @buf_len: Length of the buffer.
1077 *
1078 * Returns 0 on success, negative errno on error.
1079 */
arch_kexec_kernel_image_probe(struct kimage * image,void * buf,unsigned long buf_len)1080 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1081 unsigned long buf_len)
1082 {
1083 int ret;
1084
1085 /* Get exclude memory ranges needed for setting up kexec segments */
1086 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1087 if (ret) {
1088 pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1089 return ret;
1090 }
1091
1092 return kexec_image_probe_default(image, buf, buf_len);
1093 }
1094
1095 /**
1096 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1097 * while loading the image.
1098 * @image: kexec image being loaded.
1099 *
1100 * Returns 0 on success, negative errno on error.
1101 */
arch_kimage_file_post_load_cleanup(struct kimage * image)1102 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1103 {
1104 kfree(image->arch.exclude_ranges);
1105 image->arch.exclude_ranges = NULL;
1106
1107 vfree(image->arch.backup_buf);
1108 image->arch.backup_buf = NULL;
1109
1110 vfree(image->arch.elf_headers);
1111 image->arch.elf_headers = NULL;
1112 image->arch.elf_headers_sz = 0;
1113
1114 return kexec_image_post_load_cleanup_default(image);
1115 }
1116